1
|
Urushima H, Matsubara T, Qiongya G, Daikoku A, Takayama M, Kadono C, Nakai H, Ikeya Y, Yuasa H, Ikeda K. AHCC inhibited hepatic stellate cells activation by regulation of cytoglobin induction via TLR2-SAPK/JNK pathway and collagen production via TLR4-NF-κβ pathway. Am J Physiol Gastrointest Liver Physiol 2024; 327:G741-G753. [PMID: 39316687 DOI: 10.1152/ajpgi.00134.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Cirrhosis, which represents the end stage of liver fibrosis, remains a life-threatening condition without effective treatment. Therefore, prevention of the progression of liver fibrosis through lifestyle habits such as diet and exercise is crucial. The functional food AHCC, a standardized extract of cultured Lentinula edodes mycelia produced by Amino Up Co., Ltd. (Sapporo, Japan)] has been reported to be effective in improving the pathophysiology of various liver diseases. In this study, the aim was to analyze the influence of AHCC on hepatic stellate cells, which are responsible for liver fibrosis. Eight-week-old male C57BL6/j mice were induced with liver fibrosis by intraperitoneal injection of carbon tetrachloride. Simultaneously, they were orally administered 3% AHCC to investigate its impact on the progression of liver fibrosis. Using the human hepatic stellate cell (HHSteC) line, we analyzed the influence of AHCC on the expression of molecules related to hepatic stellate cell activation. The administration of AHCC resulted in reduced expression of collagen1a, α smooth muscle actin (αSMA), and heat shock protein 47 in the liver. Furthermore, the expression of cytoglobin, a marker for quiescent hepatic stellate cells, was enhanced. In vitro study, it was confirmed that AHCC inhibited αSMA by inducing cytoglobin via upregulating the stress-activated protein kinase/Jun NH2-terminal kinase (SAPK/JNK) pathway through Toll-like receptor (TLR) 2. In addition, AHCC suppressed collagen1a production by hepatic stellate cells through TLR4-NF-κβ pathway. AHCC was suggested to suppress hepatic fibrosis by inhibition of hepatic stellate cells activation. Daily intake of AHCC from mild fibrotic stages may have the potential to prevent the progression of liver fibrosis.NEW & NOTEWORTHY AHCC, a standardized extract of cultured Lentinula edodes mycelia, suppresses liver fibrosis progression by induction of cytoglobin via the Toll-like receptor 2 (TLR2)-stress-activated protein kinase/Jun NH2-terminal kinase (SAPK/JNK) pathway and the inhibition of collagen production via the TLR4-NFκβ pathway in hepatic stellate cells. Daily oral administration of AHCC from the stage of MASLD may have the potential to prevent disease progression to MASH with fibrosis.
Collapse
Affiliation(s)
- Hayato Urushima
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Laboratory Animal Facility, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Gu Qiongya
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsuko Daikoku
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Misako Takayama
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Chiho Kadono
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hikaru Nakai
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yukinobu Ikeya
- Faculty of Pharmacy, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Guerrero L, Vindel-Alfageme J, Hierro L, Stark L, Vicent D, Sorzano CÓS, Corrales FJ. Discrimination of Etiologically Different Cholestasis by Modeling Proteomics Datasets. Int J Mol Sci 2024; 25:3684. [PMID: 38612495 PMCID: PMC11011353 DOI: 10.3390/ijms25073684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Cholestasis is characterized by disrupted bile flow from the liver to the small intestine. Although etiologically different cholestasis displays similar symptoms, diverse factors can contribute to the progression of the disease and determine the appropriate therapeutic option. Therefore, stratifying cholestatic patients is essential for the development of tailor-made treatment strategies. Here, we have analyzed the liver proteome from cholestatic patients of different etiology. In total, 7161 proteins were identified and quantified, of which 263 were differentially expressed between control and cholestasis groups. These differential proteins point to deregulated cellular processes that explain part of the molecular framework of cholestasis progression. However, the clustering of different cholestasis types was limited. Therefore, a machine learning pipeline was designed to identify a panel of 20 differential proteins that segregate different cholestasis groups with high accuracy and sensitivity. In summary, proteomics combined with machine learning algorithms provides valuable insights into the molecular mechanisms of cholestasis progression and a panel of proteins to discriminate across different types of cholestasis. This strategy may prove useful in developing precision medicine approaches for patient care.
Collapse
Affiliation(s)
- Laura Guerrero
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain; (L.G.); (J.V.-A.); (C.Ó.S.S.)
| | - Jorge Vindel-Alfageme
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain; (L.G.); (J.V.-A.); (C.Ó.S.S.)
| | - Loreto Hierro
- IdiPAZ, Instituto de Investigación Sanitaria (Health Research Institute), Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (L.H.); (L.S.); (D.V.)
| | - Luiz Stark
- IdiPAZ, Instituto de Investigación Sanitaria (Health Research Institute), Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (L.H.); (L.S.); (D.V.)
| | - David Vicent
- IdiPAZ, Instituto de Investigación Sanitaria (Health Research Institute), Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (L.H.); (L.S.); (D.V.)
| | - Carlos Óscar S. Sorzano
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain; (L.G.); (J.V.-A.); (C.Ó.S.S.)
| | - Fernando J. Corrales
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain; (L.G.); (J.V.-A.); (C.Ó.S.S.)
| |
Collapse
|
3
|
Porto E, De Backer J, Thuy LTT, Kawada N, Hankeln T. Transcriptomics of a cytoglobin knockout mouse: Insights from hepatic stellate cells and brain. J Inorg Biochem 2024; 250:112405. [PMID: 37977965 DOI: 10.1016/j.jinorgbio.2023.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The vertebrate respiratory protein cytoglobin (Cygb) is thought to exert multiple cellular functions. Here we studied the phenotypic effects of a Cygb knockout (KO) in mouse on the transcriptome level. RNA sequencing (RNA-Seq) was performed for the first time on sites of major endogenous Cygb expression, i.e. quiescent and activated hepatic stellate cells (HSCs) and two brain regions, hippocampus and hypothalamus. The data recapitulated the up-regulation of Cygb during HSC activation and its expression in the brain. Differential gene expression analyses suggested a role of Cygb in the response to inflammation in HSCs and its involvement in retinoid metabolism, retinoid X receptor (RXR) activation-induced xenobiotics metabolism, and RXR activation-induced lipid metabolism and signaling in activated cells. Unexpectedly, only minor effects of the Cygb KO were detected in the transcriptional profiles in hippocampus and hypothalamus, precluding any enrichment analyses. Furthermore, the transcriptome data pointed at a previously undescribed potential of the Cygb- knockout allele to produce cis-acting effects, necessitating future verification studies.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany
| | - Joey De Backer
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp 1610, Belgium
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany.
| |
Collapse
|
4
|
Reeder BJ. Insights into the function of cytoglobin. Biochem Soc Trans 2023; 51:1907-1919. [PMID: 37721133 PMCID: PMC10657185 DOI: 10.1042/bst20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Since its discovery in 2001, the function of cytoglobin has remained elusive. Through extensive in vitro and in vivo research, a range of potential physiological and pathological mechanisms has emerged for this multifunctional member of the hemoglobin family. Currently, over 200 research publications have examined different aspects of cytoglobin structure, redox chemistry and potential roles in cell signalling pathways. This research is wide ranging, but common themes have emerged throughout the research. This review examines the current structural, biochemical and in vivo knowledge of cytoglobin published over the past two decades. Radical scavenging, nitric oxide homeostasis, lipid binding and oxidation and the role of an intramolecular disulfide bond on the redox chemistry are examined, together with aspects and roles for Cygb in cancer progression and liver fibrosis.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, U.K
| |
Collapse
|
5
|
Cytoglobin attenuates pancreatic cancer growth via scavenging reactive oxygen species. Oncogenesis 2022; 11:23. [PMID: 35504863 PMCID: PMC9065067 DOI: 10.1038/s41389-022-00389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic cancer is a highly challenging malignancy with extremely poor prognosis. Cytoglobin (CYGB), a hemeprotein involved in liver fibrosis and cancer development, is expressed in pericytes of all organs. Here, we examined the role of CYGB in the development of pancreatic cancer. CYGB expression appeared predominately in the area surrounding adenocarcinoma and negatively correlated with tumor size in patients with pancreatic cancer. Directly injecting 7, 12-dimethylbenz[a]anthracene into the pancreatic tail in wild-type mice resulted in time-dependent induction of severe pancreatitis, fibrosis, and oxidative damage, which was rescued by Cygb overexpression in transgenic mice. Pancreatic cancer incidence was 93% in wild-type mice but only 55% in transgenic mice. Enhanced CYGB expression in human pancreatic stellate cells in vitro reduced cellular collagen synthesis, inhibited cell activation, increased expression of antioxidant-related genes, and increased CYGB secretion into the medium. Cygb-overexpressing or recombinant human CYGB (rhCYGB) -treated MIA PaCa-2 cancer cells exhibited dose-dependent cell cycle arrest at the G1 phase, diminished cell migration, and reduction in colony formation. RNA sequencing in rhCYGB-treated MIA PaCa-2 cells revealed downregulation of cell cycle and oxidative phosphorylation pathways. An increase in MIA PaCa-2 cell proliferation and reactive oxygen species production by H2O2 challenge was blocked by rhCYGB treatment or Cygb overexpression. PANC-1, OCUP-A2, and BxPC-3 cancer cells showed similar responses to rhCYGB. Known antioxidants N-acetyl cysteine and glutathione also inhibited cancer cell growth. These results demonstrate that CYGB suppresses pancreatic stellate cell activation, pancreatic fibrosis, and tumor growth, suggesting its potential therapeutic application against pancreatic cancer.
Collapse
|
6
|
Capacity of extracellular globins to reduce liver fibrosis via scavenging reactive oxygen species and promoting MMP-1 secretion. Redox Biol 2022; 52:102286. [PMID: 35334247 PMCID: PMC8956869 DOI: 10.1016/j.redox.2022.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 11/15/2022] Open
Abstract
Background & aims Hepatic stellate cells (HSCs) are the primary cell type in liver fibrosis, a significant global health care burden. Cytoglobin (CYGB), a globin family member expressed in HSCs, inhibits HSC activation and reduces collagen production. We studied the antifibrotic properties of globin family members hemoglobin (HB), myoglobin (MB), and neuroglobin (NGB) in comparison with CYGB. Approach & results We characterized the biological activities of globins in cultured human HSCs (HHSteCs) and their effects on carbon tetrachloride (CCl4)-induced cirrhosis in mice. All globins demonstrated greater antioxidant capacity than glutathione in cell-free systems. Cellular fractionation revealed endocytosis of extracellular MB, NGB, and CYGB, but not HB; endocytosed globins localized to intracellular membranous, cytoplasmic, and cytoskeletal fractions. MB, NGB, and CYGB, but not HB, scavenged reactive oxygen species generated spontaneously or stimulated by H2O2 or transforming growth factor β1 in HHSteCs and reduced collagen 1A1 production via suppressing COL1A1 promoter activity. Disulfide bond-mutant NGB displayed decreased heme and superoxide scavenging activity and reduced collagen inhibitory capacity. RNA sequencing of MB- and NGB-treated HHSteCs revealed downregulation of extracellular matrix–encoding and fibrosis-related genes and HSC deactivation markers. Upregulation of matrix metalloproteinase (MMP)-1 was observed following MB and NGB treatment, and MMP-1 knockdown partially reversed globin-mediated effects on secreted collagen. Importantly, administration of MB, NGB, and CYGB suppressed CCl4-induced mouse liver fibrosis. Conclusions These findings revealed unexpected roles for MB and NGB in deactivating HSCs and inhibiting liver fibrosis development, suggesting that globin therapy may represent a new strategy for combating fibrotic liver disease. Myoglobin, neuroglobin, and cytoglobin, but not hemoglobin:Internalize into human hepatic stellate cells via endocytosis pathway. Scavenge intracellular reactive oxidative species. Suppress COL1A1 promoter activity and promote matrix metaloproteinase-1 secretion. Suppress carbon tetrachloride-induced mouse liver fibrosis.
Collapse
|
7
|
Dat NQ, Thuy LTT, Hieu VN, Hai H, Hoang DV, Thi Thanh Hai N, Thuy TTV, Komiya T, Rombouts K, Dong MP, Hanh NV, Hoang TH, Sato‐Matsubara M, Daikoku A, Kadono C, Oikawa D, Yoshizato K, Tokunaga F, Pinzani M, Kawada N. Hexa Histidine-Tagged Recombinant Human Cytoglobin Deactivates Hepatic Stellate Cells and Inhibits Liver Fibrosis by Scavenging Reactive Oxygen Species. Hepatology 2021; 73:2527-2545. [PMID: 33576020 PMCID: PMC8251927 DOI: 10.1002/hep.31752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/25/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Antifibrotic therapy remains an unmet medical need in human chronic liver disease. We report the antifibrotic properties of cytoglobin (CYGB), a respiratory protein expressed in hepatic stellate cells (HSCs), the main cell type involved in liver fibrosis. APPROACH AND RESULTS Cygb-deficient mice that had bile duct ligation-induced liver cholestasis or choline-deficient amino acid-defined diet-induced steatohepatitis significantly exacerbated liver damage, fibrosis, and reactive oxygen species (ROS) formation. All of these manifestations were attenuated in Cygb-overexpressing mice. We produced hexa histidine-tagged recombinant human CYGB (His-CYGB), traced its biodistribution, and assessed its function in HSCs or in mice with advanced liver cirrhosis using thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). In cultured HSCs, extracellular His-CYGB was endocytosed and accumulated in endosomes through a clathrin-mediated pathway. His-CYGB significantly impeded ROS formation spontaneously or in the presence of ROS inducers in HSCs, thus leading to the attenuation of collagen type 1 alpha 1 production and α-smooth muscle actin expression. Replacement the iron center of the heme group with cobalt nullified the effect of His-CYGB. In addition, His-CYGB induced interferon-β secretion by HSCs that partly contributed to its antifibrotic function. Momelotinib incompletely reversed the effect of His-CYGB. Intravenously injected His-CYGB markedly suppressed liver inflammation, fibrosis, and oxidative cell damage in mice administered TAA or DDC mice without adverse effects. RNA-sequencing analysis revealed the down-regulation of inflammation- and fibrosis-related genes and the up-regulation of antioxidant genes in both cell culture and liver tissues. The injected His-CYGB predominantly localized to HSCs but not to macrophages, suggesting specific targeting effects. His-CYGB exhibited no toxicity in chimeric mice with humanized livers. CONCLUSIONS His-CYGB could have antifibrotic clinical applications for human chronic liver diseases.
Collapse
Affiliation(s)
- Ninh Quoc Dat
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan,Department of PediatricsHanoi Medical UniversityHanoiVietnam
| | - Le Thi Thanh Thuy
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Vu Ngoc Hieu
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Hoang Hai
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Dinh Viet Hoang
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | | | - Tuong Thi Van Thuy
- Biological Resources Vinmec Tissue BankVinmec Healthcare SystemHanoiVietnam
| | - Tohru Komiya
- Department of BiologyFaculty of ScienceOsaka City UniversityOsakaJapan
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis GroupInstitute for Liver and Digestive HealthUniversity College LondonRoyal Free HospitalLondonUnited Kingdom
| | - Minh Phuong Dong
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Ngo Vinh Hanh
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Truong Huu Hoang
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | | | - Atsuko Daikoku
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Chiho Kadono
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Daisuke Oikawa
- Department of PathobiochemistryGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Katsutoshi Yoshizato
- Academic Advisor’s OfficePhoenixBio Co., Ltd.HiroshimaJapan,Endowed Laboratory of Synthetic BiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Fuminori Tokunaga
- Department of PathobiochemistryGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis GroupInstitute for Liver and Digestive HealthUniversity College LondonRoyal Free HospitalLondonUnited Kingdom
| | - Norifumi Kawada
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan,Regenerative Medicine and Fibrosis GroupInstitute for Liver and Digestive HealthUniversity College LondonRoyal Free HospitalLondonUnited Kingdom
| |
Collapse
|
8
|
Xu B, Yang Q, Tang Y, Tan Z, Fu H, Peng J, Xiang X, Gan L, Deng G, Mao Q, Xu PX, Jiang Y, Ding J. SIX1/EYA1 are novel liver damage biomarkers in chronic hepatitis B and other liver diseases. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:992. [PMID: 34277792 PMCID: PMC8267256 DOI: 10.21037/atm-21-2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
Background This study aimed to investigate the clinicopathological significance of sine oculis homeobox homolog 1 (SIX1) and eyes absent 1 (EYA1) in patients with chronic hepatitis B (CHB) and other liver diseases. Methods SIX1 and EYA1 levels were detected in human serum and liver tissues by enzyme linked immunosorbent assay (ELISA) and immunofluorescent staining method, respectively. Results The serum SIX1 and EYA1 levels in 313 CHB patients were 7.24±0.11 and 25.21±0.51 ng/mL, respectively, and these values were significantly higher than those in 33 healthy controls (2.84±0.15 and 13.11±1.01 ng/mL, respectively; P<0.05). Serum SIX1 and EYA1 levels were also markedly increased in patients with numerous other liver diseases, including liver fibrosis, hepatocellular carcinoma, fatty liver disease, alcoholic liver disease, fulminant hepatic failure, autoimmune liver disease, and hepatitis C, compared to the healthy controls (P<0.05). Dynamic observation of these proteins over time in 35 selected CHB patients revealed that SIX1 and EYA1 serum levels increased over an interval. Immunofluorescent staining revealed that both SIX1 and EYA1 were only expressed in hepatic stellate cells (HSCs), and their increased expression was evident in CHB liver tissue. Conclusions SIX1 and EYA1 are novel biomarkers of liver damage in patients of CHB and other liver diseases, with potential clinical utility.
Collapse
Affiliation(s)
- Baoyan Xu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiao Yang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Yingzi Tang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhaoxia Tan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haiyan Fu
- Health Management Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Peng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaomei Xiang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linlin Gan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yi Jiang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Jianqiang Ding
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
9
|
Pu S, Li Y, Liu Q, Zhang X, Chen L, Li R, Zhang J, Wu T, Tang Q, Yang X, Zhang Z, Huang Y, Kuang J, Li H, Zou M, Jiang W, He J. Inhibition of 5-Lipoxygenase in Hepatic Stellate Cells Alleviates Liver Fibrosis. Front Pharmacol 2021; 12:628583. [PMID: 33679410 PMCID: PMC7930623 DOI: 10.3389/fphar.2021.628583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
Background and Purpose: Activation of hepatic stellate cells (HSC) is a central driver of liver fibrosis. 5-lipoxygenase (5-LO) is the key enzyme that catalyzes arachidonic acid into leukotrienes. In this study, we examined the role of 5-LO in HSC activation and liver fibrosis. Main Methods: Culture medium was collected from quiescent and activated HSC for target metabolomics analysis. Exogenous leukotrienes were added to culture medium to explore their effect in activating HSC. Genetic ablation of 5-LO in mice was used to study its role in liver fibrosis induced by CCl4 and a methionine-choline-deficient (MCD) diet. Pharmacological inhibition of 5-LO in HSC was used to explore the effect of this enzyme in HSC activation and liver fibrosis. Key Results: The secretion of LTB4 and LTC4 was increased in activated vs. quiescent HSC. LTB4 and LTC4 contributed to HSC activation by activating the extracellular signal-regulated protein kinase pathway. The expression of 5-LO was increased in activated HSC and fibrotic livers of mice. Ablation of 5-LO in primary HSC inhibited both mRNA and protein expression of fibrotic genes. In vivo, ablation of 5-LO markedly ameliorated the CCl4- and MCD diet-induced liver fibrosis and liver injury. Pharmacological inhibition of 5-LO in HSC by targeted delivery of the 5-LO inhibitor zileuton suppressed HSC activation and improved CCl4- and MCD diet-induced hepatic fibrosis and liver injury. Finally, we found increased 5-LO expression in patients with non-alcoholic steatohepatitis and liver fibrosis. Conclusion: 5-LO may play a critical role in activating HSC; genetic ablation or pharmacological inhibition of 5-LO improved CCl4-and MCD diet-induced liver fibrosis.
Collapse
Affiliation(s)
- Shiyun Pu
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, China
| | - Lei Chen
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Li
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Wu
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Tang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Xuping Yang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Zijing Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Huang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangying Kuang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zou
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhan He
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Ilangovan G, Khaleel SA, Kundu T, Hemann C, El-Mahdy MA, Zweier JL. Defining the reducing system of the NO dioxygenase cytoglobin in vascular smooth muscle cells and its critical role in regulating cellular NO decay. J Biol Chem 2021; 296:100196. [PMID: 33334890 PMCID: PMC7948950 DOI: 10.1074/jbc.ra120.016394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022] Open
Abstract
In smooth muscle, cytoglobin (Cygb) functions as a potent nitric oxide (NO) dioxygenase and regulates NO metabolism and vascular tone. Major questions remain regarding which cellular reducing systems regulate Cygb-mediated NO metabolism. To better define the Cygb-mediated NO dioxygenation process in vascular smooth muscle cells (SMCs), and the requisite reducing systems that regulate cellular NO decay, we assessed the intracellular concentrations of Cygb and its putative reducing systems and examined their roles in the process of NO decay. Cygb and the reducing systems, cytochrome b5 (B5)/cytochrome b5 reductase (B5R) and cytochrome P450 reductase (CPR) were measured in aortic SMCs. Intracellular Cygb concentration was estimated as 3.5 μM, while B5R, B5, and CPR were 0.88, 0.38, and 0.15 μM, respectively. NO decay in SMCs was measured following bolus addition of NO to air-equilibrated cells. siRNA-mediated knockdown experiments indicated that ∼78% of NO metabolism in SMCs is Cygb-dependent. Of this, ∼87% was B5R- and B5-dependent. CPR knockdown resulted in a small decrease in the NO dioxygenation rate (VNO), while depletion of ascorbate had no effect. Kinetic analysis of VNO for the B5/B5R/Cygb system with variation of B5 or B5R concentrations from their SMC levels showed that VNO exhibits apparent Michaelis-Menten behavior for B5 and B5R. In contrast, linear variation was seen with change in Cygb concentration. Overall, B5/B5R was demonstrated to be the major reducing system supporting Cygb-mediated NO metabolism in SMCs with changes in cellular B5/B5R levels modulating the process of NO decay.
Collapse
Affiliation(s)
- Govindasamy Ilangovan
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sahar A Khaleel
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Tapan Kundu
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Craig Hemann
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
11
|
TGF-β1-driven reduction of cytoglobin leads to oxidative DNA damage in stellate cells during non-alcoholic steatohepatitis. J Hepatol 2020; 73:882-895. [PMID: 32330605 DOI: 10.1016/j.jhep.2020.03.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species. The molecular role of CYGB in human hepatic stellate cell (HSC) activation and human liver disease remains uncharacterised. The aim of this study was to reveal the mechanism by which the TGF-β1/SMAD2 pathway regulates the human CYGB promoter and the pathophysiological function of CYGB in human non-alcoholic steatohepatitis (NASH). METHODS Immunohistochemical staining was performed using human NASH biopsy specimens. Molecular and biochemical analyses were performed by western blotting, quantitative PCR, and luciferase and immunoprecipitation assays. Hydroxyl radicals (•OH) and oxidative DNA damage were measured using an •OH-detectable probe and 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA. RESULTS In culture, TGF-β1-pretreated human HSCs exhibited lower CYGB levels - together with increased NADPH oxidase 4 (NOX4) expression - and were primed for H2O2-triggered •OH production and 8-OHdG generation; overexpression of human CYGB in human HSCs reversed these effects. Electron spin resonance demonstrated the direct •OH scavenging activity of recombinant human CYGB. Mechanistically, pSMAD2 reduced CYGB transcription by recruiting the M1 repressor isoform of SP3 to the human CYGB promoter at nucleotide positions +2-+13 from the transcription start site. The same repression did not occur on the mouse Cygb promoter. TGF-β1/SMAD3 mediated αSMA and collagen expression. Consistent with observations in cultured human HSCs, CYGB expression was negligible, but 8-OHdG was abundant, in activated αSMA+pSMAD2+- and αSMA+NOX4+-positive hepatic stellate cells from patients with NASH and advanced fibrosis. CONCLUSIONS Downregulation of CYGB by the TGF-β1/pSMAD2/SP3-M1 pathway brings about •OH-dependent oxidative DNA damage in activated hepatic stellate cells from patients with NASH. LAY SUMMARY Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species and protects cells from oxidative DNA damage. Herein, we show that the cytokine TGF-β1 downregulates human CYGB expression. This leads to oxidative DNA damage in activated hepatic stellate cells. Our findings provide new insights into the relationship between CYGB expression and the pathophysiology of fibrosis in patients with non-alcoholic steatohepatitis.
Collapse
|
12
|
Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol 2020; 37:101687. [PMID: 32863222 PMCID: PMC7475203 DOI: 10.1016/j.redox.2020.101687] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate hemoglobin (Hb) and myoglobin (Mb) were among the first proteins whose structures and sequences were determined over 50 years ago. In the subsequent pregenomic period, numerous related proteins came to light in plants, invertebrates and bacteria, that shared the myoglobin fold, a signature sequence motif characteristic of a 3-on-3 α-helical sandwich. Concomitantly, eukaryote and bacterial globins with a truncated 2-on-2 α-helical fold were discovered. Genomic information over the last 20 years has dramatically expanded the list of known globins, demonstrating their existence in a limited number of archaeal genomes, a majority of bacterial genomes and an overwhelming majority of eukaryote genomes. In vertebrates, 6 additional globin types were identified, namely neuroglobin (Ngb), cytoglobin (Cygb), globin E (GbE), globin X (GbX), globin Y (GbY) and androglobin (Adgb). Furthermore, functions beyond the familiar oxygen transport and storage have been discovered within the vertebrate globin family, including NO metabolism, peroxidase activity, scavenging of free radicals, and signaling functions. The extension of the knowledge on globin functions suggests that the original roles of bacterial globins must have been enzymatic, involved in defense against NO toxicity, and perhaps also as sensors of O2, regulating taxis away or towards high O2 concentrations. In this review, we aimed to discuss the evolution and remarkable functional diversity of vertebrate globins with particular focus on the variety of non-canonical expression sites of mammalian globins and their according impressive variability of atypical functions.
Collapse
|
13
|
Ortega‐Ribera M, Hunt NJ, Gracia‐Sancho J, Cogger VC. The Hepatic Sinusoid in Aging and Disease: Update and Advances From the 20th Liver Sinusoid Meeting. Hepatol Commun 2020; 4:1087-1098. [PMID: 32626839 PMCID: PMC7327202 DOI: 10.1002/hep4.1517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
This is a meeting report of the 2019 Liver Sinusoid Meeting, 20th International Symposium on Cells of the Hepatic Sinusoid, held in Sydney, Australia, in September 2019. The meeting, which was organized by the International Society for Hepatic Sinusoidal Research, provided an update on the recent advances in the field of hepatic sinusoid cells in relation to cell biology, aging, and liver disease, with particular focus on the molecular and cellular targets involved in hepatic fibrosis, nonalcoholic hepatic steatohepatitis, alcoholic liver disease, hepatocellular carcinoma, and cirrhosis. In addition, the meeting highlighted the recent advances in regenerative medicine, targeted nanotechnologies, therapeutics, and novel methodologies.
Collapse
Affiliation(s)
- Martí Ortega‐Ribera
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic UnitInstitut d’Investigacions Biomèdiques August Pi i SunyerCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasBarcelonaSpain
| | - Nicholas J. Hunt
- Centre for Education and Research on AgeingConcord Repatriation General HospitalANZAC Research InstituteAustralian Ageing and Alzheimers InstituteConcordSydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic UnitInstitut d’Investigacions Biomèdiques August Pi i SunyerCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasBarcelonaSpain
- HepatologyDepartment of Biomedical ResearchUniversity of BernInselspitalBernSwitzerland
| | - Victoria C. Cogger
- Centre for Education and Research on AgeingConcord Repatriation General HospitalANZAC Research InstituteAustralian Ageing and Alzheimers InstituteConcordSydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| |
Collapse
|
14
|
Thuy LTT, Hai H, Kawada N. Role of cytoglobin, a novel radical scavenger, in stellate cell activation and hepatic fibrosis. Clin Mol Hepatol 2020; 26:280-293. [PMID: 32492766 PMCID: PMC7364355 DOI: 10.3350/cmh.2020.0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022] Open
Abstract
Cytoglobin (Cygb), a stellate cell-specific globin, has recently drawn attention due to its association with liver fibrosis. In the livers of both humans and rodents, Cygb is expressed only in stellate cells and can be utilized as a marker to distinguish stellate cells from hepatic fibroblast-derived myofibroblasts. Loss of Cygb accelerates liver fibrosis and cancer development in mouse models of chronic liver injury including diethylnitrosamine-induced hepatocellular carcinoma, bile duct ligation-induced cholestasis, thioacetamide-induced hepatic fibrosis, and choline-deficient L-amino acid-defined diet-induced non-alcoholic steatohepatitis. This review focuses on the history of research into the role of reactive oxygen species and nitrogen species in liver fibrosis and discusses the current perception of Cygb as a novel radical scavenger with an emphasis on its role in hepatic stellate cell activation and fibrosis.
Collapse
Affiliation(s)
- Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hoang Hai
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
15
|
Abstract
Significance: Cytoglobin (Cygb) was discovered as a new addition to the globin superfamily and subsequently identified to have potent nitric oxide (NO) dioxygenase function. Cygb plays a critical role in the oxygen-dependent regulation of NO levels and vascular tone. Recent Advances: In recent years, the mechanism of the Cygb-mediated NO dioxygenation has been studied in isolated protein, smooth muscle cell, isolated blood vessel, and in vivo animal model systems. Studies in Cygb-/- mice have demonstrated that Cygb plays a critical role in regulating blood pressure and vascular tone. This review summarizes advances in the knowledge of NO dioxygenation/metabolism regulated by Cygb. Advances in measurement of NO diffusion dynamics across blood vessels and kinetic modeling of Cygb-mediated NO dioxygenation are summarized. The oxygen-dependent regulation of NO degradation by Cygb is also reviewed along with how Cygb paradoxically generates NO from nitrite under anaerobic conditions. The important role of Cygb in the regulation of vascular function and disease is reviewed. Critical Issues: Cygb is a more potent NO dioxygenase (NOD) than previously known globins with structural differences in heme coordination and environment, conferring it with a higher rate of reduction and more rapid process of NO dioxygenation with unique oxygen dependence. Various cellular reducing systems regenerate the catalytic oxyferrous Cygb species, supporting a high rate of NO dioxygenation. Future Directions: There remains a critical need to further characterize the factors and processes that modulate Cygb-mediated NOD function, and to develop pharmacological or other approaches to modulate Cygb function and expression.
Collapse
Affiliation(s)
- Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Govindasamy Ilangovan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
16
|
Uchida D, Takaki A, Oyama A, Adachi T, Wada N, Onishi H, Okada H. Oxidative Stress Management in Chronic Liver Diseases and Hepatocellular Carcinoma. Nutrients 2020; 12:nu12061576. [PMID: 32481552 PMCID: PMC7352310 DOI: 10.3390/nu12061576] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis B and C and non-alcoholic fatty liver disease (NAFLD) have been widely acknowledged to be the leading causes of liver cirrhosis and hepatocellular carcinoma. As anti-viral treatment progresses, the impact of NAFLD is increasing. NAFLD can coexist with chronic viral hepatitis and exacerbate its progression. Oxidative stress has been recognized as a chronic liver disease progression-related and cancer-initiating stress response. However, there are still many unresolved issues concerning oxidative stress, such as the correlation between the natural history of the disease and promising treatment protocols. Recent findings indicate that oxidative stress is also an anti-cancer response that is necessary to kill cancer cells. Oxidative stress might therefore be a cancer-initiating response that should be down regulated in the pre-cancerous stage in patients with risk factors for cancer, while it is an anti-cancer cell response that should not be down regulated in the post-cancerous stage, especially in patients using anti-cancer agents. Antioxidant nutrients should be administered carefully according to the patients’ disease status. In this review, we will highlight these paradoxical effects of oxidative stress in chronic liver diseases, pre- and post-carcinogenesis.
Collapse
|
17
|
Mathai C, Jourd'heuil FL, Lopez-Soler RI, Jourd'heuil D. Emerging perspectives on cytoglobin, beyond NO dioxygenase and peroxidase. Redox Biol 2020; 32:101468. [PMID: 32087552 PMCID: PMC7033357 DOI: 10.1016/j.redox.2020.101468] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cytoglobin is an evolutionary ancient hemoglobin with poor functional annotation. Rather than constrained to penta coordination, cytoglobin's heme iron may exist either as a penta or hexacoordinated arrangement when exposed to different intracellular environments. Two cysteine residues at the surface of the protein form an intramolecular disulfide bond that regulates iron coordination, ligand binding, and peroxidase activity. Overall, biochemical results do not support a role for cytoglobin as a direct antioxidant enzyme that scavenges hydrogen peroxide because the rate of the reaction of cytoglobin with hydrogen peroxide is several orders of magnitude slower than metal and thiol-based peroxidases. Thus, alternative substrates such as fatty acids have been suggested and regulation of nitric oxide bioavailability through nitric oxide dioxygenase and nitrite reductase activities has received experimental support. Cytoglobin is broadly expressed in connective, muscle, and nervous tissues. Rational for differential cellular distribution is poorly understood but inducibility in response to hypoxia is one of the most established features of cytoglobin expression with regulation through the transcription factor hypoxia-inducible factor (HIF). Phenotypic characterization of cytoglobin deletion in the mouse have indicated broad changes that include a heightened inflammatory response and fibrosis, increase tumor burden, cardiovascular dysfunction, and hallmarks of senescence. Some of these changes might be reversed upon inhibition of nitric oxide synthase. However, subcellular and molecular interactions have been seldom characterized. In addition, specific molecular mechanisms of action are still lacking. We speculate that cytoglobin functionality will extend beyond nitric oxide handling and will have to encompass indirect regulatory antioxidant and redox sensing functions.
Collapse
Affiliation(s)
- Clinton Mathai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Frances L Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | | | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|