1
|
Di Martino E, Ambikan A, Ramsköld D, Umekawa T, Giatrellis S, Vacondio D, Romero AL, Galán MG, Sandberg R, Ådén U, Lauschke VM, Neogi U, Blomgren K, Kele J. Inflammatory, metabolic, and sex-dependent gene-regulatory dynamics of microglia and macrophages in neonatal hippocampus after hypoxia-ischemia. iScience 2024; 27:109346. [PMID: 38500830 PMCID: PMC10945260 DOI: 10.1016/j.isci.2024.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of perinatal death and long-term disabilities worldwide. Post-ischemic neuroinflammation plays a pivotal role in HI pathophysiology. In the present study, we investigated the temporal dynamics of microglia (CX3CR1GFP/+) and infiltrating macrophages (CCR2RFP/+) in the hippocampi of mice subjected to HI at postnatal day 9. Using inflammatory pathway and transcription factor (TF) analyses, we identified a distinct post-ischemic response in CCR2RFP/+ cells characterized by differential gene expression in sensome, homeostatic, matrisome, lipid metabolic, and inflammatory molecular signatures. Three days after injury, transcriptomic signatures of CX3CR1GFP/+ and CCR2RFP/+ cells isolated from hippocampi showed a partial convergence. Interestingly, microglia-specific genes in CX3CR1GFP/+ cells showed a sexual dimorphism, where expression returned to control levels in males but not in females during the experimental time frame. These results highlight the importance of further investigations on metabolic rewiring to pave the way for future interventions in asphyxiated neonates.
Collapse
Affiliation(s)
- Elena Di Martino
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Anoop Ambikan
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Daniel Ramsköld
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Takashi Umekawa
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sarantis Giatrellis
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Davide Vacondio
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Marta Gómez Galán
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Ulrika Ådén
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Klas Blomgren
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Julianna Kele
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
- Team Neurovascular Biology and Health, Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| |
Collapse
|
2
|
Coelho-Rato LS, Parvanian S, Modi MK, Eriksson JE. Vimentin at the core of wound healing. Trends Cell Biol 2024; 34:239-254. [PMID: 37748934 DOI: 10.1016/j.tcb.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
As a member of the large family of intermediate filaments (IFs), vimentin has emerged as a highly dynamic and versatile cytoskeletal protein involved in many key processes of wound healing. It is well established that vimentin is involved in epithelial-mesenchymal transition (EMT) during wound healing and metastasis, during which epithelial cells acquire more dynamic and motile characteristics. Moreover, vimentin participates in multiple cellular activities supporting growth, proliferation, migration, cell survival, and stress resilience. Here, we explore the role of vimentin at each phase of wound healing, with focus on how it integrates different signaling pathways and protects cells in the fluctuating and challenging environments that characterize a healing tissue.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Mayank Kumar Modi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Euro-Bioimaging ERIC, 20520 Turku, Finland.
| |
Collapse
|
3
|
Pérez-Sala D, Quinlan RA. The redox-responsive roles of intermediate filaments in cellular stress detection, integration and mitigation. Curr Opin Cell Biol 2024; 86:102283. [PMID: 37989035 DOI: 10.1016/j.ceb.2023.102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
Intermediate filaments are critical for cell and tissue homeostasis and for stress responses. Cytoplasmic intermediate filaments form versatile and dynamic assemblies that interconnect cellular organelles, participate in signaling and protect cells and tissues against stress. Here we have focused on their involvement in redox signaling and oxidative stress, which arises in numerous pathophysiological situations. We pay special attention to type III intermediate filaments, mainly vimentin, because it provides a physical interface for redox signaling, stress responses and mechanosensing. Vimentin possesses a single cysteine residue that is a target for multiple oxidants and electrophiles. This conserved residue fine tunes vimentin assembly, response to oxidative stress and crosstalk with other cellular structures. Here we integrate evidence from the intermediate filament and redox biology fields to propose intermediate filaments as redox sentinel networks of the cell. To support this, we appraise how vimentin detects and orchestrates cellular responses to oxidative and electrophilic stress.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040 Madrid, Spain.
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, Durham, United Kingdom; Biophysical Sciences Institute, University of Durham, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, WA, United States.
| |
Collapse
|
4
|
Zhang X, Tan J, Zhang X, Pandey K, Zhong Y, Wu G, He K. Aggrephagy-related gene signature correlates with survival and tumor-associated macrophages in glioma: Insights from single-cell and bulk RNA sequencing. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:2407-2431. [PMID: 38454689 DOI: 10.3934/mbe.2024106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
BACKGROUND Aggrephagy is a lysosome-dependent process that degrades misfolded protein condensates to maintain cancer cell homeostasis. Despite its importance in cellular protein quality control, the role of aggrephagy in glioma remains poorly understood. OBJECTIVE To investigate the expression of aggrephagy-related genes (ARGs) in glioma and in different cell types of gliomas and to develop an ARGs-based prognostic signature to predict the prognosis, tumor microenvironment, and immunotherapy response of gliomas. METHODS ARGs were identified by searching the Reactome database. We developed the ARGs-based prognostic signature (ARPS) using data from the Cancer Genome Atlas (TCGA, n = 669) by Lasso-Cox regression. We validated the robustness of the signature in clinical subgroups and CGGA cohorts (n = 970). Gene set enrichment analysis (GSEA) was used to identify the pathways enriched in ARPS subgroups. The correlations between ARGs and macrophages were also investigated at single cell level. RESULTS A total of 44 ARGs showed heterogeneous expression among different cell types of gliomas. Five ARGs (HSF1, DYNC1H1, DYNLL2, TUBB6, TUBA1C) were identified to develop ARPS, an independent prognostic factor. GSEA showed gene sets of patients with high-ARPS were mostly enriched in cell cycle, DNA replication, and immune-related pathways. High-ARPS subgroup had higher immune cell infiltration states, particularly macrophages, Treg cells, and neutrophils. APRS had positive association with tumor mutation burden (TMB) and immunotherapy response predictors. At the single cell level, we found ARGs correlated with macrophage development and identified ARGs-mediated macrophage subtypes with distinct communication characteristics with tumor cells. VIM+ macrophages were identified as pro-inflammatory and had higher interactions with malignant cells. CONCLUSION We identified a novel signature based on ARGs for predicting glioma prognosis, tumor microenvironment, and immunotherapy response. We highlight the ARGs-mediated macrophages in glioma exhibit classical features.
Collapse
Affiliation(s)
- Xiaowei Zhang
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiayu Tan
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinyu Zhang
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Yuqing Zhong
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guitao Wu
- Guangzhou Women and Children's Hospital, Guangzhou, China
| | - Kejun He
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
van Loon K, van Breest Smallenburg ME, Huijbers EJM, Griffioen AW, van Beijnum JR. Extracellular vimentin as a versatile immune suppressive protein in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188985. [PMID: 37717859 DOI: 10.1016/j.bbcan.2023.188985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
The interest in finding new targets in the tumor microenvironment for anti-cancer therapy has increased rapidly over the years. More specifically, the tumor-associated blood vessels are a promising target. We recently found that the intermediate filament protein vimentin is externalized by endothelial cells of the tumor vasculature. Extracellular vimentin was shown to sustain angiogenesis by mimicking VEGF and supporting cell migration, as well as endothelial cell anergy, the unresponsiveness of the endothelium to proinflammatory cytokines. The latter hampers immune cell infiltration and subsequently provides escape from tumor immunity. Other studies showed that extracellular vimentin plays a role in sustained systemic and local inflammation. Here we will review the reported roles of extracellular vimentin with a particular emphasis on its involvement in the interactions between immune cells and the endothelium in the tumor microenvironment. To this end, we discuss the different ways by which extracellular vimentin modulates the immune system. Moreover, we review how this protein can alter immune cell-vessel wall adhesion by altering the expression of adhesion proteins, attenuating immune cell infiltration into the tumor parenchyma. Finally, we discuss how vimentin-targeting therapy can reverse endothelial cell anergy and promote immune infiltration, supporting anti-tumor immunity.
Collapse
Affiliation(s)
- Karlijn van Loon
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mathilda E van Breest Smallenburg
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Arrindell J, Desnues B. Vimentin: from a cytoskeletal protein to a critical modulator of immune response and a target for infection. Front Immunol 2023; 14:1224352. [PMID: 37475865 PMCID: PMC10354447 DOI: 10.3389/fimmu.2023.1224352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Vimentin is an intermediate filament protein that plays a role in cell processes, including cell migration, cell shape and plasticity, or organelle anchorage. However, studies from over the last quarter-century revealed that vimentin can be expressed at the cell surface and even secreted and that its implications in cell physiology largely exceed structural and cytoskeletal functions. Consequently, vimentin contributes to several pathophysiological conditions such as cancer, autoimmune and inflammatory diseases, or infection. In this review, we aimed at covering these various roles and highlighting vimentin implications in the immune response. We also provide an overview of how some microbes including bacteria and viruses have acquired the ability to circumvent vimentin functions in order to interfere with host responses and promote their uptake, persistence, and egress from host cells. Lastly, we discuss the therapeutic approaches associated with vimentin targeting, leading to several beneficial effects such as preventing infection, limiting inflammatory responses, or the progression of cancerous events.
Collapse
Affiliation(s)
- Jeffrey Arrindell
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Macrophage Phenotyping in Atherosclerosis by Proteomics. Int J Mol Sci 2023; 24:ijms24032613. [PMID: 36768933 PMCID: PMC9917096 DOI: 10.3390/ijms24032613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Macrophages are heterogeneous and plastic cells, able to adapt their phenotype and functions to changes in the microenvironment. They are involved in several homeostatic processes and also in many human diseases, including atherosclerosis, where they participate in all the stages of the disease. For these reasons, macrophages have been studied extensively using different approaches, including proteomics. Proteomics, indeed, may be a powerful tool to better understand the behavior of these cells, and a careful analysis of the proteome of different macrophage phenotypes can help to better characterize the role of these phenotypes in atherosclerosis and provide a broad view of proteins that might potentially affect the course of the disease. In this review, we discuss the different proteomic techniques that have been used to delineate the proteomic profile of macrophage phenotypes and summarize some results that can help to elucidate the roles of macrophages and develop new strategies to counteract the progression of atherosclerosis and/or promote regression.
Collapse
|
8
|
Wang L, Zhang Y, Yu M, Yuan W. Identification of Hub Genes in the Remodeling of Non-Infarcted Myocardium Following Acute Myocardial Infarction. J Cardiovasc Dev Dis 2022; 9:jcdd9120409. [PMID: 36547406 PMCID: PMC9788553 DOI: 10.3390/jcdd9120409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Background: There are few diagnostic and therapeutic targets for myocardial remodeling in the salvageable non-infarcted myocardium. (2) Methods: Hub genes were identified through comprehensive bioinformatics analysis (GSE775, GSE19322, and GSE110209 from the gene expression omnibus (GEO) database) and the biological functions of hub genes were examined by gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, the differential expression of hub genes in various cell populations between the acute myocardial infarction (AMI) and sham-operation groups was analyzed by processing scRNA data (E-MTAB-7376 from the ArrayExpress database) and RNA-seq data (GSE183168). (3) Results: Ten strongly interlinked hub genes (Timp1, Sparc, Spp1, Tgfb1, Decr1, Vim, Serpine1, Serpina3n, Thbs2, and Vcan) were identified by the construction of a protein-protein interaction network from 135 differentially expressed genes identified through comprehensive bioinformatics analysis and their reliability was verified using GSE119857. In addition, the 10 hub genes were found to influence the ventricular remodeling of non-infarcted tissue by modulating the extracellular matrix (ECM)-mediated myocardial fibrosis, macrophage-driven inflammation, and fatty acid metabolism. (4) Conclusions: Ten hub genes were identified, which may provide novel potential targets for the improvement and treatment of AMI and its complications.
Collapse
|
9
|
Chen KZ, Liu SX, Li YW, He T, Zhao J, Wang T, Qiu XX, Wu HF. Vimentin as a potential target for diverse nervous system diseases. Neural Regen Res 2022; 18:969-975. [PMID: 36254976 PMCID: PMC9827761 DOI: 10.4103/1673-5374.355744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Vimentin is a major type III intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protein, it also exists in the extracellular matrix and at the cell surface. Previous studies have shown that vimentin may exert multiple physiological effects in different nervous system injuries and diseases. For example, the studies of vimentin in spinal cord injury and stroke mainly focus on the formation of reactive astrocytes. Reduced glial scar, increased axonal regeneration, and improved motor function have been noted after spinal cord injury in vimentin and glial fibrillary acidic protein knockout (GFAP-/-VIM-/-) mice. However, attenuated glial scar formation in post-stroke in GFAP-/- VIM-/- mice resulted in abnormal neuronal network restoration and worse neurological recovery. These opposite results have been attributed to the multiple roles of glial scar in different temporal and spatial conditions. In addition, extracellular vimentin may be a neurotrophic factor that promotes axonal extension by interaction with the insulin-like growth factor 1 receptor. In the pathogenesis of bacterial meningitis, cell surface vimentin is a meningitis facilitator, acting as a receptor of multiple pathogenic bacteria, including E. coli K1, Listeria monocytogenes, and group B streptococcus. Compared with wild type mice, VIM-/- mice are less susceptible to bacterial infection and exhibit a reduced inflammatory response, suggesting that vimentin is necessary to induce the pathogenesis of meningitis. Recently published literature showed that vimentin serves as a double-edged sword in the nervous system, regulating axonal regrowth, myelination, apoptosis, and neuroinflammation. This review aims to provide an overview of vimentin in spinal cord injury, stroke, bacterial meningitis, gliomas, and peripheral nerve injury and to discuss the potential therapeutic methods involving vimentin manipulation in improving axonal regeneration, alleviating infection, inhibiting brain tumor progression, and enhancing nerve myelination.
Collapse
Affiliation(s)
- Kang-Zhen Chen
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China,Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Shu-Xian Liu
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China
| | - Yan-Wei Li
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China
| | - Tao He
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jie Zhao
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Tao Wang
- Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| | - Xian-Xiu Qiu
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| | - Hong-Fu Wu
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China,Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| |
Collapse
|
10
|
Kim SY, Jeong SJ, Park JH, Cho W, Ahn YH, Choi YH, Oh GT, Silverstein RL, Park YM. Plasma Membrane Localization of CD36 Requires Vimentin Phosphorylation; A Mechanism by Which Macrophage Vimentin Promotes Atherosclerosis. Front Cardiovasc Med 2022; 9:792717. [PMID: 35656400 PMCID: PMC9152264 DOI: 10.3389/fcvm.2022.792717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vimentin is a type III intermediate filament protein expressed in cells of mesenchymal origin. Vimentin has been thought to function mainly as a structural protein and roles of vimentin in other cellular processes have not been extensively studied. Our current study aims to reveal functions of vimentin in macrophage foam cell formation, the critical stage of atherosclerosis. We demonstrated that vimentin null (Vim -/ - ) mouse peritoneal macrophages take up less oxidized LDL (oxLDL) than vimentin wild type (Vim +/+) macrophages. Despite less uptake of oxLDL in Vim -/ - macrophages, Vim +/+ and Vim -/ - macrophages did not show difference in expression of CD36 known to mediate oxLDL uptake. However, CD36 localized in plasma membrane was 50% less in Vim -/ - macrophages than in Vim +/+ macrophages. OxLDL/CD36 interaction induced protein kinase A (PKA)-mediated vimentin (Ser72) phosphorylation. Cd36 -/ - macrophages did not exhibit vimentin phosphorylation (Ser72) in response to oxLDL. Experiments using phospho-mimetic mutation of vimentin revealed that macrophages with aspartate-substituted vimentin (V72D) showed more oxLDL uptake and membrane CD36. LDL receptor null (Ldlr -/ - ) mice reconstituted with Vim -/ - bone marrow fed a western diet for 15 weeks showed 43% less atherosclerotic lesion formation than Ldlr -/ - mice with Vim +/+ bone marrow. In addition, Apoe -/ -Vim- / - (double null) mice fed a western diet for 15 weeks also showed 57% less atherosclerotic lesion formation than Apoe -/ - and Vim +/+mice. We concluded that oxLDL via CD36 induces PKA-mediated phosphorylation of vimentin (Ser72) and phosphorylated vimentin (Ser72) directs CD36 trafficking to plasma membrane in macrophages. This study reveals a function of vimentin in CD36 trafficking and macrophage foam cell formation and may guide to establish a new strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Seo Yeon Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Se-Jin Jeong
- Department of Life Sciences, Immune and Vascular Cell Network Research Center, National Creative Initiatives, Ewha Womans University, Seoul, South Korea
| | - Ji-Hae Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Wonkyoung Cho
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Youn-Hee Choi
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Immune and Vascular Cell Network Research Center, National Creative Initiatives, Ewha Womans University, Seoul, South Korea
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Young Mi Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
11
|
Abstract
More than 27 yr ago, the vimentin knockout (Vim-/- ) mouse was reported to develop and reproduce without an obvious phenotype, implying that this major cytoskeletal protein was nonessential. Subsequently, comprehensive and careful analyses have revealed numerous phenotypes in Vim-/- mice and their organs, tissues, and cells, frequently reflecting altered responses in the recovery of tissues following various insults or injuries. These findings have been supported by cell-based experiments demonstrating that vimentin intermediate filaments (IFs) play a critical role in regulating cell mechanics and are required to coordinate mechanosensing, transduction, signaling pathways, motility, and inflammatory responses. This review highlights the essential functions of vimentin IFs revealed from studies of Vim-/- mice and cells derived from them.
Collapse
Affiliation(s)
- Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| | - John E Eriksson
- Cell Biology, Faculty of Science and Technology, Åbo Akademi University, FIN-20521 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
- Euro-Bioimaging European Research Infrastructure Consortium (ERIC), FIN-20521 Turku, Finland
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, Newcastle, New South Wales 2300, Australia
| | - Robert D Goldman
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
12
|
Hashemi Karoii D, Azizi H. A review of protein-protein interaction and signaling pathway of Vimentin in cell regulation, morphology and cell differentiation in normal cells. J Recept Signal Transduct Res 2022; 42:512-520. [PMID: 35296221 DOI: 10.1080/10799893.2022.2047199] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Vimentin intermediate filament (VIF) is an essential cytoskeleton component. It shows dynamically changing expression patterns throughout various phases of the differentiation process, suggesting that the protein is physiologically important. Vimentin's essential functions have recently been clear, so Vimentin-deficient of animals was described as a change of morphology and signaling pathway. Recent research has discovered many vital roles for Vimentin that were previously unknown. VIF emerges as an organizer of many essential proteins involved in movement and cell signaling. The highly dynamic and complicated phosphorylation of VIF seems to be a regulator mechanism for various activities. Changes in IF expression patterns are often linked with cancer progression, especially those leading to enhanced invasion and cellular migration. This review will discuss the function of Vimentin intermediate filaments in normal cell physiology, cell adhesion structures, cell shape, and signaling pathways. The genes interaction and gene network linked with Vimentin will be discussed in more studies. However, research aimed at understanding the function of Vimentin in different signaling cascades and gene interactions might offer novel methods for creating therapeutic medicines. Enrichr GEO datasets used gene ontology (GO) and pathway enrichment analyses. STRING online was used to predict the functional connections of proteins-proteins, followed by Cytoscape analysis to find the master genes. Cytoscape and STRING research revealed that eight genes, Fas, Casp8, Casp6, Fadd, Ripk1, Des, Tnnc2, and Tnnt3, were required for protein-protein interactions with Vimentin genes involved in cell differentiation.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
13
|
Liang Y, Li L, Chen Y, Zhang S, Li Z, Xiao J, Wei D. Research Progress on the Role of Intermediate Filament Vimentin in Atherosclerosis. DNA Cell Biol 2021; 40:1495-1502. [PMID: 34931866 DOI: 10.1089/dna.2021.0623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cytoskeleton is a biopolymer network composed of intermediate filaments, actin, and microtubules, which is the main mechanical structure of cells. Vimentin is an intermediate filament protein that regulates the mechanical and contractile properties of cells, thereby reflecting their mechanical properties. In recent years, the "nonmechanical function" of vimentin inside and outside of cells has attracted extensive attention. The content of vimentin in atherosclerotic plaques is increased, and the serum secretion of vimentin in patients with coronary heart disease is remarkably increased. In this review, the mechanistic and nonmechanistic roles of vimentin in atherosclerosis progression were summarized on the basis of current studies.
Collapse
Affiliation(s)
- Yamin Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Lu Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yanmei Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shulei Zhang
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhaozhi Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jinyan Xiao
- YueYang Maternal-Child Medicine Health Hospital Hunan Province Innovative Training Base for Medical Postgraduates, University of China South China and Yueyang Women and Children's Medical Center, Yueyang, Hunan, China
| | - Dangheng Wei
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Huang L, Xu W, Liu H, Xue M, Liu X, Zhang K, Hu L, Li J, Liu X, Xiang Z, Zheng J, Li C, Chen W, Bu Z, Xiong T, Weng C. African Swine Fever Virus pI215L Negatively Regulates cGAS-STING Signaling Pathway through Recruiting RNF138 to Inhibit K63-Linked Ubiquitination of TBK1. THE JOURNAL OF IMMUNOLOGY 2021; 207:2754-2769. [PMID: 34759016 DOI: 10.4049/jimmunol.2100320] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
African swine fever is a severe animal infectious disease caused by African swine fever virus (ASFV), and the morbidity and mortality associated with virulent ASFV isolates are as high as 100%. Previous studies showed that the ability of ASFV to antagonize IFN production is closely related to its pathogenicity. Here, we report that ASFV HLJ/18 infection induced low levels of type I IFN and inhibited cGMP-AMP-induced type I IFN production in porcine alveolar macrophages that were isolated from specific pathogen-free Landrace piglets. Subsequently, an unbiased screen was performed to screen the ASFV genes with inhibitory effects on the type I IFN production. ASFV pI215L, a viral E2 ubiquitin-conjugating enzyme, was identified as one of the strongest inhibitory effectors on the production of type I IFN. Knockdown of pI215L expression inhibited ASFV replication and enhanced IFN-β production. However, inhibition of type I IFN production by pI215L was independent of its E2 enzyme activity. Furthermore, we found that pI215L inhibited type I IFN production and K63-linked polyubiquitination of TANK-binding kinase 1 through pI215L-binding RING finger protein 138 (RNF138). ASFV pI215L enhanced the interaction between RNF138 and RNF128 and promoted RNF138 to degrade RNF128, which resulted in reduced K63-linked polyubiquitination of TANK-binding kinase 1 and type І IFN production. Taken together, our findings reveal a novel immune escape mechanism of ASFV, which provides a clue to the design and development of an immune-sensitive attenuated live vaccine.
Collapse
Affiliation(s)
- Li Huang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Wenjie Xu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and.,College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Hongyang Liu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Mengdi Xue
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Xiaohong Liu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Kunli Zhang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Liang Hu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Jiangnan Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Xuemin Liu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Zhida Xiang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and.,College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Jun Zheng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Changyao Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Weiye Chen
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Zhigao Bu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Tao Xiong
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Changjiang Weng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and .,College of Life Sciences, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
15
|
Abstract
The ability to remember a previous encounter with pathogens was long thought to be a key feature of the adaptive immune system enabling the host to mount a faster, more specific and more effective immune response upon the reencounter, reducing the severity of infectious diseases. Over the last 15 years, an increasing amount of evidence has accumulated showing that the innate immune system also has features of a memory. In contrast to the memory of adaptive immunity, innate immune memory is mediated by restructuration of the active chromatin landscape and imprinted by persisting adaptations of myelopoiesis. While originally described to occur in response to pathogen-associated molecular patterns, recent data indicate that host-derived damage-associated molecular patterns, i.e. alarmins, can also induce an innate immune memory. Potentially this is mediated by the same pattern recognition receptors and downstream signaling transduction pathways responsible for pathogen-associated innate immune training. Here, we summarize the available experimental data underlying innate immune memory in response to damage-associated molecular patterns. Further, we expound that trained immunity is a general component of innate immunity and outline several open questions for the rising field of pathogen-independent trained immunity.
Collapse
Affiliation(s)
- Elisa Jentho
- Instituto Gulbenkian de Ciência, Inflammation Laboratory, Oeiras, Portugal.,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany.,Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
16
|
Mylvaganam S, Freeman SA, Grinstein S. The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol 2021; 31:R619-R632. [PMID: 34033794 DOI: 10.1016/j.cub.2021.01.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells of the innate immune system, notably macrophages, neutrophils and dendritic cells, perform essential antimicrobial and homeostatic functions. These functions rely on the dynamic surveillance of the environment supported by the formation of elaborate membrane protrusions. Such protrusions - pseudopodia, lamellipodia and filopodia - facilitate the sampling of the surrounding fluid by macropinocytosis, as well as the engulfment of particulates by phagocytosis. Both processes entail extreme plasma membrane deformations that require the coordinated rearrangement of cytoskeletal polymers, which exert protrusive force and drive membrane coalescence and scission. The resulting vacuolar compartments undergo pronounced remodeling and ultimate resolution by mechanisms that also involve the cytoskeleton. Here, we describe the regulation and functions of cytoskeletal assembly and remodeling during macropinocytosis and phagocytosis.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
17
|
ZBTB20 Positively Regulates Oxidative Stress, Mitochondrial Fission, and Inflammatory Responses of ox-LDL-Induced Macrophages in Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5590855. [PMID: 33777314 PMCID: PMC7972849 DOI: 10.1155/2021/5590855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis (AS) is one of the most serious and common cardiovascular diseases affecting human health. AS is featured by the accumulation of plaques in vessel walls. The pathophysiology of AS is relevant in the low-density lipoprotein (LDL) uptake by macrophages, as well as the conversion of macrophages to foam cells. However, the mechanisms about how macrophages regulate AS have not been fully elucidated. In this study, we aimed to illuminate the roles of ZBTB20 and to excavate the underlying regulative mechanisms of ZBTB20 in AS. The microarray analysis revealed that ZBTB20 was a hub gene in the oxidative stress and inflammatory responses induced by oxidized LDL (ox-LDL) in AS. Correspondingly, our validation studies showed that ZBTB20 increased in either the human atherosclerotic lesion or the ox-LDL-stimulated macrophages. Moreover, the knockdown of ZBTB20 decreased M1 polarization, suppressed the proinflammatory factors, inhibited mitochondrial fission, and reduced the oxidative stress level of macrophages induced by ox-LDL. The mechanistic studies revealed that the ZBTB20 knockdown suppressed NF-κB/MAPK activation and attenuated the mitochondrial fission possibly via regulating the nucleus translocation of NRF2, a pivotal transcription factor on redox homeostasis. Our in vivo studies showed that the sh-ZBTB20 adenovirus injection could reduce the progression of AS in apolipoprotein E-deficient (ApoE−/−) mice. All in all, these results suggested that ZBTB20 positively regulated the oxidative stress level, mitochondrial fission, and inflammatory responses of macrophages induced by ox-LDL, and the knockdown of ZBTB20 could attenuate the development of AS in ApoE−/− mice.
Collapse
|
18
|
Xiao J, Chen L, Melander O, Orho-Melander M, Nilsson J, Borné Y, Engström G. Circulating Vimentin Is Associated With Future Incidence of Stroke in a Population-Based Cohort Study. Stroke 2021; 52:937-944. [PMID: 33535783 DOI: 10.1161/strokeaha.120.032111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE VIM (vimentin) is a cytoskeletal intermediate filament protein, which has been linked to atherosclerosis and thrombosis; both are important causes of stroke. We examined the relationship between circulating VIM and incidence of stroke, and if carotid plaque could modify the association in a prospective population-based cohort. METHODS This prospective study was based on the Malmö Diet and Cancer Cohort. A total of 4688 participants (39.7% men; mean age, 57.6 years) were examined and blood samples were collected between 1991 and 1994. Incidence of stroke was followed up to 2018. Cox' proportional hazards regression was used to assess the relationship between VIM and stroke. RESULTS During a mean follow-up of 22.0 years, a total of 528 subjects were diagnosed with stroke, among which 434 were ischemic stroke. Participants in the highest quartile (vs 1st quartile) had 1.34× higher risk of total stroke (95% CI, 1.03-1.74) and 1.47× higher of ischemic stroke (95% CI, 1.10-1.98) after adjustment for potential confounders. A significant interaction was found between carotid plaque and VIM with respect to incidence of both total stroke and ischemic stroke (P=0.041 and 0.011, respectively). After stratifying by carotid plaque, high VIM had stronger association with stroke in participants with carotid plaque, especially for the risk of ischemic stroke (adjusted hazard ratio,1.66 [95% CI, 1.23-2.25] for quartile 4 versus quartile 1 to 3). CONCLUSIONS VIM is positively associated with the incidence of stroke, especially in individuals with carotid plaque. Further studies are needed to confirm the observed associations.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China (J.X., L.C.).,Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China (J.X., L.C.)
| | - Olle Melander
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| | - Jan Nilsson
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| | - Yan Borné
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| | - Gunnar Engström
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden (J.X., O.M., M.O.-M., J.N., Y.B., G.E.)
| |
Collapse
|
19
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
20
|
Mohallem R, Aryal UK. Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics. Sci Rep 2020; 10:20878. [PMID: 33257747 PMCID: PMC7705713 DOI: 10.1038/s41598-020-77914-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is a growing epidemic worldwide and is a major risk factor for several chronic diseases, including diabetes, kidney disease, heart disease, and cancer. Obesity often leads to type 2 diabetes mellitus, via the increased production of proinflammatory cytokines such as tumor necrosis factor-α (TNFα). Our study combines different proteomic techniques to investigate the changes in the global proteome, secretome and phosphoproteome of adipocytes under chronic inflammation condition, as well as fundamental cross-talks between different cellular pathways regulated by chronic TNFα exposure. Our results show that many key regulator proteins of the canonical and non-canonical NF-κB pathways, such as Nfkb2, and its downstream effectors, including Csf-1 and Lgals3bp, directly involved in leukocyte migration and invasion, were significantly upregulated at the intra and extracellular proteomes suggesting the progression of inflammation. Our data provides evidence of several key proteins that play a role in the development of insulin resistance.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA.
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|
21
|
Abstract
Vimentin is one of the first cytoplasmic intermediate filaments to be expressed in mammalian cells during embryogenesis, but its role in cellular fitness has long been a mystery. Vimentin is acknowledged to play a role in cell stiffness, cell motility, and cytoplasmic organization, yet it is widely considered to be dispensable for cellular function and organismal development. Here, we show that Vimentin plays a role in cellular stress response in differentiating cells, by recruiting aggregates, stress granules, and RNA-binding proteins, directing their elimination and asymmetric partitioning. In the absence of Vimentin, pluripotent embryonic stem cells fail to differentiate properly, with a pronounced deficiency in neuronal differentiation. Our results uncover a novel function for Vimentin, with important implications for development, tissue homeostasis, and in particular, stress response.
Collapse
|
22
|
Esposito P, Verzola D, La Porta E, Milanesi S, Grignano MA, Avella A, Gregorini M, Abelli M, Ticozzelli E, Rampino T, Garibotto G. Myostatin in the Arterial Wall of Patients with End-Stage Renal Disease. J Atheroscler Thromb 2020; 27:1039-1052. [PMID: 32173683 PMCID: PMC7585912 DOI: 10.5551/jat.51144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM Myostatin (Mstn) has been described as a trigger for the progression of atherosclerosis. In this study, we evaluated the role of Mstn in arterial remodeling in patients with end-stage renal disease (ESRD). METHODS Vascular specimens were collected from 16 ESRD patients (56.4±7.9 years) undergoing renal transplant (recipients) and 15 deceased kidney non-uremic donors (55.4±12.1 years). We studied gene and protein expression of Mstn, ubiquitin ligases, Atrogin-1, and muscle ring finger protein-1 (MuRF-1), inflammatory marker CCL2, cytoskeleton components, and Klotho by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Moreover, we assessed vascular calcification and collagen deposition. Finally, we studied the effects of recombinant Mstn on rat vascular smooth muscle cells (VSMCs, A7r5) and evaluated the effects of uremic serum (US) on primary human VSMCs. RESULTS Myostatin mRNA was upregulated in the arterial vascular wall of recipients compared with donors (~15- folds, p<0.05). This response was accompanied by the upregulation of gene expression of Atrogin-1 and MuRF-1 (+2.5- and +10-fold) and CCL2 (+3-fold). Conversely, we found downregulation of protein expression of Smoothelin, α-smooth muscle actin (α-SMA), vimentin, and Klotho (-85%, -50%, -70%, and -80%, respectively; p<0.05) and gene expression of vimentin and Klotho. Exposition of A7r5 to Mstn induced a time-dependent SMAD 2/SMAD 3 phosphorylation and expression of collagen-1 and transforming growth factor β (TGFβ) mRNA, while US induced overexpression of Mstn and Atrogin-1 and downregulation of Smoothelin and Klotho. CONCLUSIONS Our data suggest that uremia might induce vascular Mstn gene expression together with a complex pathway of molecular and structural changes in the vascular wall. Myostatin, in turn, can translate the metabolic alterations of uremia into profibrotic and stiffness inducing signals.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Address for correspondence: Pasquale Esposito, Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, Piazzale Golgi 2, 27100 Pavia, Italy E-mail:
| | - Daniela Verzola
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Edoardo La Porta
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Samantha Milanesi
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Alessandro Avella
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Marilena Gregorini
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Massimo Abelli
- Service of Surgery, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Ticozzelli
- Service of Surgery, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Giacomo Garibotto
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
23
|
Bandaru S, Ala C, Ekstrand M, Akula MK, Pedrelli M, Liu X, Bergström G, Håversen L, Borén J, Bergo MO, Akyürek LM. Lack of RAC1 in macrophages protects against atherosclerosis. PLoS One 2020; 15:e0239284. [PMID: 32941503 PMCID: PMC7498073 DOI: 10.1371/journal.pone.0239284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
The Rho GTPase RAC1 is an important regulator of cytoskeletal dynamics, but the role of macrophage-specific RAC1 has not been explored during atherogenesis. We analyzed RAC1 expression in human carotid atherosclerotic plaques using immunofluorescence and found higher macrophage RAC1 expression in advanced plaques compared with intermediate human atherosclerotic plaques. We then produced mice with Rac1-deficient macrophages by breeding conditional floxed Rac1 mice (Rac1fl/fl) with mice expressing Cre from the macrophage-specific lysosome M promoter (LC). Atherosclerosis was studied in vivo by infecting Rac1fl/fl and Rac1fl/fl/LC mice with AdPCSK9 (adenoviral vector overexpressing proprotein convertase subtilisin/kexin type 9). Rac1fl/fl/LC macrophages secreted lower levels of IL-6 and TNF-α and exhibited reduced foam cell formation and lipid uptake. The deficiency of Rac1 in macrophages reduced the size of aortic atherosclerotic plaques in AdPCSK9-infected Rac1fl/fl/LC mice. Compare with controls, intima/media ratios, the size of necrotic cores, and numbers of CD68-positive macrophages in atherosclerotic plaques were reduced in Rac1-deficient mice. Moreover, we found that RAC1 interacts with actin-binding filamin A. Macrophages expressed increased RAC1 levels in advanced human atherosclerosis. Genetic inactivation of RAC1 impaired macrophage function and reduced atherosclerosis in mice, suggesting that drugs targeting RAC1 may be useful in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Sashidar Bandaru
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Chandu Ala
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Matias Ekstrand
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Murali K. Akula
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Matteo Pedrelli
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Xi Liu
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Västra Götalandregionen, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martin O. Bergo
- Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Levent M. Akyürek
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Västra Götalandregionen, Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
24
|
Peter Szekeres G, Werner S, Guttmann P, Spedalieri C, Drescher D, Živanović V, Montes-Bayón M, Bettmer J, Kneipp J. Relating the composition and interface interactions in the hard corona of gold nanoparticles to the induced response mechanisms in living cells. NANOSCALE 2020; 12:17450-17461. [PMID: 32856032 DOI: 10.1039/d0nr03581e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the formation of the intracellular protein corona of nanoparticles is essential for a wide range of bio- and nanomedical applications. The innermost layer of the protein corona, the hard corona, directly interacts with the nanoparticle surface, and by shielding the surface, it has a deterministic effect on the intracellular processing of the nanoparticle. Here, we combine a direct qualitative analysis of the hard corona composition of gold nanoparticles with a detailed structural characterization of the molecules in their interaction with the nanoparticle surface and relate both to the effects they have on the ultrastructure of living cells and the processing of the gold nanoparticles. Cells from the cell lines HCT-116 and A549 were incubated with 30 nm citrate-stabilized gold nanoparticles and with their aggregates in different culture media. The combined results of mass spectrometry based proteomics, cryo soft X-ray nanotomography and surface-enhanced Raman scattering experiments together revealed different uptake mechanisms in the two cell lines and distinct levels of induced cellular stress when incubation conditions were varied. The data indicate that the different incubation conditions lead to changes in the nanoparticle processing via different protein-nanoparticle interfacial interactions. Specifically, they suggest that the protein-nanoparticle surface interactions depend mainly on the surface properties of the gold nanoparticles, that is, the ζ-potential and the resulting changes in the hydrophilicity of the nanoparticle surface, and are largely independent of the cell line, the uptake mechanism and intracellular processing, or the extent of the induced cellular stress.
Collapse
Affiliation(s)
- Gergo Peter Szekeres
- Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof, Albert-Einstein-Str. 5-9, 12489 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu D, Song J, Ji X, Liu Z, Li T, Hu B. PRDM16 Upregulation Induced by MicroRNA-448 Inhibition Alleviates Atherosclerosis via the TGF-β Signaling Pathway Inactivation. Front Physiol 2020; 11:846. [PMID: 32848826 PMCID: PMC7431868 DOI: 10.3389/fphys.2020.00846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
The dysregulated expression of microRNAs (miRs) has been associated with pathological and physiological processes of atherosclerosis (AS). In addition, PR domain-containing 16 (PRDM16), a transcriptional mediator of brown fat cell identity and smooth muscle cell activities, may be involved in the hypercholesterolemia during development of AS. The bioinformatic analysis identified a regulatory miR-448 of PRDM16. Hence, the current study aimed to explore whether miR-448 influenced the activities of aortic smooth muscle cell (ASMCs) in AS. We validated that miR-448 was highly expressed in peripheral blood of patients with AS and aortic smooth muscle of AS model mice. Whereas, PRDM16 was downregulated in the aortic smooth muscle of AS model mice. PRDM16 overexpression was observed to inhibit oxidative stress injury and cell proliferation, and promote apoptosis of ASMCs. Mechanistic studies revealed that miR-448 targeted PRDM16 and negatively regulated the PRDM16 expression, while PRDM16 blocked the TGF-β signaling pathway. Furthermore, Downregulated miR-448 alleviated oxidative stress injury, and attenuated ASMC cell proliferation, migration and enhanced cell apoptosis through upregulation of PRDM16. Taken together, silencing of miR-448 upregulates PRDM16 and inactivates the TGF-β signaling pathway, thereby impeding development of AS by repressing the proliferation, migration and invasion of ASMCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Hu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
26
|
Ramos I, Stamatakis K, Oeste CL, Pérez-Sala D. Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections. Int J Mol Sci 2020; 21:E4675. [PMID: 32630064 PMCID: PMC7370124 DOI: 10.3390/ijms21134675] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vimentin is an intermediate filament protein that plays key roles in integration of cytoskeletal functions, and therefore in basic cellular processes such as cell division and migration. Consequently, vimentin has complex implications in pathophysiology. Vimentin is required for a proper immune response, but it can also act as an autoantigen in autoimmune diseases or as a damage signal. Although vimentin is a predominantly cytoplasmic protein, it can also appear at extracellular locations, either in a secreted form or at the surface of numerous cell types, often in relation to cell activation, inflammation, injury or senescence. Cell surface targeting of vimentin appears to associate with the occurrence of certain posttranslational modifications, such as phosphorylation and/or oxidative damage. At the cell surface, vimentin can act as a receptor for bacterial and viral pathogens. Indeed, vimentin has been shown to play important roles in virus attachment and entry of severe acute respiratory syndrome-related coronavirus (SARS-CoV), dengue and encephalitis viruses, among others. Moreover, the presence of vimentin in specific virus-targeted cells and its induction by proinflammatory cytokines and tissue damage contribute to its implication in viral infection. Here, we recapitulate some of the pathophysiological implications of vimentin, including the involvement of cell surface vimentin in interaction with pathogens, with a special focus on its role as a cellular receptor or co-receptor for viruses. In addition, we provide a perspective on approaches to target vimentin, including antibodies or chemical agents that could modulate these interactions to potentially interfere with viral pathogenesis, which could be useful when multi-target antiviral strategies are needed.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Clara L. Oeste
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
27
|
Kim S, Cho W, Kim I, Lee SH, Oh GT, Park YM. Oxidized LDL induces vimentin secretion by macrophages and contributes to atherosclerotic inflammation. J Mol Med (Berl) 2020; 98:973-983. [PMID: 32451671 DOI: 10.1007/s00109-020-01923-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
Abstract
Activated macrophages show increased expression of vimentin, an intermediate filament protein. Macrophages secrete vimentin into extracellular space; however, the functions of extracellular vimentin and the process of vimentin secretion are not clearly defined. We found that oxidized low-density lipoproteins (oxLDL) via CD36 induced vimentin secretion in macrophages. We also revealed that extracellular vimentin induced macrophages to release inflammatory cytokines and augmented oxLDL-induced release of TNF-α and IL-6. Extracellular vimentin activated NF-κB signaling via phosphorylation of focal adhesion kinase (p-FAK) and IκB kinase (p-IκK). Extracellular vimentin also amplified the oxLDL-induced p-IκK increase and IκB decrease. Vimentin-induced TNF-α release was not dependent on Dectin-1, which is known to bind vimentin. We measured serum vimentin concentrations and found that patients with atherosclerotic coronary artery disease had higher levels of serum vimentin than normal subjects. Circulating oxLDL and vimentin concentrations showed a high degree of correlation. In mouse experiments, vimentin concentration was higher in the sera of apoE null mice with western diet-induced atherosclerosis than in the sera of chow diet-fed apoE null mice without atherosclerosis. We concluded that vimentin is secreted by oxLDL/CD36 interaction in macrophages and extracellular vimentin promotes macrophage release of pro-inflammatory cytokines. This may contribute to atherosclerotic inflammation and based on our analysis of serum vimentin, we suggest serum vimentin as a predictive marker for atherosclerosis. KEY MESSAGES: OxLDL via CD36 induces secretion of vimentin, a cytoskeletal protein in macrophages. Extracellular vimentin induces macrophages to release proinflammatory cytokines such as tumor necrotizing factor-alpha (TNF-α) and this process is mediated by activation of focal adhesion kinase (FAK) and NF-ƙB signaling. Serum concentrations of vimentin in coronary artery disease patients are higher than that in control group. Vimentin concentration is strongly correlated with oxLDL concentration in serum.
Collapse
Affiliation(s)
- SeoYeon Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Wonkyoung Cho
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Inyeong Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Young Mi Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Ablation of miR-144 increases vimentin expression and atherosclerotic plaque formation. Sci Rep 2020; 10:6127. [PMID: 32273567 PMCID: PMC7145828 DOI: 10.1038/s41598-020-63335-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
It has been suggested that miR-144 is pro-atherosclerotic via effects on reverse cholesterol transportation targeting the ATP binding cassette protein. This study used proteomic analysis to identify additional cardiovascular targets of miR-144, and subsequently examined the role of a newly identified regulator of atherosclerotic burden in miR-144 knockout mice receiving a high fat diet. To identify affected secretory proteins, miR-144 treated endothelial cell culture medium was subjected to proteomic analysis including two-dimensional gel separation, trypsin digestion, and nanospray liquid chromatography coupled to tandem mass spectrometry. We identified 5 gel spots representing 19 proteins that changed consistently across the biological replicates. One of these spots, was identified as vimentin. Atherosclerosis was induced in miR-144 knockout mice by high fat diet and vascular lesions were quantified by Oil Red-O staining of the serial sectioned aortic root and from en-face views of the aortic tree. Unexpectedly, high fat diet induced extensive atherosclerosis in miR-144 knockout mice and was accompanied by severe fatty liver disease compared with wild type littermates. Vimentin levels were reduced by miR-144 and increased by antagomiR-144 in cultured cardiac endothelial cells. Compared with wild type, ablation of the miR-144/451 cluster increased plasma vimentin, while vimentin levels were decreased in control mice injected with synthetic miR-144. Furthermore, increased vimentin expression was prominent in the commissural regions of the aortic root which are highly susceptible to atherosclerotic plaque formation. We conclude that miR-144 maybe a potential regulator of the development of atherosclerosis via changes in vimentin signaling.
Collapse
|
29
|
Wilhelmsson U, Stillemark-Billton P, Borén J, Pekny M. Vimentin is required for normal accumulation of body fat. Biol Chem 2020; 400:1157-1162. [PMID: 30995202 DOI: 10.1515/hsz-2019-0170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023]
Abstract
Intermediate filaments (nanofilaments) have many functions, especially in response to cellular stress. Mice lacking vimentin (Vim-/-) display phenotypes reflecting reduced levels of cell activation and ability to counteract stress, for example, decreased reactivity of astrocytes after neurotrauma, decreased migration of astrocytes and fibroblasts, attenuated inflammation and fibrosis in lung injury, delayed wound healing, impaired vascular adaptation to nephrectomy, impaired transendothelial migration of lymphocytes and attenuated atherosclerosis. To address the role of vimentin in fat accumulation, we assessed the body weight and fat by dual-energy X-ray absorptiometry (DEXA) in Vim-/- and matched wildtype (WT) mice. While the weight of 1.5-month-old Vim-/- and WT mice was comparable, Vim-/- mice showed decreased body weight at 3.5, 5.5 and 8.5 months (males by 19-22%, females by 18-29%). At 8.5 months, Vim-/- males and females had less body fat compared to WT mice (a decrease by 24%, p < 0.05, and 33%, p < 0.0001, respectively). The body mass index in 8.5 months old Vim-/- mice was lower in males (6.8 vs. 7.8, p < 0.005) and females (6.0 vs. 7.7, p < 0.0001) despite the slightly lower body length of Vim-/- mice. Increased mortality was observed in adult Vim-/- males. We conclude that vimentin is required for the normal accumulation of body fat.
Collapse
Affiliation(s)
- Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden
| | - Pia Stillemark-Billton
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden
| | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
30
|
Strouhalova K, Přechová M, Gandalovičová A, Brábek J, Gregor M, Rosel D. Vimentin Intermediate Filaments as Potential Target for Cancer Treatment. Cancers (Basel) 2020; 12:E184. [PMID: 31940801 PMCID: PMC7017239 DOI: 10.3390/cancers12010184] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Intermediate filaments constitute the third component of the cellular skeleton. Unlike actin and microtubule cytoskeletons, the intermediate filaments are composed of a wide variety of structurally related proteins showing distinct expression patterns in tissues and cell types. Changes in the expression patterns of intermediate filaments are often associated with cancer progression; in particular with phenotypes leading to increased cellular migration and invasion. In this review we will describe the role of vimentin intermediate filaments in cancer cell migration, cell adhesion structures, and metastasis formation. The potential for targeting vimentin in cancer treatment and the development of drugs targeting vimentin will be reviewed.
Collapse
Affiliation(s)
- Katerina Strouhalova
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Magdalena Přechová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Aneta Gandalovičová
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Daniel Rosel
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| |
Collapse
|
31
|
Wijaya A, Maruf A, Wu W, Wang G. Recent advances in micro- and nano-bubbles for atherosclerosis applications. Biomater Sci 2020; 8:4920-4939. [DOI: 10.1039/d0bm00762e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Micro- and nano-bubbles have been developed as powerful multimodal theranostic agents for atherosclerosis treatment.
Collapse
Affiliation(s)
- Andy Wijaya
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| |
Collapse
|
32
|
Stakhneva EM, Meshcheryakova IA, Demidov EA, Starostin KV, Sadovski EV, Peltek SE, Voevoda MI, Chernyavskii AM, Volkov AM, Ragino YI. A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis. Diagnostics (Basel) 2019; 9:diagnostics9040177. [PMID: 31703357 PMCID: PMC6963888 DOI: 10.3390/diagnostics9040177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background: To study the changes in protein composition of atherosclerotic plaques at different stages of their development in coronary atherosclerosis using proteomics. Methods: The object of research consisted of homogenates of atherosclerotic plaques from coronary arteries at different stages of development, obtained from 15 patients. Plaque proteins were separated by two-dimensional electrophoresis. The resultant protein spots were identified by the matrix-assisted laser desorption ionization method with peptide mass mapping. Results: Groups of differentially expressed proteins, in which the amounts of proteins differed more than twofold (p < 0.05), were identified in pools of homogenates of atherosclerotic plaques at three stages of development. The amounts of the following proteins were increased in stable atherosclerotic plaques at the stage of lipidosis and fibrosis: vimentin, tropomyosin β-chain, actin, keratin, tubulin β-chain, microfibril-associated glycoprotein 4, serum amyloid P-component, and annexin 5. In plaques at the stage of fibrosis and calcification, the amounts of mimecan and fibrinogen were increased. In unstable atherosclerotic plaque of the necrotic–dystrophic type, the amounts of human serum albumin, mimecan, fibrinogen, serum amyloid P-component and annexin were increased. Conclusion: This proteomic study identifies the proteins present in atherosclerotic plaques of coronary arteries by comparing their proteomes at three different stages of plaque development during coronary atherosclerosis.
Collapse
Affiliation(s)
- Ekaterina M. Stakhneva
- Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia; (E.V.S.); (M.I.V.); (Y.I.R.)
- Correspondence: ; Tel.: +7-(383)-264-2516; Fax: +73832642516
| | - Irina A. Meshcheryakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.A.M.); (E.A.D.); (K.V.S.); (S.E.P.)
| | - Evgeny A. Demidov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.A.M.); (E.A.D.); (K.V.S.); (S.E.P.)
| | - Konstantin V. Starostin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.A.M.); (E.A.D.); (K.V.S.); (S.E.P.)
| | - Evgeny V. Sadovski
- Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia; (E.V.S.); (M.I.V.); (Y.I.R.)
| | - Sergey E. Peltek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.A.M.); (E.A.D.); (K.V.S.); (S.E.P.)
| | - Michael I. Voevoda
- Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia; (E.V.S.); (M.I.V.); (Y.I.R.)
| | - Alexander M. Chernyavskii
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia; (A.M.C.); (A.M.V.)
| | - Alexander M. Volkov
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia; (A.M.C.); (A.M.V.)
| | - Yuliya I. Ragino
- Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia; (E.V.S.); (M.I.V.); (Y.I.R.)
| |
Collapse
|
33
|
Klymkowsky MW. Filaments and phenotypes: cellular roles and orphan effects associated with mutations in cytoplasmic intermediate filament proteins. F1000Res 2019; 8. [PMID: 31602295 PMCID: PMC6774051 DOI: 10.12688/f1000research.19950.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs) surround the nucleus and are often anchored at membrane sites to form effectively transcellular networks. Mutations in IF proteins (IFps) have revealed mechanical roles in epidermis, muscle, liver, and neurons. At the same time, there have been phenotypic surprises, illustrated by the ability to generate viable and fertile mice null for a number of IFp-encoding genes, including vimentin. Yet in humans, the vimentin ( VIM) gene displays a high probability of intolerance to loss-of-function mutations, indicating an essential role. A number of subtle and not so subtle IF-associated phenotypes have been identified, often linked to mechanical or metabolic stresses, some of which have been found to be ameliorated by the over-expression of molecular chaperones, suggesting that such phenotypes arise from what might be termed "orphan" effects as opposed to the absence of the IF network per se, an idea originally suggested by Toivola et al. and Pekny and Lane.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, Boulder, CO, 80303, USA
| |
Collapse
|