1
|
Alsina R, Riba M, Pérez-Millan A, Borrego-Écija S, Aldecoa I, Romera C, Balasa M, Antonell A, Lladó A, Compta Y, Del Valle J, Sánchez-Valle R, Pelegrí C, Molina-Porcel L, Vilaplana J. Increase in wasteosomes (corpora amylacea) in frontotemporal lobar degeneration with specific detection of tau, TDP-43 and FUS pathology. Acta Neuropathol Commun 2024; 12:97. [PMID: 38879502 PMCID: PMC11179228 DOI: 10.1186/s40478-024-01812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 06/19/2024] Open
Abstract
Wasteosomes (or corpora amylacea) are polyglucosan bodies that appear in the human brain with aging and in some neurodegenerative diseases, and have been suggested to have a potential role in a nervous system cleaning mechanism. Despite previous studies in several neurodegenerative disorders, their status in frontotemporal lobar degeneration (FTLD) remains unexplored. Our study aims to characterize wasteosomes in the three primary FTLD proteinopathies, assessing frequency, distribution, protein detection, and association with aging or disease duration. Wasteosome scores were obtained in various brain regions from 124 post-mortem diagnosed sporadic FTLD patients, including 75 participants with tau (FTLD-tau), 42 with TAR DNA-binding protein 43 (FTLD-TDP), and 7 with Fused in Sarcoma (FTLD-FUS) proteinopathies, along with 29 control subjects. The wasteosome amount in each brain region for the different FLTD patients was assessed with a permutation test with age at death and sex as covariables, and multiple regressions explored associations with age at death and disease duration. Double immunofluorescence studies examined altered proteins linked to FTLD in wasteosomes. FTLD patients showed a higher accumulation of wasteosomes than control subjects, especially those with FTLD-FUS. Unlike FTLD-TDP and control subjects, wasteosome accumulation did not increase with age in FTLD-tau and FTLD-FUS. Cases with shorter disease duration in FTLD-tau and FTLD-FUS seemed to exhibit higher wasteosome quantities, whereas FTLD-TDP appeared to show an increase with disease progression. Immunofluorescence studies revealed the presence of tau and phosphorylated-TDP-43 in the periphery of isolated wasteosomes in some patients with FTLD-tau and FTLD-TDP, respectively. Central inclusions of FUS were observed in a higher number of wasteosomes in FTLD-FUS patients. These findings suggest a role of wasteosomes in FTLD, especially in the more aggressive forms of FLTD-FUS. Detecting these proteins, particularly FUS, in wasteosomes from cerebrospinal fluid could be a potential biomarker for FTLD.
Collapse
Affiliation(s)
- Raquel Alsina
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Agnès Pérez-Millan
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Iban Aldecoa
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-FRCB-IDIBAPS, Barcelona, Spain
- Department of Pathology, Biomedical Diagnostic Center (CBD), Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Clara Romera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Yaroslau Compta
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, European Reference Network On Rare Neurological Diseases (ERN-RND), Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR), Barcelona, Spain
| | - Jaume Del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-FRCB-IDIBAPS, Barcelona, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
2
|
Korszun-Karbowniczak J, Krysiak ZJ, Saluk J, Niemcewicz M, Zdanowski R. The Progress in Molecular Transport and Therapeutic Development in Human Blood-Brain Barrier Models in Neurological Disorders. Cell Mol Neurobiol 2024; 44:34. [PMID: 38627312 PMCID: PMC11021242 DOI: 10.1007/s10571-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The blood-brain barrier (BBB) is responsible for maintaining homeostasis within the central nervous system (CNS). Depending on its permeability, certain substances can penetrate the brain, while others are restricted in their passage. Therefore, the knowledge about BBB structure and function is essential for understanding physiological and pathological brain processes. Consequently, the functional models can serve as a key to help reveal this unknown. There are many in vitro models available to study molecular mechanisms that occur in the barrier. Brain endothelial cells grown in culture are commonly used to modeling the BBB. Current BBB platforms include: monolayer platforms, transwell, matrigel, spheroidal, and tissue-on-chip models. In this paper, the BBB structure, molecular characteristic, as well as its dysfunctions as a consequence of aging, neurodegeneration, or under hypoxia and neurotoxic conditions are presented. Furthermore, the current modelling strategies that can be used to study BBB for the purpose of further drugs development that may reach CNS are also described.
Collapse
Affiliation(s)
- Joanna Korszun-Karbowniczak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki Street, 90-237, Lodz, Poland
| | - Zuzanna Joanna Krysiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland.
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, Institute of Biochemistry, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
| |
Collapse
|
3
|
Dallmeier JD, Gober R, Vontell RT, Barreda A, Dorfsman DA, Davis DA, Sun X, Brzostowicki D, Bennett I, Garamszegi SP, Wander CM, Cohen T, Scott WK. Corpora amylacea negatively correlate with hippocampal tau pathology in Alzheimer's disease. Front Neurosci 2024; 18:1286924. [PMID: 38486969 PMCID: PMC10937356 DOI: 10.3389/fnins.2024.1286924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Severity and distribution of aggregated tau and neurofibrillary tangles (NFT) are strongly correlated with the clinical presentation of Alzheimer's disease (AD). Clearance of aggregated tau could decrease the rate of NFT formation and delay AD onset. Recent studies implicate corpora amylacea (CA) as a regulator of onset or accumulation of tau pathology. Normally, CA clear brain waste products by amassing cellular debris, which are then extruded into the cerebrospinal fluid to be phagocytosed. The proper functioning of CA may slow progression of AD-associated NFT pathology, and this relationship may be influenced by amount and distribution of phospho-tau (pTau) produced, age, sex, and genetic risk. Objective The goal of this study was to determine if CA size and number are associated with hippocampal location and local pTau severity while accounting for variations in age, sex, and genetic risk. Methods Postmortem brain hippocampal tissue sections from 40 AD and 38 unaffected donors were immunohistochemically stained with AT8 (pTau) and counter stained with periodic acid Schiff (PAS). Stained sections of the CA1 and CA3 regions of the hippocampus were analyzed. The percent area occupied (%AO) of CA, pTau, and NFT was calculated. Pairwise comparisons and regression modeling were used to analyze the influence of age, pTau %AO, and genetic risk on %AO by CA in each region, separately in donors with AD and unaffected donors. Results CA %AO was significantly higher in the CA3 region compared to CA1 in both groups. A significant negative correlation of CA %AO with both pTau %AO and neurofibrillary tangle %AO in the CA3 region of AD brain donors was found. Regression analysis in the CA3 region revealed a significant negative association between CA with both pTau and age. Conclusion We found an increase of CA in the CA3 region, compared to CA1 region, in AD and unaffected donors. This may suggest that the CA3 region is a hub for waste removal. Additionally, the negative correlation between %AO by CA and NFT in the CA3 region of the hippocampus in donors with AD suggests CA could play a role in AD pathologic progression by influencing tau clearance.
Collapse
Affiliation(s)
- Julian D. Dallmeier
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ryan Gober
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Regina T. Vontell
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ayled Barreda
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel A. Dorfsman
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David A. Davis
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiaoyan Sun
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel Brzostowicki
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Illiana Bennett
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Susanna P. Garamszegi
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Connor M. Wander
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Todd Cohen
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William K. Scott
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
4
|
Riew TR, Hwang JW, Jin X, Kim HL, Jung SJ, Lee MY. Astrocytes are involved in the formation of corpora amylacea-like structures from neuronal debris in the CA1 region of the rat hippocampus after ischemia. Front Cell Neurosci 2023; 17:1308247. [PMID: 38188667 PMCID: PMC10766773 DOI: 10.3389/fncel.2023.1308247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, we demonstrated that the corpora amylacea (CA), a glycoprotein-rich aggregate frequently found in aged brains, accumulates in the ischemic hippocampus and that osteopontin (OPN) mediates the entire process of CA formation. Therefore, this study aimed to elucidate the mechanisms by which astrocytes and microglia participate in CA formation during the late phase (4-12 weeks) of brain ischemia. Based on various morphological analyses, including immunohistochemistry, in situ hybridization, immunoelectron microscopy, and correlative light and electron microscopy, we propose that astrocytes are the primary cells responsible for CA formation after ischemia. During the subacute phase after ischemia, astrocytes, rather than microglia, express Opn messenger ribonucleic acid and OPN protein, a surrogate marker and key component of CA. Furthermore, the specific localization of OPN in the Golgi complex suggests that it is synthesized and secreted by astrocytes. Astrocytes were in close proximity to type I OPN deposits, which accumulated in the mitochondria of degenerating neurons before fully forming the CA (type III OPN deposits). Throughout CA formation, astrocytes remained closely attached to OPN deposits, with their processes exhibiting well-developed gap junctions. Astrocytic cytoplasmic protein S100β, a calcium-binding protein, was detected within the fully formed CA. Additionally, ultrastructural analysis revealed direct contact between astroglial fibrils and the forming facets of the CA. Overall, we demonstrated that astrocytes play a central role in mediating CA formation from the initial stages of OPN deposit accumulation to the evolution of fully formed CA following transient ischemia in the hippocampus.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sharon Jiyoon Jung
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Lee JY, Mack AF, Mattheus U, Donato S, Longo R, Tromba G, Shiozawa T, Scheffler K, Hagberg GE. Distribution of corpora amylacea in the human midbrain: using synchrotron radiation phase-contrast microtomography, high-field magnetic resonance imaging, and histology. Front Neurosci 2023; 17:1236876. [PMID: 37869518 PMCID: PMC10586329 DOI: 10.3389/fnins.2023.1236876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Corpora amylacea (CA) are polyglucosan aggregated granules that accumulate in the human body throughout aging. In the cerebrum, CA have been found in proximity to ventricular walls, pial surfaces, and blood vessels. However, studies showing their three-dimensional spatial distribution are sparse. In this study, volumetric images of four human brain stems were obtained with MRI and phase-contrast X-ray microtomography, followed up by Periodic acid Schiff stain for validation. CA appeared as hyperintense spheroid structures with diameters up to 30 μm. An automatic pipeline was developed to segment the CA, and the spatial distribution of over 200,000 individual corpora amylacea could be investigated. A threefold-or higher-density of CA was detected in the dorsomedial column of the periaqueductal gray (860-4,200 CA count/mm3) than in the superior colliculus (150-340 CA count/mm3). We estimated that about 2% of the CA were located in the immediate vicinity of the vessels or in the peri-vascular space. While CA in the ependymal lining of the cerebral aqueduct was rare, the sub-pial tissue of the anterior and posterior midbrain contained several CA. In the sample with the highest CA density, quantitative maps obtained with MRI revealed high R2* values and a diamagnetic shift in a region which spatially coincided with the CA dense region.
Collapse
Affiliation(s)
- Ju Young Lee
- Graduate Training Centre of Neuroscience, Eberhard Karl's University of Tübingen, Tübingen, Germany
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Andreas F. Mack
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Ulrich Mattheus
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Sandro Donato
- Department of Physics and STAR-LAB, University of Calabria, Rende, Italy
- Division of Frascati, Istituto Nazionale di Fisica Nucleare (INFN), Frascati, Italy
| | - Renata Longo
- Department of Physics, University of Trieste, Trieste, Italy
- Division of Trieste, Istituto Nazionale di Fisica Nucleare (INFN), Trieste, Italy
| | | | - Thomas Shiozawa
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Gisela E. Hagberg
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Thyroid Hormone Transporters MCT8 and OATP1C1 Are Expressed in Pyramidal Neurons and Interneurons in the Adult Motor Cortex of Human and Macaque Brain. Int J Mol Sci 2023; 24:ijms24043207. [PMID: 36834621 PMCID: PMC9965431 DOI: 10.3390/ijms24043207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Monocarboxylate transporter 8 (MCT8) and organic anion transporter polypeptide 1C1 (OATP1C1) are thyroid hormone (TH) transmembrane transporters that play an important role in the availability of TH for neural cells, allowing their proper development and function. It is important to define which cortical cellular subpopulations express those transporters to explain why MCT8 and OATP1C1 deficiency in humans leads to dramatic alterations in the motor system. By means of immunohistochemistry and double/multiple labeling immunofluorescence in adult human and monkey motor cortices, we demonstrate the presence of both transporters in long-projection pyramidal neurons and in several types of short-projection GABAergic interneurons in both species, suggesting a critical position of these transporters for modulating the efferent motor system. MCT8 is present at the neurovascular unit, but OATP1C1 is only present in some of the large vessels. Both transporters are expressed in astrocytes. OATP1C1 was unexpectedly found, only in the human motor cortex, inside the Corpora amylacea complexes, aggregates linked to substance evacuation towards the subpial system. On the basis of our findings, we propose an etiopathogenic model that emphasizes these transporters' role in controlling excitatory/inhibitory motor cortex circuits in order to understand some of the severe motor disturbances observed in TH transporter deficiency syndromes.
Collapse
|
7
|
Wasteosomes ( corpora amylacea) as a hallmark of chronic glymphatic insufficiency. Proc Natl Acad Sci U S A 2022; 119:e2211326119. [PMID: 36409907 PMCID: PMC9860256 DOI: 10.1073/pnas.2211326119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In different organs and tissues, the lymphatic system serves as a drainage system for interstitial fluid and is useful for removing substances that would otherwise accumulate in the interstitium. In the brain, which lacks lymphatic circulation, the drainage and cleaning function is performed by the glymphatic system, called so for its dependence on glial cells and its similar function to that of the lymphatic system. In the present article, we define glymphatic insufficiency as the inability of the glymphatic system to properly perform the brain cleaning function. Furthermore, we propose that corpora amylacea or wasteosomes, which are protective structures that act as waste containers and accumulate waste products, are, in fact, a manifestation of chronic glymphatic insufficiency. Assuming this premise, we provide an explanation that coherently links the formation, distribution, structure, and function of these bodies in the human brain. Moreover, we open up new perspectives in the study of the glymphatic system since wasteosomes can provide information about which variables have the greatest impact on the glymphatic system and which diseases occur with chronic glymphatic insufficiency. For example, based on the presence of wasteosomes, it seems that aging, sleep disorders, and cerebrovascular pathologies have the highest impact on the glymphatic system, whereas neurodegenerative diseases have a more limited impact. Furthermore, as glymphatic insufficiency is a risk factor for neurodegenerative diseases, information provided by wasteosomes could help to define the strategies and actions that can prevent glymphatic disruptions, thus limiting the risk of developing neurodegenerative diseases.
Collapse
|
8
|
Riba M, Campo-Sabariz J, Tena I, Molina-Porcel L, Ximelis T, Calvo M, Ferrer R, Martín-Venegas R, del Valle J, Vilaplana J, Pelegrí C. Wasteosomes (corpora amylacea) of human brain can be phagocytosed and digested by macrophages. Cell Biosci 2022; 12:177. [PMID: 36307854 PMCID: PMC9617366 DOI: 10.1186/s13578-022-00915-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Background Corpora amylacea of human brain, recently renamed as wasteosomes, are granular structures that appear during aging and also accumulate in specific areas of the brain in neurodegenerative conditions. Acting as waste containers, wasteosomes are formed by polyglucosan aggregates that entrap and isolate toxic and waste substances of different origins. They are expelled from the brain to the cerebrospinal fluid (CSF), and can be phagocytosed by macrophages. In the present study, we analyze the phagocytosis of wasteosomes and the mechanisms involved in this process. Accordingly, we purified wasteosomes from post-mortem extracted human CSF and incubated them with THP-1 macrophages. Immunofluorescence staining and time-lapse recording techniques were performed to evaluate the phagocytosis. We also immunostained human hippocampal sections to study possible interactions between wasteosomes and macrophages at central nervous system interfaces. Results We observed that the wasteosomes obtained from post-mortem extracted CSF are opsonized by MBL and the C3b complement protein. Moreover, we observed that CD206 and CD35 receptors may be involved in the phagocytosis of these wasteosomes by THP-1 macrophages. Once phagocytosed, wasteosomes become degraded and some of the resulting fractions can be exposed on the surface of macrophages and interchanged between different macrophages. However, brain tissue studies show that, in physiological conditions, CD206 but not CD35 receptors may be involved in the phagocytosis of wasteosomes. Conclusions The present study indicates that macrophages have the machinery required to process and degrade wasteosomes, and that macrophages can interact in different ways with wasteosomes. In physiological conditions, the main mechanism involve CD206 receptors and M2 macrophages, which trigger the phagocytosis of wasteosomes without inducing inflammatory responses, thus avoiding tissue damage. However, altered wasteosomes like those obtained from post-mortem extracted CSF, which may exhibit waste elements, become opsonized by MBL and C3b, and so CD35 receptors constitute another possible mechanism of phagocytosis, leading in this case to inflammatory responses. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00915-2.
Collapse
Affiliation(s)
- Marta Riba
- grid.5841.80000 0004 1937 0247Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain ,grid.418264.d0000 0004 1762 4012Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Joan Campo-Sabariz
- grid.5841.80000 0004 1937 0247Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institut de Recerca en Nutrició i Seguretat Alimentàries (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Iraida Tena
- grid.5841.80000 0004 1937 0247Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Laura Molina-Porcel
- grid.410458.c0000 0000 9635 9413Alzheimer’s Disease and Other Cognitive Disorders Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Neurology Service, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain ,grid.10403.360000000091771775Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Teresa Ximelis
- grid.410458.c0000 0000 9635 9413Alzheimer’s Disease and Other Cognitive Disorders Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Neurology Service, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain ,grid.10403.360000000091771775Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Maria Calvo
- grid.5841.80000 0004 1937 0247Unitat de Microscòpia Òptica Avançada - Campus Clínic, Facultat de Medicina, Centres Científics i Tecnològics - Universitat de Barcelona, Barcelona, Spain
| | - Ruth Ferrer
- grid.5841.80000 0004 1937 0247Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institut de Recerca en Nutrició i Seguretat Alimentàries (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Raquel Martín-Venegas
- grid.5841.80000 0004 1937 0247Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institut de Recerca en Nutrició i Seguretat Alimentàries (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Jaume del Valle
- grid.5841.80000 0004 1937 0247Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain ,grid.418264.d0000 0004 1762 4012Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Vilaplana
- grid.5841.80000 0004 1937 0247Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain ,grid.418264.d0000 0004 1762 4012Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carme Pelegrí
- grid.5841.80000 0004 1937 0247Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain ,grid.418264.d0000 0004 1762 4012Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
9
|
Wander CM, Tsujimoto THM, Ervin JF, Wang C, Maranto SM, Bhat V, Dallmeier JD, Wang SHJ, Lin FC, Scott WK, Holtzman DM, Cohen TJ. Corpora amylacea are associated with tau burden and cognitive status in Alzheimer's disease. Acta Neuropathol Commun 2022; 10:110. [PMID: 35941704 PMCID: PMC9361643 DOI: 10.1186/s40478-022-01409-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Corpora amylacea (CA) and their murine analogs, periodic acid Schiff (PAS) granules, are age-related, carbohydrate-rich structures that serve as waste repositories for aggregated proteins, damaged cellular organelles, and other cellular debris. The structure, morphology, and suspected functions of CA in the brain imply disease relevance. Despite this, the link between CA and age-related neurodegenerative diseases, particularly Alzheimer's disease (AD), remains poorly defined. We performed a neuropathological analysis of mouse PAS granules and human CA and correlated these findings with AD progression. Increased PAS granule density was observed in symptomatic tau transgenic mice and APOE knock-in mice. Using a cohort of postmortem AD brain samples, we examined CA in cognitively normal and dementia patients across Braak stages with varying APOE status. We identified a Braak-stage dependent bimodal distribution of CA in the dentate gyrus, with CA accumulating and peaking by Braak stages II-III, then steadily declining with increasing tau burden. Refined analysis revealed an association of CA levels with both cognition and APOE status. Finally, tau was detected in whole CA present in human patient cerebrospinal fluid, highlighting CA-tau as a plausible prodromal AD biomarker. Our study connects hallmarks of the aging brain with the emergence of AD pathology and suggests that CA may act as a compensatory factor that becomes depleted with advancing tau burden.
Collapse
Affiliation(s)
- Connor M. Wander
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Pharmacology, University of North Carolina, Chapel Hill, NC USA
| | | | - John F. Ervin
- grid.26009.3d0000 0004 1936 7961Bryan Brain Bank, Department of Neurology, Duke University School of Medicine, Durham, NC USA
| | - Chanung Wang
- grid.4367.60000 0001 2355 7002Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Spencer M. Maranto
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Vanya Bhat
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Julian D. Dallmeier
- grid.26790.3a0000 0004 1936 8606Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA
| | - Shih-Hsiu Jerry Wang
- grid.26009.3d0000 0004 1936 7961Bryan Brain Bank, Department of Neurology, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Department of Pathology, Duke University School of Medicine, Durham, NC USA
| | - Feng-Chang Lin
- grid.410711.20000 0001 1034 1720Department of Biostatistics, University of North Carolina, Chapel Hill, NC USA
| | - William K. Scott
- grid.26790.3a0000 0004 1936 8606Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA ,grid.26790.3a0000 0004 1936 8606John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL USA ,grid.26790.3a0000 0004 1936 8606Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL USA
| | - David M. Holtzman
- grid.4367.60000 0001 2355 7002Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Todd J. Cohen
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
10
|
Osteopontin mediates the formation of corpora amylacea-like structures from degenerating neurons in the CA1 region of the rat hippocampus after ischemia. Cell Tissue Res 2022; 389:443-463. [PMID: 35688947 DOI: 10.1007/s00441-022-03645-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
We previously demonstrated that osteopontin (OPN) is closely associated with calcium precipitation in response to ischemic brain insults. The present study was designed to elucidate the possible association between deposition of OPN and progressive neurodegeneration in the ischemic hippocampus. To address this, we analyzed the OPN deposits in the rat hippocampus after global cerebral ischemia in the chronic phase (4 to 12 weeks) after reperfusion using immunoelectron microscopy and correlative light and electron microscopy. We identified three different types of OPN deposits based on their morphological characteristics, numbered according to the order in which they evolved. Dark degenerative cells that retained cellular morphology were frequently observed in the pyramidal cell layer, and type I OPN deposits were degenerative mitochondria that accumulated among these cells. Type II deposits evolved into more complex amorphous structures with prominent OPN deposits within their periphery and within degenerative mitochondria-like structures. Finally, type III had large concentric laminated structures with irregularly shaped bodies in the center of the deposits. In all types, OPN expression was closely correlated with calcification, as confirmed by calcium fixation and Alizarin Red staining. Notably, type II and III deposits were highly reminiscent of corpora amylacea, glycoprotein-rich aggregates found in aged brains, or neurodegenerative disease, which was further confirmed by ubiquitin expression and periodic acid-Schiff staining. Overall, our data provide a novel link between ongoing neurodegeneration and the formation of corpora amylacea-like structures and calcium deposits in the ischemic hippocampus, suggesting that OPN may play an important role in such processes.
Collapse
|
11
|
Xu C, Owen JE, Gislason T, Benediktsdottir B, Robinson SR. Quantitative analysis of size and regional distribution of corpora amylacea in the hippocampal formation of obstructive sleep apnoea patients. Sci Rep 2021; 11:20892. [PMID: 34686751 PMCID: PMC8536671 DOI: 10.1038/s41598-021-99795-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Corpora amylacea (CoA) are spherical aggregates of glucose polymers and proteins within the periventricular, perivascular and subpial regions of the cerebral cortex and the hippocampal cornu ammonis (CA) subfields. The present study quantified the distribution of CoA in autopsied hippocampi of patients with obstructive sleep apnoea (OSA) using ethanolamine-induced fluorescence. CoA were observed in 29 of 30 patients (96.7%). They were most abundant in periventricular regions (wall of lateral ventricle, alveus, fimbria and CA4), rarely found in the CA3 and CA1, and undetectable in the CA2 or subiculum. A spatiotemporal sequence of CoA deposition was postulated, beginning in the fimbria and progressively spreading around the subpial layer until they extended medially to the wall of the lateral ventricle and laterally to the collateral sulcus. This ranked CoA sequence was positively correlated with CoA packing density (count and area fraction) and negatively correlated with CoA minimum diameters (p < 0.05). Although this sequence was not correlated with age or body mass index (BMI), age was positively correlated with the mean and maximum diameters of CoA. These findings support the view that the spatiotemporal sequence of CoA deposition is independent of age, and that CoA become larger due to the accretion of new material over time.
Collapse
Affiliation(s)
- Cuicui Xu
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jessica E Owen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Thorarinn Gislason
- Department of Respiratory Medicine and Sleep, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Department of Clinical Biochemistry, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bryndis Benediktsdottir
- Department of Respiratory Medicine and Sleep, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Department of Clinical Biochemistry, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Stephen R Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia. .,Institute for Breathing and Sleep, Austin Health, Heidelberg, VIC, Australia. .,School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
12
|
Riba M, Augé E, Tena I, Del Valle J, Molina-Porcel L, Ximelis T, Vilaplana J, Pelegrí C. Corpora Amylacea in the Human Brain Exhibit Neoepitopes of a Carbohydrate Nature. Front Immunol 2021; 12:618193. [PMID: 34262556 PMCID: PMC8273382 DOI: 10.3389/fimmu.2021.618193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Corpora amylacea (CA) in the human brain are polyglucosan bodies that accumulate residual substances originated from aging and both neurodegenerative and infectious processes. These structures, which act as waste containers, are released from the brain to the cerebrospinal fluid, reach the cervical lymph nodes via the meningeal lymphatic system and may be phagocytosed by macrophages. Recent studies indicate that CA present certain neoepitopes (NEs) that can be recognized by natural antibodies of the IgM class, and although evidence of different kinds suggests that these NEs may be formed by carbohydrate structures, their precise nature is unknown. Here, we adapted standard techniques to examine this question. We observed that the preadsorption of IgMs with specific carbohydrates has inhibitory effects on the interaction between IgMs and CA, and found that the digestion of CA proteins had no effect on this interaction. These findings point to the carbohydrate nature of the NEs located in CA. Moreover, the present study indicates that, in vitro, the binding between certain natural IgMs and certain epitopes may be disrupted by certain monosaccharides. We wonder, therefore, whether these inhibitions may also occur in vivo. Further studies should now be carried out to assess the possible in vivo effect of glycemia on the reactivity of natural IgMs and, by extension, on natural immunity.
Collapse
Affiliation(s)
- Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elisabet Augé
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Iraida Tena
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Teresa Ximelis
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
13
|
Mani H, Wang BG. Corpora amylacea in pleural effusion. Diagn Cytopathol 2020; 49:E231-E233. [PMID: 33347740 DOI: 10.1002/dc.24684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022]
Abstract
Corpora amylacea are predominantly found in the brain, prostate, and lung. Recent characterizations of their components suggest an important role in protection and clearing. We report the presence of corpora amylacea in pleural effusion in a patient with lupus. The differential diagnoses and potential significance are discussed.
Collapse
Affiliation(s)
- Haresh Mani
- Department of Pathology, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Brant G Wang
- Department of Pathology, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
14
|
Xie Y, Seawell J, Boesch E, Allen L, Suchy A, Longo FM, Meeker RB. Small molecule modulation of the p75 neurotrophin receptor suppresses age- and genotype-associated neurodegeneration in HIV gp120 transgenic mice. Exp Neurol 2020; 335:113489. [PMID: 33007293 DOI: 10.1016/j.expneurol.2020.113489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
The persistence of HIV in the central nervous system leads to cognitive deficits in up to 50% of people living with HIV even with systemic suppression by antiretroviral treatment. The interaction of chronic inflammation with age-associated degeneration places these individuals at increased risk of accelerated aging and other neurodegenerative diseases and no treatments are available that effectively halt these processes. The adverse effects of aging and inflammation may be mediated, in part, by an increase in the expression of the p75 neurotrophin receptor (p75NTR) which shifts the balance of neurotrophin signaling toward less protective pathways. To determine if modulation of p75NTR could modify the disease process, we treated HIV gp120 transgenic mice with a small molecule ligand designed to engage p75NTR and downregulate degenerative signaling. Daily treatment with 50 mg/kg LM11A-31 for 4 months suppressed age- and genotype-dependent activation of microglia, increased microtubule associated protein-2 (MAP-2), reduced dendritic varicosities and slowed the loss of parvalbumin immunoreactive neurons in the hippocampus. An age related accumulation of microtubule associated protein Tau was identified in the hippocampus in extracellular clusters that co-expressed p75NTR suggesting a link between Tau and p75NTR. Although the significance of the relationship between p75NTR and Tau is unclear, a decrease in Tau-1 immunoreactivity as gp120 mice entered old age (>16 months) suggests that the Tau may transition to more pathological modifications; a process blocked by LM11A-31. Overall, the effects of LM11A-31 are consistent with strong neuroprotective and anti-inflammatory actions that have significant therapeutic potential.
Collapse
Affiliation(s)
- Youmie Xie
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Jaimie Seawell
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America; The Edward Via College of Osteopathic Medicine, Spartanburg, SC 29303, United States of America
| | - Emily Boesch
- School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Lauren Allen
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Ashley Suchy
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
15
|
Nitschke S, Petković S, Ahonen S, Minassian BA, Nitschke F. Sensitive quantification of α-glucans in mouse tissues, cell cultures, and human cerebrospinal fluid. J Biol Chem 2020; 295:14698-14709. [PMID: 32817315 DOI: 10.1074/jbc.ra120.015061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
The soluble α-polyglucan glycogen is a central metabolite enabling transient glucose storage to suit cellular energy needs. Glycogen storage diseases (GSDs) comprise over 15 entities caused by generalized or tissue-specific defects in enzymes of glycogen metabolism. In several, e.g. in Lafora disease caused by the absence of the glycogen phosphatase laforin or its interacting partner malin, degradation-resistant abnormally structured insoluble glycogen accumulates. Sensitive quantification methods for soluble and insoluble glycogen are critical to research, including therapeutic studies, in such diseases. This paper establishes methodological advancements relevant to glycogen metabolism investigations generally, and GSDs. Introducing a pre-extraction incubation method, we measure degradation-resistant glycogen in as little as 30 mg of skeletal muscle or a single hippocampus from Lafora disease mouse models. The digestion-resistant glycogen correlates with the disease-pathogenic insoluble glycogen and can readily be detected in very young mice where glycogen accumulation has just begun. Second, we establish a high-sensitivity glucose assay with detection of ATP depletion, enabling 1) quantification of α-glucans in cell culture using a medium-throughput assay suitable for assessment of candidate glycogen synthesis inhibitors, and 2) discovery of α-glucan material in healthy human cerebrospinal fluid, establishing a novel methodological platform for biomarker analyses in Lafora disease and other GSDs.
Collapse
Affiliation(s)
- Silvia Nitschke
- Departments of Pediatrics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sara Petković
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Berge A Minassian
- Departments of Pediatrics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Felix Nitschke
- Departments of Pediatrics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
16
|
Metastasis of Uveal Melanoma with Monosomy-3 Is Associated with a Less Glycogenetic Gene Expression Profile and the Dysregulation of Glycogen Storage. Cancers (Basel) 2020; 12:cancers12082101. [PMID: 32751097 PMCID: PMC7463985 DOI: 10.3390/cancers12082101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
The prolonged storage of glucose as glycogen can promote the quiescence of tumor cells, whereas the accumulation of an aberrant form of glycogen without the primer protein glycogenin can induce the metabolic switch towards a glycolytic phenotype. Here, we analyzed the expression of n = 67 genes involved in glycogen metabolism on the uveal melanoma (UM) cohort of the Cancer Genome Atlas (TCGA) study and validated the differentially expressed genes in an independent cohort. We also evaluated the glycogen levels with regard to the prognostic factors via a differential periodic acid-Schiff (PAS) staining. UMs with monosomy-3 exhibited a less glycogenetic and more insulin-resistant gene expression profile, together with the reduction of glycogen levels, which were associated with the metastases. Expression of glycogenin-1 (Locus: 3q24) was lower in the monosomy-3 tumors, whereas the complementary isoform glycogenin-2 (Locus: Xp22.33) was upregulated in females. Remarkably, glycogen was more abundant in the monosomy-3 tumors of male versus female patients. We therefore provide the first evidence to the dysregulation of glycogen metabolism as a novel factor that may be aggravating the course of UM particularly in males.
Collapse
|
17
|
Wander CM, Tseng JH, Song S, Al Housseiny HA, Tart DS, Ajit A, Ian Shih YY, Lobrovich R, Song J, Meeker RB, Irwin DJ, Cohen TJ. The Accumulation of Tau-Immunoreactive Hippocampal Granules and Corpora Amylacea Implicates Reactive Glia in Tau Pathogenesis during Aging. iScience 2020; 23:101255. [PMID: 32585593 PMCID: PMC7322077 DOI: 10.1016/j.isci.2020.101255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 01/26/2023] Open
Abstract
The microtubule-associated tau protein forms pathological inclusions that accumulate in an age-dependent manner in tauopathies including Alzheimer's disease (AD). Since age is the major risk factor for AD, we examined endogenous tau species that evolve during aging in physiological and diseased conditions. In aged mouse brain, we found tau-immunoreactive clusters embedded within structures that are reminiscent of periodic acid-Schiff (PAS) granules. We showed that PAS granules harbor distinct tau species that are more prominent in 3xTg-AD mice. Epitope profiling revealed hypo-phosphorylated rather than hyper-phosphorylated tau commonly observed in tauopathies. High-resolution imaging and 3D reconstruction suggest a link between tau clusters, reactive astrocytes, and microglia, indicating that early tau accumulation may promote neuroinflammation during aging. Using postmortem human brain, we identified tau as a component of corpora amylacea (CA), age-related structures that are functionally analogous to PAS granules. Overall, our study supports neuroimmune dysfunction as a precipitating event in tau pathogenesis. Tau is present in mouse hippocampal granules and human corpora amylacea Tau accumulates with age in hippocampal granules and is accelerated in 3xTg-AD mice Tau immunoreactive corpora amylacea are present in Alzheimer's disease brain Age-related tau deposits are associated with reactive astrocytes
Collapse
Affiliation(s)
- Connor M Wander
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jui-Heng Tseng
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sheng Song
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Heba A Al Housseiny
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dalton S Tart
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aditi Ajit
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca Lobrovich
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David J Irwin
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | - Todd J Cohen
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Palangmonthip W, Wu R, Tarima S, Bobholz SA, LaViolette PS, Gallan AJ, Iczkowski KA. Corpora amylacea in benign prostatic acini are associated with concurrent, predominantly low-grade cancer. Prostate 2020; 80:687-697. [PMID: 32271960 PMCID: PMC10561550 DOI: 10.1002/pros.23980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Corpora amylacea (CAM), in benign prostatic acini, contain acute-phase proteins. Do CAM coincide with carcinoma? METHODS Within 270 biopsies, 83 prostatectomies, and 33 transurethral resections (TURs), CAM absence was designated CAM 0; corpora in less than 5% of benign acini: CAM 1; in 5% to 25%: CAM 2; in more than 25%: CAM 3. CAM were compared against carcinoma presence, clinicopathologic findings, and grade groups (GG) 1 to 2 vs 3 to 5. The frequency of CAM according to anatomic zone was counted. A pilot study was conducted using paired initial benign and repeat biopsies (33 benign, 24 carcinoma). RESULTS A total of 68.9% of biopsies, 96.4% of prostatectomies, and 66.7% of TURs disclosed CAM. CAM ≥1 was common at an older age (P = .019). In biopsies, 204 cases (75%) had carcinoma; and CAM of 2 to 3 (compared to 0-1) were recorded in 25.0% of carcinomas but only 7.4% of benign biopsies (P = .005; odds ratio [OR] = 5.1). CAM correlated with high percent Gleason pattern 3, low GG (P = .035), and chronic inflammation (CI). CI correlated inversely with carcinoma (P = .003). CAM disclosed no association with race, body mass index, serum prostate specific antigen (PSA), acute inflammation (in biopsies), atrophy, or carcinoma volume. With CAM 1, the odds of GG 3 to 5 carcinoma, by comparison to CAM 0, decreased more than 2× (OR = 0.48; P = .032), with CAM 2, more than 3× (OR = 0.33; P = .005), and with CAM 3, almost 3× (OR = 0.39, P = .086). For men aged less than 65, carcinoma predictive model was: Score = (2 × age) + (5 × PSA) - (20 × degree of CAM); using our data, area under the ROC curve was 78.17%. When the transition zone was involved by cancer, it showed more CAM than in cases where it was uninvolved (P = .012); otherwise zonal distributions were similar. In the pilot study, CAM ≥1 predicted carcinoma on repeat biopsy (P < .05; OR = 8), as did CAM 2 to 3 (P < .0001; OR = 30). CI was not significant, and CAM retained significance after adjusting for CI. CONCLUSION CAM correlate with carcinoma. Whether abundant CAM in benign biopsies adds value amidst high clinical suspicion, warrants further study.
Collapse
Affiliation(s)
- Watchareepohn Palangmonthip
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ruizhe Wu
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sergey Tarima
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Samuel A. Bobholz
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
19
|
3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from Serial Block-Face Electron Microscopy of juvenile rat. Prog Neurobiol 2019; 183:101696. [PMID: 31550514 DOI: 10.1016/j.pneurobio.2019.101696] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023]
Abstract
With the rapid evolution in the automation of serial electron microscopy in life sciences, the acquisition of terabyte-sized datasets is becoming increasingly common. High resolution serial block-face imaging (SBEM) of biological tissues offers the opportunity to segment and reconstruct nanoscale structures to reveal spatial features previously inaccessible with simple, single section, two-dimensional images. In particular, we focussed here on glial cells, whose reconstruction efforts in literature are still limited, compared to neurons. We imaged a 750,000 cubic micron volume of the somatosensory cortex from a juvenile P14 rat, with 20 nm accuracy. We recognized a total of 186 cells using their nuclei, and classified them as neuronal or glial based on features of the soma and the processes. We reconstructed for the first time 4 almost complete astrocytes and neurons, 4 complete microglia and 4 complete pericytes, including their intracellular mitochondria, 186 nuclei and 213 myelinated axons. We then performed quantitative analysis on the three-dimensional models. Out of the data that we generated, we observed that neurons have larger nuclei, which correlated with their lesser density, and that astrocytes and pericytes have a higher surface to volume ratio, compared to other cell types. All reconstructed morphologies represent an important resource for computational neuroscientists, as morphological quantitative information can be inferred, to tune simulations that take into account the spatial compartmentalization of the different cell types.
Collapse
|
20
|
Imaging of post-mortem human brain tissue using electron and X-ray microscopy. Curr Opin Struct Biol 2019; 58:138-148. [PMID: 31349127 DOI: 10.1016/j.sbi.2019.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Electron microscopy imaging of post-mortem human brain (PMHB) comes with a unique set of challenges due to numerous parameters beyond the researcher's control. Nevertheless, the wealth of information provided by the ultrastructural analysis of PMHB is proving crucial in our understanding of neurodegenerative diseases. This review highlights the importance of such studies and covers challenges, limitations and recent developments in the application of current EM imaging, including cryo-ET and correlative hybrid techniques, on PMHB.
Collapse
|
21
|
Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, Navarro PP, Castaño-Díez D, Schweighauser G, Graff-Meyer A, Goldie KN, Sütterlin R, Huisman E, Ingrassia A, Gier YD, Rozemuller AJM, Wang J, Paepe AD, Erny J, Staempfli A, Hoernschemeyer J, Großerüschkamp F, Niedieker D, El-Mashtoly SF, Quadri M, Van IJcken WFJ, Bonifati V, Gerwert K, Bohrmann B, Frank S, Britschgi M, Stahlberg H, Van de Berg WDJ, Lauer ME. Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat Neurosci 2019; 22:1099-1109. [PMID: 31235907 DOI: 10.1038/s41593-019-0423-2] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
Abstract
Parkinson's disease, the most common age-related movement disorder, is a progressive neurodegenerative disease with unclear etiology. Key neuropathological hallmarks are Lewy bodies and Lewy neurites: neuronal inclusions immunopositive for the protein α-synuclein. In-depth ultrastructural analysis of Lewy pathology is crucial to understanding pathogenesis of this disease. Using correlative light and electron microscopy and tomography on postmortem human brain tissue from Parkinson's disease brain donors, we identified α-synuclein immunopositive Lewy pathology and show a crowded environment of membranes therein, including vesicular structures and dysmorphic organelles. Filaments interspersed between the membranes and organelles were identifiable in many but not all α-synuclein inclusions. Crowding of organellar components was confirmed by stimulated emission depletion (STED)-based super-resolution microscopy, and high lipid content within α-synuclein immunopositive inclusions was corroborated by confocal imaging, Fourier-transform coherent anti-Stokes Raman scattering infrared imaging and lipidomics. Applying such correlative high-resolution imaging and biophysical approaches, we discovered an aggregated protein-lipid compartmentalization not previously described in the Parkinsons' disease brain.
Collapse
Affiliation(s)
- Sarah H Shahmoradian
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland.,Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Amanda J Lewis
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Christel Genoud
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jürgen Hench
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Tim E Moors
- Amsterdam Neuroscience, VU University Medical Center, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam, The Netherlands
| | - Paula P Navarro
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Daniel Castaño-Díez
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Gabriel Schweighauser
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Kenneth N Goldie
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Rosmarie Sütterlin
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Evelien Huisman
- Amsterdam Neuroscience, VU University Medical Center, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam, The Netherlands
| | - Angela Ingrassia
- Amsterdam Neuroscience, VU University Medical Center, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam, The Netherlands
| | - Yvonne de Gier
- Amsterdam Neuroscience, VU University Medical Center, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Amsterdam Neuroscience, VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands
| | - Jing Wang
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Anne De Paepe
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Johannes Erny
- Roche Pharma Research and Early Development, Preclinical CMC, Roche Innovation Center Basel, Basel, Switzerland
| | - Andreas Staempfli
- Roche Pharma Research and Early Development, Preclinical CMC, Roche Innovation Center Basel, Basel, Switzerland
| | - Joerg Hoernschemeyer
- Roche Pharma Research and Early Development, Preclinical CMC, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | | | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Klaus Gerwert
- Department of Biophysics, Ruhr University, Bochum, Germany
| | - Bernd Bohrmann
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area/Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area/Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland.
| | - Wilma D J Van de Berg
- Amsterdam Neuroscience, VU University Medical Center, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam, The Netherlands.
| | - Matthias E Lauer
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|