1
|
Zhang X, Yu H, Feng J. Emerging role of microglia in inter-cellular transmission of α-synuclein in Parkinson's disease. Front Aging Neurosci 2024; 16:1411104. [PMID: 39444806 PMCID: PMC11496080 DOI: 10.3389/fnagi.2024.1411104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, significantly prejudicing the health and quality of life of elderly patients. The main pathological characteristics of PD are the loss of dopaminergic neurons in the substantia nigra (SN) as well as abnormal aggregation of α-synuclein (α-syn) monomers and oligomers, which results in formation of Lewy bodies (LBs). Intercellular transmission of α-syn is crucial for PD progression. Microglia play diverse roles in physiological and pathological conditions, exhibiting neuroprotective or neurotoxic effects; moreover, they may directly facilitate α-syn propagation. Various forms of extracellular α-syn can be taken up by microglia through multiple mechanisms, degraded or processed into more pathogenic forms, and eventually released into extracellular fluid or adjacent cells. This review discusses current literature regarding the molecular mechanisms underlying the uptake, degradation, and release of α-syn by microglia.
Collapse
Affiliation(s)
| | | | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Evans AD, Pournoori N, Saksala E, Oommen OP. Glycosaminoglycans' for brain health: Harnessing glycosaminoglycan based biomaterials for treating central nervous system diseases and in-vitro modeling. Biomaterials 2024; 309:122629. [PMID: 38797120 DOI: 10.1016/j.biomaterials.2024.122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Dysfunction of the central nervous system (CNS) following traumatic brain injuries (TBI), spinal cord injuries (SCI), or strokes remains challenging to address using existing medications and cell-based therapies. Although therapeutic cell administration, such as stem cells and neuronal progenitor cells (NPCs), have shown promise in regenerative properties, they have failed to provide substantial benefits. However, the development of living cortical tissue engineered grafts, created by encapsulating these cells within an extracellular matrix (ECM) mimetic hydrogel scaffold, presents a promising functional replacement for damaged cortex in cases of stroke, SCI, and TBI. These grafts facilitate neural network repair and regeneration following CNS injuries. Given that natural glycosaminoglycans (GAGs) are a major constituent of the CNS, GAG-based hydrogels hold potential for the next generation of CNS healing therapies and in vitro modeling of CNS diseases. Brain-specific GAGs not only offer structural and biochemical signaling support to encapsulated neural cells but also modulate the inflammatory response in lesioned brain tissue, facilitating host integration and regeneration. This review briefly discusses different roles of GAGs and their related proteoglycan counterparts in healthy and diseases brain and explores current trends and advancements in GAG-based biomaterials for treating CNS injuries and modeling diseases. Additionally, it examines injectable, 3D bioprintable, and conductive GAG-based scaffolds, highlighting their clinical potential for in vitro modeling of patient-specific neural dysfunction and their ability to enhance CNS regeneration and repair following CNS injury in vivo.
Collapse
Affiliation(s)
- Austin D Evans
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Negin Pournoori
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Emmi Saksala
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| |
Collapse
|
3
|
Balistreri CR, Di Giorgi L, Monastero R. Focus of endothelial glycocalyx dysfunction in ischemic stroke and Alzheimer's disease: Possible intervention strategies. Ageing Res Rev 2024; 99:102362. [PMID: 38830545 DOI: 10.1016/j.arr.2024.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The integrity of the endothelial glycocalyx (eGCX), a mixture of carbohydrates attached to proteins expressed on the surface of blood vessel endothelial cells (EC), is critical for the maintenance of homeostasis of the cardiovascular system and all systems of the human body, the endothelium being the critical component of the stroma of all tissues. Consequently, dysfunction of eGCX results in a dysfunctional cardiovascular wall and severe downstream cardiovascular events, which contribute to the onset of cardio- and cerebrovascular diseases and neurodegenerative disorders, as well as other age-related diseases (ARDs). The key role of eGCX dysfunction in the onset of ARDs is examined here, with a focus on the most prevalent neurological diseases: ischemic stroke and Alzheimer's disease. Furthermore, the advantages and limitations of some treatment strategies for anti-eGCX dysfunction are described, ranging from experimental drug therapies, which need to be better tested and explored not only in animal models but also in humans, as well as reprogramming, the use of nutraceuticals, which are emerging as regenerative and new approaches. The promotion of these strategies is essential to keep eGCX and endothelium healthy, as is the development of intravital (e.g., intravascular) tools to estimate eGCX health status and treatment efficacy, which could lead to advanced solutions to address ARDs.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo 90134, Italy.
| | - Lucia Di Giorgi
- Memory and Parkinson's disease Center Policlinico "Paolo Giaccone", Palermo, and Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via La Loggia 1, Palermo 90129, Italy
| | - Roberto Monastero
- Memory and Parkinson's disease Center Policlinico "Paolo Giaccone", Palermo, and Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via La Loggia 1, Palermo 90129, Italy.
| |
Collapse
|
4
|
Hudák A, Pusztai D, Letoha A, Letoha T. Mutual Inhibition of Antithrombin III and SARS-CoV-2 Cellular Attachment to Syndecans: Implications for COVID-19 Treatment and Vaccination. Int J Mol Sci 2024; 25:7534. [PMID: 39062776 PMCID: PMC11277105 DOI: 10.3390/ijms25147534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Antithrombin III (ATIII) is a potent endogenous anticoagulant that binds to heparan sulfate proteoglycans (HSPGs) on endothelial cells' surfaces. Among these HSPGs, syndecans (SDCs) are crucial as transmembrane receptors bridging extracellular ligands with intracellular signaling pathways. Specifically, syndecan-4 (SDC4) has been identified as a key receptor on endothelial cells for transmitting the signaling effects of ATIII. Meanwhile, SDCs have been implicated in facilitating the cellular internalization of SARS-CoV-2. Given the complex interactions between ATIII and SDC4, our study analyzed the impact of ATIII on the virus entry into host cells. While ATIII binds to all SDC isoforms, it shows the strongest affinity for SDC4. SDCs' heparan sulfate chains primarily influence ATIII's SDC attachment, although other parts might also play a role in ATIII's dominant affinity toward SDC4. ATIII significantly reduces SARS-CoV-2's cellular entry into cell lines expressing SDCs, suggesting a competitive inhibition mechanism at the SDC binding sites, particularly SDC4. Conversely, the virus or its spike protein decreases the availability of SDCs on the cell surface, reducing ATIII's cellular attachment and hence contributing to a procoagulant environment characteristic of COVID-19.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (D.P.)
| | - Dávid Pusztai
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (D.P.)
| | - Annamária Letoha
- Department of Medicine, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Tamás Letoha
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (D.P.)
| |
Collapse
|
5
|
Melrose J. CNS/PNS proteoglycans functionalize neuronal and astrocyte niche microenvironments optimizing cellular activity by preserving membrane polarization dynamics, ionic microenvironments, ion fluxes, neuronal activation, and network neurotransductive capacity. J Neurosci Res 2024; 102:e25361. [PMID: 39034899 DOI: 10.1002/jnr.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
6
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. Front Aging Neurosci 2024; 16:1400447. [PMID: 39006222 PMCID: PMC11239576 DOI: 10.3389/fnagi.2024.1400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal VGF gene network that regulates late-onset Alzheimer's disease (AD). Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating (CDR) in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods To investigate the role of DUSP6 in AD, we stereotactically injected AAV5-DUSP6 or AAV5-GFP (control) into the dorsal hippocampus (dHc) of both female and male 5xFAD or wild type mice, to induce overexpression of DUSP6 or GFP. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß1-40 and Aß1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation, which was increased in 5xFAD mice, was significantly reduced by dHc DUSP6 overexpression in both males and females, as was the number of "microglial clusters," which correlated with reduced amyloid plaque size. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulation of inflammatory and extracellular signal-regulated kinase pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. Gene ontology analysis of DEGs (p < 0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Discussion In summary, DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females, suggesting that DUSP6-induced reduction of microglial activation did not contribute to sex-dependent improvement in memory deficits. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Zhao Q, Ma L, Chen S, Huang L, She G, Sun Y, Shi W, Mu L. Tracking mitochondrial Cu(I) fluctuations through a ratiometric fluorescent probe in AD model cells: Towards understanding how AβOs induce mitochondrial Cu(I) dyshomeostasis. Talanta 2024; 271:125716. [PMID: 38301373 DOI: 10.1016/j.talanta.2024.125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Mitochondrial copper signaling pathway plays a role in Alzheimer's disease (AD), especially in relevant Amyloid-β oligomers (AβOs) neurotoxicity and mitochondrial dysfunction. Clarifying the relationship between mitochondrial copper homeostasis and both of mitochondrial dysfunction and AβOs neurotoxicity is important for understanding AD pathogenesis. Herein, we designed and synthesized a ratiometric fluorescent probe CHC-NS4 for Cu(I). CHC-NS4 possesses excellent ratiometric response, high selectivity to Cu(I) and specific ability to target mitochondria. Under mitochondrial dysfunction induced by oligomycin, mitochondrial Cu(I) levels gradually increased, which may be related to inhibition of ATP7A-mediated Cu(I) exportation and/or high expression of COX. On this basis, CHC-NS4 was further utilized to visualize the fluctuations of mitochondrial Cu(I) levels during progression of AD model cells induced by AβOs. It was found that mitochondrial Cu(I) levels were gradually elevated during the AD progression, which depended on not only AβOs concentration but also incubation time. Moreover, endocytosis maybe served as a prime pathway mode for mitochondrial Cu(I) dyshomeostasis induced by AβOs during AD progression. These results have provided a novel inspiration into mitochondrial copper biology in AD pathogenesis.
Collapse
Affiliation(s)
- Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyi Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siwei Chen
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
8
|
Petersen SI, Okolicsanyi RK, Haupt LM. Exploring Heparan Sulfate Proteoglycans as Mediators of Human Mesenchymal Stem Cell Neurogenesis. Cell Mol Neurobiol 2024; 44:30. [PMID: 38546765 PMCID: PMC10978659 DOI: 10.1007/s10571-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 04/01/2024]
Abstract
Alzheimer's disease (AD) and traumatic brain injury (TBI) are major public health issues worldwide, with over 38 million people living with AD and approximately 48 million people (27-69 million) experiencing TBI annually. Neurodegenerative conditions are characterised by the accumulation of neurotoxic amyloid beta (Aβ) and microtubule-associated protein Tau (Tau) with current treatments focused on managing symptoms rather than addressing the underlying cause. Heparan sulfate proteoglycans (HSPGs) are a diverse family of macromolecules that interact with various proteins and ligands and promote neurogenesis, a process where new neural cells are formed from stem cells. The syndecan (SDC) and glypican (GPC) HSPGs have been implicated in AD pathogenesis, acting as drivers of disease, as well as potential therapeutic targets. Human mesenchymal stem cells (hMSCs) provide an attractive therapeutic option for studying and potentially treating neurodegenerative diseases due to their relative ease of isolation and subsequent extensive in vitro expansive potential. Understanding how HSPGs regulate protein aggregation, a key feature of neurodegenerative disorders, is essential to unravelling the underlying disease processes of AD and TBI, as well as any link between these two neurological disorders. Further research may validate HSPG, specifically SDCs or GPCs, use as neurodegenerative disease targets, either via driving hMSC stem cell therapy or direct targeting.
Collapse
Affiliation(s)
- Sofia I Petersen
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia.
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia.
| |
Collapse
|
9
|
Quan YS, Li X, Pang L, Deng H, Chen F, Joon Lee J, Quan ZS, Liu P, Guo HY, Shen QK. Panaxadiol carbamate derivatives: Synthesis and biological evaluation as potential multifunctional anti-Alzheimer agents. Bioorg Chem 2024; 143:106977. [PMID: 38064805 DOI: 10.1016/j.bioorg.2023.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/24/2024]
Abstract
It is reported that panaxadiol has neuroprotective effects. Previous studies have found that compound with carbamate structure introduced at the 3-OH position of 20 (R) -panaxadiol showed the most effective neuroprotective activity with an EC50 of 13.17 μM. Therefore, we designed and synthesized a series of ginseng diol carbamate derivatives with ginseng diol as the lead compound, and tested their anti-AD activity. It was found that the protective effect of compound Q4 on adrenal pheochromocytoma was 80.6 ± 10.85 % (15 μM), and the EC50 was 4.32 μM. According to the ELISA results, Q4 reduced the expression of Aβ25-35 by decreasing β-secretase production. Molecular docking studies revealed that the binding affinity of Q4 to β-secretase was -49.67 kcal/mol, indicating a strong binding affinity of Q4 to β-secretase. Western blotting showed that compound Q4 decreased IL-1β levels, which may contribute to its anti-inflammatory effect. Furthermore, compound Q4 exhibits anti-AD activities by reducing abnormal phosphorylation of tau protein and activation of the mitogen activated protein kinase pathway. The learning and memory deficits in mice treated with Q4in vivo were significantly alleviated. Therefore, Q4 may be a promising multifunctional drug for the treatment of AD, providing a new way for anti-AD drugs.
Collapse
Affiliation(s)
- Yin-Sheng Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Lei Pang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
10
|
Jongsma E, Goyala A, Mateos JM, Ewald CY. Removal of extracellular human amyloid beta aggregates by extracellular proteases in C. elegans. eLife 2023; 12:e83465. [PMID: 37728486 PMCID: PMC10541181 DOI: 10.7554/elife.83465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
The amyloid beta (Aβ) plaques found in Alzheimer's disease (AD) patients' brains contain collagens and are embedded extracellularly. Several collagens have been proposed to influence Aβ aggregate formation, yet their role in clearance is unknown. To investigate the potential role of collagens in forming and clearance of extracellular aggregates in vivo, we created a transgenic Caenorhabditis elegans strain that expresses and secretes human Aβ1-42. This secreted Aβ forms aggregates in two distinct places within the extracellular matrix. In a screen for extracellular human Aβ aggregation regulators, we identified different collagens to ameliorate or potentiate Aβ aggregation. We show that a disintegrin and metalloprotease a disintegrin and metalloprotease 2 (ADM-2), an ortholog of ADAM9, reduces the load of extracellular Aβ aggregates. ADM-2 is required and sufficient to remove the extracellular Aβ aggregates. Thus, we provide in vivo evidence of collagens essential for aggregate formation and metalloprotease participating in extracellular Aβ aggregate removal.
Collapse
Affiliation(s)
- Elisabeth Jongsma
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| | - José Maria Mateos
- Center for Microscopy and Image Analysis, University of ZurichZurichSwitzerland
| | - Collin Yvès Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| |
Collapse
|
11
|
Letoha A, Hudák A, Letoha T. Exploring the Syndecan-Mediated Cellular Internalization of the SARS-CoV-2 Omicron Variant. Int J Mol Sci 2023; 24:14140. [PMID: 37762442 PMCID: PMC10531417 DOI: 10.3390/ijms241814140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 variants evolve to rely more on heparan sulfate (HS) for viral attachment and subsequent infection. In our earlier work, we demonstrated that the Delta variant's spike protein binds more strongly to HS compared to WT SARS-CoV-2, leading to enhanced cell internalization via syndecans (SDCs), a family of transmembrane HS proteoglycans (HSPGs) facilitating the cellular entry of the original strain. Using our previously established ACE2- or SDC-overexpressing cellular models, we now compare the ACE2- and SDC-dependent cellular uptake of heat-inactivated WT SARS-CoV-2 with the Delta and Omicron variants. Internalization studies with inactivated virus particles showed that ACE2 overexpression could not compensate for the loss of HS in Omicron's internalization, suggesting that this variant primarily uses HSPGs to enter cells. Although SDCs increased the internalization of all three viruses, subtle differences could be detected between their SDC isoform preferences. The Delta variant particularly benefitted from SDC1, 2, and 4 overexpression for cellular entry, while SDC4 had the most prominent effect on Omicron internalization. The SDC4 knockdown (KD) in Calu-3 cells reduced the cellular uptake of all three viruses, but the inhibition was the most pronounced for Omicron. The polyanionic heparin also hindered the cellular internalization of all three viruses with a dominant inhibitory effect on Omicron. Omicron's predominant HSPG affinity, combined with its preference for the universally expressed SDC4, might account for its efficient transmission yet reduced pathogenicity.
Collapse
Affiliation(s)
- Annamária Letoha
- Department of Medicine, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | | | | |
Collapse
|
12
|
Aguilar-Calvo P, Malik A, Sandoval DR, Barback C, Orrù CD, Standke HG, Thomas OR, Dwyer CA, Pizzo DP, Bapat J, Soldau K, Ogawa R, Riley MB, Nilsson KPR, Kraus A, Caughey B, Iliff JJ, Vera DR, Esko JD, Sigurdson CJ. Neuronal Ndst1 depletion accelerates prion protein clearance and slows neurodegeneration in prion infection. PLoS Pathog 2023; 19:e1011487. [PMID: 37747931 PMCID: PMC10586673 DOI: 10.1371/journal.ppat.1011487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/19/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a abundant extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase) from neurons or astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of neuronal Ndst1- deficient mice, neuronal, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance.
Collapse
Affiliation(s)
| | - Adela Malik
- Department of Pathology, UC San Diego, La Jolla, California, United States of America
| | - Daniel R. Sandoval
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, California, United States of America
| | - Christopher Barback
- Department of Radiology, UC San Diego, La Jolla, California, United States of America
| | - Christina D. Orrù
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Heidi G. Standke
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Olivia R. Thomas
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Chrissa A. Dwyer
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, California, United States of America
| | - Donald P. Pizzo
- Department of Pathology, UC San Diego, La Jolla, California, United States of America
| | - Jaidev Bapat
- Department of Pathology, UC San Diego, La Jolla, California, United States of America
| | - Katrin Soldau
- Department of Pathology, UC San Diego, La Jolla, California, United States of America
| | - Ryotaro Ogawa
- Department of Radiology, UC San Diego, La Jolla, California, United States of America
| | - Mckenzie B. Riley
- Department of Neurology, University of Alabama, Birmingham, Alabama, United States of America
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Jeffrey J. Iliff
- VISN 20 NW Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Science, Department of Neurology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - David R. Vera
- Department of Radiology, UC San Diego, La Jolla, California, United States of America
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, California, United States of America
| | - Christina J. Sigurdson
- Department of Pathology, UC San Diego, La Jolla, California, United States of America
- Department of Medicine, UC San Diego, La Jolla, California, United States of America
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, California, United States of America
| |
Collapse
|
13
|
Lv B, Huang S, Huang H, Niu N, Liu J. Endothelial Glycocalyx Injury in SARS-CoV-2 Infection: Molecular Mechanisms and Potential Targeted Therapy. Mediators Inflamm 2023; 2023:6685251. [PMID: 37674786 PMCID: PMC10480029 DOI: 10.1155/2023/6685251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
This review aims at summarizing state-of-the-art knowledge on glycocalyx and SARS-CoV-2. The endothelial glycocalyx is a dynamic grid overlying the surface of the endothelial cell (EC) lumen and consists of membrane-bound proteoglycans and glycoproteins. The role of glycocalyx has been determined in the regulation of EC permeability, adhesion, and coagulation. SARS-CoV-2 is an enveloped, single-stranded RNA virus belonging to β-coronavirus that causes the outbreak and the pandemic of COVID-19. Through the respiratory tract, SARS-CoV-2 enters blood circulation and interacts with ECs possessing angiotensin-converting enzyme 2 (ACE2). Intact glycolyx prevents SARS-CoV-2 invasion of ECs. When the glycocalyx is incomplete, virus spike protein of SARS-CoV-2 binds with ACE2 and enters ECs for replication. In addition, cytokine storm targets glycocalyx, leading to subsequent coagulation disorder. Therefore, it is intriguing to develop a novel treatment for SARS-CoV-2 infection through the maintenance of the integrity of glycocalyx. This review aims to summarize state-of-the-art knowledge of glycocalyx and its potential function in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Shengshi Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Hong Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital, Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| |
Collapse
|
14
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554335. [PMID: 37662269 PMCID: PMC10473733 DOI: 10.1101/2023.08.24.554335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal network that regulates late-onset Alzheimer's disease. Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods AAV5-DUSP6 or AAV5-GFP (control) were stereotactically injected into the dorsal hippocampus (dHc) of female and male 5xFAD or wild type mice to overexpress DUSP6 or GFP. Spatial learning memory of these mice was assessed in the Barnes maze, after which hippocampal tissues were isolated for downstream analysis. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß 1-40 and Aß 1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation and microgliosis, which are increased in 5xFAD mice, were significantly reduced by dHc DUSP6 overexpression in both males and females. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulated expression of genes involved in inflammatory and extracellular signal-regulated kinase (ERK) pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. A limited number of differentially expressed genes (DEGs) (FDR<0.05) were identified in male mice; gene ontology analysis of DEGs (p<0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Notably, the msh homeobox 3 gene, Msx3 , previously shown to regulate microglial M1/M2 polarization and reduce neuroinflammation, was one of the most robustly upregulated genes in female and male wild type and 5xFAD mice overexpressing DUSP6. Conclusions In summary, our data indicate that DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
|
15
|
Graves NJ, Gambin Y, Sierecki E. α-Synuclein Strains and Their Relevance to Parkinson's Disease, Multiple System Atrophy, and Dementia with Lewy Bodies. Int J Mol Sci 2023; 24:12134. [PMID: 37569510 PMCID: PMC10418915 DOI: 10.3390/ijms241512134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Like many neurodegenerative diseases, Parkinson's disease (PD) is characterized by the formation of proteinaceous aggregates in brain cells. In PD, those proteinaceous aggregates are formed by the α-synuclein (αSyn) and are considered the trademark of this neurodegenerative disease. In addition to PD, αSyn pathological aggregation is also detected in atypical Parkinsonism, including Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA), as well as neurodegeneration with brain iron accumulation, some cases of traumatic brain injuries, and variants of Alzheimer's disease. Collectively, these (and other) disorders are referred to as synucleinopathies, highlighting the relation between disease type and protein misfolding/aggregation. Despite these pathological relationships, however, synucleinopathies cover a wide range of pathologies, present with a multiplicity of symptoms, and arise from dysfunctions in different neuroanatomical regions and cell populations. Strikingly, αSyn deposition occurs in different types of cells, with oligodendrocytes being mainly affected in MSA, while aggregates are found in neurons in PD. If multiple factors contribute to the development of a pathology, especially in the cases of slow-developing neurodegenerative disorders, the common presence of αSyn aggregation, as both a marker and potential driver of disease, is puzzling. In this review, we will focus on comparing PD, DLB, and MSA, from symptomatology to molecular description, highlighting the role and contribution of αSyn aggregates in each disorder. We will particularly present recent evidence for the involvement of conformational strains of αSyn aggregates and discuss the reciprocal relationship between αSyn strains and the cellular milieu. Moreover, we will highlight the need for effective methodologies for the strainotyping of aggregates to ameliorate diagnosing capabilities and therapeutic treatments.
Collapse
Affiliation(s)
| | | | - Emma Sierecki
- EMBL Australia Node for Single Molecule Sciences and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia; (N.J.G.)
| |
Collapse
|
16
|
Ozsan McMillan I, Li JP, Wang L. Heparan sulfate proteoglycan in Alzheimer's disease: aberrant expression and functions in molecular pathways related to amyloid-β metabolism. Am J Physiol Cell Physiol 2023; 324:C893-C909. [PMID: 36878848 PMCID: PMC10069967 DOI: 10.1152/ajpcell.00247.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Currently, there is no effective treatment for AD, as its etiology remains poorly understood. Mounting evidence suggests that the accumulation and aggregation of amyloid-β peptides (Aβ), which constitute amyloid plaques in the brain, is critical for initiating and accelerating AD pathogenesis. Considerable efforts have been dedicated to shedding light on the molecular basis and fundamental origins of the impaired Aβ metabolism in AD. Heparan sulfate (HS), a linear polysaccharide of the glycosaminoglycan family, co-deposits with Aβ in plaques in the AD brain, directly binds and accelerates Aβ aggregation, and mediates Aβ internalization and cytotoxicity. Mouse model studies demonstrate that HS regulates Aβ clearance and neuroinflammation in vivo. Previous reviews have extensively explored these discoveries. Here, this review focuses on the recent advancements in understanding abnormal HS expression in the AD brain, the structural aspects of HS-Aβ interaction, and the molecules involved in modulating Aβ metabolism through HS interaction. Furthermore, this review presents a perspective on the potential effects of abnormal HS expression on Aβ metabolism and AD pathogenesis. In addition, the review highlights the importance of conducting further research to differentiate the spatiotemporal components of HS structure and function in the brain and AD pathogenesis.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center, University of Uppsala, Uppsala, Sweden
- SciLifeLab Uppsala, University of Uppsala, Uppsala, Sweden
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
17
|
Syndecan-4 Mediates the Cellular Entry of Adeno-Associated Virus 9. Int J Mol Sci 2023; 24:ijms24043141. [PMID: 36834552 PMCID: PMC9963952 DOI: 10.3390/ijms24043141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Due to their low pathogenicity, immunogenicity, and long-term gene expression, adeno-associated virus (AAV) vectors emerged as safe and efficient gene delivery tools, over-coming setbacks experienced with other viral gene delivery systems in early gene therapy trials. Among AAVs, AAV9 can translocate through the blood-brain barrier (BBB), making it a promising gene delivery tool for transducing the central nervous system (CNS) via systemic administration. Recent reports on the shortcomings of AAV9-mediated gene delivery into the CNS require reviewing the molecular base of AAV9 cellular biology. A more detailed understanding of AAV9's cellular entry would eradicate current hurdles and enable more efficient AAV9-based gene therapy approaches. Syndecans, the transmembrane family of heparan-sulfate proteoglycans, facilitate the cellular uptake of various viruses and drug delivery systems. Utilizing human cell lines and syndecan-specific cellular assays, we assessed the involvement of syndecans in AAV9's cellular entry. The ubiquitously expressed isoform, syndecan-4 proved its superiority in facilitating AAV9 internalization among syndecans. Introducing syndecan-4 into poorly transducible cell lines enabled robust AAV9-dependent gene transduction, while its knockdown reduced AAV9's cellular entry. Attachment of AAV9 to syndecan-4 is mediated not just by the polyanionic heparan-sulfate chains but also by the cell-binding domain of the extracellular syndecan-4 core protein. Co-immunoprecipitation assays and affinity proteomics also confirmed the role of syndecan-4 in the cellular entry of AAV9. Overall, our findings highlight the universally expressed syndecan-4 as a significant contributor to the cellular internalization of AAV9 and provide a molecular-based, rational explanation for the low gene delivery potential of AAV9 into the CNS.
Collapse
|
18
|
Ferreira A, Royaux I, Liu J, Wang Z, Su G, Moechars D, Callewaert N, De Muynck L. The 3-O sulfation of heparan sulfate proteoglycans contributes to the cellular internalization of tau aggregates. BMC Mol Cell Biol 2022; 23:61. [PMID: 36564747 PMCID: PMC9789671 DOI: 10.1186/s12860-022-00462-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Considering the high correlation between the functional decline in Alzheimer's disease (AD) and the propagation of aggregated tau protein, many research efforts are focused on determining the underlying molecular mechanisms of tau spreading. Heparan sulfate proteoglycans (HSPGs) were reported to mediate cellular uptake of tau aggregates. Specifically, the heparan sulfates (HS) sulfation plays a critical role in the interaction of HSPGs with aggregated tau. HS can be N-/2-O/6-O- or 3-O-sulfated, some of which have been reported to take part in the interaction with tau aggregates. However, the role of the 3-O sulfation remains enigmatic. RESULTS Here, we studied the contribution of HS 3-O sulfation in the binding and cellular uptake of tau aggregates. We observed reduced tau aggregates uptake in absence of 3-O sulfation or when outcompeting available cellular 3-O sulfated HS (3S-HS) with antithrombin III. The lack of HS3ST1-generated HS products in the HS3ST1-/- cells was further corroborated with an LC-MS/MS using 13C-labeled HS calibrants. Here, we showed that these functional changes can be explained by a higher affinity of aggregated tau to 3S-HS. When targeting tau aggregates with 3-O sulfation-containing HS, we observed an increase in inhibition of tau aggregates uptake. CONCLUSIONS These data indicate that HS 3-O sulfation plays a role in the binding of tau aggregates and, thus, contributes to their cellular uptake, highlighting a potential target value to modulate tau pathogenesis.
Collapse
Affiliation(s)
- Andreia Ferreira
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Ines Royaux
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Guowei Su
- Glycan Therapeutics, LLC, 617 Hutton Street, Raleigh, NC, USA
| | - Diederik Moechars
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Louis De Muynck
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium.
| |
Collapse
|
19
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-Specificity Protein Phosphatase 4 (DUSP4) Overexpression Improves Learning Behavior Selectively in Female 5xFAD Mice, and Reduces β-Amyloid Load in Males and Females. Cells 2022; 11:3880. [PMID: 36497141 PMCID: PMC9737364 DOI: 10.3390/cells11233880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer's disease converged on VGF (non-acronymic) as a key hub or driver. Within this computational VGF network, we identified the dual-specificity protein phosphatase 4 (DUSP4) [also known as mitogen-activated protein kinase (MAPK) phosphatase 2] as an important node. Importantly, DUSP4 gene expression, like that of VGF, is downregulated in postmortem Alzheimer's disease (AD) brains. We investigated the roles that this VGF/DUSP4 network plays in the development of learning behavior impairment and neuropathology in the 5xFAD amyloidopathy mouse model. We found reductions in DUSP4 expression in the hippocampi of male AD subjects, correlating with increased CDR scores, and in 4-month-old female and 12-18-month-old male 5xFAD hippocampi. Adeno-associated virus (AAV5)-mediated overexpression of DUSP4 in 5xFAD mouse dorsal hippocampi (dHc) rescued impaired Barnes maze performance in females but not in males, while amyloid loads were reduced in both females and males. Bulk RNA sequencing of the dHc from 5-month-old mice overexpressing DUSP4, and Ingenuity Pathway and Enrichr analyses of differentially expressed genes (DEGs), revealed that DUSP4 reduced gene expression in female 5xFAD mice in neuroinflammatory, interferon-gamma (IFNγ), programmed cell death protein-ligand 1/programmed cell death protein 1 (PD-L1/PD-1), and extracellular signal-regulated kinase (ERK)/MAPK pathways, via which DUSP4 may modulate AD phenotype with gender-specificity.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Baerends E, Soud K, Folke J, Pedersen AK, Henmar S, Konrad L, Lycas MD, Mori Y, Pakkenberg B, Woldbye DPD, Dmytriyeva O, Pankratova S. Modeling the early stages of Alzheimer's disease by administering intracerebroventricular injections of human native Aβ oligomers to rats. Acta Neuropathol Commun 2022; 10:113. [PMID: 35974377 PMCID: PMC9380371 DOI: 10.1186/s40478-022-01417-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease characterized by the accumulation of aggregated amyloid beta (Aβ) and hyperphosphorylated tau along with a slow decline in cognitive functions. Unlike advanced AD, the initial steps of AD pathophysiology have been poorly investigated, partially due to limited availability of animal models focused on the early, plaque-free stages of the disease. The aim of this study was to evaluate the early behavioral, anatomical and molecular alterations in wild-type rats following intracerebroventricular injections of human Aβ oligomers (AβOs). Bioactive human AD and nondemented control brain tissue extracts were characterized using ELISA and proteomics approaches. Following a bilateral infusion, rats underwent behavioral testing, including the elevated plus maze, social recognition test, Morris water maze and Y-maze within 6 weeks postinjection. An analysis of brain structure was performed with manganese-enhanced MRI. Collected brain tissues were analyzed using stereology, immunohistochemistry, ELISA and qPCR. No sensorimotor deficits affecting motor performance on different maze tasks were observed, nor was spatial memory disturbed in AD rats. In contrast, a significant impairment of social memory became evident at 21 days postinjection. This deficit was associated with a significantly decreased volume of the lateral entorhinal cortex and a tendency toward a decrease in the total brain volume. Significant increase of cleaved caspase-3-positive cells, microglial activation and proinflammatory responses accompanied by altered expression of synaptic markers were observed in the hippocampus of AD rats with immunohistochemical and qPCR approaches at 6 weeks postinjection. Our data suggest that the social memory impairment observed in AβO-injected rats might be determined by neuroinflammatory responses and synaptopathy. An infusion of native oligomeric Aβ in the rat brain represents a feasible tool to model early plaque-free events associated with AD.
Collapse
Affiliation(s)
- Eva Baerends
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Katia Soud
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jonas Folke
- Centre for Neuroscience and Stereology, Department of Neurology,, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Henmar
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Lisa Konrad
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Matthew D Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Pakkenberg
- Centre for Neuroscience and Stereology, Department of Neurology,, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David P D Woldbye
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanislava Pankratova
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark. .,Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Schrader JM, Stanisavljevic A, Xu F, Van Nostrand WE. Distinct Brain Proteomic Signatures in Cerebral Small Vessel Disease Rat Models of Hypertension and Cerebral Amyloid Angiopathy. J Neuropathol Exp Neurol 2022; 81:731-745. [PMID: 35856898 PMCID: PMC9803909 DOI: 10.1093/jnen/nlac057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cerebral small vessel diseases (CSVDs) are prominent contributors to vascular cognitive impairment and dementia and can arise from a range of etiologies. Cerebral amyloid angiopathy (CAA) and hypertension (HTN), both prevalent in the elderly population, lead to cerebral microhemorrhages, macrohemorrhages, and white matter damage. However, their respective underlying mechanisms and molecular events are poorly understood. Here, we show that the transgenic rat model of CAA type 1 (rTg-DI) exhibits perivascular inflammation that is lacking in the spontaneously hypertensive stroke-prone (SHR-SP) rat model of HTN. Alternatively, SHR-SP rats display notable dilation of arteriolar perivascular spaces. Comparative proteomics analysis revealed few shared altered proteins, with key proteins such as ANXA3, H2A, and HTRA1 unique to rTg-DI rats, and Nt5e, Flot-1 and Flot-2 unique to SHR-SP rats. Immunolabeling confirmed that upregulation of ANXA3, HTRA1, and neutrophil extracellular trap proteins were distinctly associated with rTg-DI rats. Pathway analysis predicted activation of TGF-β1 and TNFα in rTg-DI rat brain, while insulin signaling was reduced in the SHR-SP rat brain. Thus, we report divergent protein signatures associated with distinct cerebral vessel pathologies in the SHR-SP and rTg-DI rat models and provide new mechanistic insight into these different forms of CSVD.
Collapse
Affiliation(s)
- Joseph M Schrader
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Aleksandra Stanisavljevic
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Feng Xu
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - William E Van Nostrand
- Send correspondence to: William E. Van Nostrand, PhD, George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 130 Flagg Road, Kingston, RI 02881, USA; E-mail:
| |
Collapse
|
22
|
Hudák A, Morgan G, Bacovsky J, Patai R, Polgár TF, Letoha A, Pettko-Szandtner A, Vizler C, Szilák L, Letoha T. Biodistribution and Cellular Internalization of Inactivated SARS-CoV-2 in Wild-Type Mice. Int J Mol Sci 2022; 23:ijms23147609. [PMID: 35886958 PMCID: PMC9316427 DOI: 10.3390/ijms23147609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the growing list of identified SARS-CoV-2 receptors, the human angiotensin-converting enzyme 2 (ACE2) is still viewed as the main cell entry receptor mediating SARS-CoV-2 internalization. It has been reported that wild-type mice, like other rodent species of the Muridae family, cannot be infected with SARS-CoV-2 due to differences in their ACE2 receptors. On the other hand, the consensus heparin-binding motif of SARS-CoV-2’s spike protein, PRRAR, enables the attachment to rodent heparan sulfate proteoglycans (HSPGs), including syndecans, a transmembrane HSPG family with a well-established role in clathrin- and caveolin-independent endocytosis. As mammalian syndecans possess a relatively conserved structure, we analyzed the cellular uptake of inactivated SARS-CoV-2 particles in in vitro and in vivo mice models. Cellular studies revealed efficient uptake into murine cell lines with established syndecan-4 expression. After intravenous administration, inactivated SARS-CoV-2 was taken up by several organs in vivo and could also be detected in the brain. Internalized by various tissues, inactivated SARS-CoV-2 raised tissue TNF-α levels, especially in the heart, reflecting the onset of inflammation. Our studies on in vitro and in vivo mice models thus shed light on unknown details of SARS-CoV-2 internalization and help broaden the understanding of the molecular interactions of SARS-CoV-2.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | | | | | - Roland Patai
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (R.P.); (T.F.P.)
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (R.P.); (T.F.P.)
- Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Annamária Letoha
- Department of Medicine, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | | | - Csaba Vizler
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary;
| | - László Szilák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | - Tamás Letoha
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
- Correspondence: ; Tel.: +36-30-2577393
| |
Collapse
|
23
|
Moretto E, Stuart S, Surana S, Vargas JNS, Schiavo G. The Role of Extracellular Matrix Components in the Spreading of Pathological Protein Aggregates. Front Cell Neurosci 2022; 16:844211. [PMID: 35573838 PMCID: PMC9100790 DOI: 10.3389/fncel.2022.844211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Several neurodegenerative diseases are characterized by the accumulation of aggregated misfolded proteins. These pathological agents have been suggested to propagate in the brain via mechanisms similar to that observed for the prion protein, where a misfolded variant is transferred from an affected brain region to a healthy one, thereby inducing the misfolding and/or aggregation of correctly folded copies. This process has been characterized for several proteins, such as α-synuclein, tau, amyloid beta (Aβ) and less extensively for huntingtin and TDP-43. α-synuclein, tau, TDP-43 and huntingtin are intracellular proteins, and their aggregates are located in the cytosol or nucleus of neurons. They have been shown to spread between cells and this event occurs, at least partially, via secretion of these protein aggregates in the extracellular space followed by re-uptake. Conversely, Aβ aggregates are found mainly extracellularly, and their spreading occurs in the extracellular space between brain regions. Due to the inherent nature of their spreading modalities, these proteins are exposed to components of the extracellular matrix (ECM), including glycans, proteases and core matrix proteins. These ECM components can interact with or process pathological misfolded proteins, potentially changing their properties and thus regulating their spreading capabilities. Here, we present an overview of the documented roles of ECM components in the spreading of pathological protein aggregates in neurodegenerative diseases with the objective of identifying the current gaps in knowledge and stimulating further research in the field. This could potentially lead to the identification of druggable targets to slow down the spreading and/or progression of these pathologies.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, National Research Council, CNR, Milan, Italy
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- *Correspondence: Edoardo Moretto,
| | - Skye Stuart
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sunaina Surana
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Jose Norberto S. Vargas
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
- Giampietro Schiavo,
| |
Collapse
|
24
|
Hudák A, Letoha A, Vizler C, Letoha T. Syndecan-3 as a Novel Biomarker in Alzheimer's Disease. Int J Mol Sci 2022; 23:3407. [PMID: 35328830 PMCID: PMC8955174 DOI: 10.3390/ijms23063407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/17/2022] Open
Abstract
Early diagnosis of Alzheimer's disease (AD) is of paramount importance in preserving the patient's mental and physical health in a fairly manageable condition for a longer period. Reliable AD detection requires novel biomarkers indicating central nervous system (CNS) degeneration in the periphery. Members of the syndecan family of transmembrane proteoglycans are emerging new targets in inflammatory and neurodegenerative disorders. Reviewing the growing scientific evidence on the involvement of syndecans in the pathomechanism of AD, we analyzed the expression of the neuronal syndecan, syndecan-3 (SDC3), in experimental models of neurodegeneration. Initial in vitro studies showed that prolonged treatment of tumor necrosis factor-alpha (TNF-α) increases SDC3 expression in model neuronal and brain microvascular endothelial cell lines. In vivo studies revealed elevated concentrations of TNF-α in the blood and brain of APPSWE-Tau transgenic mice, along with increased SDC3 concentration in the brain and the liver. Primary brain endothelial cells and peripheral blood monocytes isolated from APPSWE-Tau mice exhibited increased SDC3 expression than wild-type controls. SDC3 expression of blood-derived monocytes showed a positive correlation with amyloid plaque load in the brain, demonstrating that SDC3 on monocytes is a good indicator of amyloid pathology in the brain. Given the well-established role of blood tests, the SDC3 expression of monocytes could serve as a novel biomarker for early AD detection.
Collapse
Affiliation(s)
| | - Annamária Letoha
- Albert Szent-Györgyi Clinical Center, Department of Medicine, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | - Csaba Vizler
- Biological Research Centre, Institute of Biochemistry, H-6726 Szeged, Hungary;
| | | |
Collapse
|
25
|
Nazere K, Takahashi T, Hara N, Muguruma K, Nakamori M, Yamazaki Y, Morino H, Maruyama H. Amyloid Beta Is Internalized via Macropinocytosis, an HSPG- and Lipid Raft-Dependent and Rac1-Mediated Process. Front Mol Neurosci 2022; 15:804702. [PMID: 36187354 PMCID: PMC9524458 DOI: 10.3389/fnmol.2022.804702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Intracellular amyloid β peptide (Aβ) accumulation has drawn attention in relation to the pathophysiology of Alzheimer’s disease in addition to its extracellular deposition as senile plaque. Cellular uptake of extracellular Aβ is one of the possible mechanisms by which intracellular Aβ deposits form. Given the relevance of Aβ inside cells, it is important to understand the mechanism by which it is taken up by them. In this study, we elucidated that Neuro2A and SH-SY5Y cells internalize specifically oligomerized Aβ in a time- and dose-dependent manner. The depletion of plasma membrane cholesterol with methyl-β-cyclodextrin or treatment with trypsin diminished the internalization of oAβ, suggesting that the oAβ uptake might be both a lipid raft-dependent and heparan sulfate proteoglycan-mediated process. Treatment with a macropinocytosis inhibitor (ethylisopropyl amiloride and wortmannin) also drastically reduced the uptake of oligomer-Aβ (oAβ). oAβ-treated cells exhibited an increase in Rac1 activity, indicating that macropinocytosis induced by oAβ is regulated by these small GTPases. These findings suggest that macropinocytosis is a major endocytic route through which oAβ42 enters cells.
Collapse
Affiliation(s)
- Keyoumu Nazere
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
- *Correspondence: Tetsuya Takahashi
| | - Naoyuki Hara
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuki Muguruma
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masahiro Nakamori
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yu Yamazaki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
26
|
Hudák A, Veres G, Letoha A, Szilák L, Letoha T. Syndecan-4 Is a Key Facilitator of the SARS-CoV-2 Delta Variant's Superior Transmission. Int J Mol Sci 2022; 23:796. [PMID: 35054983 PMCID: PMC8775852 DOI: 10.3390/ijms23020796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Emerging SARS-CoV-2 variants pose threats to vaccination campaigns against COVID-19. Being more transmissible than the original virus, the SARS-CoV-2 B.1.617 lineage, named the Delta variant, swept through the world in 2021. The mutations in the Delta's spike protein shift the protein towards a net positive electrostatic potential. To understand the key molecular drivers of the Delta infection, we investigate the cellular uptake of the Delta spike protein and Delta spike-bearing SARS-CoV-2 pseudoviruses. Specific in vitro modification of ACE2 and syndecan expression enabled us to demonstrate that syndecan-4, the syndecan isoform abundant in the lung, enhances the transmission of the Delta variant by attaching its mutated spike glycoprotein and facilitating its cellular entry. Compared to the wild-type spike, the Delta one shows a higher affinity towards heparan sulfate proteoglycans than towards ACE2. In addition to attachment to the polyanionic heparan sulfate chains, the Delta spike's molecular interactions with syndecan-4 also involve syndecan-4's cell-binding domain that mediates cell-to-cell adhesion. Regardless of the complexity of these interactions, exogenously added heparin blocks Delta's cellular entry as efficiently as syndecan-4 knockdown. Therefore, a profound understanding of the molecular mechanisms underlying Delta infections enables the development of molecularly targeted yet simple strategies to reduce the Delta variant's spread.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| | - Gábor Veres
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| | - Annamária Letoha
- Albert Szent-Györgyi Clinical Center, Department of Medicine, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - László Szilák
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| | - Tamás Letoha
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| |
Collapse
|
27
|
Wang P, Zhao J, Hossaini Nasr S, Otieno SA, Zhang F, Qiang W, Linhardt RJ, Huang X. Probing Amyloid β Interactions with Synthetic Heparan Sulfate Oligosaccharides. ACS Chem Biol 2021; 16:1894-1899. [PMID: 33592143 DOI: 10.1021/acschembio.0c00904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heparan sulfate (HS) can play important roles in the biology and pathology of amyloid β (Aβ), a hallmark of Alzheimer's disease. To better understand the structure-activity relationship of HS/Aβ interactions, synthetic HS oligosaccharides ranging from tetrasaccharides to decasaccharides have been utilized to study Aβ interactions. Surface plasmon resonance experiments showed that the highly sulfated HS tetrasaccharides bearing full 2-O, 6-O, and N-sulfations exhibited the strongest binding with Aβ among the tetrasaccharides investigated. Elongating the glycan length to hexa- and deca-saccharides significantly enhanced Aβ affinity compared to the corresponding HS tetrasaccharide. Solid state NMR studies of the complexes of Aβ with HS hexa- and deca-saccharides showed most significant chemical shift perturbation in the C-terminus residues of Aβ. The strong binding HS oligosaccharides could reduce the cellular toxicities induced by Aβ. This study provides new insights into HS/Aβ interactions, highlighting how synthetic structurally well-defined HS oligosaccharides can assist in biological understanding of Aβ.
Collapse
Affiliation(s)
| | - Jing Zhao
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Sarah A. Otieno
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | |
Collapse
|
28
|
Gondelaud F, Bouakil M, Le Fèvre A, Miele AE, Chirot F, Duclos B, Liwo A, Ricard-Blum S. Extended disorder at the cell surface: The conformational landscape of the ectodomains of syndecans. Matrix Biol Plus 2021; 12:100081. [PMID: 34505054 PMCID: PMC8416954 DOI: 10.1016/j.mbplus.2021.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 10/26/2022] Open
Abstract
Syndecans are membrane proteoglycans regulating extracellular matrix assembly, cell adhesion and signaling. Their ectodomains can be shed from the cell surface, and act as paracrine and autocrine effectors or as competitors of full-length syndecans. We report the first biophysical characterization of the recombinant ectodomains of the four human syndecans using biophysical techniques, and show that they behave like flexible random-coil intrinsically disordered proteins, and adopt several conformation ensembles in solution. We have characterized their conformational landscapes using native mass spectrometry (MS) and ion-mobility MS, and demonstrated that the syndecan ectodomains explore the majority of their conformational landscape, from minor compact, globular-like, conformations to extended ones. We also report that the ectodomain of syndecan-4, corresponding to a natural isoform, is able to dimerize via a disulfide bond. We have generated a three-dimensional model of the C-terminus of this dimer, which supports the dimerization via a disulfide bond. Furthermore, we have mapped the NXIP adhesion motif of syndecans and their sequences involved in the formation of ternary complexes with integrins and growth factor receptors on the major conformations of their ectodomains, and shown that these sequences are not accessible in all the conformations, suggesting that only some of them are biologically active. Lastly, although the syndecan ectodomains have a far lower number of amino acid residues than their membrane partners, their intrinsic disorder and flexibility allow them to adopt extended conformations, which have roughly the same size as the cell surface receptors (e.g., integrins and growth factor receptors) they bind to.
Collapse
Key Words
- CCS, collision cross section
- CD, circular dichroism
- CSD, charge state distribution
- Cell-matrix interactions
- Conformations
- DLS, dynamic light scattering
- DTT, dithiothreitol
- ED, ectodomain
- ESI-IM-MS, electrospray ionization - ion mobility - mass spectrometry
- ESI-MS, electrospray ionization - mass spectrometry
- GAG, glycosaminoglycan
- IDP, intrinsically disordered protein
- Intrinsically disordered proteins
- MoRF, molecular recognition feature
- PAGE, polyacrylamide gel electrophoresis
- PMG, pre-molten globule
- RC, random-coil
- SASA, solvent accessible surface area
- SAXS, small angle X-ray scattering
- SDC, syndecan
- SDS, sodium dodecyl sulfate
- SEC, size exclusion chromatography
- Syndecans
- TFE, trifluoroethanol
Collapse
Affiliation(s)
- Frank Gondelaud
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Mathilde Bouakil
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Cité Lyonnaise de l'Environnement et de l'Analyse, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Aurélien Le Fèvre
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Adriana Erica Miele
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Fabien Chirot
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Bertrand Duclos
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Adam Liwo
- Laboratory of Molecular Modeling, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| |
Collapse
|
29
|
Hudák A, Jósvay K, Domonkos I, Letoha A, Szilák L, Letoha T. The Interplay of Apoes with Syndecans in Influencing Key Cellular Events of Amyloid Pathology. Int J Mol Sci 2021; 22:ijms22137070. [PMID: 34209175 PMCID: PMC8268055 DOI: 10.3390/ijms22137070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein E (ApoE) isoforms exert intricate effects on cellular physiology beyond lipid transport and metabolism. ApoEs influence the onset of Alzheimer’s disease (AD) in an isoform-dependent manner: ApoE4 increases AD risk, while ApoE2 decreases it. Previously we demonstrated that syndecans, a transmembrane proteoglycan family with increased expression in AD, trigger the aggregation and modulate the cellular uptake of amyloid beta (Aβ). Utilizing our previously established syndecan-overexpressing cellular assays, we now explore how the interplay of ApoEs with syndecans contributes to key events, namely uptake and aggregation, in Aβ pathology. The interaction of ApoEs with syndecans indicates isoform-specific characteristics arising beyond the frequently studied ApoE–heparan sulfate interactions. Syndecans, and among them the neuronal syndecan-3, increased the cellular uptake of ApoEs, especially ApoE2 and ApoE3, while ApoEs exerted opposing effects on syndecan-3-mediated Aβ uptake and aggregation. ApoE2 increased the cellular internalization of monomeric Aβ, hence preventing its extracellular aggregation, while ApoE4 decreased it, thus helping the buildup of extracellular plaques. The contrary effects of ApoE2 and ApoE4 remained once Aβ aggregated: while ApoE2 reduced the uptake of Aβ aggregates, ApoE4 facilitated it. Fibrillation studies also revealed ApoE4′s tendency to form fibrillar aggregates. Our results uncover yet unknown details of ApoE cellular biology and deepen our molecular understanding of the ApoE-dependent mechanism of Aβ pathology.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | - Katalin Jósvay
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Annamária Letoha
- Department of Medicine, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - László Szilák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | - Tamás Letoha
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
- Correspondence: ; Tel.: +36-(30)-2577393
| |
Collapse
|
30
|
Contribution of Syndecans to the Cellular Entry of SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22105336. [PMID: 34069441 PMCID: PMC8159090 DOI: 10.3390/ijms22105336] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel emerging pathogen causing an unprecedented pandemic in 21st century medicine. Due to the significant health and economic burden of the current SARS-CoV-2 outbreak, there is a huge unmet medical need for novel interventions effectively blocking SARS-CoV-2 infection. Unknown details of SARS-CoV-2 cellular biology hamper the development of potent and highly specific SARS-CoV-2 therapeutics. Angiotensin-converting enzyme-2 (ACE2) has been reported to be the primary receptor for SARS-CoV-2 cellular entry. However, emerging scientific evidence suggests the involvement of additional membrane proteins, such as heparan sulfate proteoglycans, in SARS-CoV-2 internalization. Here, we report that syndecans, the evolutionarily conserved family of transmembrane proteoglycans, facilitate the cellular entry of SARS-CoV-2. Among syndecans, the lung abundant syndecan-4 was the most efficient in mediating SARS-CoV-2 uptake. The S1 subunit of the SARS-CoV-2 spike protein plays a dominant role in the virus's interactions with syndecans. Besides the polyanionic heparan sulfate chains, other parts of the syndecan ectodomain, such as the cell-binding domain, also contribute to the interaction with SARS-CoV-2. During virus internalization, syndecans colocalize with ACE2, suggesting a jointly shared internalization pathway. Both ACE2 and syndecan inhibitors exhibited significant efficacy in reducing the cellular entry of SARS-CoV-2, thus supporting the complex nature of internalization. Data obtained on syndecan specific in vitro assays present syndecans as novel cellular targets of SARS-CoV-2 and offer molecularly precise yet simple strategies to overcome the complex nature of SARS-CoV-2 infection.
Collapse
|
31
|
Miao Y, Han P, Hua D, Zhou R, Guan Z, Lv Q, Dai X. Cold atmospheric plasma increases IBRV titer in MDBK cells by orchestrating the host cell network. Virulence 2021; 12:679-689. [PMID: 33554733 PMCID: PMC7889027 DOI: 10.1080/21505594.2021.1883933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enhancing virus multiplication could assist in the rapid production of vaccines against viral diseases. Cold atmospheric plasma (CAP), a physical approach relying on reactive oxygen species to achieve the desirable cellular outcome, was shown to be effective in enhancing virus propagation, where bovine rhinotrachieitis virus and Madin-Darby Bovine Kidney cells were used as the modeling virus and cell line, respectively. CAP was shown to create synergies with virus infection in arresting host cells at the G2/M stage, decreasing cell membrane potential, increasing intracellular calcium level, and inducing selective autophagy. In addition, CAP was demonstrated to suppress virus-triggered immunogenic signaling as evaluated by IRF7 expression. We presented evidences on CAP-triggered maximization of host resources toward virus multiplication that is advantageous for viral vaccine production, and opened a novel regime for applying CAP in the sector of medical care and health.
Collapse
Affiliation(s)
- Yujie Miao
- Wuxi School of Medicine, Jiangnan University , Wuxi, China
| | - Peiyu Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Dong Hua
- Affiliated Hospital of Jiangnan University , Wuxi China
| | - Renwu Zhou
- School of Chemical and Biomolecular Engineering, University of Sydney , Sydney, Australia
| | - Zhengbing Guan
- Wuxi School of Medicine, Jiangnan University , Wuxi, China
| | - Qing Lv
- Affiliated Hospital of Jiangnan University , Wuxi China
| | - Xiaofeng Dai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| |
Collapse
|
32
|
Hudák A, Kusz E, Domonkos I, Jósvay K, Kodamullil AT, Szilák L, Hofmann-Apitius M, Letoha T. Contribution of syndecans to cellular uptake and fibrillation of α-synuclein and tau. Sci Rep 2019; 9:16543. [PMID: 31719623 PMCID: PMC6851098 DOI: 10.1038/s41598-019-53038-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
Scientific evidence suggests that α-synuclein and tau have prion-like properties and that prion-like spreading and seeding of misfolded protein aggregates constitutes a central mechanism for neurodegeneration. Heparan sulfate proteoglycans (HSPGs) in the plasma membrane support this process by attaching misfolded protein fibrils. Despite of intense studies, contribution of specific HSPGs to seeding and spreading of α-synuclein and tau has not been explored yet. Here we report that members of the syndecan family of HSPGs mediate cellular uptake of α-synuclein and tau fibrils via a lipid-raft dependent and clathrin-independent endocytic route. Among syndecans, the neuron predominant syndecan-3 exhibits the highest affinity for both α-synuclein and tau. Syndecan-mediated internalization of α-synuclein and tau depends heavily on conformation as uptake via syndecans start to dominate once fibrils are formed. Overexpression of syndecans, on the other hand, reduces cellular uptake of monomeric α-synuclein and tau, yet exerts a fibril forming effect on both proteins. Data obtained from syndecan overexpressing cellular models presents syndecans, especially the neuron predominant syndecan-3, as important mediators of seeding and spreading of α-synuclein and tau and reveal how syndecans contribute to fundamental molecular events of α-synuclein and tau pathology.
Collapse
Affiliation(s)
| | | | - Ildikó Domonkos
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Katalin Jósvay
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Alpha Tom Kodamullil
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| | - László Szilák
- Szilak Laboratories, Bioinformatics and Molecule-Design, Szeged, H-6723, Hungary
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| | | |
Collapse
|
33
|
Hua R, Yu J, Yan X, Ni Q, Zhi X, Li X, Jiang B, Zhu J. Syndecan-2 in colorectal cancer plays oncogenic role via epithelial-mesenchymal transition and MAPK pathway. Biomed Pharmacother 2019; 121:109630. [PMID: 31707342 DOI: 10.1016/j.biopha.2019.109630] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE In this study, we aimed to elucidate the biological roles of Syndecan-2 (SDC2) in colorectal cancer (CRC), thereby further understanding its clinical role. METHODS The expression of SDC2 was assessed by qRT-PCR and Western blot analysis. To understand the potential biological role of SDC2, we also explored the correlation between its expression level and clinicopathologic parameters. By using MTT, plate colony formation assay, Transwell invasion assays, and flow cytometry in vitro, the biological impact of SDC2 on CRC cell proliferation, migration, invasion, and apoptosis. In addition, the related signaling pathways were investigated. RESULTS SDC2 expression was significantly upregulated in CRC tissues. The expression of SDC2 was highly associated with four parameters, i.e., stage (P < 0.01), vascular invasion (P = 0.0045), lymph node metastasis (P=0.0018), and distant metastasis (P = 0.0019). Knockdown of SDC2 significantly reduced proliferation, migration, and invasion of HCT116 and SW480 cells, and induced cell apoptosis. Moreover, SDC2 promoted epithelial-mesenchymal transition (EMT) in CRC cells, whereas the ratio of p-MEK/MEK and p-ERK/ERK markedly reduced after depleting SDC2. CONCLUSION During CRC development, overexpression of SDC2 plays a carcinogenic role in CRC. Therapeutic solutions targeting SDC2 may provide potential insights into CRC prevention and treatment.
Collapse
Affiliation(s)
- Ruheng Hua
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Jiawei Yu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Xiyue Yan
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Qingfeng Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Xiaofei Zhi
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Xiaolong Li
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Bin Jiang
- Department of General Surgery, Xinghua First People's Hospital, Taizhou 225300, Jiangsu, PR China
| | - Jianwei Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China.
| |
Collapse
|
34
|
De Pasquale V, Pavone LM. Heparan sulfate proteoglycans: The sweet side of development turns sour in mucopolysaccharidoses. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165539. [PMID: 31465828 DOI: 10.1016/j.bbadis.2019.165539] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are complex carbohydrate-modified proteins ubiquitously expressed on cell surfaces, extracellular matrix and basement membrane of mammalian tissues. Beside to serve as structural constituents, they regulate multiple cellular activities. A critical involvement of HSPGs in development has been established, and perturbations of HSPG-dependent pathways are associated with many human diseases. Recent evidence suggest a role of HSPGs in the pathogenesis of mucopolysaccharidoses (MPSs) where the accumulation of undigested HS results in the loss of cellular functions, tissue damage and organ dysfunctions accounting for clinical manifestations which include central nervous system (CNS) involvement, degenerative joint disease and reduced bone growth. Current therapies are not curative but only ameliorate the disease symptoms. Here, we highlight the link between HSPG functions in the development of CNS and musculoskeletal structures and the etiology of some MPS phenotypes, suggesting that HSPGs may represent potential targets for the therapy of such incurable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| |
Collapse
|