1
|
Hou Y, Chen C, Li Z, Lu T, Sun L, Wei Y, Li J, Wen W. Comparing Protein and Gene Expression Signature between Nasal Polyps and Nasal Fluids in Chronic Rhinosinusitis. Int Arch Allergy Immunol 2023; 185:274-285. [PMID: 38029733 PMCID: PMC10911172 DOI: 10.1159/000534226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Chronic rhinosinusitis with nasal polyps (CRSwNP) is a serious inflammatory condition. Nasal fluids (NFs) present a noninvasive alternative to nasal biopsy for studying CRSwNP pathogenesis. We aimed to compare the protein and mRNA inflammation signature between nasal polyps (NPs) and NFs. METHOD The performance of polyvinyl alcohol (PVA) sponges and NFs absorbable device (NFAD) for collecting NFs from 20 patients with CRSwNP was compared using the Luminex assay. The other group consisted of four healthy controls and an additional 21 CRSwNP patients (including eosinophilic CRSwNP [ECRSwNP] and non-eosinophilic CRSwNP [NECRSwNP]) for protein quantification by Olink platform and gene expression evaluation by RNA-sequencing. Spearman's analysis was performed to detect correlations between protein expression levels in NFs and clinical assessment variables. RESULTS NFAD-collected NFs contained at least a 2-fold higher concentration of cytokines than that obtained using PVA sponge, and these cytokines levels are significantly associated with NPs (ρ > 0.45, p < 0.05). Differentially expressed proteins between NFs and NPs were significantly correlated in the ECRSwNP subgroup compared with controls (ρ = 0.41, p < 0.01). Levels of Th2/IL-13, MCP4, and CCL4, characteristic of eosinophilic infiltration, were increased in ECRSwNP patients. A significant correlation between gene and protein expression was observed (ρ = 0.34, p < 0.01). PDL2 levels in NFs were positively correlated with ECRSwNP postoperative recurrence, the nasal VAS, and SNOT-22 scores (ρ > 0.68, p < 0.05 for all). CONCLUSION Our study revealed similarities and discrepancies in inflammatory signatures between NPs and NFs in the same CRSwNP patient.
Collapse
Affiliation(s)
- Yilin Hou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China
| | - Changhui Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China
| | - Tong Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China
| | - Lin Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China
| | - Yi Wei
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China
| | - Weiping Wen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Cattaneo M, Aleksova A, Malovini A, Avolio E, Thomas A, Alvino VV, Kilcooley M, Pieronne-Deperrois M, Ouvrard-Pascaud A, Maciag A, Spinetti G, Kussauer S, Lemcke H, Skorska A, Vasudevan P, Castiglione S, Raucci A, David R, Richard V, Beltrami AP, Madeddu P, Puca AA. BPIFB4 and its longevity-associated haplotype protect from cardiac ischemia in humans and mice. Cell Death Dis 2023; 14:523. [PMID: 37582912 PMCID: PMC10427721 DOI: 10.1038/s41419-023-06011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
Long-living individuals (LLIs) escape age-related cardiovascular complications until the very last stage of life. Previous studies have shown that a Longevity-Associated Variant (LAV) of the BPI Fold Containing Family B Member 4 (BPIFB4) gene correlates with an extraordinarily prolonged life span. Moreover, delivery of the LAV-BPIFB4 gene exerted therapeutic action in murine models of atherosclerosis, limb ischemia, diabetic cardiomyopathy, and aging. We hypothesize that downregulation of BPIFB4 expression marks the severity of coronary artery disease (CAD) in human subjects, and supplementation of the LAV-BPIFB4 protects the heart from ischemia. In an elderly cohort with acute myocardial infarction (MI), patients with three-vessel CAD were characterized by lower levels of the natural logarithm (Ln) of peripheral blood BPIFB4 (p = 0.0077). The inverse association between Ln BPIFB4 and three-vessel CAD was confirmed by logistic regression adjusting for confounders (Odds Ratio = 0.81, p = 0.0054). Moreover, in infarcted mice, a single administration of LAV-BPIFB4 rescued cardiac function and vascularization. In vitro studies showed that LAV-BPIFB4 protein supplementation exerted chronotropic and inotropic actions on induced pluripotent stem cell (iPSC)-derived cardiomyocytes. In addition, LAV-BPIFB4 inhibited the pro-fibrotic phenotype in human cardiac fibroblasts. These findings provide a strong rationale and proof of concept evidence for treating CAD with the longevity BPIFB4 gene/protein.
Collapse
Grants
- PG/18/66/33838 British Heart Foundation
- British Heart Foundation (BHF)
- Ministery of health RF-2016-02364864 IRCCS MultiMedica
- the Italian Ministry of Health, Ricerca Corrente to the Centro Cardiologico Monzino IRCCS
- EU structural Fund (ESF/14-BM-A55-0024/18), the DFG (DA1296/6-1), the German Heart Foundation (F/01/12), the FORUN Program of Rostock University Medical Centre (889001 and 889003),the Josef and Käthe Klinz Foundation (T319/29737/2017), the DAMP Foundation and the BMBF (VIP+ 00240).
- Regione Friuli Venezia Giulia, within the framework of “legge regionale 17/2004: Contributi per la ricerca clinica, traslazionale, di base, epidemiologica e organizzativa”; Project HEARTzheimer"
Collapse
Affiliation(s)
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Elisa Avolio
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anita Thomas
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Michael Kilcooley
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Anna Maciag
- Cardiovascular Department, IRCCS MultiMedica, Milan, Italy
| | - Gaia Spinetti
- Cardiovascular Department, IRCCS MultiMedica, Milan, Italy
| | - Sophie Kussauer
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Anna Skorska
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Stefania Castiglione
- Experimental Cardio-oncology and Cardiovascular Aging Unit Centro Cardiologico Monzino, Milan, Italy
| | - Angela Raucci
- Experimental Cardio-oncology and Cardiovascular Aging Unit Centro Cardiologico Monzino, Milan, Italy
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | | | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, Academic Hospital of Udine, ASUFC, Udine, Italy
| | - Paolo Madeddu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Annibale Alessandro Puca
- Cardiovascular Department, IRCCS MultiMedica, Milan, Italy.
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy.
| |
Collapse
|
3
|
Boichot V, Menetrier F, Saliou JM, Lirussi F, Canon F, Folia M, Heydel JM, Hummel T, Menzel S, Steinke M, Hackenberg S, Schwartz M, Neiers F. Characterization of human oxidoreductases involved in aldehyde odorant metabolism. Sci Rep 2023; 13:4876. [PMID: 36966166 PMCID: PMC10039900 DOI: 10.1038/s41598-023-31769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Oxidoreductases are major enzymes of xenobiotic metabolism. Consequently, they are essential in the chemoprotection of the human body. Many xenobiotic metabolism enzymes have been shown to be involved in chemosensory tissue protection. Among them, some were additionally shown to be involved in chemosensory perception, acting in signal termination as well as in the generation of metabolites that change the activation pattern of chemosensory receptors. Oxidoreductases, especially aldehyde dehydrogenases and aldo-keto reductases, are the first barrier against aldehyde compounds, which include numerous odorants. Using a mass spectrometry approach, we characterized the most highly expressed members of these families in the human nasal mucus sampled in the olfactory vicinity. Their expression was also demonstrated using immunohistochemistry in human epitheliums sampled in the olfactory vicinity. Recombinant enzymes corresponding to three highly expressed human oxidoreductases (ALDH1A1, ALDH3A1, AKR1B10) were used to demonstrate the high enzymatic activity of these enzymes toward aldehyde odorants. The structure‒function relationship set based on the enzymatic parameters characterization of a series of aldehyde odorant compounds was supported by the X-ray structure resolution of human ALDH3A1 in complex with octanal.
Collapse
Affiliation(s)
- Valentin Boichot
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Franck Menetrier
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Jean-Michel Saliou
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014-US Inserm 41-PLBS, University of Lille, Lille, France
| | - Frederic Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000, Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000, Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000, Besançon, France
| | - Francis Canon
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Mireille Folia
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000, Dijon, France
| | - Jean-Marie Heydel
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Susanne Menzel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Maria Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070, Wuerzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Roentgenring 11, 97070, Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology-Head and Neck Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mathieu Schwartz
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France.
| | - Fabrice Neiers
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
4
|
Brozzetti L, Scambi I, Bertoldi L, Zanini A, Malacrida G, Sacchetto L, Baldassa L, Benvenuto G, Mariotti R, Zanusso G, Cecchini MP. RNAseq analysis of olfactory neuroepithelium cytological samples in individuals with Down syndrome compared to euploid controls: a pilot study. Neurol Sci 2023; 44:919-930. [PMID: 36394661 PMCID: PMC9925603 DOI: 10.1007/s10072-022-06500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Down syndrome is a common genetic disorder caused by partial or complete triplication of chromosome 21. This syndrome shows an overall and progressive impairment of olfactory function, detected early in adulthood. The olfactory neuronal cells are located in the nasal olfactory mucosa and represent the first sensory neurons of the olfactory pathway. Herein, we applied the olfactory swabbing procedure to allow a gentle collection of olfactory epithelial cells in seven individuals with Down syndrome and in ten euploid controls. The aim of this research was to investigate the peripheral gene expression pattern in olfactory epithelial cells through RNAseq analysis. Validated tests (Sniffin' Sticks Extended test) were used to assess olfactory function. Olfactory scores were correlated with RNAseq results and cognitive scores (Vineland II and Leiter scales). All Down syndrome individuals showed both olfactory deficit and intellectual disability. Down syndrome individuals and euploid controls exhibited clear expression differences in genes located in and outside the chromosome 21. In addition, a significant correlation was found between olfactory test scores and gene expression, while a non-significant correlation emerged between olfactory and cognitive scores. This first preliminary step gives new insights into the Down syndrome olfactory system research, starting from the olfactory neuroepithelium, the first cellular step on the olfactory way.
Collapse
Affiliation(s)
- Lorenzo Brozzetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Ilaria Scambi
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | | | - Alice Zanini
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | | | - Luca Sacchetto
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Otolaryngology Section, University of Verona, Verona, Italy
| | - Lucia Baldassa
- AGBD, Associazione Sindrome di Down, Onlus, Verona, Italy
| | | | - Raffaella Mariotti
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Maria Paola Cecchini
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| |
Collapse
|
5
|
Bhatia-Dey N, Csoka AB, Heinbockel T. Chemosensory Ability and Sensitivity in Health and Disease: Epigenetic Regulation and COVID-19. Int J Mol Sci 2023; 24:4179. [PMID: 36835589 PMCID: PMC9959623 DOI: 10.3390/ijms24044179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Throughout the animal kingdom, our two chemical senses, olfaction and gustation, are defined by two primary factors: genomic architecture of the organisms and their living environment. During the past three years of the global COVID-19 pandemic, these two sensory modalities have drawn much attention at the basic science and clinical levels because of the strong association of olfactory and gustatory dysfunction with viral infection. Loss of our sense of smell alone, or together with a loss of taste, has emerged as a reliable indicator of COVID-19 infection. Previously, similar dysfunctions have been detected in a large cohort of patients with chronic conditions. The research focus remains on understanding the persistence of olfactory and gustatory disturbances in the post-infection phase, especially in cases with long-term effect of infection (long COVID). Also, both sensory modalities show consistent age-related decline in studies aimed to understand the pathology of neurodegenerative conditions. Some studies using classical model organisms show an impact on neural structure and behavior in offspring as an outcome of parental olfactory experience. The methylation status of specific odorant receptors, activated in parents, is passed on to the offspring. Furthermore, experimental evidence indicates an inverse correlation of gustatory and olfactory abilities with obesity. Such diverse lines of evidence emerging from basic and clinical research studies indicate a complex interplay of genetic factors, evolutionary forces, and epigenetic alterations. Environmental factors that regulate gustation and olfaction could induce epigenetic modulation. However, in turn, such modulation leads to variable effects depending on genetic makeup and physiological status. Therefore, a layered regulatory hierarchy remains active and is passed on to multiple generations. In the present review, we attempt to understand the experimental evidence that indicates variable regulatory mechanisms through multilayered and cross-reacting pathways. Our analytical approach will add to enhancement of prevailing therapeutic interventions and bring to the forefront the significance of chemosensory modalities for the evaluation and maintenance of long-term health.
Collapse
Affiliation(s)
| | | | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
6
|
Schwartz M, Boichot V, Fraichard S, Muradova M, Senet P, Nicolai A, Lirussi F, Bas M, Canon F, Heydel JM, Neiers F. Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules 2023; 13:biom13020322. [PMID: 36830691 PMCID: PMC9953322 DOI: 10.3390/biom13020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glutathione transferases (GSTs) are ubiquitous key enzymes with different activities as transferases or isomerases. As key detoxifying enzymes, GSTs are expressed in the chemosensory organs. They fulfill an essential protective role because the chemosensory organs are located in the main entry paths of exogenous compounds within the body. In addition to this protective function, they modulate the perception process by metabolizing exogenous molecules, including tastants and odorants. Chemosensory detection involves the interaction of chemosensory molecules with receptors. GST contributes to signal termination by metabolizing these molecules. By reducing the concentration of chemosensory molecules before receptor binding, GST modulates receptor activation and, therefore, the perception of these molecules. The balance of chemoperception by GSTs has been shown in insects as well as in mammals, although their chemosensory systems are not evolutionarily connected. This review will provide knowledge supporting the involvement of GSTs in chemoperception, describing their localization in these systems as well as their enzymatic capacity toward odorants, sapid molecules, and pheromones in insects and mammals. Their different roles in chemosensory organs will be discussed in light of the evolutionary advantage of the coupling of the detoxification system and chemosensory system through GSTs.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Valentin Boichot
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphane Fraichard
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mariam Muradova
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Frederic Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Mathilde Bas
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Francis Canon
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Marie Heydel
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabrice Neiers
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
7
|
Shirai T, Takase D, Yokoyama J, Nakanishi K, Uehara C, Saito N, Kato-Namba A, Yoshikawa K. Functions of human olfactory mucus and age-dependent changes. Sci Rep 2023; 13:971. [PMID: 36653421 PMCID: PMC9846672 DOI: 10.1038/s41598-023-27937-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Odorants are detected by olfactory sensory neurons, which are covered by olfactory mucus. Despite the existence of studies on olfactory mucus, its constituents, functions, and interindividual variability remain poorly understood. Here, we describe a human study that combined the collection of olfactory mucus and olfactory psychophysical tests. Our analyses revealed that olfactory mucus contains high concentrations of solutes, such as total proteins, inorganic elements, and molecules for xenobiotic metabolism. The high concentrations result in a capacity to capture or metabolize a specific repertoire of odorants. We provide evidence that odorant metabolism modifies our sense of smell. Finally, the amount of olfactory mucus decreases in an age-dependent manner. A follow-up experiment recapitulated the importance of the amount of mucus in the sensitive detection of odorants by their receptors. These findings provide a comprehensive picture of the molecular processes in olfactory mucus and propose a potential cause of olfactory decline.
Collapse
Affiliation(s)
- Tomohiro Shirai
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Dan Takase
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Junkichi Yokoyama
- Department of Otolaryngology-Head and Neck Surgery, Edogawa Hospital, 2-24-18 Higashikoiwa, Edogawa, Tokyo, Japan.,Department of Otolaryngology-Head and Neck Surgery, Nadogaya Hospital, 2-1-1 Shinkashiwa, Kashiwa, Chiba, Japan
| | - Kuniyuki Nakanishi
- Analytical Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, Japan
| | - Chisaki Uehara
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Naoko Saito
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Aya Kato-Namba
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Keiichi Yoshikawa
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan.
| |
Collapse
|
8
|
Butowt R, Bilińska K, von Bartheld C. Why Does the Omicron Variant Largely Spare Olfactory Function? Implications for the Pathogenesis of Anosmia in Coronavirus Disease 2019. J Infect Dis 2022; 226:1304-1308. [PMID: 35467743 PMCID: PMC9129133 DOI: 10.1093/infdis/jiac113] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
The omicron variant of severe acute respiratory syndrome coronavirus 2 causes much less olfactory dysfunction than the previous variants. There are several potential mechanisms for how omicron may change tissue tropism and spare olfactory function. The new mutations make omicron more hydrophobic and alkaline than previous variants, which may reduce penetration of the mucus layer. Overall, the new mutations minimally change receptor binding affinity, but entry efficiency into host cells is reduced in cells expressing transmembrane serine protease 2 (TMPRSS2). Because the support cells in the olfactory epithelium abundantly express TMPRSS2, these main target cells in the olfactory epithelium may become infected less by the new omicron variant.
Collapse
Affiliation(s)
- Rafal Butowt
- L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Katarzyna Bilińska
- L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Christopher von Bartheld
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
9
|
Non-Invasive Nasal Discharge Fluid and Other Body Fluid Biomarkers in Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14081532. [PMID: 35893788 PMCID: PMC9330777 DOI: 10.3390/pharmaceutics14081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The key to current Alzheimer’s disease (AD) therapy is the early diagnosis for prompt intervention, since available treatments only slow the disease progression. Therefore, this lack of promising therapies has called for diagnostic screening tests to identify those likely to develop full-blown AD. Recent AD diagnosis guidelines incorporated core biomarker analyses into criteria, including amyloid-β (Aβ), total-tau (T-tau), and phosphorylated tau (P-tau). Though effective, the accessibility of screening tests involving conventional cerebrospinal fluid (CSF)- and blood-based analyses is often hindered by the invasiveness and high cost. In an attempt to overcome these shortcomings, biomarker profiling research using non-invasive body fluid has shown the potential to capture the pathological changes in the patients’ bodies. These novel non-invasive body fluid biomarkers for AD have emerged as diagnostic and pathological targets. Here, we review the potential peripheral biomarkers, including non-invasive peripheral body fluids of nasal discharge, tear, saliva, and urine for AD.
Collapse
|
10
|
Ijichi C, Kondo K, Kobayashi M, Shirasawa A, Shimbo K, Nakata K, Maruyama Y, Ihara Y, Kawato Y, Mannen T, Takeshita R, Kikuchi Y, Saito Y, Yamasoba T. Lipocalin 15 in the olfactory mucus is a biomarker for Bowman's gland activity. Sci Rep 2022; 12:9984. [PMID: 35750866 PMCID: PMC9232505 DOI: 10.1038/s41598-022-13464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Olfactory mucus contributes to the specific functions of the olfactory mucosa, but the composition and source of mucus proteins have not been fully elucidated. In this study, we used comprehensive proteome analysis and identified lipocalin 15 (LCN15), a human-specific lipocalin family protein, as an abundant component of the olfactory mucus. Western blot analysis and enzyme-linked immunosorbent assay (ELISA) using a newly generated anti-LCN15 antibody showed that LCN15 was concentrated in olfactory mucus samples, but not in respiratory mucus samples. Immunohistochemical staining using anti-LCN15 antibody revealed that LCN15 localized to the cytokeratin 18-positive Bowman's glands of the olfactory cleft mucosa. Quantitative image analysis revealed that the area of LCN15 immunoreactivity along the olfactory cleft mucosa significantly correlated with the area of neuron-specific Protein-Gene Product 9.5 (PGP9.5) immunoreactivity, suggesting that LCN15 is produced in non-degenerated areas of the olfactory neuroepithelium. ELISA demonstrated that the concentration of LCN15 in the mucus was lower in participants with normal olfaction (≥ 50 years) and also tended to be lower in patients with idiopathic olfactory loss (≥ 50 years) than in participants with normal olfaction (< 50 years). Thus, LCN15 may serve as a biomarker for the activity of the Bowman’s glands.
Collapse
Affiliation(s)
- Chiori Ijichi
- Food Products Division, Technology & Solution Development Center, Institute of Food Science and Technologies, Ajinomoto Co., Inc., Kawasaki, 210-8681, Japan.
| | - Kenji Kondo
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Masayoshi Kobayashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Ayaka Shirasawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Kazutaka Shimbo
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Kunio Nakata
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yutaka Maruyama
- Food Products Division, Technology & Solution Development Center, Institute of Food Science and Technologies, Ajinomoto Co., Inc., Kawasaki, 210-8681, Japan
| | - Yusuke Ihara
- Food Products Division, Technology & Solution Development Center, Institute of Food Science and Technologies, Ajinomoto Co., Inc., Kawasaki, 210-8681, Japan
| | - Yayoi Kawato
- Food Products Division, Technology & Solution Development Center, Institute of Food Science and Technologies, Ajinomoto Co., Inc., Kawasaki, 210-8681, Japan
| | - Teruhisa Mannen
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Rie Takeshita
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yuki Saito
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
11
|
Olfactory Dysfunction in COVID-19: Pathology and Long-Term Implications for Brain Health. Trends Mol Med 2022; 28:781-794. [PMID: 35810128 PMCID: PMC9212891 DOI: 10.1016/j.molmed.2022.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
|
12
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
13
|
Ruiz Tejada Segura ML, Abou Moussa E, Garabello E, Nakahara TS, Makhlouf M, Mathew LS, Wang L, Valle F, Huang SSY, Mainland JD, Caselle M, Osella M, Lorenz S, Reisert J, Logan DW, Malnic B, Scialdone A, Saraiva LR. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical logic of smell. Cell Rep 2022; 38:110547. [PMID: 35320714 PMCID: PMC8995392 DOI: 10.1016/j.celrep.2022.110547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic remain understudied. The spatial location of odorant receptor genes (Olfrs) in the nose is thought to be independent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we create a genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially expressed in space reveal that both Olfrs and non-Olfrs are distributed in a continuous and overlapping fashion over at least five broad zones in the OM. The spatial locations of Olfrs correlate with the mucus solubility of the odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This resource resolves the molecular architecture of the mouse OM and will inform future studies on mechanisms underlying Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic logic for the peripheral representation of smell.
Collapse
Affiliation(s)
- Mayra L Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | | | - Elisa Garabello
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy; Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Thiago S Nakahara
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Li Wang
- Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Filippo Valle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | | | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele Caselle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Matteo Osella
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Stephan Lorenz
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Luis R Saraiva
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
14
|
Ijichi C, Wakabayashi H, Sugiyama S, Hayashi K, Ihara Y, Nishijima H, Touhara K, Kondo K. Odorant metabolism of the olfactory cleft mucus in idiopathic olfactory impairment patients and healthy volunteers. Int Forum Allergy Rhinol 2021; 12:293-301. [PMID: 34637187 DOI: 10.1002/alr.22897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND It remains unclear whether the metabolic activity of nasal mucus in the olfactory and respiratory areas is different. Moreover, age- and olfaction-related changes may affect metabolism. METHODS Hexanal, octanal, and 2-methylbutanal were selected for in vitro metabolism analysis and compared between the olfactory cleft and respiratory mucus of participants < 50-year-old with normal olfaction using gas chromatography mass spectrometry. The metabolic activity of hexanal in the olfactory cleft mucus was further compared between three groups, (1) normal olfaction, age < 50 years old, (2) normal olfaction, age ≥50 years old, and (3) idiopathic olfactory impairment. To characterize the enzyme(s) responsible for aldehyde reduction, we also tested if epalr22897estat and 3,5-dichlorosalicylic acid, types of reductase inhibitors, affect metabolism. RESULTS Conversion of aldehydes to their corresponding alcohols was observed in the olfactory cleft and respiratory mucus. The metabolic production of hexanol, octanol, and 2-methybutanol was significantly higher in the olfactory cleft mucus than in the respiratory mucus (p < 0.01). The metabolic conversion of hexanal to hexanol in the mucus of the idiopathic olfactory impairment group was significantly lower than that in the age-matched normal olfaction group. Excluding the nicotinamide adenine dinucleotide phosphate (NADPH) regenerating system from the reaction mixture inhibited metabolism. The addition of either epalr22897estat or 3,5-dichlorosalicylic acid did not inhibit this metabolic conversion. CONCLUSIONS The enzymatic metabolism of odorants in the olfactory cleft mucus is markedly higher than in the respiratory mucus and decreases in patients with idiopathic olfactory impairment.
Collapse
Affiliation(s)
- Chiori Ijichi
- Technology and Solution Development Center, Institute of Food Science and Technologies, Food Products Division, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Hidehiko Wakabayashi
- Technology and Solution Development Center, Institute of Food Science and Technologies, Food Products Division, Ajinomoto Co., Inc., Kawasaki, Japan.,College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Japan
| | - Shingo Sugiyama
- Technology and Solution Development Center, Institute of Food Science and Technologies, Food Products Division, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Kazuhiro Hayashi
- Technology and Solution Development Center, Institute of Food Science and Technologies, Food Products Division, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yusuke Ihara
- Technology and Solution Development Center, Institute of Food Science and Technologies, Food Products Division, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Hironobu Nishijima
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Schwartz M, Menetrier F, Heydel JM, Chavanne E, Faure P, Labrousse M, Lirussi F, Canon F, Mannervik B, Briand L, Neiers F. Interactions Between Odorants and Glutathione Transferases in the Human Olfactory Cleft. Chem Senses 2021; 45:645-654. [PMID: 32822468 DOI: 10.1093/chemse/bjaa055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Xenobiotic metabolizing enzymes and other proteins, including odorant-binding proteins located in the nasal epithelium and mucus, participate in a series of processes modulating the concentration of odorants in the environment of olfactory receptors (ORs) and finely impact odor perception. These enzymes and transporters are thought to participate in odorant degradation or transport. Odorant biotransformation results in 1) changes in the odorant quantity up to their clearance and the termination of signaling and 2) the formation of new odorant stimuli (metabolites). Enzymes, such as cytochrome P450 and glutathione transferases (GSTs), have been proposed to participate in odorant clearance in insects and mammals as odorant metabolizing enzymes. This study aims to explore the function of GSTs in human olfaction. Using immunohistochemical methods, GSTs were found to be localized in human tissues surrounding the olfactory epithelium. Then, the activity of 2 members of the GST family toward odorants was measured using heterologously expressed enzymes. The interactions/reactions with odorants were further characterized using a combination of enzymatic techniques. Furthermore, the structure of the complex between human GSTA1 and the glutathione conjugate of an odorant was determined by X-ray crystallography. Our results strongly suggest the role of human GSTs in the modulation of odorant availability to ORs in the peripheral olfactory process.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Franck Menetrier
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Jean-Marie Heydel
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Evelyne Chavanne
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Philippe Faure
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Marc Labrousse
- Laboratoire d'Anatomie, UFR Médecine de Reims, Université de Reims Champagne Ardenne, Reims, France
| | - Frédéric Lirussi
- Université de Bourgogne-Franche Comté, INSERM U1231, University Hospital of Dijon, Dijon, France
| | - Francis Canon
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Loïc Briand
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Fabrice Neiers
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| |
Collapse
|
16
|
Bryche B, Baly C, Meunier N. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res 2021; 384:589-605. [PMID: 33961125 PMCID: PMC8102665 DOI: 10.1007/s00441-021-03467-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Detection and discrimination of odorants by the olfactory system plays a pivotal role in animal survival. Olfactory-based behaviors must be adapted to an ever-changing environment. Part of these adaptations includes changes of odorant detection by olfactory sensory neurons localized in the olfactory epithelium. It is now well established that internal signals such as hormones, neurotransmitters, or paracrine signals directly affect the electric activity of olfactory neurons. Furthermore, recent data have shown that activity-dependent survival of olfactory neurons is important in the olfactory epithelium. Finally, as olfactory neurons are directly exposed to environmental toxicants and pathogens, the olfactory epithelium also interacts closely with the immune system leading to neuroimmune modulations. Here, we review how detection of odorants can be modulated in the vertebrate olfactory epithelium. We choose to focus on three cellular types of the olfactory epithelium (the olfactory sensory neuron, the sustentacular and microvillar cells) to present the diversity of modulation of the detection of odorant in the olfactory epithelium. We also present some of the growing literature on the importance of immune cells in the functioning of the olfactory epithelium, although their impact on odorant detection is only just beginning to be unravelled.
Collapse
Affiliation(s)
- Bertrand Bryche
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France
| | - Christine Baly
- Université Paris Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Nicolas Meunier
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France.
| |
Collapse
|
17
|
Neiers F, Jarriault D, Menetrier F, Faure P, Briand L, Heydel JM. The odorant metabolizing enzyme UGT2A1: Immunolocalization and impact of the modulation of its activity on the olfactory response. PLoS One 2021; 16:e0249029. [PMID: 33765098 PMCID: PMC7993815 DOI: 10.1371/journal.pone.0249029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Odorant metabolizing enzymes (OMEs) are expressed in the olfactory epithelium (OE) where they play a significant role in the peripheral olfactory process by catalyzing the fast biotransformation of odorants leading either to their elimination or to the synthesis of new odorant stimuli. The large family of OMEs gathers different classes which interact with a myriad of odorants alike and complementary to olfactory receptors. Thus, it is necessary to increase our knowledge on OMEs to better understand their function in the physiological process of olfaction. This study focused on a major olfactory UDP-glucuronosyltransferase (UGT): UGT2A1. Immunohistochemistry and immunogold electronic microscopy allowed to localize its expression in the apical part of the sustentacular cells and originally at the plasma membrane of the olfactory cilia of the olfactory sensory neurons, both locations in close vicinity with olfactory receptors. Moreover, using electroolfactogram, we showed that a treatment of the OE with beta-glucuronidase, an enzyme which counterbalance the UGTs activity, increased the response to eugenol which is a strong odorant UGT substrate. Altogether, the results supported the function of the olfactory UGTs in the vertebrate olfactory perireceptor process.
Collapse
Affiliation(s)
- Fabrice Neiers
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - David Jarriault
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Franck Menetrier
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Philippe Faure
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
18
|
Feng L, Yin YY, Liu CH, Xu KR, Li QR, Wu JR, Zeng R. Proteome-wide data analysis reveals tissue-specific network associated with SARS-CoV-2 infection. J Mol Cell Biol 2021; 12:946-957. [PMID: 32642770 PMCID: PMC7454804 DOI: 10.1093/jmcb/mjaa033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
For patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the damages to multiple organs have been clinically observed. Since most of current investigations for virus–host interaction are based on cell level, there is an urgent demand to probe tissue-specific features associated with SARS-CoV-2 infection. Based on collected proteomic datasets from human lung, colon, kidney, liver, and heart, we constructed a virus-receptor network, a virus-interaction network, and a virus-perturbation network. In the tissue-specific networks associated with virus–host crosstalk, both common and different key hubs are revealed in diverse tissues. Ubiquitous hubs in multiple tissues such as BRD4 and RIPK1 would be promising drug targets to rescue multi-organ injury and deal with inflammation. Certain tissue-unique hubs such as REEP5 might mediate specific olfactory dysfunction. The present analysis implies that SARS-CoV-2 could affect multi-targets in diverse host tissues, and the treatment of COVID-19 would be a complex task.
Collapse
Affiliation(s)
- Li Feng
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Yuan Yin
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Hui Liu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke-Ren Xu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Run Li
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Rui Wu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
19
|
Soler ZM, Schlosser RJ, Bodner TE, Alt JA, Ramakrishnan VR, Mattos JL, Mulligan JK, Mace JC, Smith TL. Endotyping chronic rhinosinusitis based on olfactory cleft mucus biomarkers. J Allergy Clin Immunol 2021; 147:1732-1741.e1. [PMID: 33549569 DOI: 10.1016/j.jaci.2021.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although chronic rhinosinusitis (CRS) is considered the most treatable form of olfactory dysfunction, there has been relatively little clinical attention focused on assessing endotypes as they pertain to olfactory loss. OBJECTIVES The goal of this study was to explore inflammatory endotypes in CRS using an unsupervised cluster analysis of olfactory cleft (OC) biomarkers in a phenotype-free approach. METHODS Patients with CRS were prospectively recruited and psychophysical olfactory testing, Questionnaire of Olfactory Dysfunction (QOD-NS), and bilateral OC endoscopy were obtained. Mucus was collected from the OC and evaluated for 26 biomarkers using principal component analysis. Cluster analysis was performed using only OC biomarkers and differences in olfactory measures were compared across clusters. RESULTS A total of 198 subjects (128 with CRS and 70 controls) were evaluated. Evaluation of OC biomarkers indicated 6 principal components, explaining 69.50% of the variance, with type 2, mixed type 1/Th17-cell, growth factor, and neutrophil chemoattractant inflammatory signatures. A total of 10 clusters were identified that differed significantly in frequency of controls, and subjects with CRS with nasal polyps, and subjects with CRS without nasal polyps across the clusters (likelihood ratio test, χ182=178.64; P < .001). Olfactory measures differed significantly across clusters, including olfactory testing, QOD-NS, and OC endoscopy (P < .001 for all). CONCLUSIONS Clustering based solely on OC biomarkers can organize patients into clinically meaningful endotypes that discriminate between subjects with CRS and controls. Validation studies are necessary to confirm these findings and further refine olfactory endotypes.
Collapse
Affiliation(s)
- Zachary M Soler
- Division of Rhinology and Sinus Surgery, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Rodney J Schlosser
- Division of Rhinology and Sinus Surgery, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC; Department of Surgery, Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Todd E Bodner
- Department of Psychology, Portland State University, Portland, Ore
| | - Jeremiah A Alt
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Vijay R Ramakrishnan
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado-Anschutz Medical Campus, Aurora, Colo
| | - Jose L Mattos
- Division of Rhinology and Sinus Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia, Charlottesville, Va
| | - Jennifer K Mulligan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Fla
| | - Jess C Mace
- Division of Rhinology and Sinus/Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Ore
| | - Timothy L Smith
- Division of Rhinology and Sinus/Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Ore.
| |
Collapse
|
20
|
Abstract
Age-related olfactory dysfunction, or presbyosmia, is a common sensory impairment in aging adults. People in this demographic group with comorbid conditions or exposure to viral, traumatic, or environmental insults remain at the greatest risk for impairment. Several methods for assessing olfaction exist, but they are only available in special settings and require consideration of age, sex, ancestry, and cognition. Perhaps most importantly, olfactory dysfunction has been suggested as an early sign of Alzheimer's and Parkinson's disease and therefore may serve as a tool in the diagnosis and prognosis of these neurodegenerative conditions. Outside of this context, olfactory loss also impacts nutrition, safety, and social relationships, and even predicts mortality itself. This review covers the detection and manifestations of olfactory decline in aging individuals and the myriad ways in which olfactory impairment is connected to their health and well-being.
Collapse
Affiliation(s)
- Emily J Papazian
- Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayant M Pinto
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
21
|
Soler ZM, Schlosser RJ, Mulligan JK, Smith TL, Mace JC, Ramakrishan VR, Norris-Caneda K, Bethard JR, Ball LE. Olfactory cleft mucus proteome in chronic rhinosinusitis: a case-control pilot study. Int Forum Allergy Rhinol 2020; 11:1162-1176. [PMID: 33275311 DOI: 10.1002/alr.22743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mechanisms of smell loss in chronic rhinosinusitis (CRS) are still unclear and likely multifactorial. Little attention has been given to olfactory cleft (OC) mucus proteins involved in odorant binding and metabolizing enzymes and their potential role in smell loss. METHODS Mucus from the OC was sampled from patients with CRS (n = 20) and controls (n = 10). Liquid chromatography and mass spectrometry were performed, followed by data processing so that protein groups could be identified, quantified, and compared. Hierarchical clustering and bioinformatic analysis were performed on significantly different proteins to explore for enrichment in known biologic pathways. RESULTS A total of 2514 proteins were found in OC mucus from all 30 subjects. Significant differences in protein abundance were found between CRS and controls, including both CRSsNP (n = 351 proteins; log2 fold change range: -3.88 to 6.71) and CRSwNP (n = 298 proteins; log2 fold change range: -4.00 to -6.13). Significant differences were found between patients with normosmia and those with dysosmia (n = 183; log2 fold change range: -3.62 to -2.16) and across groups of interest for a number of odorant binding proteins and metabolizing enzymes. CONCLUSION OC mucous in CRS displays a rich and abundant array of proteins, many of which have been implicated in odorant transport and metabolization in animal studies. Significant differences in the olfactory mucus proteome were seen between CRS subtypes and controls, as well as between those with normal and abnormal olfaction. Further study should confirm these findings and explore the role individual proteins play in odorant transport and metabolization. ©2020 ARSAAOA, LLC.
Collapse
Affiliation(s)
- Zachary M Soler
- Division of Rhinology and Sinus Surgery, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Rodney J Schlosser
- Division of Rhinology and Sinus Surgery, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC.,Department of Surgery, Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Jennifer K Mulligan
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Timothy L Smith
- Division of Rhinology and Sinus/Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | - Jess C Mace
- Division of Rhinology and Sinus/Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | - Vijay R Ramakrishan
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO
| | - Kim Norris-Caneda
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Jennifer R Bethard
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
22
|
Lachén-Montes M, Mendizuri N, Ausín K, Pérez-Mediavilla A, Azkargorta M, Iloro I, Elortza F, Kondo H, Ohigashi I, Ferrer I, de la Torre R, Robledo P, Fernández-Irigoyen J, Santamaría E. Smelling the Dark Proteome: Functional Characterization of PITH Domain-Containing Protein 1 (C1orf128) in Olfactory Metabolism. J Proteome Res 2020; 19:4826-4843. [PMID: 33185454 DOI: 10.1021/acs.jproteome.0c00452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Human Proteome Project (HPP) consortium aims to functionally characterize the dark proteome. On the basis of the relevance of olfaction in early neurodegeneration, we have analyzed the dark proteome using data mining in public resources and omics data sets derived from the human olfactory system. Multiple dark proteins localize at synaptic terminals and may be involved in amyloidopathies such as Alzheimer's disease (AD). We have characterized the dark PITH domain-containing protein 1 (PITHD1) in olfactory metabolism using bioinformatics, proteomics, in vitro and in vivo studies, and neuropathology. PITHD1-/- mice exhibit olfactory bulb (OB) proteome changes related to synaptic transmission, cognition, and memory. OB PITHD1 expression increases with age in wild-type (WT) mice and decreases in Tg2576 AD mice at late stages. The analysis across 6 neurological disorders reveals that olfactory tract (OT) PITHD1 is specifically upregulated in human AD. Stimulation of olfactory neuroepithelial (ON) cells with PITHD1 alters the ON phosphoproteome, modifies the proliferation rate, and induces a pro-inflammatory phenotype. This workflow applied by the Spanish C-HPP and Human Brain Proteome Project (HBPP) teams across the ON-OB-OT axis can be adapted as a guidance to decipher functional features of dark proteins. Data are available via ProteomeXchange with identifiers PXD018784 and PXD021634.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| | - Naroa Mendizuri
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| | - Karina Ausín
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| | - Alberto Pérez-Mediavilla
- IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain.,Neurobiology of Alzheimer's Disease, Department of Biochemistry, Center for Applied Medical Research (CIMA), Neurosciences Division, University of Navarra, 31008 Pamplona, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Hiroyuki Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Isidre Ferrer
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 28029 Madrid, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, 08908 Hospitalet de Llobregat, Spain.,Institute of Neurosciences, University of Barcelona, 08007 Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), 08002 Barcelona, Spain.,School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03), CIBEROBN, 28029 Madrid, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), 08002 Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
23
|
Mainland JD, Barlow LA, Munger SD, Millar SE, Vergara MN, Jiang P, Schwob JE, Goldstein BJ, Boye SE, Martens JR, Leopold DA, Bartoshuk LM, Doty RL, Hummel T, Pinto JM, Trimmer C, Kelly C, Pribitkin EA, Reed DR. Identifying Treatments for Taste and Smell Disorders: Gaps and Opportunities. Chem Senses 2020; 45:493-502. [PMID: 32556127 PMCID: PMC7545248 DOI: 10.1093/chemse/bjaa038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The chemical senses of taste and smell play a vital role in conveying information about ourselves and our environment. Tastes and smells can warn against danger and also contribute to the daily enjoyment of food, friends and family, and our surroundings. Over 12% of the US population is estimated to experience taste and smell (chemosensory) dysfunction. Yet, despite this high prevalence, long-term, effective treatments for these disorders have been largely elusive. Clinical successes in other sensory systems, including hearing and vision, have led to new hope for developments in the treatment of chemosensory disorders. To accelerate cures, we convened the "Identifying Treatments for Taste and Smell Disorders" conference, bringing together basic and translational sensory scientists, health care professionals, and patients to identify gaps in our current understanding of chemosensory dysfunction and next steps in a broad-based research strategy. Their suggestions for high-yield next steps were focused in 3 areas: increasing awareness and research capacity (e.g., patient advocacy), developing and enhancing clinical measures of taste and smell, and supporting new avenues of research into cellular and therapeutic approaches (e.g., developing human chemosensory cell lines, stem cells, and gene therapy approaches). These long-term strategies led to specific suggestions for immediate research priorities that focus on expanding our understanding of specific responses of chemosensory cells and developing valuable assays to identify and document cell development, regeneration, and function. Addressing these high-priority areas should accelerate the development of novel and effective treatments for taste and smell disorders.
Collapse
Affiliation(s)
| | - Linda A Barlow
- Department of Cell & Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Steven D Munger
- Center for Smell and Taste, Department of Pharmacology and Therapeutics, 1200 Newell Drive, University of Florida, Gainesville, FL, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Natalia Vergara
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Bradley J Goldstein
- Department of Head and Neck Surgery and Communication Sciences, Duke University School of Medicine, 40 Duke Medicine Cir Clinic 1F, Durham, NC, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Center for Smell and Taste, Department of Pharmacology and Therapeutics, 1200 Newell Drive, University of Florida, Gainesville, FL, USA
| | - Donald A Leopold
- Division of Otolaryngology Head and Neck Surgery, University of Vermont Medical Center, Burlington, VT, USA
| | - Linda M Bartoshuk
- Department of Food Science and Human Nutrition, Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Richard L Doty
- Smell and Taste Center and Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, 3400 Spruce Street, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Fetscherstrasse, Dresden, Germany
| | - Jayant M Pinto
- Section of Otolaryngology—Head and Neck Surgery, Department of Surgery, The University of Chicago, MC, Chicago, IL, USA
| | | | | | - Edmund A Pribitkin
- Department of Otolaryngology—Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
24
|
Ijichi C, Wakabayashi H, Sugiyama S, Ihara Y, Nogi Y, Nagashima A, Ihara S, Niimura Y, Shimizu Y, Kondo K, Touhara K. Metabolism of Odorant Molecules in Human Nasal/Oral Cavity Affects the Odorant Perception. Chem Senses 2020; 44:465-481. [PMID: 31254383 DOI: 10.1093/chemse/bjz041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, we examined the mode of metabolism of food odorant molecules in the human nasal/oral cavity in vitro and in vivo. We selected 4 odorants, 2-furfurylthiol (2-FT), hexanal, benzyl acetate, and methyl raspberry ketone, which are potentially important for designing food flavors. In vitro metabolic assays of odorants with saliva/nasal mucus analyzed by gas chromatography mass spectrometry revealed that human saliva and nasal mucus exhibit the following 3 enzymatic activities: (i) methylation of 2-FT into furfuryl methylsulfide (FMS); (ii) reduction of hexanal into hexanol; and (iii) hydrolysis of benzyl acetate into benzyl alcohol. However, (iv) demethylation of methyl raspberry ketone was not observed. Real-time in vivo analysis using proton transfer reaction-mass spectrometry demonstrated that the application of 2-FT and hexanal through 3 different pathways via the nostril or through the mouth generated the metabolites FMS and hexanol within a few seconds. The concentration of FMS and hexanol in the exhaled air was above the perception threshold. A cross-adaptation study based on the activation pattern of human odorant receptors suggested that this metabolism affects odor perception. These results suggest that some odorants in food are metabolized in the human nasal mucus/saliva, and the resulting metabolites are perceived as part of the odor quality of the substrates. Our results help improve the understanding of the mechanism of food odor perception and may enable improved design and development of foods in relation to odor.
Collapse
Affiliation(s)
- Chiori Ijichi
- Chemosensory Research Group, Technology Development Center, Institute of Food Science and Technologies, Food Products Division, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Hidehiko Wakabayashi
- Taste & Flavor Technology Group, Technology Development Center, Institute of Food Sciences and Technologies, Food Products Division, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Shingo Sugiyama
- Taste & Flavor Technology Group, Technology Development Center, Institute of Food Sciences and Technologies, Food Products Division, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yusuke Ihara
- Chemosensory Research Group, Technology Development Center, Institute of Food Science and Technologies, Food Products Division, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yasuko Nogi
- Chemosensory Research Group, Technology Development Center, Institute of Food Science and Technologies, Food Products Division, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Ayumi Nagashima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sayoko Ihara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshihito Niimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuya Shimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenji Kondo
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
25
|
Kao SST, Bassiouni A, Ramezanpour M, Finnie J, Chegeni N, Colella AD, Chataway TK, Wormald PJ, Vreugde S, Psaltis AJ. Proteomic analysis of nasal mucus samples of healthy patients and patients with chronic rhinosinusitis. J Allergy Clin Immunol 2020; 147:168-178. [PMID: 32750382 DOI: 10.1016/j.jaci.2020.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) has a complex and multifactorial pathogenesis with a heterogeneous inflammatory profile. Proteomic analysis of nasal mucus may enable further understanding of protein abundances and biologic processes present in CRS and its endotypes compared with in healthy patients. OBJECTIVE Our aim was to determine differences in the nasal mucus proteome of healthy patients and patients with CRS. METHODS Nasal mucus was obtained from healthy patients, patients with CRS without nasal polyps (CRSsNP), and patients with CRS with nasal polyps (CRSwNP) before surgery. Gel electrophoresis was performed to fractionate the complex protein extracts before mass spectrometry analysis. Gene set enrichment analysis was performed on differentially expressed proteins. RESULTS A total of 33 patients were included in this study (12 healthy, 10 with CRSsNP, and 11 with CRSwNP). In all, 1142 proteins were identified in mucus samples from healthy patients, 761 in mucus samples from patients with CRSsNP, and 998 in mucus samples from patients with CRSwNP. Dysfunction in immunologic pathways, reduced cellular signaling, and increased cellular metabolism with associated tissue remodeling pathways were present in patients with CRS compared with in healthy patients. CONCLUSION Significant downregulation of mucosal immunity and antioxidant pathways with increased tissue modeling processes may account for the clinical manifestations of CRS. Ultimately, the differing proteome and biologic processes provide further insight into CRS pathogenesis and its endotypes.
Collapse
Affiliation(s)
- Stephen Shih-Teng Kao
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Ahmed Bassiouni
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - John Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, The University of Adelaide and South Australia Pathology, Adelaide, Australia
| | - Nusha Chegeni
- Discipline of Anatomy and Pathology, Adelaide Medical School, The University of Adelaide and South Australia Pathology, Adelaide, Australia; Flinders Proteomic Facility, Department of Human Physiology, Flinders University, Bedford Park, Australia
| | - Alex D Colella
- Discipline of Anatomy and Pathology, Adelaide Medical School, The University of Adelaide and South Australia Pathology, Adelaide, Australia; Flinders Proteomic Facility, Department of Human Physiology, Flinders University, Bedford Park, Australia
| | - Timothy K Chataway
- Discipline of Anatomy and Pathology, Adelaide Medical School, The University of Adelaide and South Australia Pathology, Adelaide, Australia; Flinders Proteomic Facility, Department of Human Physiology, Flinders University, Bedford Park, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Alkis James Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia.
| |
Collapse
|
26
|
Johnson AA, Shokhirev MN, Wyss-Coray T, Lehallier B. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res Rev 2020; 60:101070. [PMID: 32311500 DOI: 10.1016/j.arr.2020.101070] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
The development of clinical interventions that significantly improve human healthspan requires robust markers of biological age as well as thoughtful therapeutic targets. To promote these goals, we performed a systematic review and analysis of human aging and proteomics studies. The systematic review includes 36 different proteomics analyses, each of which identified proteins that significantly changed with age. We discovered 1,128 proteins that had been reported by at least two or more analyses and 32 proteins that had been reported by five or more analyses. Each of these 32 proteins has known connections relevant to aging and age-related disease. GDF15, for example, extends both lifespan and healthspan when overexpressed in mice and is additionally required for the anti-diabetic drug metformin to exert beneficial effects on body weight and energy balance. Bioinformatic enrichment analyses of our 1,128 commonly identified proteins heavily implicated processes relevant to inflammation, the extracellular matrix, and gene regulation. We additionally propose a novel proteomic aging clock comprised of proteins that were reported to change with age in plasma in three or more different studies. Using a large patient cohort comprised of 3,301 subjects (aged 18-76 years), we demonstrate that this clock is able to accurately predict human age.
Collapse
|
27
|
Heydel JM, Menetrier F, Belloir C, Canon F, Faure P, Lirussi F, Chavanne E, Saliou JM, Artur Y, Canivenc-Lavier MC, Briand L, Neiers F. Characterization of rat glutathione transferases in olfactory epithelium and mucus. PLoS One 2019; 14:e0220259. [PMID: 31339957 PMCID: PMC6656353 DOI: 10.1371/journal.pone.0220259] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
The olfactory epithelium is continuously exposed to exogenous chemicals, including odorants. During the past decade, the enzymes surrounding the olfactory receptors have been shown to make an important contribution to the process of olfaction. Mammalian xenobiotic metabolizing enzymes, such as cytochrome P450, esterases and glutathione transferases (GSTs), have been shown to participate in odorant clearance from the olfactory receptor environment, consequently contributing to the maintenance of sensitivity toward odorants. GSTs have previously been shown to be involved in numerous physiological processes, including detoxification, steroid hormone biosynthesis, and amino acid catabolism. These enzymes ensure either the capture or the glutathione conjugation of a large number of ligands. Using a multi-technique approach (proteomic, immunocytochemistry and activity assays), our results indicate that GSTs play an important role in the rat olfactory process. First, proteomic analysis demonstrated the presence of different putative odorant metabolizing enzymes, including different GSTs, in the rat nasal mucus. Second, GST expression was investigated in situ in rat olfactory tissues using immunohistochemical methods. Third, the activity of the main GST (GSTM2) odorant was studied with in vitro experiments. Recombinant GSTM2 was used to screen a set of odorants and characterize the nature of its interaction with the odorants. Our results support a significant role of GSTs in the modulation of odorant availability for receptors in the peripheral olfactory process.
Collapse
Affiliation(s)
- Jean-Marie Heydel
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
- * E-mail: (FN); (J-MH)
| | - Franck Menetrier
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Christine Belloir
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Francis Canon
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Philippe Faure
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Frederic Lirussi
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, INSERM, U1231, Lipides Nutrition Cancer, Équipe labellisée Ligue Nationale contre le Cancer, Dijon, France
| | - Evelyne Chavanne
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Jean-Michel Saliou
- University of Lille, CNRS, INSERM, CHU Lille, Pasteur Institute of Lille, U1019-UMR8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Yves Artur
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Marie-Chantal Canivenc-Lavier
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Loïc Briand
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Fabrice Neiers
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
- * E-mail: (FN); (J-MH)
| |
Collapse
|
28
|
Heydel JM, Faure P, Neiers F. Nasal odorant metabolism: enzymes, activity and function in olfaction. Drug Metab Rev 2019; 51:224-245. [DOI: 10.1080/03602532.2019.1632890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jean-Marie Heydel
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Philippe Faure
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
29
|
Nasal mucus glutathione transferase activity and impact on olfactory perception and neonatal behavior. Sci Rep 2019; 9:3104. [PMID: 30816217 PMCID: PMC6395716 DOI: 10.1038/s41598-019-39495-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/11/2018] [Indexed: 11/08/2022] Open
Abstract
In olfaction, to preserve the sensitivity of the response, the bioavailability of odor molecules is under the control of odorant-metabolizing enzymes (OMEs) expressed in the olfactory neuroepithelium. Although this enzymatic regulation has been shown to be involved in olfactory receptor activation and perceptual responses, it remains widely underestimated in vertebrates. In particular, the possible activity of OMEs in the nasal mucus, i.e. the aqueous layer that lined the nasal epithelium and forms the interface for airborne odorants to reach the olfactory sensory neurons, is poorly known. Here, we used the well-described model of the mammary pheromone (MP) and behavioral response in rabbit neonates to challenge the function of nasal mucus metabolism in an unprecedented way. First, we showed, in the olfactory epithelium, a rapid glutathione transferase activity toward the MP by ex vivo real-time mass spectrometry (PTR-MS) which supported an activity in the closest vicinity of both the odorants and olfactory receptors. Indeed and second, both the presence and activity of glutathione transferases were evidenced in the nasal mucus of neonates using proteomic and HPLC analysis respectively. Finally, we strikingly demonstrated that the deregulation of the MP metabolism by in vivo mucus washing modulates the newborn rabbit behavioral responsiveness to the MP. This is a step forward in the demonstration of the critical function of OMEs especially in the mucus, which is at the nasal front line of interaction with odorants and potentially subjected to physiopathological changes.
Collapse
|