1
|
Vega-Celedón P, Castillo-Novales D, Bravo G, Cárdenas F, Romero-Silva MJ, Seeger M. Synthesis and Degradation of the Phytohormone Indole-3-Acetic Acid by the Versatile Bacterium Paraburkholderia xenovorans LB400 and Its Growth Promotion of Nicotiana tabacum Plant. PLANTS (BASEL, SWITZERLAND) 2024; 13:3533. [PMID: 39771231 PMCID: PMC11676955 DOI: 10.3390/plants13243533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Plant growth-promoting bacteria (PGPB) play a role in stimulating plant growth through mechanisms such as the synthesis of the phytohormone indole-3-acetic acid (IAA). The aims of this study were the characterization of IAA synthesis and degradation by the model aromatic-degrading bacterium Paraburkholderia xenovorans LB400, and its growth promotion of the Nicotiana tabacum plant. Strain LB400 was able to synthesize IAA (measured by HPLC) during growth in the presence of tryptophan and at least one additional carbon source; synthesis of anthranilic acid was also observed. RT-PCR analysis indicates that under these conditions, strain LB400 expressed the ipdC gene, which encodes indole-3-pyruvate decarboxylase, suggesting that IAA biosynthesis proceeds through the indole-3-pyruvate pathway. In addition, strain LB400 degraded IAA and grew on IAA as a sole carbon and energy source. Strain LB400 expressed the iacC and catA genes, which encode the α subunit of the aromatic-ring-hydroxylating dioxygenase in the IAA catabolic pathway and the catechol 1,2-dioxygenase, respectively, which may suggest a peripheral IAA pathway leading to the central catechol pathway. Notably, P. xenovorans LB400 promoted the growth of tobacco seedlings, increasing the number and the length of the roots. In conclusion, this study indicates that the versatile bacterium P. xenovorans LB400 is a PGPB.
Collapse
Affiliation(s)
- Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Diyanira Castillo-Novales
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Franco Cárdenas
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
| | - María José Romero-Silva
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
2
|
Ogunyemi AK, Buraimoh OM, Dauda WP, Akapo OO, Ogunyemi BC, Samuel TA, Ilori MO, Amund OO. Analysis of the genome of Bacillus safensis strain WOB3 KX774195, a Linamarin-utilizing bacterium (LUB) isolated from Cassava wastewater (CWW), Lagos State, Nigeria. Data Brief 2024; 57:110807. [PMID: 39296627 PMCID: PMC11408756 DOI: 10.1016/j.dib.2024.110807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/21/2024] Open
Abstract
Linamarin-utilizing bacterium (LUB) is a microorganism that uses and breaks down cassava's principal cyanogenic compound, linamarin. Here, we present the draft genome sequence of Bacillus safensis strain WOB3 (previously Bacillus pumilus strain WOB3) sequenced and assembled with a total reads of 8,750,054 bp. The genome has 1,269 contigs and, G+C content of 41.55%. The genome has 4,749 total genes, 4,614 protein-coding sequences (CDSs), 3, 8 and 10 rRNA genes, 74 tRNA genes, and 5 ncRNA genes. This whole genome shotgun project has been deposited in GenBank under accession number JAYSGU000000000.
Collapse
Affiliation(s)
- Adewale K Ogunyemi
- Department of Microbiology, Trinity University, Yaba, Lagos State, Nigeria
- Department of Biological Sciences (Microbiology Unit), Lagos State University of Science & Technology, Ikorodu, Lagos State, Nigeria
| | - Olanike M Buraimoh
- Department of Microbiology, University of Lagos, Akoka, Lagos State, Nigeria
- TETFund Centre of Excellence on Biodiversity Conservation and Ecosystem Management (TCEBCEM), University of Lagos, Akoka, Lagos State, Nigeria
| | - Wadzani P Dauda
- Department of Agronomy (Crop Science Unit), Federal University Gashua, Gashua, Yobe State, Nigeria
| | - Olufunmilayo O Akapo
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa Main Campus, KwaDlangezwa, 3886, South Africa
| | - Bukola C Ogunyemi
- Department of Biochemistry, University of Lagos, Id-Araba, Lagos State, Nigeria
| | - Titilola A Samuel
- Department of Biochemistry, University of Lagos, Id-Araba, Lagos State, Nigeria
- TETFund Centre of Excellence on Biodiversity Conservation and Ecosystem Management (TCEBCEM), University of Lagos, Akoka, Lagos State, Nigeria
| | - Matthew O Ilori
- Department of Microbiology, University of Lagos, Akoka, Lagos State, Nigeria
| | - Olukayode O Amund
- Department of Microbiology, University of Lagos, Akoka, Lagos State, Nigeria
| |
Collapse
|
3
|
Mahnoor, Noor-Ul-Ain, Arshad F, Ahsan T, Alharbi SA, Ansari MJ, Khan I, Alshiekheid M, Sabour AAA. Whole genome analysis of Stenotrophomonas geniculata MK2 and antagonism against Botrytis cinerea in strawberry. Int Microbiol 2024:10.1007/s10123-024-00612-9. [PMID: 39602005 DOI: 10.1007/s10123-024-00612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
A novel strain isolated from soil identified as Stenotrophomonas geniculata MK2 could control strawberries' postharvest disease gray mold. An in vitro investigation showed that MK2 had significant bioactivity against Botrytis cinerea, with an observed zone of inhibition of 85%. The strain MK2 was 88% effective in controlling gray mold on detached fruits. De novo whole genome sequencing analysis showed that strain MK2 has a single circular chromosome with a genome size of 736,465 bp, a G + C content of 66.34%, a coding ratio of 89.80%, and a protein-coding gene of 442. The NR database identified about 4284 genes among Stenotrophomonas spp. and S. geniculata, sharing the maximum number of 1277 genes with the MK2 strain. In COG annotation, most gene percentage was linked to general functions. In KEGG annotations, the majority of genes are associated with metabolism. According to the GO analysis, the maximum number of genes involved in the molecular process was linked to catalytic and transporter activity. CAZymes (carbohydrate-active enzymes) showed that enzymes related to glycosyl transferases (48), carbohydrate esterases (54), and glycoside hydrolases (51) are involved in the non-ribosomal synthesis of secondary metabolites. The PHI database showed that in strain MK2, the reduced virulence was 68 protein counts, and similarly unaffected pathogenicity protein counts were 52. AntiSMASH analysis for biosynthesis-related gene clusters involved in the production of secondary metabolites showed ten gene clusters coded for 2,3-dihydroxybenzoylserine, griseobactin, fuscachelin, benarthin, mirubactin, myxochelin, and bacillibactin. The MK2 strain could be a potent biocontrol agent for postharvest diseases.
Collapse
Affiliation(s)
- Mahnoor
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Noor-Ul-Ain
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Fatima Arshad
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Taswar Ahsan
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, People's Republic of China.
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology College of Science, King Saud University, P.O Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Bareilly, 244001, India
| | - Ismail Khan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Maha Alshiekheid
- Department of Botany & Microbiology College of Science, King Saud University, P.O Box 2455, 11451, Riyadh, Saudi Arabia
| | - Amal Abdullah A Sabour
- Department of Botany & Microbiology College of Science, King Saud University, P.O Box 2455, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Dibbisa D, Daba T, Mohammed S. Regulatory Element Analysis and Comparative Genomics Study of Heavy Metal-Resistant Genes in the Complete Genome of Cupriavidus gilardii CR3. Bioinform Biol Insights 2024; 18:11779322241299905. [PMID: 39588201 PMCID: PMC11587186 DOI: 10.1177/11779322241299905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Environmental pollution has become a worldwide concern that requires rigorous efforts from all sectors of society to monitor, control, and remediate it. In environmental pollution control, Cupriavidus gilardii CR3 has become a model organism to study resistance to heavy metals as a means of bacterial bioremediation. This research aimed to single out regulatory element analysis and conduct a comparative genome study of the heavy metal resistance genes in the complete genome of C gilardii CR3 using bioinformatics and omics tools. Comparative genome analysis, promoter prediction, common motif identification, transcriptional start site identification, gene annotation, and transcription factor identification search are the major steps to understanding gene expression and regulation. MEME Suit, TOMTOM, Prokka, Rapid Annotation utilizing Subsystem Technology (RAST), Orthologous Average Nucleotide Identity Software Tool (OAT), and EziBio databases or programs were the major tools used in this study. Fourteen transcriptional factors were identified and predicted from the most credible and lowest candidate motifs with an e-value of 3.0e-009, which was statistically the utmost remarkable candidate motif. A detailed evaluation was further performed, and 14 transcriptional factors were identified as in activation, repression, and dual functions. The data revealed that most transcriptional factors identified were used for activation rather than repression. The C gilardii CR3 genome contains many genes responsible for resisting heavy metals such as mercury, cadmium, zinc, copper, and arsenate. As a result, regulatory elements will lay a solid basis for understanding genes responsible for heavy metal bioremediation. It was concluded that further studies with wet lab support could be conducted for confirmation. Moreover, other advanced bioinformatics and omics technologies are needed to strengthen the results.
Collapse
Affiliation(s)
- Duguma Dibbisa
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- School of Biological Sciences and Biotechnology, CNCS, Haramaya University, Dire Dawa, Ethiopia
| | - Tadesse Daba
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Ethiopia Institute of Agricultural Research Center, Addis Ababa, Ethiopia
| | - Seid Mohammed
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
5
|
Ni S, Wu Y, Zhu N, Leng F, Wang Y. Bacillus licheniformisYB06: A Rhizosphere-Genome-Wide Analysis and Plant Growth-Promoting Analysis of a Plant Growth-Promoting Rhizobacterium Isolated from Codonopsis pilosula. Microorganisms 2024; 12:1861. [PMID: 39338535 PMCID: PMC11433706 DOI: 10.3390/microorganisms12091861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Codonopsis pilosula, commonly known as Dangshen, is a valuable medicinal plant, but its slow growth and susceptibility to environmental stress pose challenges for its cultivation. In pursuit of sustainable agricultural practices to enhance the yield and quality of Dangshen, the present study isolated a bacterial strain exhibiting plant growth-promoting potential from the rhizosphere of C. pilosula. This strain was subsequently identified as Bacillus licheniformisYB06. Assessment of its plant growth-promoting attributes revealed the potential of B. licheniformis YB06 as a biofertilizer. Whole-genome sequencing of B. licheniformis YB06 revealed a genome size of 4,226,888 bp with a GC content of 46.22%, harboring 4325 predicted protein-coding sequences. Genomic analysis of B. licheniformis YB06 revealed a diverse array of genes linked to induced systemic resistance (ISR) and plant growth-promoting (PGP) traits, encompassing phytohormone production, nitrogen assimilation and reduction, siderophore biosynthesis, phosphate solubilization, biofilm formation, synthesis of PGP-related amino acids, and flagellar motility. Seed germination assays demonstrated the positive effects of B. licheniformis YB06 on the germination and growth of C. pilosula seedlings. Furthermore, we explored various fertilization regimes, particularly the B. licheniformis YB06-based biofertilizer, were investigated for their impact on the structure and diversity of the C. pilosula rhizosphere soil bacterial community. Our findings revealed that fertilization significantly impacted soil bacterial composition and diversity, with the combined application of B. licheniformis YB06-based biofertilizer and organic fertilizer exhibiting a particularly pronounced enhancement of rhizosphere bacterial community structure and diversity. This study represents the first report on the beneficial effects of B. licheniformis YB06 on both the growth of C. pilosula and the composition of its rhizosphere soil microbial community. These findings provide a theoretical foundation and practical guidance for the development of novel bio-organic compound fertilizers, thereby contributing to the sustainable cultivation of C. pilosula.
Collapse
Affiliation(s)
| | | | | | | | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (S.N.); (Y.W.); (N.Z.); (F.L.)
| |
Collapse
|
6
|
Li R, Yang P, Zhang H, Wang C, Zhao F, Liu J, Wang Y, Liang Y, Sun T, Xie X. Comparative Genomic and Functional Analysis of c-di-GMP Metabolism and Regulatory Proteins in Bacillus velezensis LQ-3. Microorganisms 2024; 12:1724. [PMID: 39203566 PMCID: PMC11357230 DOI: 10.3390/microorganisms12081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Bacillus velezensis is a promising candidate for biocontrol applications. A common second messenger molecule, bis-(3,5)-cyclic-dimeric-guanosine monophosphate (c-di-GMP), has the ability to regulate a range of physiological functions that impact the effectiveness of biocontrol. However, the status of the c-di-GMP signaling pathway in biocontrol strain LQ-3 remains unknown. Strain LQ-3, which was isolated from wheat rhizosphere soil, has shown effective control of wheat sharp eyespot and has been identified as B. velezensis through whole-genome sequencing analyses. In this study, we investigated the intracellular c-di-GMP signaling pathway of LQ-3 and further performed a comparative genomic analysis of LQ-3 and 29 other B. velezensis strains. The results revealed the presence of four proteins containing the GGDEF domain, which is the conserved domain for c-di-GMP synthesis enzymes. Additionally, two proteins were identified with the EAL domain, which represents the conserved domain for c-di-GMP degradation enzymes. Furthermore, one protein was found to possess a PilZ domain, indicative of the conserved domain for c-di-GMP receptors in LQ-3. These proteins are called DgcK, DgcP, YybT, YdaK, PdeH, YkuI, and DgrA, respectively; they are distributed in a similar manner across the strains and belong to the signal transduction family. We selected five genes from the aforementioned seven genes for further study, excluding YybT and DgrA. They all play a role in regulating the motility, biofilm formation, and colonization of LQ-3. This study reveals the c-di-GMP signaling pathway associated with biocontrol features in B. velezensis LQ-3, providing guidance for the prevention and control of wheat sharp eyespot by LQ-3.
Collapse
Affiliation(s)
- Rong Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Panlei Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Hongjuan Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Chunjing Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Fang Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Jiehui Liu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Yanbin Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Yan Liang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Ting Sun
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Xiansheng Xie
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| |
Collapse
|
7
|
Mao Y, Yang Y, Lin F, Chu H, Zhou L, Han J, Zhou J, Su X. Functional Analysis of Stress Resistance of Bacillus cereus SCL10 Strain Based on Whole-Genome Sequencing. Microorganisms 2024; 12:1168. [PMID: 38930550 PMCID: PMC11206075 DOI: 10.3390/microorganisms12061168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
A Gram-positive, rod-shaped, aerobic, motile, and spore-forming bacterium, designated SCL10, was isolated from Acaudina molpadioides exposure to Co-60 radiation. In this study, whole-genome sequencing was performed to identify the strain as Bacillus cereus and functional characterization, with a focus on stress resistance. The genome of the B. cereus SCL10 strain was sequenced and assembled, revealing a size of 4,979,182 bp and 5167 coding genes. The genes involved in biological functions were annotated by using the GO, COG, KEGG, NR, and Swiss-Prot databases. The results showed that genes related to alkyl hydroperoxide reductase (ahpC, ahpF), DNA-binding proteins from starved cells (dps), spore and biofilm formation (spoVG, spo0A, gerP), cold shock-like protein (cspC, cspE), ATP-dependent chaperone (clpB), and photolyase, small, acid-soluble spore protein (SASP) and DNA repair protein (recA, radD) could explain the stress resistance. These findings suggest that antioxidant activity, sporulation, biofilm formation, and DNA protection may be considered as the main resistance mechanisms under exposure to radiation in the B. cereus SCL10 strain.
Collapse
Affiliation(s)
- Yanzhen Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Ye Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Fu Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Hanyu Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Lijie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| |
Collapse
|
8
|
Jiang C, Zhao G, Wang H, Zheng W, Zhang R, Wang L, Zheng Z. Comparative genomics analysis and transposon mutagenesis provides new insights into high menaquinone-7 biosynthetic potential of Bacillus subtilis natto. Gene 2024; 907:148264. [PMID: 38346457 DOI: 10.1016/j.gene.2024.148264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This research combined Whole-Genome sequencing, intraspecific comparative genomics and transposon mutagenesis to investigate the menaquinone-7 (MK-7) synthesis potential in Bacillus subtilis natto. First, Whole-Genome sequencing showed that Bacillus subtilis natto BN-P15-11-1 contains one single circular chromosome in size of 3,982,436 bp with a GC content of 43.85 %, harboring 4,053 predicted coding genes. Next, the comparative genomics analysis among strain BN-P15-11-1 with model Bacillus subtilis 168 and four typical Bacillus subtilis natto strains proves that the closer evolutionary relationship Bacillus subtilis natto BN-P15-11-1 and Bacillus subtilis 168 both exhibit strong biosynthetic potential. To further dig for MK-7 biosynthesis latent capacity of BN-P15-11-1, we constructed a mutant library using transposons and a high throughput screening method using microplates. We obtained a YqgQ deficient high MK-7 yield strain F4 with a yield 3.02 times that of the parent strain. Experiments also showed that the high yield mutants had defects in different transcription and translation regulatory factor genes, indicating that regulatory factor defects may affect the biosynthesis and accumulation of MK-7 by altering the overall metabolic level. The findings of this study will provide more novel insights on the precise identification and rational utilization of the Bacillus subtilis subspecies for biosynthesis latent capacity.
Collapse
Affiliation(s)
- Chunxu Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, Anhui, PR China
| | - Genhai Zhao
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Han Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Wenqian Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, Anhui, PR China
| | - Rui Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Li Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| |
Collapse
|
9
|
Olanrewaju OS, Molale-Tom LG, Kritzinger RK, Bezuidenhout CC. Genome mining of Escherichia coli WG5D from drinking water source: unraveling antibiotic resistance genes, virulence factors, and pathogenicity. BMC Genomics 2024; 25:263. [PMID: 38459466 PMCID: PMC10924361 DOI: 10.1186/s12864-024-10110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Escherichia coli, a ubiquitous inhabitant of the gut microbiota, has been recognized as an indicator of fecal contamination and a potential reservoir for antibiotic resistance genes. Its prevalence in drinking water sources raises concerns about the potential dissemination of antibiotic resistance within aquatic ecosystems and the subsequent impact on public health. The ability of E. coli to acquire and transfer resistance genes, coupled with the constant exposure to low levels of antibiotics in the environment, underscores the need for comprehensive surveillance and rigorous antimicrobial stewardship strategies to safeguard the quality and safety of drinking water supplies, ultimately mitigating the escalation of antibiotic resistance and its implications for human well-being. METHODS WG5D strain, isolated from a drinking water distribution source in North-West Province, South Africa, underwent genomic analysis following isolation on nutrient agar, anaerobic cultivation, and DNA extraction. Paired-end Illumina sequencing with a Nextera XT Library Preparation kit was performed. The assembly, annotation, and subsequent genomic analyses, including phylogenetic analysis using TYGS, pairwise comparisons, and determination of genes related to antimicrobial resistance and virulence, were carried out following standard protocols and tools, ensuring comprehensive insights into the strain's genomic features. RESULTS This study explores the notable characteristics of E. coli strain WG5D. This strain stands out because it possesses multiple antibiotic resistance genes, encompassing tetracycline, cephalosporin, vancomycin, and aminoglycoside resistances. Additionally, virulence-associated genes indicate potential heightened pathogenicity, complemented by the identification of mobile genetic elements that underscore its adaptability. The intriguing possibility of bacteriophage involvement and factors contributing to pathogenicity further enriches our understanding. We identified E. coli WG5D as a potential human pathogen associated with a drinking water source in South Africa. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. It further identified WG5D as a potential human pathogen. The occurrence of E. coli WG5D raised the awareness of the potential pathogens and the carrying of antibiotic resistance in drinking water. CONCLUSIONS The findings of this study have highlighted the advantages of the genomic approach in identifying the bacterial species and antibiotic resistance genes of E. coli and its potential as a human pathogen.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Lesego G Molale-Tom
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Rinaldo K Kritzinger
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Cornelius Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa.
| |
Collapse
|
10
|
Su F, Zhao B, Dhondt-Cordelier S, Vaillant-Gaveau N. Plant-Growth-Promoting Rhizobacteria Modulate Carbohydrate Metabolism in Connection with Host Plant Defense Mechanism. Int J Mol Sci 2024; 25:1465. [PMID: 38338742 PMCID: PMC10855160 DOI: 10.3390/ijms25031465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Plant-growth-promoting rhizobacteria (PGPR) could potentially enhance photosynthesis and benefit plant growth by improving soil nutrient uptake and affecting plant hormone balance. Several recent studies have unveiled a correlation between alterations in photosynthesis and host plant resistance levels. Photosynthesis provides materials and energy for plant growth and immune defense and affects defense-related signaling pathways. Photosynthetic organelles, which could be strengthened by PGPR inoculation, are key centers for defense signal biosynthesis and transmission. Although endophytic PGPRs metabolize plant photosynthates, they can increase soluble sugar levels and alternate sugar type and distribution. Soluble sugars clearly support plant growth and can act as secondary messengers under stressed conditions. Overall, carbohydrate metabolism modifications induced by PGPR may also play a key role in improving plant resistance. We provide a concise overview of current knowledge regarding PGPR-induced modulation in carbohydrate metabolism under both pathogen-infected and pathogen-free conditions. We highlight PGPR application as a cost-saving strategy amidst unpredictable pathogen pressures.
Collapse
Affiliation(s)
- Fan Su
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300071, China;
| | - Bin Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China;
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Résistance Induite et Bioprotection des Plantes—USC INRAE 1488, Université de Reims Champagne Ardenne, 51100 Reims, France;
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche Résistance Induite et Bioprotection des Plantes—USC INRAE 1488, Université de Reims Champagne Ardenne, 51100 Reims, France;
| |
Collapse
|
11
|
Salimian Rizi S, Rezayatmand Z, Ranjbar M, Yazdanpanahi N, Emami- Karvani ZD. The Effect of Bacillus Cereus on the Ion Homeostasis, Growth Parameters, and the Expression of Some Genes of Artemisinin Biosynthesis Pathway in Artemisia Absinthium Under Salinity Stress. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3687. [PMID: 38827342 PMCID: PMC11139441 DOI: 10.30498/ijb.2024.394178.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/12/2023] [Indexed: 06/04/2024]
Abstract
Background Soil salinity is a major problem in the world that affects the growth and yield of plants. Application of new and up-to-date techniques can help plants in dealing with salinity stress. One of the approaches for reducing environmental stress is the use of rhizosphere bacteria. Objective The aim of present study was to investigate the effect of the inoculation of Bacillus cereus on physiological and biochemical indicators and the expression of some key genes involved in the Artemisinin biosynthesis pathway in Artemisia absinthium under salinity stress. Materials and Methods The study was conducted using three different salinity levels (0, 75, 150 mM/NaCl) and two different bacterial treatments (i. e, without bacterial inoculation and co-inoculation with B. cereus isolates). The data from the experiments were analyzed using factorial analysis, and the resulting interaction effects were subsequently examined and discussed. Results The results showed that with increasing salinity, root and stem length, root and stem weight, root and stem dry weight, and potassium content were decreased, although the content of sodium was increased. Rhizosphere bacteria increased the contents of Artemisinin, potassium, calcium, magnesium, and iron and the expression of Amorpha-4,11-diene synthase and Cytochrome P450 monooxygenase1 genes as well as the growth indicators; although decreased the sodium content. The highest ADS expression was related to co-inoculation with B. cereus isolates E and B in 150 mM salinity. The highest CYP71AV1 expression was related to co-inoculation with B. cereus isolates E and B in 150 mM salinity. Conclusion These findings showed that the increase in growth indices under salinity stress was probably due to the improvement of nutrient absorption conditions as a result of ion homeostasis, sodium ion reduction and Artemisinin production conditions by rhizosphere B. cereus isolates E and B.
Collapse
Affiliation(s)
- Sara Salimian Rizi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Zahra Rezayatmand
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Monireh Ranjbar
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Nasrin Yazdanpanahi
- Department of Biotechnology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | | |
Collapse
|
12
|
Ebu SM, Ray L, Panda AN, Gouda SK. De novo assembly and comparative genome analysis for polyhydroxyalkanoates-producing Bacillus sp. BNPI-92 strain. J Genet Eng Biotechnol 2023; 21:132. [PMID: 37991636 PMCID: PMC10665291 DOI: 10.1186/s43141-023-00578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Certain Bacillus species play a vital role in polyhydroxyalkanoate (PHA) production. However, most of these isolates did not properly identify to species level when scientifically had been reported. RESULTS From NGS analysis, 5719 genes were predicted in the de novo genome assembly. Based on genome annotation using RAST server, 5,527,513 bp sequences were predicted with 5679 bp number of protein-coding sequence. Its genome sequence contains 35.1% and 156 GC content and contigs, respectively. In RAST server analysis, subsystem (43%) and non-subsystem coverage (57%) were generated. Ortho Venn comparative genome analysis indicated that Bacillus sp. BNPI-92 shared 2930 gene cluster (core gene) with B. cereus ATCC 14579 T (AE016877), B. paranthracis Mn5T (MACE01000012), B. thuringiensis ATCC 10792 T (ACNF01000156), and B. antrics Amen T (AE016879) strains. For our strain, the maximum gene cluster (190) was shared with B. cereus ATCC 14579 T (AE016877). For Ortho Venn pair wise analysis, the maximum overlapping gene clusters thresholds have been detected between Bacillus s p.BNPI-92 and Ba. cereus ATCC 14579 T (5414). Average nucleotide identity (ANI) such as OriginalANI and OrthoANI, in silicon digital DND-DNA hybridization (isDDH), Type (Strain) Genome Server (TYGS), and Genome-Genome Distance Calculator (GGDC) were more essentially related Bacillus sp. BNPI-92 with B. cereus ATCC 14579 T strain. Therefore, based on the combination of RAST annotation, OrthoVenn server, ANI and isDDH result Bacillus sp.BNPI-92 strain was strongly confirmed to be a B. cereus type strain. It was designated as B. cereus BNPI-92 strain. In B. cereus BNPI-92 strain whole genome sequence, PHA biosynthesis encoding genes such as phaP, phaQ, phaR (PHA synthesis repressor phaR gene sequence), phaB/phbB, and phaC were predicted on the same operon. These gene clusters were designated as phaPQRBC. However, phaA was located on other operons. CONCLUSIONS This newly obtained isolate was found to be new a strain based on comparative genomic analysis and it was also observed as a potential candidate for PHA biosynthesis.
Collapse
Affiliation(s)
- Seid Mohammed Ebu
- Department of Applied Biology, SoANS, Adama Science and Technology University, Oromia, Ethiopia.
| | - Lopamudra Ray
- School of Law, Campus -16 Adjunct Faculty, School of Biotech, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Ananta N Panda
- School of Biotechnology, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Sudhansu K Gouda
- School of Biotechnology, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
13
|
Wang C, Ahsan T, Ding A, Han D, Zang CQ, Huang YQ, Hussain K. Whole genome analysis of Bacillus amyloliquefaciens TA-1, a promising biocontrol agent against Cercospora arachidicola pathogen of early leaf spot in Arachis hypogaea L. BMC PLANT BIOLOGY 2023; 23:410. [PMID: 37667202 PMCID: PMC10478280 DOI: 10.1186/s12870-023-04423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Early leaf spot disease, caused by Cercospora arachidicola, is a devastating peanut disease that has severely impacted peanut production and quality. Chemical fungicides pollute the environment; however, Bacillus bacteria can be used as an environmentally friendly alternative to chemical fungicides. To understand the novel bacterial strain and unravel its molecular mechanism, De novo whole-genome sequencing emerges as a rapid and efficient omics approach. RESULTS In the current study, we identified an antagonistic strain, Bacillus amyloliquefaciens TA-1. In-vitro assay showed that the TA-1 strain was a strong antagonist against C. arachidicola, with an inhibition zone of 88.9 mm. In a greenhouse assay, results showed that the TA-1 strain had a significant biocontrol effect of 95% on peanut early leaf spot disease. De novo whole-genome sequencing analysis, shows that strain TA-1 has a single circular chromosome with 4172 protein-coding genes and a 45.91% guanine and cytosine (GC) content. Gene function was annotated using non-redundant proteins from the National Center for Biotechnology Information (NCBI), Swiss-Prot, the Kyoto Encyclopedia of Genes and Genomes (KEGG), clusters of orthologous groups of proteins, gene ontology, pathogen-host interactions, and carbohydrate-active enZYmes. antiSMASH analysis predicted that strain TA-1 can produce the secondary metabolites siderophore, tailcyclized peptide, myxochelin, bacillibactin, paenibactin, myxochelin, griseobactin, benarthin, tailcyclized, and samylocyclicin. CONCLUSION The strain TA-1 had a significant biological control effect against peanut early leaf spot disease in-vitro and in greenhouse assays. Whole genome analysis revealed that, TA-1 strain belongs to B. amyloliquefaciens and could produce the antifungal secondary metabolites.
Collapse
Affiliation(s)
- Chen Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Taswar Ahsan
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, P.R. China
| | - Ao Ding
- Plant Protection College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Di Han
- Plant Protection College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chao-Qun Zang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, P.R. China
| | - Yu-Qian Huang
- Plant Protection College, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Khalid Hussain
- Department of Botany, University of Gujrat, 50700, Gujrat, Pakistan
| |
Collapse
|
14
|
Samaniego-Gámez BY, Valle-Gough RE, Garruña-Hernández R, Reyes-Ramírez A, Latournerie-Moreno L, Tun-Suárez JM, Villanueva-Alonzo HDJ, Nuñez-Ramírez F, Diaz LC, Samaniego-Gámez SU, Minero-García Y, Hernandez-Zepeda C, Moreno-Valenzuela OA. Induced Systemic Resistance in the Bacillus spp.- Capsicum chinense Jacq.-PepGMV Interaction, Elicited by Defense-Related Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112069. [PMID: 37299048 DOI: 10.3390/plants12112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Induced systemic resistance (ISR) is a mechanism involved in the plant defense response against pathogens. Certain members of the Bacillus genus are able to promote the ISR by maintaining a healthy photosynthetic apparatus, which prepares the plant for future stress situations. The goal of the present study was to analyze the effect of the inoculation of Bacillus on the expression of genes involved in plant responses to pathogens, as a part of the ISR, during the interaction of Capsicum chinense infected with PepGMV. The effects of the inoculation of the Bacillus strains in pepper plants infected with PepGMV were evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants during a time-course experiment in greenhouse and in in vitro experiments. The relative expression of the defense genes CcNPR1, CcPR10, and CcCOI1 were also evaluated. The results showed that the plants inoculated with Bacillus subtilis K47, Bacillus cereus K46, and Bacillus sp. M9 had a reduction in the PepGMV viral titer, and the symptoms in these plants were less severe compared to the plants infected with PepGMV and non-inoculated with Bacillus. Additionally, an increase in the transcript levels of CcNPR1, CcPR10, and CcCOI1 was observed in plants inoculated with Bacillus strains. Our results suggest that the inoculation of Bacillus strains interferes with the viral replication, through the increase in the transcription of pathogenesis-related genes, which is reflected in a lowered plant symptomatology and an improved yield in the greenhouse, regardless of PepGMV infection status.
Collapse
Affiliation(s)
- Blancka Yesenia Samaniego-Gámez
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Raúl Enrique Valle-Gough
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - René Garruña-Hernández
- CONACYT-National Technological Institute of Mexico, Technological Institute of Conkal, CONACYT, Tecnológico Ave. s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - Arturo Reyes-Ramírez
- National Technological Institute of Mexico, Conkal Institute of Technology, Division of Graduate Studies and Research, Av. Tecnológico s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - Luis Latournerie-Moreno
- National Technological Institute of Mexico, Conkal Institute of Technology, Division of Graduate Studies and Research, Av. Tecnológico s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - José María Tun-Suárez
- National Technological Institute of Mexico, Conkal Institute of Technology, Division of Graduate Studies and Research, Av. Tecnológico s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - Hernán de Jesús Villanueva-Alonzo
- Regional Research Center "Dr. Hideyo Noguchi", Cell Biology Laboratory, Autonomous University of Yucatan, Av. Itzáez, Nmbr. 490 by 59 St. Centro, Merida P.O. Box 97000, Yucatán, Mexico
| | - Fidel Nuñez-Ramírez
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Lourdes Cervantes Diaz
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Samuel Uriel Samaniego-Gámez
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Yereni Minero-García
- Yucatan Center of Scientific Research, Plant Biochemistry and Molecular Biology Unit, 43 St., Nmbr. 130, Chuburna de Hidalgo, Merida P.O. Box 97200, Yucatán, Mexico
| | - Cecilia Hernandez-Zepeda
- Yucatan Center of Scientific Research, Water Sciences Unit, 8 St., Nmbr. 39, SM 64, Mz. 29, Cancun P.O. Box 77500, Quintana Roo, Mexico
| | - Oscar A Moreno-Valenzuela
- Yucatan Center of Scientific Research, Plant Biochemistry and Molecular Biology Unit, 43 St., Nmbr. 130, Chuburna de Hidalgo, Merida P.O. Box 97200, Yucatán, Mexico
| |
Collapse
|
15
|
Zhang C, Zhang Q, Luo M, Wang Q, Wu X. Bacillus cereus WL08 immobilized on tobacco stem charcoal eliminates butylated hydroxytoluene in soils and alleviates the continuous cropping obstacle of Pinellia ternata. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131091. [PMID: 36870095 DOI: 10.1016/j.jhazmat.2023.131091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Butylated hydroxytoluene (BHT), as an emerging contaminant in ecosystems, has potential influences on animals, aquatic organisms, and public health, and has been proven to be a major allelochemical of Pinellia ternata. In this study, Bacillus cereus WL08 was used to rapidly degrade BHT in liquid culture. Strain WL08 immobilized on tobacco stem charcoal (TSC) particles notably accelerated BHT removal in contract to its free cells, and exhibited excellent reutilization and storage capacities. The optimal removal parameters of TSC WL08 were ascertained to be pH 7.0, 30 °C, 50 mg L-1 BHT and 0.14 mg L-1 TSC WL08. Moreover, TSC WL08 significantly accelerated the degradation of 50 mg L-1 BHT in sterile and non-sterile soils compared to that of free WL08 or natural dissipation, and notably shortened their half-lives by 2.47- or 362.14- fold, and 2.20- or 14.99- fold, respectively. Simultaneously, TSC WL08 was introduced into the continuous cropping soils of P. ternata, which accelerated the elimination of allelochemical BHT, and notably enhanced the photosynthesis, growth, yield, and quality of P. ternata. This study provides new insights and strategies for the rapid in situ remediation of BHT-polluted soils and effective alleviation of P. ternata cropping obstacles.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qinghai Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ming Luo
- Institute of Modern Chinese Herbal Medicines, Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Qiuping Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China; Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen, Guizhou 551400, China
| | - Xiaomao Wu
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
16
|
Liu JM, Liang YT, Wang SS, Jin N, Sun J, Lu C, Sun YF, Li SY, Fan B, Wang FZ. Antimicrobial activity and comparative metabolomic analysis of Priestia megaterium strains derived from potato and dendrobium. Sci Rep 2023; 13:5272. [PMID: 37002283 PMCID: PMC10066289 DOI: 10.1038/s41598-023-32337-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The growth of endophytic bacteria is influenced by the host plants and their secondary metabolites and activities. In this study, P. megaterium P-NA14 and P. megaterium D-HT207 were isolated from potato tuber and dendrobium stem respectively. They were both identified as Priestia megaterium. The antimicrobial activities and metabolites of both strains were explored. For antimicrobial activities, results showed that P. megaterium P-NA14 exhibited a stronger inhibition effect on the pathogen of dendrobium, while P. megaterium D-HT207 exhibited a stronger inhibition effect on the pathogen of potato. The supernatant of P. megaterium P-NA14 showed an inhibition effect only on Staphylococcus aureus, while the sediment of P. megaterium D-HT207 showed an inhibition effect only on Escherichia coli. For metabolomic analysis, the content of L-phenylalanine in P. megaterium P-NA14 was higher than that of P. megaterium D-HT207, and several key downstream metabolites of L-phenylalanine were associated with inhibition of S. aureus including tyrosine, capsaicin, etc. Therefore, we speculated that the different antimicrobial activities between P. megaterium P-NA14 and P. megaterium D-HT207 were possibly related to the content of L-phenylalanine and its metabolites. This study preliminarily explored why the same strains isolated from different hosts exhibit different activities from the perspective of metabolomics.
Collapse
Affiliation(s)
- Jia-Meng Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Tian Liang
- College of Pharmacy, Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Shan-Shan Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nuo Jin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Lu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Feng Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Ying Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Feng-Zhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
17
|
Chen T, Zhang Z, Li W, Chen J, Chen X, Wang B, Ma J, Dai Y, Ding H, Wang W, Long Y. Biocontrol potential of Bacillus subtilis CTXW 7-6-2 against kiwifruit soft rot pathogens revealed by whole-genome sequencing and biochemical characterisation. Front Microbiol 2022; 13:1069109. [PMID: 36532498 PMCID: PMC9751376 DOI: 10.3389/fmicb.2022.1069109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 09/05/2023] Open
Abstract
Soft rot causes significant economic losses in the kiwifruit industry. This study isolated strain CTXW 7-6-2 from healthy kiwifruit tissue; this was a gram-positive bacterium that produced the red pigment pulcherrimin. The phylogenetic tree based on 16S ribosomal RNA, gyrA, rpoB, and purH gene sequences identified CTXW 7-6-2 as a strain of Bacillus subtilis. CTXW 7-6-2 inhibited hyphal growth of pathogenic fungi that cause kiwifruit soft rot, namely, Botryosphaeria dothidea, Phomopsis sp., and Alternaria alternata, by 81.76, 69.80, and 32.03%, respectively. CTXW 7-6-2 caused the hyphal surface to become swollen and deformed. Volatile compounds (VOC) produced by the strain inhibited the growth of A. alternata and Phomopsis sp. by 65.74 and 54.78%, respectively. Whole-genome sequencing revealed that CTXW 7-6-2 possessed a single circular chromosome of 4,221,676 bp that contained 4,428 protein-coding genes, with a guanine and cytosine (GC) content of 43.41%. Gene functions were annotated using the National Center for Biotechnology Information (NCBI) non-redundant protein, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups of proteins, Gene Ontology, Pathogen-Host Interactions, Carbohydrate-Active enZYmes, and Rapid Annotations using Subsystem Technology databases, revealing non-ribosomal pathways associated with antifungal mechanisms, biofilm formation, chemotactic motility, VOC 3-hydroxy-2-butanone, cell wall-associated enzymes, and synthesis of various secondary metabolites. antiSMASH analysis predicted that CTXW 7-6-2 can produce the active substances bacillaene, bacillibactin, subtilosin A, bacilysin, and luminmide and has four gene clusters of unknown function. Quantitative real-time PCR (qRT-PCR) analysis verified that yvmC and cypX, key genes involved in the production of pulcherrimin, were highly expressed in CTXW 7-6-2. This study elucidates the mechanism by which B. subtilis strain CTXW 7-6-2 inhibits pathogenic fungi that cause kiwifruit soft rot, suggesting the benefit of further studying its antifungal active substances.
Collapse
Affiliation(s)
- Tingting Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Zhuzhu Zhang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Wenzhi Li
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Jia Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Xuetang Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Bince Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Jiling Ma
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Yunyun Dai
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Haixia Ding
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
- Department of Plant Pathology, Guizhou University, Guiyang, China
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
- Teaching Experimental Factory, Guizhou University, Guiyang, China
| |
Collapse
|
18
|
Microbial Inoculation Improves Growth, Nutritional and Physiological Aspects of Glycine max (L.) Merr. Microorganisms 2022; 10:microorganisms10071386. [PMID: 35889105 PMCID: PMC9316164 DOI: 10.3390/microorganisms10071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Considering a scenario where there is a low availability and increasing costs of fertilizers in the global agricultural market, as well as a finitude of important natural resources, such as phosphorus (P), this study tested the effect of the inoculation of rhizospheric or endophytic microorganisms isolated from Hymenaea courbaril and Butia purpurascens on the growth promotion of Glycine max (L.) Merr. The tests were conducted in a controlled greenhouse system, and the effects of biofertilization were evaluated using the following parameters: dry biomass, nutritional content, and photochemical and photosynthetic performance of plants. Seed biopriming was performed with four bacterial and four fungal isolates, and the results were compared to those of seeds treated with the commercial product Biomaphos®. Overall, microbial inoculation had a positive effect on biomass accumulation in G. max, especially in strains PA12 (Paenibacillus alvei), SC5 (Bacillus cereus), and SC15 (Penicillium sheari). The non-inoculated control plants accumulated less nutrients, both in the whole plant and aerial part, and had reduced chlorophyll index and low photosynthetic rate (A) and photochemical efficiency. Strains PA12 (P. alvei), SC5 (B. cereus), and 328EF (Codinaeopsis sp.) stood out in the optimization of nutrient concentration, transpiration rate, and stomatal conductance. Plants inoculated with the bacterial strains PA12 (P. alvei) and SC5 (B. cereus) and with the fungal strains 328EF (Codinaeopsis sp.) and SC15 (P. sheari) showed the closest pattern to that observed in plants treated with Biomaphos®, with the same trend of direction of the means associated with chlorophyll index, (A), dry mass, and concentration of important nutrients such as N, P, and Mg. We recommend the use of these isolates in field tests to validate these strains for the production of biological inoculants as part of the portfolio of bioinputs available for G. max.
Collapse
|
19
|
Dubey A, Kumar K, Srinivasan T, Kondreddy A, Kumar KRR. An invasive weed-associated bacteria confers enhanced heat stress tolerance in wheat. Heliyon 2022; 8:e09893. [PMID: 35865978 PMCID: PMC9293653 DOI: 10.1016/j.heliyon.2022.e09893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/09/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Global temperatures are expected to increase due to climate change, and heat stress is one of the major limiting factors affecting future agriculture. To identify plant-associated microorganisms which can promote heat stress tolerance in wheat, we have screened several bacteria isolated from etiolated seedlings of the invasive noxious weed Parthenium hysterophorus. One isolate designated as Ph-04 was found to confer enhanced heat stress tolerance in wheat. The 16S rRNA gene sequence analysis showed that Ph-04 isolate shared highest sequence identity with Bacillus paramycoides species of the Bacillus cereus group. Ph-04 treated wheat seeds exhibited enhanced germination, longer coleoptile, radicle and seminal root length than control seedlings when grown in the dark at optimum and high temperatures. Similarly, under autotrophic conditions, Ph-04 treated plants also exhibited enhanced heat stress tolerance with a significant increase in membrane integrity and significantly reduced levels of H2O2 under heat stress compared to control plants. This observed heat stress tolerance is associated with constitutively higher basal levels of proline, and activity of antioxidant enzymes, catalase (CAT) and ascorbate peroxidase (APX) in Ph-04 treated plants grown under unstressed conditions with further increase under heat stress conditions compared to controls. Plant recovery after heat stress also showed that the Ph-04 treated plants exhibited significantly less damage in terms of survival percentage and exhibited better morphological and physiological characteristics compared to control plants. The study proves that invasive weeds can harbour potentially beneficial microorganisms, which can be transferred to non-native crop (host) plants to improve climate resilience characteristics.
Collapse
Affiliation(s)
- Ankita Dubey
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak 484887, India
| | - Kundan Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak 484887, India
| | - Tantravahi Srinivasan
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak 484887, India
| | - Anil Kondreddy
- ASPIRE-BioNEST, University of Hyderabad, Hyderabad 500046, India
| | - Koppolu Raja Rajesh Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak 484887, India
| |
Collapse
|
20
|
Tariq M, Jameel F, Ijaz U, Abdullah M, Rashid K. Biofertilizer microorganisms accompanying pathogenic attributes: a potential threat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:77-90. [PMID: 35221573 PMCID: PMC8847475 DOI: 10.1007/s12298-022-01138-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 05/04/2023]
Abstract
Application of biofertilizers containing living or dormant plant growth promoting bacterial cells is considered to be an ecofriendly alternative of chemical fertilizers for improved crop production. Biofertilizers opened myriad doors towards sustainable agriculture as they effectively reduce heavy use of chemical fertilizers and pesticides by keeping soils profuse in micro and macronutrients, regulating plant hormones and restraining infections caused by the pests present in soil without inflicting environmental damage. Generally, pathogenicity and biosafety testing of potential plant growth promoting bacteria (PGPB) are not performed, and the bacteria are reported to be beneficial solely on testing plant growth promoting characteristics. Unfortunately, some rhizosphere and endophytic PGPB are reported to be involved in various diseases. Such PGPB can also spread virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Therefore, deployment of such microbial populations in open fields could lead to disastrous side effects on human health and environment. Careless declaration of bacteria as PGPB is more pronounced in research publications. Here, we present a comprehensive report of declared PGPB which are reported to be pathogenic in other studies. This review also suggests the employment of some additional safety assessment protocols before reporting a bacteria as beneficial and product development.
Collapse
Affiliation(s)
- Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farwah Jameel
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Kamran Rashid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
21
|
Adeleke BS, Ayangbenro AS, Babalola OO. Genomic assessment of Stenotrophomonas indicatrix for improved sunflower plant. Curr Genet 2021. [PMID: 34195871 DOI: 10.1007/s00294-00021-01199-00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Diverse agriculturally important microbes have been studied with known potential in plant growth promotion. Providing several opportunities, Stenotrophomonas species are characterized as promising plant enhancers, inducers, and protectors against environmental stressors. The S. indicatrix BOVIS40 isolated from the sunflower root endosphere possessed unique features, as genome insights into the Stenotrophomonas species isolated from oilseed crops in Southern Africa have not been reported. Plant growth-promotion screening and genome analysis of S. indicatrix BOVIS40 were presented in this study. The genomic information reveals various genes underlining plant growth promotion and resistance to environmental stressors. The genome of S. indicatrix BOVIS40 harbors genes involved in the degradation and biotransformation of organic molecules. Also, other genes involved in biofilm production, chemotaxis, and flagellation that facilitate bacterial colonization in the root endosphere and phytohormone genes that modulate root development and stress response in plants were detected in strain BOVIS40. IAA activity of the bacterial strain may be a factor responsible for root formation. A measurable approach to the S. indicatrix BOVIS40 lifestyle can strategically provide several opportunities in their use as bioinoculants in developing environmentally friendly agriculture sustainably. The findings presented here provide insights into the genomic functions of S. indicatrix BOVIS40, which has set a foundation for future comparative studies for a better understanding of the synergism among microbes inhabiting plant endosphere. Hence, highlighting the potential of S. indicatrix BOVIS40 upon inoculation under greenhouse experiment, thus suggesting its application in enhancing plant and soil health sustainably.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
22
|
Gamage NW, Bamforth J, Ashfaq T, Bernard K, Gräfenhan T, Walkowiak S. Profiling of Bacillus cereus on Canadian grain. PLoS One 2021; 16:e0259209. [PMID: 34735500 PMCID: PMC8568128 DOI: 10.1371/journal.pone.0259209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Microorganisms that cause foodborne illnesses challenge the food industry; however, environmental studies of these microorganisms on raw grain, prior to food processing, are uncommon. Bacillus cereus sensu lato is a diverse group of bacteria that is common in our everyday environment and occupy a wide array of niches. While some of these bacteria are beneficial to agriculture due to their entomopathogenic properties, others can cause foodborne illness; therefore, characterization of these bacteria is important from both agricultural and food safety standpoints. We performed a survey of wheat and flax grain samples in 2018 (n = 508) and 2017 (n = 636) and discovered that B. cereus was present in the majority of grain samples, as 56.3% and 85.2%, in two years respectively. Whole genome sequencing and comparative genomics of 109 presumptive B. cereus isolates indicates that most of the isolates were closely related and formed two genetically distinct groups. Comparisons to the available genomes of reference strains suggested that the members of these two groups are not closely related to strains previously reported to cause foodborne illness. From the same data set, another, genetically more diverse group of B. cereus was inferred, which had varying levels of similarity to previously reported strains that caused disease. Genomic analysis and PCR amplification of genes linked to toxin production indicated that most of the isolates carry the genes nheA and hbID, while other toxin genes and gene clusters, such as ces, were infrequent. This report of B. cereus on grain from Canada is the first of its kind and demonstrates the value of surveillance of bacteria naturally associated with raw agricultural commodities such as cereal grain and oilseeds.
Collapse
Affiliation(s)
| | - Janice Bamforth
- Canadian Grain Commission, Government of Canada, Winnipeg, Canada
| | - Tehreem Ashfaq
- Canadian Grain Commission, Government of Canada, Winnipeg, Canada
| | - Kathryn Bernard
- Public Health Agency of Canada, National Microbiology Laboratory, Government of Canada, Winnipeg, Canada
| | - Tom Gräfenhan
- Canadian Grain Commission, Government of Canada, Winnipeg, Canada
- Public Health Agency of Canada, National Microbiology Laboratory, Government of Canada, Winnipeg, Canada
- * E-mail: (TG); (SW)
| | - Sean Walkowiak
- Canadian Grain Commission, Government of Canada, Winnipeg, Canada
- * E-mail: (TG); (SW)
| |
Collapse
|
23
|
Liu H, Zeng Q, Yalimaimaiti N, Wang W, Zhang R, Yao J. Comprehensive genomic analysis of Bacillus velezensis AL7 reveals its biocontrol potential against Verticillium wilt of cotton. Mol Genet Genomics 2021; 296:1287-1298. [PMID: 34553246 DOI: 10.1007/s00438-021-01816-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Abstract
Verticilllium wilt of cotton is a devastating soil-borne disease, which is caused by Verticillium dahliae Kleb. Bacillus velezensis strain AL7 was isolated from cotton soil. This strain efficiently inhibited the growth of V. dahliae. But the mechanism of the biocontrol strain AL7 remains poorly understood. To understand the possible genetic determinants for biocontrol traits of this strain, we conducted phenotypic, phylogenetic and comparative genomics analysis. Phenotypic analysis showed that strain AL7 exhibited broad-spectrum antifungal activities. We determined that the whole genome sequence of B. velezensis AL7 is a single circular chromosome that is 3.89 Mb in size. The distribution of putative gene clusters that could benefit to biocontrol activities was found in the genome. Phylogenetic analysis of Bacillus strains by using single core-genome clearly placed strain AL7 into the B. velezensis. Meantime, we performed comparative analyses on four Bacillus strains and observed subtle differences in their genome sequences. In addition, comparative genomics analysis showed that the core genomes of B. velezensis are more abundant in genes relevant to secondary metabolism compared with B. subtilis strains. Single mutant in the biosynthetic genes of fengycin demonstrated the function of fengycin in the antagonistic activity of B. velezensis AL7. Here, we report a new biocontrol bacterium B. velezensis AL7 and fengycin contribute to the biocontrol efficacy of the strain. The results showed in the research further sustain the potential of B. velezensis AL7 for application in agriculture production and may be a worthy biocontrol strain for further studies.
Collapse
Affiliation(s)
- Haiyang Liu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Qingchao Zeng
- Beijing Advanced Innovation Center For Tree Breeding By Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Nuerziya Yalimaimaiti
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Wei Wang
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Renfu Zhang
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Ju Yao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
24
|
Adeleke BS, Ayangbenro AS, Babalola OO. Genomic Analysis of Endophytic Bacillus cereus T4S and Its Plant Growth-Promoting Traits. PLANTS 2021; 10:plants10091776. [PMID: 34579311 PMCID: PMC8467928 DOI: 10.3390/plants10091776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/19/2022]
Abstract
Insights into plant endophytic microbes and their exploration in agriculture have provided opportunities for sustainable plant health and food safety. Notable endophytic Bacillus species with plant growth-promoting traits have been documented; nevertheless, information on genome analysis of B. cereus associated with the sunflower in South Africa has not been studied. Therefore, we present whole-genome sequence of agriculturally important B. cereus strain T4S isolated from sunflower plants. The NextSeq Illumina sequencing yielded 7,255,762 bp sequence reads, 151 bp average read length, 5,945,881 bp genome size, 56 tRNA, 63 rRNA, and G + C content of 34.8%. The phylogeny analysis of strain T4S was similar to B. cereus NJ-W. Secondary metabolites, such as petrobactin, bacillibactin, bacitracin, molybdenum factor, zwittermicin, and fengycin underlining bacterial biocontrol efficacy against phytopathogens were found in the T4S genome. The predicted novel genes in the bacterial genome mediating the complex metabolic pathways can provide a genetic basis in understanding endosphere biology and their multiple functions thereof in crop improvement. Interestingly, seed and root inoculation with strain T4S contributed to sunflower yield under greenhouse experiments. Hence, the detection of notable genes specific for plant growth promotion as validated under in vitro screening, promisingly, suggests the relevance of strain T4S in agricultural biotechnology.
Collapse
|
25
|
Babalola OO, Adeleke BS, Ayangbenro AS. Whole Genome Sequencing of Sunflower Root-Associated Bacillus cereus. Evol Bioinform Online 2021; 17:11769343211038948. [PMID: 34421294 PMCID: PMC8375328 DOI: 10.1177/11769343211038948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022] Open
Abstract
In recent times, diverse agriculturally important endophytic bacteria colonizing plant endosphere have been identified. Harnessing the potential of Bacillus species from sunflower could reveal their biotechnological and agricultural importance. Here, we present genomic insights into B. cereus T4S isolated from sunflower sourced from Lichtenburg, South Africa. Genome analysis revealed a sequence read count of 7 255 762, a genome size of 5 945 881 bp, and G + C content of 34.8%. The genome contains various protein-coding genes involved in various metabolic pathways. The detection of genes involved in the metabolism of organic substrates and chemotaxis could enhance plant-microbe interactions in the synthesis of biological products with biotechnological and agricultural importance.
Collapse
Affiliation(s)
- Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
26
|
SigB regulates stress resistance, glucose starvation, MnSOD production, biofilm formation, and root colonization in Bacillus cereus 905. Appl Microbiol Biotechnol 2021; 105:5943-5957. [PMID: 34350477 DOI: 10.1007/s00253-021-11402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 10/20/2022]
Abstract
Bacillus cereus 905, originally isolated from wheat rhizosphere, exhibits strong colonization ability on wheat roots. Our previous studies showed that root colonization is contributed by the ability of the bacterium to efficiently utilize carbon sources and form biofilms and that the sodA2 gene-encoded manganese-containing superoxide dismutase (MnSOD2) plays an indispensable role in the survival of B. cereus 905 in the wheat rhizosphere. In this investigation, we further demonstrated that the ability of B. cereus 905 to resist adverse environmental conditions is partially attributed to activation of the alternative sigma factor σB, encoded by the sigB gene. The sigB mutant experienced a dramatic reduction in survival when cells were exposed to ethanol, acid, heat, and oxidative stress or under glucose starvation. Analysis of the sodA2 gene transcription revealed a partial, σB-dependent induction of the gene during glucose starvation or when treated with paraquat. In addition, the sigB mutant displayed a defect in biofilm formation under stress conditions. Finally, results from the root colonization assay indicated that sigB and sodA2 collectively contribute to B. cereus 905 colonization on wheat roots. Our study suggests a diverse role of SigB in rhizosphere survival and root colonization of B. cereus 905 under stress conditions. KEY POINTS : • SigB confers resistance to environmental stresses in B. cereus 905. • SigB plays a positive role in glucose utilization and biofilm formation in B. cereus. • SigB and SodA2 collectively contribute to colonization on wheat roots by B. cereus.
Collapse
|
27
|
Genome Mining and Comparative Genome Analysis Revealed Niche-Specific Genome Expansion in Antibacterial Bacillus pumilus Strain SF-4. Genes (Basel) 2021; 12:genes12071060. [PMID: 34356076 PMCID: PMC8303946 DOI: 10.3390/genes12071060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/21/2023] Open
Abstract
The present study reports the isolation of antibacterial exhibiting Bacillus pumilus (B. pumilus) SF-4 from soil field. The genome of this strain SF-4 was sequenced and analyzed to acquire in-depth genomic level insight related to functional diversity, evolutionary history, and biosynthetic potential. The genome of the strain SF-4 harbor 12 Biosynthetic Gene Clusters (BGCs) including four Non-ribosomal peptide synthetases (NRPSs), two terpenes, and one each of Type III polyketide synthases (PKSs), hybrid (NRPS/PKS), lipopeptide, β-lactone, and bacteriocin clusters. Plant growth-promoting genes associated with de-nitrification, iron acquisition, phosphate solubilization, and nitrogen metabolism were also observed in the genome. Furthermore, all the available complete genomes of B. pumilus strains were used to highlight species boundaries and diverse niche adaptation strategies. Phylogenetic analyses revealed local diversification and indicate that strain SF-4 is a sister group to SAFR-032 and 150a. Pan-genome analyses of 12 targeted strains showed regions of genome plasticity which regulate function of these strains and proposed direct strain adaptations to specific habitats. The unique genome pool carries genes mostly associated with “biosynthesis of secondary metabolites, transport, and catabolism” (Q), “replication, recombination and repair” (L), and “unknown function” (S) clusters of orthologous groups (COG) categories. Moreover, a total of 952 unique genes and 168 exclusively absent genes were prioritized across the 12 genomes. While newly sequenced B. pumilus SF-4 genome consists of 520 accessory, 59 unique, and seven exclusively absent genes. The current study demonstrates genomic differences among 12 B. pumilus strains and offers comprehensive knowledge of the respective genome architecture which may assist in the agronomic application of this strain in future.
Collapse
|
28
|
Wu JJ, Chou HP, Huang JW, Deng WL. Genomic and biochemical characterization of antifungal compounds produced by Bacillus subtilis PMB102 against Alternaria brassicicola. Microbiol Res 2021; 251:126815. [PMID: 34284299 DOI: 10.1016/j.micres.2021.126815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/17/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Bacillus subtilis is ubiquitous and capable of producing various metabolites, which make the bacterium a good candidate as a biocontrol agent for managing plant diseases. In this study, a phyllosphere bacterium B. subtilis PMB102 isolated from tomato leaf was found to inhibit the growth of Alternaria brassicicola ABA-31 on PDA and suppress Alternaria leaf spot on Chinese cabbage (Brassica rapa). The genome of PMB102 (Accession no. CP047645) was completely sequenced by Nanopore and Illumina technology to generate a circular chromosome of 4,103,088 bp encoding several gene clusters for synthesizing bioactive compounds. PMB102 and the other B. subtilis strains from different sources were compared in pangenome analysis to identify a suite of conserved genes involved in biocontrol and habitat adaptation. Two predicted gene products, surfactin and fengycin, were extracted from PMB102 culture filtrates and verified by LC-MS/MS. The antifungal activity of fengycin was tested on A. brassicicola ABA-31 in bioautography to inhibit hyphae growth, and in co-culturing assays to elicit the formation of swollen hyphae. Our data revealed that B. subtilis PMB102 suppresses Alternaria leaf spot by the production of antifungal metabolites, and fengycin plays an important role to inhibit the vegetative growth of A. brassicicola ABA-31.
Collapse
Affiliation(s)
- Je-Jia Wu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan; Department of Plant Pathology, National Chung Hsing University, Taiwan
| | - Hau-Ping Chou
- Department of Plant Pathology, National Chung Hsing University, Taiwan; Kaohsiung District Agricultural Research and Extension Station, Taiwan
| | - Jenn-Wen Huang
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan; Department of Plant Pathology, National Chung Hsing University, Taiwan
| | - Wen-Ling Deng
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan; Department of Plant Pathology, National Chung Hsing University, Taiwan.
| |
Collapse
|
29
|
Adeleke BS, Ayangbenro AS, Babalola OO. Genomic assessment of Stenotrophomonas indicatrix for improved sunflower plant. Curr Genet 2021; 67:891-907. [PMID: 34195871 DOI: 10.1007/s00294-021-01199-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Diverse agriculturally important microbes have been studied with known potential in plant growth promotion. Providing several opportunities, Stenotrophomonas species are characterized as promising plant enhancers, inducers, and protectors against environmental stressors. The S. indicatrix BOVIS40 isolated from the sunflower root endosphere possessed unique features, as genome insights into the Stenotrophomonas species isolated from oilseed crops in Southern Africa have not been reported. Plant growth-promotion screening and genome analysis of S. indicatrix BOVIS40 were presented in this study. The genomic information reveals various genes underlining plant growth promotion and resistance to environmental stressors. The genome of S. indicatrix BOVIS40 harbors genes involved in the degradation and biotransformation of organic molecules. Also, other genes involved in biofilm production, chemotaxis, and flagellation that facilitate bacterial colonization in the root endosphere and phytohormone genes that modulate root development and stress response in plants were detected in strain BOVIS40. IAA activity of the bacterial strain may be a factor responsible for root formation. A measurable approach to the S. indicatrix BOVIS40 lifestyle can strategically provide several opportunities in their use as bioinoculants in developing environmentally friendly agriculture sustainably. The findings presented here provide insights into the genomic functions of S. indicatrix BOVIS40, which has set a foundation for future comparative studies for a better understanding of the synergism among microbes inhabiting plant endosphere. Hence, highlighting the potential of S. indicatrix BOVIS40 upon inoculation under greenhouse experiment, thus suggesting its application in enhancing plant and soil health sustainably.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
30
|
Galeano RMS, de Russo Godoy FM, Duré LMM, Fernandes-Júnior PI, Baldani JI, Paggi GM, Zanoelo FF, Brasil MS. Potential of Bacterial Strains Isolated from Ironstone Outcrops Bromeliads to Promote Plant Growth Under Drought Conditions. Curr Microbiol 2021; 78:2741-2752. [PMID: 34031727 DOI: 10.1007/s00284-021-02540-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/08/2021] [Indexed: 01/11/2023]
Abstract
Plant growth-promoting bacteria (PGPB) are bacteria that have mechanisms that facilitate plant growth in stress conditions such as drought. The objective of this study was to characterize bacterial strains isolated from bromeliads roots in ironstone outcrops (Urucum Residual Plateau, Mato Grosso do Sul, Brazil) for plant growth-promoting under drought conditions. Firstly, we screened isolates with the presence of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Then, all isolates were tested for tolerance to drought, exopolysaccharides (EPS) production, indole-3-acetic acid (IAA)-producing abilities, phosphate and zinc solubilization, production of catalase and hydrolytic enzymes (amylase, cellulase, and protease). Germination assay and a pot experiment with maize plants submitted to well-watered and drought conditions were performed with the strains most promising (VBN11 and VBE23). Briefly, Bacillus cereus VBE23 showed in vitro higher ACC deaminase activity (3.83 and 2.52 µmol α-KB mg-1 h-1 in non-drought and drought conditions, respectively), tolerance to drought, EPS production and other mechanisms of plant growth promotion: solubilization of phosphate and zinc, ammonia production, catalase activity and production of hydrolytic enzymes (amylase, cellulase, and protease). Inoculation of strain VBE23 in maize seeds submitted to drought conditions showed higher germination concerning uninoculated seeds and inoculated with VBN11. Also, the results indicated that the isolate VBE23 provided higher values of fresh and dry biomass compared to the control of uninoculated treatment and inoculated with VBN11 under drought conditions. This is the first report on the PGPB from ironstone outcrops of Urucum Residual Plateau, Mato Grosso do Sul, Brazil. Thus, this bacterial isolate could be used as a strategy for the facilitation of plant growth in drought environments.
Collapse
Affiliation(s)
- Rodrigo Mattos Silva Galeano
- Laboratory of Genetic and Microbiology, Campus Pantanal, Federal University of Mato Grosso of Sul/UFMS, Campus Pantanal/UFMS-CPAN, Corumbá, MS, Brazil
- Laboratory of Biochemistry and Microorganisms, Bioscience Institute (InBio), Federal University of Mato Grosso of Sul/UFMS, Campo Grande, MS, Brazil
| | - Fernanda Maria de Russo Godoy
- Laboratory of Genetic and Microbiology, Campus Pantanal, Federal University of Mato Grosso of Sul/UFMS, Campus Pantanal/UFMS-CPAN, Corumbá, MS, Brazil
| | - Laís Mayara Melo Duré
- Laboratory of Genetic and Microbiology, Campus Pantanal, Federal University of Mato Grosso of Sul/UFMS, Campus Pantanal/UFMS-CPAN, Corumbá, MS, Brazil
| | | | | | - Gecele Matos Paggi
- Laboratory of Genetic and Microbiology, Campus Pantanal, Federal University of Mato Grosso of Sul/UFMS, Campus Pantanal/UFMS-CPAN, Corumbá, MS, Brazil
- Faculty of Pharmaceutical Sciences, Food and Nutrition (Facfan), Federal University of Mato Grosso of Sul/UFMS, Campo Grande, MS, Brazil
| | - Fabiana Fonseca Zanoelo
- Laboratory of Biochemistry and Microorganisms, Bioscience Institute (InBio), Federal University of Mato Grosso of Sul/UFMS, Campo Grande, MS, Brazil
| | - Marivaine Silva Brasil
- Laboratory of Genetic and Microbiology, Campus Pantanal, Federal University of Mato Grosso of Sul/UFMS, Campus Pantanal/UFMS-CPAN, Corumbá, MS, Brazil.
| |
Collapse
|
31
|
Kim YS, Lee Y, Cheon W, Park J, Kwon HT, Balaraju K, Kim J, Yoon YJ, Jeon Y. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides. Sci Rep 2021; 11:626. [PMID: 33436839 PMCID: PMC7804190 DOI: 10.1038/s41598-020-80231-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Bacillus genus produces several secondary metabolites with biocontrol ability against various phytopathogens. Bacillus velezensis AK-0 (AK-0), an antagonistic strain isolated from Korean ginseng rhizospheric soil, was found to exhibit antagonistic activity against several phytopathogens. To further display the genetic mechanism of the biocontrol traits of AK-0, we report the complete genome sequence of AK-0 and compared it with complete genome sequences of closely related strains. We report the biocontrol activity of AK-0 against apple bitter rot caused by Colletotrichum gloeosporioides, which could lead to commercialization of this strain as a microbial biopesticide in Korea. To retain its biocontrol efficacy for a longer period, AK-0 has been formulated with ingredients for commercialization, named AK-0 product formulation (AK-0PF). AK-0PF played a role in the suppression of the mycelial growth of the fungicide-resistant pathogen C. gloeosporioides YCHH4 at a greater level than the non-treated control. Moreover, AK-0PF exhibited greater disease suppression of bitter rot in matured under field conditions. Here, we report the complete genome sequence of the AK-0 strain, which has a 3,969,429 bp circular chromosome with 3808 genes and a G+C content of 46.5%. The genome sequence of AK-0 provides a greater understanding of the Bacillus species, which displays biocontrol activity via secondary metabolites. The genome has eight potential secondary metabolite biosynthetic clusters, among which, ituD and bacD genes were expressed at a greater level than other genes. This work provides a better understanding of the strain AK-0, as an effective biocontrol agent (BCA) against phytopathogens, including bitter rot in apple.
Collapse
Affiliation(s)
- Young Soo Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
- Central Research Institute, Kyung Nong Co., Ltd., Gyeongju, 38175, Republic of Korea
| | - Younmi Lee
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Wonsu Cheon
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Pusan, 46241, Republic of Korea
| | - Hyeok-Tae Kwon
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Kotnala Balaraju
- Agricultural Science & Technology Research Institute, Andong National University, Andong, 36729, Republic of Korea
| | - Jungyeon Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Yeo Jun Yoon
- Research Department, KOREABIO Co., Ltd., Hwaseong, 18514, Republic of Korea
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea.
| |
Collapse
|
32
|
Isolation of Plant Growth-Promoting Bacillus cereus from Soil and Its Use as a Microbial Inoculant. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-04895-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
The recA gene is crucial to mediate colonization of Bacillus cereus 905 on wheat roots. Appl Microbiol Biotechnol 2020; 104:9251-9265. [PMID: 32970180 DOI: 10.1007/s00253-020-10915-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Bacillus cereus 905, one of the plant growth-promoting rhizobacteria (PGPRs), is capable of colonizing wheat roots in a large population size. From previous studies, we learned that the sodA2-encoding manganese-containing superoxide dismutase (MnSOD2) is important for B. cereus 905 to survive in wheat rhizosphere. In this investigation, we demonstrated that deletion of the recA gene, which codes for the recombinase A, significantly reduced MnSOD2 expression at both the mRNA and the protein levels. Through comparison with the wild-type, the ∆recA showed a dramatic decrease in cell survival after exposure to 50 μM paraquat or 15 mM H2O2. Evidence indicated that the recA gene of B. cereus 905 also notably regulated nutrition utilization efficiency, biofilm formation, and swarming motility. The root colonization examination showed that the ∆recA had a 1000- to 2500-fold reduction in colonization on wheat roots, suggesting that RecA plays an indispensable role in effective colonization on wheat roots by B. cereus 905. Taken together, the recA gene positively regulates MnSOD2 production and nutrition utilization and protects B. cereus 905 cells against paraquat and H2O2. Besides, biofilm formation and swarming motility of B. cereus 905 are promoted by RecA. Finally, RecA significantly contributes to wheat root colonization of B. cereus 905. Our results showed the important role of RecA during physiological processes in B. cereus 905, especially for colonization on wheat roots. Our findings will point out a research direction to study the colonization mechanisms of B. cereus 905 in the future and provide potential effective strategy to enhance the biocontrol efficacy of PGPR strains. KEY POINTS : • RecA plays an indispensable role in root colonization of B. cereus.
Collapse
|
34
|
Complete Genome Sequence of Bacillus cereus Bacteriophage vB_BceS_KLEB30-3S. Microbiol Resour Announc 2020; 9:9/20/e00348-20. [PMID: 32409544 PMCID: PMC7225543 DOI: 10.1128/mra.00348-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we present the genomic characterization of the temperate bacteriophage vB_BceS_KLEB30-3S (KLEB30-3S), which was induced from Bacillus cereus strain KR3M-30, isolated from a gypsum karst lake ecosystem in Lithuania. The 37,134-bp genome of KLEB30-3S contains 58 predicted protein-encoding genes and no tRNA genes. In this study, we present the genomic characterization of the temperate bacteriophage vB_BceS_KLEB30-3S (KLEB30-3S), which was induced from Bacillus cereus strain KR3M-30, isolated from a gypsum karst lake ecosystem in Lithuania. The 37,134-bp genome of KLEB30-3S contains 58 predicted protein-encoding genes and no tRNA genes.
Collapse
|
35
|
From Genome to Field-Observation of the Multimodal Nematicidal and Plant Growth-Promoting Effects of Bacillus firmus I-1582 on Tomatoes Using Hyperspectral Remote Sensing. PLANTS 2020; 9:plants9050592. [PMID: 32384661 PMCID: PMC7285481 DOI: 10.3390/plants9050592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022]
Abstract
Root-knot nematodes are considered the most important group of plant-parasitic nematodes due to their wide range of plant hosts and subsequent role in yield losses in agricultural production systems. Chemical nematicides are the primary control method, but ecotoxicity issues with some compounds has led to their phasing-out and consequential development of new control strategies, including biological control. We evaluated the nematicidal activity of Bacillus firmus I-1582 in pot and microplot experiments against Meloidogyne luci. I-1582 reduced nematode counts by 51% and 53% compared to the untreated control in pot and microplot experiments, respectively. I-1582 presence in the rhizosphere had concurrent nematicidal and plant growth-promoting effects, measured using plant morphology, relative chlorophyll content, elemental composition and hyperspectral imaging. Hyperspectral imaging in the 400–2500 nm spectral range and supervised classification using partial least squares support vector machines successfully differentiated B. firmus-treated and untreated plants, with 97.4% and 96.3% accuracy in pot and microplot experiments, respectively. Visible and shortwave infrared spectral regions associated with chlorophyll, N–H and C–N stretches in proteins were most relevant for treatment discrimination. This study shows the ability of hyperspectral imaging to rapidly assess the success of biological measures for pest control.
Collapse
|
36
|
Makuwa SC, Serepa-Dlamini MH. Data on draft genome sequence of Bacillus sp. strain MHSD28, a bacterial endophyte isolated from Dicoma anomala. Data Brief 2019; 26:104524. [PMID: 31667287 PMCID: PMC6811918 DOI: 10.1016/j.dib.2019.104524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 11/26/2022] Open
Abstract
Here, we present the draft genome sequence of Bacillus sp. strain MHSD28 which was sequenced, and assembled with a total length of 5,571,729 bp. The genome has 43 contigs, the largest contig with 1,785,042 bp, N50 of 1,474,247 bp, G + C% content of 35.23%. The strain was isolated from surface sterilized leaves of Dicoma anomala, obtained in Limpopo province, South Africa. The genome has 5792 total genes which include 5701 protein coding sequences (CDS), 192 pseudogenes, 7 rRNA genes with 3 operons (5S, 16S and 23S), 79 tRNA genes and 5 noncoding RNA (ncRNA) genes. This whole genome shotgun project has been deposited in DDBJ/ENA/GenBank under accession number VHIV00000000. The version described in this paper is version VHIV01000000.
Collapse
Affiliation(s)
- Sephokoane Cindy Makuwa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, PO Box 17011 Doornfontein 2028, Johannesburg, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, PO Box 17011 Doornfontein 2028, Johannesburg, South Africa
| |
Collapse
|