1
|
Schrempft S, Trofimova O, Künzi M, Ramponi C, Lutti A, Kherif F, Latypova A, Vollenweider P, Marques-Vidal P, Preisig M, Kliegel M, Stringhini S, Draganski B. The Neurobiology of Life Course Socioeconomic Conditions and Associated Cognitive Performance in Middle to Late Adulthood. J Neurosci 2024; 44:e1231232024. [PMID: 38499361 PMCID: PMC11044112 DOI: 10.1523/jneurosci.1231-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 03/20/2024] Open
Abstract
Despite major advances, our understanding of the neurobiology of life course socioeconomic conditions is still scarce. This study aimed to provide insight into the pathways linking socioeconomic exposures-household income, last known occupational position, and life course socioeconomic trajectories-with brain microstructure and cognitive performance in middle to late adulthood. We assessed socioeconomic conditions alongside quantitative relaxometry and diffusion-weighted magnetic resonance imaging indicators of brain tissue microstructure and cognitive performance in a sample of community-dwelling men and women (N = 751, aged 50-91 years). We adjusted the applied regression analyses and structural equation models for the linear and nonlinear effects of age, sex, education, cardiovascular risk factors, and the presence of depression, anxiety, and substance use disorders. Individuals from lower-income households showed signs of advanced brain white matter (WM) aging with greater mean diffusivity (MD), lower neurite density, lower myelination, and lower iron content. The association between household income and MD was mediated by neurite density (B = 0.084, p = 0.003) and myelination (B = 0.019, p = 0.009); MD partially mediated the association between household income and cognitive performance (B = 0.017, p < 0.05). Household income moderated the relation between WM microstructure and cognitive performance, such that greater MD, lower myelination, or lower neurite density was only associated with poorer cognitive performance among individuals from lower-income households. Individuals from higher-income households showed preserved cognitive performance even with greater MD, lower myelination, or lower neurite density. These findings provide novel mechanistic insights into the associations between socioeconomic conditions, brain anatomy, and cognitive performance in middle to late adulthood.
Collapse
Affiliation(s)
- Stephanie Schrempft
- Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva CH-1205, Switzerland
| | - Olga Trofimova
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Morgane Künzi
- Swiss National Centre of Competences in Research, "LIVES - Overcoming Vulnerability: Life Course Perspectives," University of Lausanne and University of Geneva, Lausanne CH-1015 and Carouge CH-1227, Switzerland
- Department of Psychology, University of Geneva, Geneva CH-1205, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Carouge CH-1227, Switzerland
| | - Cristina Ramponi
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Adeliya Latypova
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne CH-1008, Switzerland
| | - Matthias Kliegel
- Swiss National Centre of Competences in Research, "LIVES - Overcoming Vulnerability: Life Course Perspectives," University of Lausanne and University of Geneva, Lausanne CH-1015 and Carouge CH-1227, Switzerland
- Department of Psychology, University of Geneva, Geneva CH-1205, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Carouge CH-1227, Switzerland
| | - Silvia Stringhini
- Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva CH-1205, Switzerland
- Department of Health and Community Medicine, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
- University Centre for General Medicine and Public Health, University of Lausanne, Lausanne CH-1005, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, D-04303 Leipzig, Germany
| |
Collapse
|
2
|
Wang X, Chen Q, Liu Y, Sun J, Li J, Zhao P, Cai L, Liu W, Yang Z, Wang Z, Lv H. Causal relationship between multiparameter brain MRI phenotypes and age: evidence from Mendelian randomization. Brain Commun 2024; 6:fcae077. [PMID: 38529357 PMCID: PMC10963122 DOI: 10.1093/braincomms/fcae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
To explore the causal relationship between age and brain health (cortical atrophy, white matter integrity, white matter hyperintensities and cerebral microbleeds in various brain regions) related multiparameter imaging features using two-sample Mendelian randomization. Age was determined as chronological age of the subject. Cortical volume, white matter micro-integrity, white matter hyperintensity volume and cerebral microbleeds of each brain region were included as phenotypes for brain health. Age and imaging of brain health related genetic data were analysed to determine the causal relationship using inverse-variance weighted model, validated by heterogeneity and horizontal pleiotropy variables. Age is causally related to increased volumes of white matter hyperintensities (β = 0.151). For white matter micro-integrity, fibres of the inferior cerebellar peduncle (axial diffusivity β = -0.128, orientation dispersion index β = 0.173), cerebral peduncle (axial diffusivity β = -0.136), superior fronto-occipital fasciculus (isotropic volume fraction β = 0.163) and fibres within the limbic system were causally deteriorated. We also detected decreased cortical thickness of multiple frontal and temporal regions (P < 0.05). Microbleeds were not related with aging (P > 0.05). Aging is a threat of brain health, leading to cortical atrophy mainly in the frontal lobes, as well as the white matter degeneration especially abnormal hyperintensity and deteriorated white matter integrity around the hippocampus.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yawen Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Sun
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jia Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Linkun Cai
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wenjuan Liu
- Department of Radiology, Aerospace Center Hospital, Beijing 100089, China
- Peking University Aerospace School of Clinical Medicine, Beijing 100089, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
3
|
Brenner EK, Bangen KJ, Clark AL, Delano-Wood L, Evangelista ND, Edwards L, Sorg SF, Jak AJ, Bondi MW, Deoni SCL, Lamar M. Sex moderates the association between age and myelin water fraction in the cingulum and fornix among older adults without dementia. Front Aging Neurosci 2023; 15:1267061. [PMID: 38161592 PMCID: PMC10757372 DOI: 10.3389/fnagi.2023.1267061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Background Decreasing white matter integrity in limbic pathways including the fornix and cingulum have been reported in Alzheimer's disease (AD), although underlying mechanisms and potential sex differences remain understudied. We therefore sought to explore sex as a moderator of the effect of age on myelin water fraction (MWF), a measure of myelin content, in older adults without dementia (N = 52). Methods Participants underwent neuropsychological evaluation and 3 T MRI at two research sites. Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) quantified MWF in 3 a priori regions including the fornix, hippocampal cingulum (CgH), and cingulate cingulum (CgC). The California Verbal Learning Test-Second Edition assessed learning and delayed recall. Multiple linear regressions assessed for (1) interactions between age and sex on regional MWF and (2) associations of regional MWF and memory. Results (1) There was a significant age by sex interaction on MWF of the fornix (p = 0.002) and CgC (p = 0.005), but not the CgH (p = 0.192); as age increased, MWF decreased in women but not men. (2) Fornix MWF was associated with both learning and recall (ps < 0.01), but MWF of the two cingulum regions were not (p > 0.05). Results were unchanged when adjusting for hippocampal volume. Conclusion The current work adds to the literature by illuminating sex differences in age-related myelin decline using a measure sensitive to myelin and may help facilitate detection of AD risk for women.
Collapse
Affiliation(s)
- Einat K. Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Katherine J. Bangen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Alexandra L. Clark
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicole D. Evangelista
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Lauren Edwards
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, CA, United States
| | - Scott F. Sorg
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, United States
| | - Amy J. Jak
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Mark W. Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | | | - Melissa Lamar
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
4
|
Ibrahim K, Bennett IJ. Hippocampal microstructure, but not macrostructure, mediates age differences in episodic memory. Front Aging Neurosci 2023; 15:1285375. [PMID: 38053843 PMCID: PMC10694359 DOI: 10.3389/fnagi.2023.1285375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Separate unimodal magnetic resonance imaging (MRI) literatures have shown that hippocampal gray matter macrostructure (volume) and microstructure (diffusion) decline with age and relate to episodic memory performance, with multimodal MRI studies reporting that episodic memory may be better explained by a combination of these metrics. However, these effects are often assessed independent of age or only within older adults and therefore do not address whether these distinct modalities explain variance in (i.e, mediate) the effect of age on episodic memory. Methods Here, we simultaneously examined the unique and joint contribution of hippocampal volume and diffusion to age-related differences in episodic memory in 83 younger and 61 older adults who underwent a T1- and diffusion-weighted MRI and completed the Rey Auditory Verbal Learning Test. Results As expected, older age was significantly related to smaller volume and higher diffusion (intracellular, dispersion, and free) in bilateral hippocampus and to worse episodic memory performance (immediate and delayed free recall, recognition). Structural equation modelling revealed that the age-memory relationship was significantly mediated by hippocampal diffusion, but not volume. A non-significant influential indirect effect further revealed that the structural metrics did not jointly mediate the age-memory relationship. Discussion Together, these findings indicate that hippocampal microstructure uniquely contributes to age-related differences in episodic memory and suggest that volume and diffusion capture distinct neurobiological properties of hippocampal gray matter.
Collapse
Affiliation(s)
| | - Ilana J. Bennett
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Ma J, McGlade EC, Huber RS, Lyoo IK, Renshaw PF, Yurgelun-Todd DA. Overweight/Obesity-related microstructural alterations of the fimbria-fornix in the ABCD study: The role of aerobic physical activity. PLoS One 2023; 18:e0287682. [PMID: 37437033 PMCID: PMC10337868 DOI: 10.1371/journal.pone.0287682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023] Open
Abstract
Childhood overweight/obesity has been associated with negative consequences related to brain function and may involve alterations in white matter pathways important for cognitive and emotional processing. Aerobic physical activity is a promising lifestyle factor that could restore white matter alterations. However, little is known about either regional white matter alterations in children with overweight/obesity or the effects of aerobic physical activity targeting the obesity-related brain alterations in children. Using a large-scale cross-sectional population-based dataset of US children aged 9 to 10 years (n = 8019), this study explored the associations between overweight/obesity and microstructure of limbic white matter tracts, and examined whether aerobic physical activity may reduce the overweight/obesity-related white matter alterations in children. The primary outcome measure was restriction spectrum imaging (RSI)-derived white matter microstructural integrity measures. The number of days in a week that children engaged in aerobic physical activity for at least 60 minutes per day was assessed. We found that females with overweight/obesity had lower measures of integrity of the fimbria-fornix, a major limbic-hippocampal white matter tract, than their lean peers, while this difference was not significant in males. We also found a positive relationship between the number of days of aerobic physical activity completed in a week and integrity measures of the fimbria-fornix in females with overweight/obesity. Our results provide cross-sectional evidence of sex-specific microstructural alteration in the fimbria-fornix in children with overweight/obesity and suggest that aerobic physical activity may play a role in reducing this alteration. Future work should examine the causal direction of the relationship between childhood overweight/obesity and brain alterations and evaluate potential interventions to validate the effects of aerobic physical activity on this relationship.
Collapse
Affiliation(s)
- Jiyoung Ma
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Erin C. McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, Utah, United States of America
| | - Rebekah S. Huber
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - In Kyoon Lyoo
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Perry F. Renshaw
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, Utah, United States of America
| | - Deborah A. Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, Utah, United States of America
| |
Collapse
|
6
|
Korbmacher M, de Lange AM, van der Meer D, Beck D, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Brain-wide associations between white matter and age highlight the role of fornix microstructure in brain ageing. Hum Brain Mapp 2023; 44:4101-4119. [PMID: 37195079 PMCID: PMC10258541 DOI: 10.1002/hbm.26333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023] Open
Abstract
Unveiling the details of white matter (WM) maturation throughout ageing is a fundamental question for understanding the ageing brain. In an extensive comparison of brain age predictions and age-associations of WM features from different diffusion approaches, we analyzed UK Biobank diffusion magnetic resonance imaging (dMRI) data across midlife and older age (N = 35,749, 44.6-82.8 years of age). Conventional and advanced dMRI approaches were consistent in predicting brain age. WM-age associations indicate a steady microstructure degeneration with increasing age from midlife to older ages. Brain age was estimated best when combining diffusion approaches, showing different aspects of WM contributing to brain age. Fornix was found as the central region for brain age predictions across diffusion approaches in complement to forceps minor as another important region. These regions exhibited a general pattern of positive associations with age for intra axonal water fractions, axial, radial diffusivities, and negative relationships with age for mean diffusivities, fractional anisotropy, kurtosis. We encourage the application of multiple dMRI approaches for detailed insights into WM, and the further investigation of fornix and forceps as potential biomarkers of brain age and ageing.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- Mohn Medical Imaging and Visualisation Center (MMIV)BergenNorway
| | - Ann Marie de Lange
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- Department of PsychiatryUniversity of OxfordOxfordUK
- LREN, Centre for Research in Neurosciences–Department of Clinical NeurosciencesCHUV and University of LausanneLausanneSwitzerland
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtNetherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- Department of Psychiatric Research, Diakonhjemmet HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Eli Eikefjord
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- Mohn Medical Imaging and Visualisation Center (MMIV)BergenNorway
| | - Arvid Lundervold
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- Mohn Medical Imaging and Visualisation Center (MMIV)BergenNorway
- Department of RadiologyHaukeland University HospitalBergenNorway
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Ole A. Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Lars T. Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Ivan I. Maximov
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
| |
Collapse
|
7
|
Trofimova O, Latypova A, DiDomenicantonio G, Lutti A, de Lange AMG, Kliegel M, Stringhini S, Marques-Vidal P, Vaucher J, Vollenweider P, Strippoli MPF, Preisig M, Kherif F, Draganski B. Topography of associations between cardiovascular risk factors and myelin loss in the ageing human brain. Commun Biol 2023; 6:392. [PMID: 37037939 PMCID: PMC10086032 DOI: 10.1038/s42003-023-04741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Our knowledge of the mechanisms underlying the vulnerability of the brain's white matter microstructure to cardiovascular risk factors (CVRFs) is still limited. We used a quantitative magnetic resonance imaging (MRI) protocol in a single centre setting to investigate the cross-sectional association between CVRFs and brain tissue properties of white matter tracts in a large community-dwelling cohort (n = 1104, age range 46-87 years). Arterial hypertension was associated with lower myelin and axonal density MRI indices, paralleled by higher extracellular water content. Obesity showed similar associations, though with myelin difference only in male participants. Associations between CVRFs and white matter microstructure were observed predominantly in limbic and prefrontal tracts. Additional genetic, lifestyle and psychiatric factors did not modulate these results, but moderate-to-vigorous physical activity was linked to higher myelin content independently of CVRFs. Our findings complement previously described CVRF-related changes in brain water diffusion properties pointing towards myelin loss and neuroinflammation rather than neurodegeneration.
Collapse
Affiliation(s)
- Olga Trofimova
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adeliya Latypova
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Giulia DiDomenicantonio
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ann-Marie G de Lange
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Matthias Kliegel
- Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Silvia Stringhini
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julien Vaucher
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Pierre F Strippoli
- Center for Research in Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martin Preisig
- Center for Research in Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
8
|
Bourbon-Teles J, Jorge L, Canário N, Martins R, Santana I, Castelo-Branco M. Associations between cortical β-amyloid burden, fornix microstructure and cognitive processing of faces, places, bodies and other visual objects in early Alzheimer's disease. Hippocampus 2023; 33:112-124. [PMID: 36578233 DOI: 10.1002/hipo.23493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/10/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022]
Abstract
Using two imaging modalities, that is, Pittsburgh compound B (PiB) positron emission tomography (PET) and diffusion tensor imaging (DTI) the present study tested associations between cortical amyloid-beta (Aβ) burden and fornix microstructural changes with cognitive deficits in early Alzheimer's disease (AD), namely deficits in working memory (1-back) processing of visual object categories (faces, places, objects, bodies and verbal material). Second, we examined cortical Aβ associations with fornix microstructure. Seventeen early AD patients and 17 healthy-matched controls were included. Constrained spherical deconvolution-based tractography was used to segment the fornix and a control tract the central branch of the superior longitudinal fasciculus (CB-SLF) previously implicated in working memory processes. Standard uptake value ratios (SUVR) of Aβ were extracted from 45 cortical/subcortical regions from the AAL atlas and subject to principal component analysis for data reduction. Patients exhibited (i) impairments in cognitive performance (ii) reductions in fornix fractional anisotropy (FA) and (iii) increases in a component that loaded highly on cortical Aβ. There were no group differences in CB-SLF FA and in a component loading highly on subcortical Aβ. Partial correlation analysis in the patient group showed (i) positive associations between fornix FA and performance for all the visual object categories and (ii) a negative association between the cortical Aβ component and performance for the object categories but not for the remaining classes of visual stimuli. A subsequent analysis showed a positive association between overall cognition (performance across distinct 1-back task conditions) with fornix FA but no association with cortical Aβ burden, in keeping with influential accounts on early onset AD. This indicates that the fornix degenerates early in AD and contributes to deficits in working memory processing of visual object categories; though it is also important to acknowledge the importance of prospective longitudinal studies with larger samples. Overall, the effect sizes of fornical degeneration on visual working memory appeared stronger than the ones related to amyloid burden.
Collapse
Affiliation(s)
- José Bourbon-Teles
- HEI-Lab, Lusófona University, Lisbon, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Coimbra University Hospital, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Lacalle-Aurioles M, Iturria-Medina Y. Fornix degeneration in risk factors of Alzheimer's disease, possible trigger of cognitive decline. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100158. [PMID: 36703699 PMCID: PMC9871745 DOI: 10.1016/j.cccb.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Risk factors of late-onset Alzheimer's disease (AD) such as aging, type 2 diabetes, obesity, heart failure, and traumatic brain injury can facilitate the appearance of cognitive decline and dementia by triggering cerebrovascular pathology and neuroinflammation. White matter (WM) microstructure and function are especially vulnerable to these conditions. Microstructural WM changes, assessed with diffusion weighted magnetic resonance imaging, can already be detected at preclinical stages of AD, and in the presence of the aforementioned risk factors. Particularly, the limbic system and cortico-cortical association WM tracts, which myelinate late during brain development, degenerate at the earliest stages. The fornix, a C-shaped WM tract that originates from the hippocampus, is one of the limbic tracts that shows early microstructural changes. Fornix integrity is necessary for ensuring an intact executive function and memory performance. Thus, a better understanding of the mechanisms that cause fornix degeneration is critical in the development of therapeutic strategies aiming to prevent cognitive decline in populations at risk. In this literature review, i) we deepen the idea that partial loss of forniceal integrity is an early event in AD, ii) we describe the role that common risk factors of AD can play in the degeneration of the fornix, and iii) we discuss some potential cellular and physiological mechanisms of WM degeneration in the scenario of cerebrovascular disease and inflammation.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Corresponding author at: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada,McConnell Brain Imaging Centre, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Lissaman R, Lancaster TM, Parker GD, Graham KS, Lawrence AD, Hodgetts CJ. Tract-specific differences in white matter microstructure between young adult APOE ε4 carriers and non-carriers: A replication and extension study. NEUROIMAGE. REPORTS 2022; 2:None. [PMID: 36507069 PMCID: PMC9726682 DOI: 10.1016/j.ynirp.2022.100126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
The parahippocampal cingulum bundle (PHCB) interconnects regions known to be vulnerable to early Alzheimer's disease (AD) pathology, including posteromedial cortex and medial temporal lobe. While AD-related pathology has been robustly associated with alterations in PHCB microstructure, specifically lower fractional anisotropy (FA) and higher mean diffusivity (MD), emerging evidence indicates that the reverse pattern is evident in younger adults at increased risk of AD. In one such study, Hodgetts et al. (2019) reported that healthy young adult carriers of the apolipoprotein-E (APOE) ε4 allele - the strongest common genetic risk factor for AD - showed higher FA and lower MD in the PHCB but not the inferior longitudinal fasciculus (ILF). These results are consistent with proposals claiming that heightened neural activity and intrinsic connectivity play a significant role in increasing posteromedial cortex vulnerability to amyloid-β and tau spread beyond the medial temporal lobe. Given the implications for understanding AD risk, here we sought to replicate Hodgetts et al.'s finding in a larger sample (N = 128; 40 APOE ε4 carriers, 88 APOE ε4 non-carriers) of young adults (age range = 19-33). Extending this work, we also conducted an exploratory analysis using a more advanced measure of white matter microstructure: hindrance modulated orientational anisotropy (HMOA). Contrary to the original study, we did not observe higher FA or lower MD in the PHCB of APOE ε4 carriers relative to non-carriers. Bayes factors (BFs) further revealed moderate-to-strong evidence in support of these null findings. In addition, we observed no APOE ε4-related differences in PHCB HMOA. Our findings indicate that young adult APOE ε4 carriers and non-carriers do not differ in PHCB microstructure, casting some doubt on the notion that early-life variation in PHCB tract microstructure might enhance vulnerability to amyloid-β accumulation and/or tau spread.
Collapse
Affiliation(s)
- Rikki Lissaman
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Thomas M. Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- School of Psychology, University of Bath, Bath, England, United Kingdom
| | - Greg D. Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kim S. Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andrew D. Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | - Carl J. Hodgetts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Department of Psychology, Royal Holloway, University of London, Egham, England, United Kingdom
| |
Collapse
|
11
|
Seixas AA, Rajabli F, Pericak-Vance MA, Jean-Louis G, Harms RL, Tarnanas I. Associations of digital neuro-signatures with molecular and neuroimaging measures of brain resilience: The altoida large cohort study. Front Psychiatry 2022; 13:899080. [PMID: 36061297 PMCID: PMC9435312 DOI: 10.3389/fpsyt.2022.899080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/06/2022] [Indexed: 01/08/2023] Open
Abstract
Background Mixed results in the predictive ability of traditional biomarkers to determine cognitive functioning and changes in older adults have led to misdiagnosis and inappropriate treatment plans to address mild cognitive impairment and dementia among older adults. To address this critical gap, the primary goal of the current study is to investigate whether a digital neuro signature (DNS-br) biomarker predicted global cognitive functioning and change over time relative among cognitively impaired and cognitive healthy older adults. The secondary goal is to compare the effect size of the DNS-br biomarker on global cognitive functioning compared to traditional imaging and genomic biomarkers. The tertiary goal is to investigate which demographic and clinical factors predicted DNS-br in cognitively impaired and cognitively healthy older adults. Methods We conducted two experiments (Study A and Study B) to assess DNS for brain resilience (DNS-br) against the established FDG-PET brain imaging signature for brain resilience, based on a 10 min digital cognitive assessment tool. Study A was a semi-naturalistic observational study that included 29 participants, age 65+, with mild to moderate mild cognitive impairment and AD diagnosis. Study B was also a semi-naturalistic observational multicenter study which included 496 participants (213 mild cognitive impairment (MCI) and 283 cognitively healthy controls (HC), a total of 525 participants-cognitively healthy (n = 283) or diagnosed with MCI (n = 213) or AD (n = 29). Results DNS-br total score and majority of the 11 DNS-br neurocognitive subdomain scores were significantly associated with FDG-PET resilience signature, PIB ratio, cerebral gray matter and white matter volume after adjusting for multiple testing. DNS-br total score predicts cognitive impairment for the 80+ individuals in the Altoida large cohort study. We identified a significant interaction between the DNS-br total score and time, indicating that participants with higher DNS-br total score or FDG-PET in the resilience signature would show less cognitive decline over time. Conclusion Our findings highlight that a digital biomarker predicted cognitive functioning and change, which established biomarkers are unable to reliably do. Our findings also offer possible etiologies of MCI and AD, where education did not protect against cognitive decline.
Collapse
Affiliation(s)
- Azizi A. Seixas
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Girardin Jean-Louis
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Ioannis Tarnanas
- Altoida Inc., Washington, DC, United States
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Kisel AA, Naumova AV, Yarnykh VL. Macromolecular Proton Fraction as a Myelin Biomarker: Principles, Validation, and Applications. Front Neurosci 2022; 16:819912. [PMID: 35221905 PMCID: PMC8863973 DOI: 10.3389/fnins.2022.819912] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Macromolecular proton fraction (MPF) is a quantitative MRI parameter describing the magnetization transfer (MT) effect and defined as a relative amount of protons bound to biological macromolecules with restricted molecular motion, which participate in magnetic cross-relaxation with water protons. MPF attracted significant interest during past decade as a biomarker of myelin. The purpose of this mini review is to provide a brief but comprehensive summary of MPF mapping methods, histological validation studies, and MPF applications in neuroscience. Technically, MPF maps can be obtained using a variety of quantitative MT methods. Some of them enable clinically reasonable scan time and resolution. Recent studies demonstrated the feasibility of MPF mapping using standard clinical MRI pulse sequences, thus substantially enhancing the method availability. A number of studies in animal models demonstrated strong correlations between MPF and histological markers of myelin with a minor influence of potential confounders. Histological studies validated the capability of MPF to monitor both demyelination and re-myelination. Clinical applications of MPF have been mainly focused on multiple sclerosis where this method provided new insights into both white and gray matter pathology. Besides, several studies used MPF to investigate myelin role in other neurological and psychiatric conditions. Another promising area of MPF applications is the brain development studies. MPF demonstrated the capabilities to quantitatively characterize the earliest stage of myelination during prenatal brain maturation and protracted myelin development in adolescence. In summary, MPF mapping provides a technically mature and comprehensively validated myelin imaging technology for various preclinical and clinical neuroscience applications.
Collapse
Affiliation(s)
- Alena A. Kisel
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
| | - Anna V. Naumova
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Vasily L. Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
- *Correspondence: Vasily L. Yarnykh,
| |
Collapse
|
13
|
Clarke H, Messaritaki E, Dimitriadis SI, Metzler-Baddeley C. Dementia Risk Factors Modify Hubs but Leave Other Connectivity Measures Unchanged in Asymptomatic Individuals: A Graph Theoretical Analysis. Brain Connect 2022; 12:26-40. [PMID: 34030485 PMCID: PMC8867081 DOI: 10.1089/brain.2020.0935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Alzheimer's disease (AD) is the most common form of dementia with genetic and environmental risk contributing to its development. Graph theoretical analyses of brain networks constructed from structural and functional magnetic resonance imaging (MRI) measurements have identified connectivity changes in AD and individuals with mild cognitive impairment. However, brain connectivity in asymptomatic individuals at risk of AD remains poorly understood. Methods: We analyzed diffusion-weighted MRI data from 161 asymptomatic individuals (38-71 years) from the Cardiff Ageing and Risk of Dementia Study (CARDS). We calculated white matter tracts and constructed whole-brain, default mode network (DMN) and visual structural brain networks that incorporate multiple structural metrics as edge weights. We then calculated the relationship of three AD risk factors, namely Apolipoprotein-E ɛ4 (APOE4) genotype, family history of dementia (FH), and central obesity (Waist-Hip-Ratio [WHR]), on graph theoretical measures and hubs. Results: We observed no risk-related differences in clustering coefficients, characteristic path lengths, eccentricity, diameter, and radius across the whole-brain, DMN or visual system. However, a hub in the right paracentral lobule was present in all the high-risk groups (FH, APOE4, obese), but absent in low-risk groups (no FH, APOE4-ve, healthy WHR). Discussion: We identified no risk-related effects on graph theoretical metrics in the structural brain networks of cognitively healthy individuals. However, high risk was associated with a hub in the right paracentral lobule, a medial fronto-parietal cortical area with motor and sensory functions. This finding is consistent with accumulating evidence for right parietal cortex contributions in AD. If this phenotype is shown to predict symptom development in longitudinal studies, it could be used as an early biomarker of AD. Impact statement Alzheimer's disease (AD) is a common form of dementia that to date has no cure. Identifying early biomarkers will aid the discovery and development of treatments that may slow AD progression in the future. In this article, we report that asymptomatic individuals at heightened risk of dementia due to their family history, Apolipoprotein-E ɛ4 genotype, and central adiposity have a hub in the right paracentral lobule, which is absent in low-risk groups. If this phenotype were to predict the development of symptoms in a longitudinal study of the same cohort, it could provide an early biomarker of disease progression.
Collapse
Affiliation(s)
- Hannah Clarke
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Medicine, UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Eirini Messaritaki
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- BRAIN Biomedical Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stavros I. Dimitriadis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
14
|
Savard M, Pascoal TA, Servaes S, Dhollander T, Iturria-Medina Y, Kang MS, Vitali P, Therriault J, Mathotaarachchi S, Benedet AL, Gauthier S, Rosa-Neto P. Impact of long- and short-range fiber depletion on the cognitive deficits of fronto-temporal dementia. eLife 2022; 11:73510. [PMID: 35073256 PMCID: PMC8824472 DOI: 10.7554/elife.73510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest a framework where white-matter (WM) atrophy plays an important role in fronto-temporal dementia (FTD) pathophysiology. However, these studies often overlook the fact that WM tracts bridging different brain regions may have different vulnerabilities to the disease and the relative contribution of grey-matter (GM) atrophy to this WM model, resulting in a less comprehensive understanding of the relationship between clinical symptoms and pathology. Using a common factor analysis to extract a semantic and an executive factor, we aimed to test the relative contribution of WM and GM of specific tracts in predicting cognition in the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI). We found that semantic symptoms were mainly dependent on short-range WM fibre disruption, while damage to long-range WM fibres was preferentially associated to executive dysfunction with the GM contribution to cognition being predominant for local processing. These results support the importance of the disruption of specific WM tracts to the core cognitive symptoms associated with FTD. As large-scale WM tracts, which are particularly vulnerable to vascular disease, were highly associated with executive dysfunction, our findings highlight the importance of controlling for risk factors associated with deep WM disease, such as vascular risk factors, in patients with FTD in order not to potentiate underlying executive dysfunction.
Collapse
Affiliation(s)
- Melissa Savard
- Translational Neuroimaging Laboratory, McGill University
| | | | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University
| | | | | | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University
| | - Paolo Vitali
- Department of Neurology and Neurosurgery, McGill University
| | | | | | | | | | | |
Collapse
|
15
|
Jiang Y, Gao Q, Liu Y, Gao B, Che Y, Lin L, Jiang J, Chang P, Song Q, Wang W, Wang N, Miao Y. Reduced White Matter Integrity in Patients With End-Stage and Non-end-Stage Chronic Kidney Disease: A Tract-Based Spatial Statistics Study. Front Hum Neurosci 2021; 15:774236. [PMID: 34955791 PMCID: PMC8709581 DOI: 10.3389/fnhum.2021.774236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Reduced white matter (WM) integrity has been implicated in chronic kidney disease (CKD), especially in end-stage renal disease (ESRD). However, whether the differences in WM abnormalities exist in ESRD and non-end-stage CKD (NES-CKD) remains unclear. Hence, this study aimed to investigate the WM microstructural changes between the two stages using diffusion tensor imaging (DTI) and explore the related influencing factors. Methods: Diffusion tensor imaging’ images were prospectively acquired from 18 patients with ESRD, 22 patients with NES-CKD, and 19 healthy controls (HCs). Tract-based spatial statistics (TBSS) was performed to assess the voxel-wise differences in WM abnormalities among the three groups. The relationships between DTI parameters and biochemical data were also analyzed. Results: Compared with NES-CKDs, FA value was significantly decreased, and AD value increased in ESRDs mainly in brain regions of bilateral anterior thalamic radiation (ATR), the genu and body of corpus callosum (CC), bilateral anterior corona radiata, superior corona radiata, and superior longitudinal fasciculus. Besides, extensive and symmetrical deep WM damages were observed in patients with ESRD, accompanied by increased MD and RD values. Multiple regression analysis revealed that uric acid and serum phosphorus level can be used as independent predictors of WM microstructural abnormalities in clusters with statistical differences in DTI parameters between ESRD and NES-CKD groups. Conclusion: In the progression of CKD, patients with ESRD have more severe WM microstructural abnormalities than NES-CKDs, and this progressive deterioration may be related to uric acid and phosphate levels.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiuyi Gao
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yangyingqiu Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingbing Gao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yiwei Che
- Department of Radiology, The Third People's Hospital of Dalian, Dalian, China
| | | | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peipei Chang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weiwei Wang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Venkatesh A, Daugherty AM, Bennett IJ. Neuroimaging measures of iron and gliosis explain memory performance in aging. Hum Brain Mapp 2021; 42:5761-5770. [PMID: 34520095 PMCID: PMC8559505 DOI: 10.1002/hbm.25652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/13/2022] Open
Abstract
Evidence from animal and histological studies has indicated that accumulation of iron in the brain results in reactive gliosis that contributes to cognitive deficits. The current study extends these findings to human cognitive aging and suggests that magnetic resonance imaging (MRI) techniques like quantitative relaxometry can be used to study iron and its effects in vivo. The effects of iron on microstructure and memory performance were examined using a combination of quantitative relaxometry and multicompartment diffusion imaging in 35 young (21.06 ± 2.18 years) and 28 older (72.58 ± 6.47 years) adults, who also completed a memory task. Replicating past work, results revealed age‐related increases in iron content (R2*) and diffusion, and decreases in memory performance. Independent of age group, iron content was significantly related to restricted (intracellular) diffusion in regions with low‐moderate iron (hippocampus, caudate) and to all diffusion metrics in regions with moderate‐high iron (putamen, globus pallidus). This pattern is consistent with different stages of iron‐related gliosis, ranging from astrogliosis that may influence intracellular diffusion to microglial proliferation and increased vascular permeability that may influence all sources of diffusion. Further, hippocampal restricted diffusion was significantly related to memory performance, with a third of this effect related to iron content; consistent with the hypothesis that higher iron‐related astrogliosis in the hippocampus is associated with poorer memory performance. These results demonstrate the sensitivity of MRI to iron‐related gliosis and extend our understanding of its impact on cognition by showing that this relationship also explains individual differences in memory performance.
Collapse
Affiliation(s)
- Anu Venkatesh
- Department of Neuroscience, University of California Riverside, Riverside, California, USA
| | - Ana M Daugherty
- Department of Psychology, Wayne State University, Detroit, Michigan, USA
| | - Ilana J Bennett
- Department of Neuroscience, University of California Riverside, Riverside, California, USA.,Department of Psychology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
17
|
Roy M, Fortier M, Rheault F, Edde M, Croteau E, Castellano C, Langlois F, St‐Pierre V, Cuenoud B, Bocti C, Fulop T, Descoteaux M, Cunnane SC. A ketogenic supplement improves white matter energy supply and processing speed in mild cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12217. [PMID: 34869825 PMCID: PMC8596139 DOI: 10.1002/trc2.12217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/03/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION White matter (WM) energy supply is crucial for axonal function and myelin maintenance. An exogenous source of ketones, the brain's alternative fuel to glucose, bypasses the brain's glucose-specific energy deficit and improves cognitive outcomes in mild cognitive impairment (MCI). How an additional supply of ketones affects glucose or ketone uptake in specific WM fascicles in MCI has not previously been reported. METHODS This 6-month interventional study included MCI participants randomized to a placebo (n = 16) or ketogenic medium chain triglyceride (kMCT; n = 17) drink. A neurocognitive battery and brain imaging were performed pre- and post-intervention. WM fascicle uptake of ketone and glucose and structural properties were assessed using positron emission tomography and diffusion imaging, respectively. RESULTS Ketone uptake was increased in the kMCT group by 2.5- to 3.2-fold in all nine WM fascicles of interest (P < .001), an effect seen both in deep WM and in fascicle cortical endpoints. Improvement in processing speed was positively associated with WM ketone uptake globally and in individual fascicles, most importantly the fornix (r = +0.61; P = .014). DISCUSSION A 6-month kMCT supplement improved WM energy supply in MCI by increasing ketone uptake in WM fascicles. The significant positive association with processing speed suggests that ketones may have a role in myelin integrity in MCI.
Collapse
Affiliation(s)
- Maggie Roy
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
- Department of Pharmacology and PhysiologyUniversité de SherbrookeSherbrookeQuebecCanada
- Department of Computer ScienceUniversité de SherbrookeSherbrookeQuebecCanada
| | - Mélanie Fortier
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
| | - François Rheault
- Department of Computer ScienceUniversité de SherbrookeSherbrookeQuebecCanada
| | - Manon Edde
- Department of Computer ScienceUniversité de SherbrookeSherbrookeQuebecCanada
| | - Etienne Croteau
- Centre de Recherche‐CHUSCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
- Sherbrooke Molecular Imaging CenterUniversité de SherbrookeSherbrookeQuebecCanada
| | | | - Francis Langlois
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
| | - Valérie St‐Pierre
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
| | | | - Christian Bocti
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
- Department of MedicineUniversité de SherbrookeSherbrookeQuebecCanada
| | - Tamas Fulop
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
- Department of MedicineUniversité de SherbrookeSherbrookeQuebecCanada
| | - Maxime Descoteaux
- Department of Computer ScienceUniversité de SherbrookeSherbrookeQuebecCanada
| | - Stephen C. Cunnane
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
- Department of Pharmacology and PhysiologyUniversité de SherbrookeSherbrookeQuebecCanada
- Department of MedicineUniversité de SherbrookeSherbrookeQuebecCanada
| |
Collapse
|
18
|
Hippocampal and non-hippocampal correlates of physically active lifestyle and their relation to episodic memory in older adults. Neurobiol Aging 2021; 109:100-112. [PMID: 34706317 DOI: 10.1016/j.neurobiolaging.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022]
Abstract
Aging is associated with compromised neurocognition. While aerobic exercise has been linked with cognitive resilience, findings regarding its relationship with brain morphology are inconsistent. Furthermore, the biological underpinnings of the relationship between aerobic activity and memory in the aging human brain are unclear. To investigate these issues, we examined hippocampal and non-hippocampal structural correlates of aerobically active lifestyle and cardiorespiratory fitness in older adults. We then examined structural pathways which may potentially mediate the association between active lifestyle and memory. Fifty participants (aged 65-80) underwent structural and diffusion MRI, memory evaluation, were examined for active lifestyle and cardiorespiratory fitness. Morphological features of the hippocampus and fornix, white matter lesions, and brain atrophy were assessed. Active lifestyle and cardiorespiratory fitness correlated with all neurocognitive measures. An exploratory mediation analysis revealed hippocampal and white matter lesions pathways linking active lifestyle and cardiorespiratory fitness with memory. Our results support a neuroprotective role of aerobic exercise on the aging brain and suggest plausible morphological pathways that may underlie the relationship between aerobic exercise and memory.
Collapse
|
19
|
Archer DB, Moore EE, Pamidimukkala U, Shashikumar N, Pechman KR, Blennow K, Zetterberg H, Landman BA, Hohman TJ, Jefferson AL, Gifford KA. The relationship between white matter microstructure and self-perceived cognitive decline. Neuroimage Clin 2021; 32:102794. [PMID: 34479171 PMCID: PMC8414539 DOI: 10.1016/j.nicl.2021.102794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022]
Abstract
Subjective cognitive decline (SCD) is a perceived cognitive change prior to objective cognitive deficits, and although it is associated with Alzheimer's disease (AD) pathology, it likely results from multiple underlying pathologies. We investigated the association of white matter microstructure to SCD as a sensitive and early marker of cognitive decline and quantified the contribution of white matter microstructure separate from amyloidosis. Vanderbilt Memory & Aging Project participants with diffusion MRI data and a 45-item measure of SCD were included [n = 236, 137 cognitively unimpaired (CU), 99 with mild cognitive impairment (MCI), 73 ± 7 years, 37% female]. A subset of participants (64 CU, 40 MCI) underwent a fasting lumbar puncture for quantification of cerebrospinal fluid (CSF) amyloid-β(CSF Aβ42), total tau (CSF t-tau), and phosphorylated tau (CSF p-tau). Diffusion MRI data was post-processed using the free-water (FW) elimination technique, which allowed quantification of extracellular (FW) and intracellular compartment (fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity) microstructure. Microstructural values were quantified within 11 cognitive-related white matter tracts, including medial temporal lobe, frontal transcallosal, and fronto-parietal tracts using a region of interest approach. General linear modeling related each tract to SCD scores adjusting for age, sex, race/ethnicity, education, Framingham Stroke Risk Profile scores, APOE ε4 carrier status, diagnosis, Geriatric Depression Scale scores, hippocampal volume, and total white matter volume. Competitive models were analyzed to determine if white matter microstructural values have a unique role in SCD scores separate from CSF Aβ42. FW-corrected radial diffusivity (RDT) was related to SCD scores in 8 tracts: cingulum bundle, inferior longitudinal fasciculus, as well as inferior frontal gyrus (IFG) pars opercularis, IFG orbitalis, IFG pars triangularis, tapetum, medial frontal gyrus, and middle frontal gyrus transcallosal tracts. While CSF Aβ42 was related to SCD scores in our cohort (Radj2 = 39.03%; β = -0.231; p = 0.020), competitive models revealed that fornix and IFG pars triangularis transcallosal tract RDT contributed unique variance to SCD scores beyond CSF Aβ42 (Radj2 = 44.35% and Radj2 = 43.09%, respectively), with several other tract measures demonstrating nominal significance. All tracts which demonstrated nominal significance (in addition to covariates) were input into a backwards stepwise regression analysis. ILF RDT, fornix RDT, and UF FW were best associated with SCD scores (Radj2 = 46.69%; p = 6.37 × 10-12). Ultimately, we found that medial temporal lobe and frontal transcallosal tract microstructure is an important driver of SCD scores independent of early amyloid deposition. Our results highlight the potential importance of abnormal white matter diffusivity as an early contributor to cognitive decline. These results also highlight the value of incorporating multiple biomarkers to help disentangle the mechanistic heterogeneity of SCD as an early stage of cognitive decline.
Collapse
Affiliation(s)
- Derek B Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elizabeth E Moore
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ujwala Pamidimukkala
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niranjana Shashikumar
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly R Pechman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, England
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, England; UK Dementia Research Institute, London, England
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Bender AR, Brandmaier AM, Düzel S, Keresztes A, Pasternak O, Lindenberger U, Kühn S. Hippocampal Subfields and Limbic White Matter Jointly Predict Learning Rate in Older Adults. Cereb Cortex 2021; 30:2465-2477. [PMID: 31800016 DOI: 10.1093/cercor/bhz252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Age-related memory impairments have been linked to differences in structural brain parameters, including cerebral white matter (WM) microstructure and hippocampal (HC) volume, but their combined influences are rarely investigated. In a population-based sample of 337 older participants aged 61-82 years (Mage = 69.66, SDage = 3.92 years), we modeled the independent and joint effects of limbic WM microstructure and HC subfield volumes on verbal learning. Participants completed a verbal learning task of recall over five repeated trials and underwent magnetic resonance imaging (MRI), including structural and diffusion scans. We segmented three HC subregions on high-resolution MRI data and sampled mean fractional anisotropy (FA) from bilateral limbic WM tracts identified via deterministic fiber tractography. Using structural equation modeling, we evaluated the associations between learning rate and latent factors representing FA sampled from limbic WM tracts, and HC subfield volumes, and their latent interaction. Results showed limbic WM and the interaction of HC and WM-but not HC volume alone-predicted verbal learning rates. Model decomposition revealed HC volume is only positively associated with learning rate in individuals with higher WM anisotropy. We conclude that the structural characteristics of limbic WM regions and HC volume jointly contribute to verbal learning in older adults.
Collapse
Affiliation(s)
- Andrew R Bender
- Departments of Epidemiology and Biostatistics, Neurology and Ophthalmology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.,Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, D-14195 Berlin, Germany and London, UK WC1B 5EH
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany
| | - Attila Keresztes
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany.,Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.,Faculty of Education and Psychology, Eötvös Loránd University, H-1053 Budapest, Hungary
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, D-14195 Berlin, Germany and London, UK WC1B 5EH.,European University Institute, I-50014. San Domenico di Fiesole, Italy
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
21
|
Merenstein JL, Corrada MM, Kawas CH, Bennett IJ. Age affects white matter microstructure and episodic memory across the older adult lifespan. Neurobiol Aging 2021; 106:282-291. [PMID: 34332220 DOI: 10.1016/j.neurobiolaging.2021.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Diffusion imaging studies have observed age-related degradation of white matter that contributes to cognitive deficits separately in younger-old (ages 65-89) and oldest-old (ages 90+) adults. But it remains unclear whether these age effects are magnified in advanced age groups, which may reflect disease-related pathology. Here, we tested whether age-related differences in white matter microstructure followed linear or nonlinear patterns across the entire older adult lifespan (65-98 years), these patterns were influenced by oldest-old adults at increased risk of dementia (cognitive impairment no dementia, CIND), and they explained age effects on episodic memory. Results revealed nonlinear microstructure declines across fiber classes (medial temporal, callosal, association, projection and/or thalamic) that were largest for medial temporal fibers. These patterns remained after excluding oldest-old participants with CIND, indicating that aging of white matter microstructure cannot solely be explained by pathology associated with early cognitive impairment. Moreover, finding that the effect of age on episodic memory was mediated by medial temporal fiber microstructure suggests it is essential for facilitating memory-related neural signals across the older adult lifespan.
Collapse
Affiliation(s)
| | - María M Corrada
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA; Department of Epidemiology, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, CA, USA
| |
Collapse
|
22
|
Alvar A, Hahn Arkenberg R, McGowan B, Cheng H, Malandraki GA. The Role of White Matter in the Neural Control of Swallowing: A Systematic Review. Front Hum Neurosci 2021; 15:628424. [PMID: 34262441 PMCID: PMC8273764 DOI: 10.3389/fnhum.2021.628424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Swallowing disorders (dysphagia) can negatively impact quality of life and health. For clinicians and researchers seeking to improve outcomes for patients with dysphagia, understanding the neural control of swallowing is critical. The role of gray matter in swallowing control has been extensively documented, but knowledge is limited regarding the contributions of white matter. Our aim was to identify, evaluate, and summarize the populations, methods, and results of published articles describing the role of white matter in neural control of swallowing. Methods: We completed a systematic review with a multi-engine search following PRISMA-P 2015 standards. Two authors screened articles and completed blind full-text review and quality assessments using an adapted U.S. National Institute of Health's Quality Assessment. The senior author resolved any disagreements. Qualitative synthesis of evidence was completed. Results: The search yielded 105 non-duplicate articles, twenty-two of which met inclusion criteria. Twenty were rated as Good (5/22; 23%) or Fair (15/22; 68%) quality. Stroke was the most represented diagnosis (n = 20; 91%). All studies were observational, and half were retrospective cohort design. The majority of studies (13/22; 59%) quantified white matter damage with lesion-based methods, whereas 7/22 (32%) described intrinsic characteristics of white matter using methods like fractional anisotropy. Fifteen studies (68%) used instrumental methods for swallowing evaluations. White matter areas commonly implicated in swallowing control included the pyramidal tract, internal capsule, corona radiata, superior longitudinal fasciculus, external capsule, and corpus callosum. Additional noteworthy themes included: severity of white matter damage is related to dysphagia severity; bilateral white matter lesions appear particularly disruptive to swallowing; and white matter adaptation can facilitate dysphagia recovery. Gaps in the literature included limited sample size and populations, lack of in-depth evaluations, and issues with research design. Conclusion: Although traditionally understudied, there is sufficient evidence to conclude that white matter is critical in the neural control of swallowing. The reviewed studies indicated that white matter damage can be directly tied to swallowing deficits, and several white matter structures were implicated across studies. Further well-designed interdisciplinary research is needed to understand white matter's role in neural control of normal swallowing and in dysphagia recovery and rehabilitation.
Collapse
Affiliation(s)
- Ann Alvar
- I-EaT Swallowing Research Laboratory, Speech Language and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Rachel Hahn Arkenberg
- I-EaT Swallowing Research Laboratory, Speech Language and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Bethany McGowan
- Libraries and School of Information Studies, Purdue University, West Lafayette, IN, United States
| | - Hu Cheng
- Psychological and Brain Sciences, Imaging Research Facility, Indiana University, Bloomington, IN, United States
| | - Georgia A Malandraki
- I-EaT Swallowing Research Laboratory, Speech Language and Hearing Sciences, Purdue University, West Lafayette, IN, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
23
|
Roy M, Rheault F, Croteau E, Castellano CA, Fortier M, St-Pierre V, Houde JC, Turcotte ÉE, Bocti C, Fulop T, Cunnane SC, Descoteaux M. Fascicle- and Glucose-Specific Deterioration in White Matter Energy Supply in Alzheimer's Disease. J Alzheimers Dis 2021; 76:863-881. [PMID: 32568202 DOI: 10.3233/jad-200213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND White matter energy supply to oligodendrocytes and the axonal compartment is crucial for normal axonal function. Although gray matter glucose hypometabolism is extensively reported in Alzheimer's disease (AD), glucose and ketones, the brain's two main fuels, are rarely quantified in white matter in AD. OBJECTIVE Using a dual-tracer PET method combined with a fascicle-specific diffusion MRI approach, robust to white matter hyper intensities and crossing fibers, we aimed to quantify both glucose and ketone metabolism in specific white matter fascicles associated with mild cognitive impairment (MCI; n = 51) and AD (n = 13) compared to cognitively healthy age-matched controls (Controls; n = 14). METHODS Eight white matter fascicles of the limbic lobe and corpus callosum were extracted and analyzed into fascicle profiles of five sections. Glucose (18F-fluorodeoxyglucose) and ketone (11C-acetoacetate) uptake rates, corrected for partial volume effect, were calculated along each fascicle. RESULTS The only fascicle with significantly lower glucose uptake in AD compared to Controls was the left posterior cingulate segment of the cingulum (-22%; p = 0.016). Non-significantly lower glucose uptake in this fascicle was also observed in MCI. In contrast to glucose, ketone uptake was either unchanged or higher in sections of the fornix and parahippocampal segment of the cingulum in AD. CONCLUSION To our knowledge, this is the first report of brain fuel uptake calculated along white matter fascicles in humans. Energetic deterioration in white matter in AD appears to be specific to glucose and occurs first in the posterior cingulum.
Collapse
Affiliation(s)
- Maggie Roy
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Rheault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Etienne Croteau
- CR-CHUS, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Mélanie Fortier
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Valérie St-Pierre
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | | | - Éric E Turcotte
- CR-CHUS, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Bocti
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tamas Fulop
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Descoteaux
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
24
|
Region-specific vulnerability in neurodegeneration: lessons from normal ageing. Ageing Res Rev 2021; 67:101311. [PMID: 33639280 PMCID: PMC8024744 DOI: 10.1016/j.arr.2021.101311] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Why neurodegenerative disease pathology is regionally restricted remains elusive. Regions selectively prone to neurodegeneration are also vulnerable to normal ageing. Nervous system tissue, cellular and molecular ageing may determine regional vulnerability. Differential ageing can conceptually extend from an individual to subcellular scale. An understanding of region-specific vulnerability might guide therapeutic advances.
A number of age-associated neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), possess a shared characteristic of region-specific neurodegeneration. However, the mechanisms which determine why particular regions within the nervous system are selectively vulnerable to neurodegeneration, whilst others remain relatively unaffected throughout disease progression, remain elusive. Here, we review how regional susceptibility to the ubiquitous physiological phenomenon of normal ageing might underlie the vulnerability of these same regions to neurodegeneration, highlighting three regions archetypally associated with AD, PD and ALS (the hippocampus, substantia nigra pars compacta and ventral spinal cord, respectively), as especially prone to age-related alterations. Placing particular emphasis on these three regions, we comprehensively explore differential regional susceptibility to nervous system tissue, cellular and molecular level ageing to provide an integrated perspective on why age-related neurodegenerative diseases exhibit region-selective vulnerability. Combining these principles with increasingly recognised differences between chronological and biological ageing (termed differential or ‘delta’ ageing) might ultimately guide therapeutic approaches for these devastating neurodegenerative diseases, for which a paucity of disease modifying and/or life promoting treatments currently exist.
Collapse
|
25
|
Additive and Synergistic Cardiovascular Disease Risk Factors and HIV Disease Markers' Effects on White Matter Microstructure in Virally Suppressed HIV. J Acquir Immune Defic Syndr 2021; 84:543-551. [PMID: 32692114 DOI: 10.1097/qai.0000000000002390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is unclear whether intermediate to high cardiovascular disease (CVD) risk and HIV disease status may have additive (ie, independent statistical effects concomitantly tested) or synergistic effects on white matter microstructure and cognition in virally suppressed HIV-infected (HIV+) men relative to sex and age-matched controls. SETTING Tertiary health care observational cohort. METHODS Eighty-two HIV+ men (mean age 55 ± 6 years, 10%-30% on various CVD drugs; 20% with previous CVD) and 40 HIV-uninfected (HIV-) men (none with previous CVD; 10%-20% on various CVD drugs) underwent diffusion tensor imaging and neuropsychological testing. A standard classification of intermediate to high CVD risk (CVD+ group) was based on the Framingham score ≥15% cutoff and/or a history of CVD. Fractional anisotropy (FA) and mean diffusivity (MD) were quantified in 11 white matter tracts. RESULTS Within the HIV- group, the CVD+ group had lower FA (P = 0.03) and higher MD (P = 0.003) in the corona radiata and higher MD in the corpus callosum (P = 0.02) and superior fasciculi (P = 0.03) than the CVD- group. Within the HIV+ group, the CVD+ group had lower FA in the superior fasciculi (P = 0.04) and higher MD in the uncinate fasciculus (P = 0.04), and lower FA (P = 0.01) and higher MD (P = 0.03) in the fornix than the CVD- group. The fornix alterations were also abnormal compared with the HIV- groups. The HIV+ CVD+ was more likely to have HIV-associated dementia. Older age, antihypertensive use, longer HIV duration, and higher C-reactive protein associated with lower FA and higher MD. Higher blood CD4 lymphocyte count and CD4/CD8 ratio associated with higher FA and lower MD. CONCLUSIONS In virally suppressed HIV, CVD risk factors have a mostly additive contribution to white matter microstructural alterations, leading to a different distribution of injury in HIV- and HIV+ persons with CVD. There was also evidence of a synergistic effect of CVD and HIV factors on the fornix white matter injury.
Collapse
|
26
|
Brusius CV, Bianchin MM, Mira JM, Frigeri T, Kruger M, Grudtner MC, Lenhardt R, Maschke S, Wolfsberger S. Single Burr-Hole Extended Transforaminal Approach for Concurrent Endoscopic Surgery in the Third Ventricle Posterior to the Foramen of Monro and Ventriculostomy: Clinical Series and Planning Steps. World Neurosurg 2021; 150:e1-e11. [PMID: 33582291 DOI: 10.1016/j.wneu.2021.01.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE For endoscopic surgery of third ventricular lesions posterior to the foramen of Monro that frequently require a third ventriculostomy during the same procedure, the extended transforaminal approach (ETFA) through the choroid fissure has been proposed. This study reports clinical results and provides anatomic background and guidelines for individual planning of a single burr-hole approach and a safe transchoroid entry zone. METHODS A retrospective review was undertaken of 25 cases of concurrent third ventricle surgery and third ventriculostomy via ETFA. Assessment was made of a safe transchoroidal entry zone on cadavers (6 hemispheres) and of planning guidelines on magnetic resonance imaging showing occlusive hydrocephalus (30 sides). RESULTS ETFA was feasible in all 25 cases. The safe transchoroid entry zone was sufficient in 16 cases; in 9 cases, additional transchoroid opening with transection of the anterior septal vein was required without clinical consequences. The anatomic study showed a safe transchoroid entry zone of 5 mm (3-6 mm) for posterior enlargement of the foramen of Monro. Individual planning on magnetic resonance imaging of patients with enlarged third ventricles showed an optimal burr-hole position 22 mm (10-30 mm) lateral to the midline and 8 mm (27 to -23 mm) precoronal; a foramen of Monro diameter of 7 mm (3-11 mm) and a safe transchoroid entry zone of 6 mm (3-12 mm). CONCLUSIONS According to our data, concurrent endoscopic surgery of third ventricular lesions posterior to the foramen of Monro and ventriculostomy are feasible through a single burr hole and a transchoroid extension of the transforaminal approach. Precise preoperative planning is recommended for anticipating the individual anatomic nuances.
Collapse
Affiliation(s)
- Carlos V Brusius
- Hospital Moinhos de Ventos, Porto Alegre, Brazil; Hospital de Santa Casa of Porto Alegre, Brazil.
| | | | - Juan M Mira
- Hospital Sanatorio CASMER-FEMI, Rivera, Uruguay
| | | | | | - Mauro Cesar Grudtner
- Department of Neurosurgery, Hospital Sao Jose, Jaragua do Sul, Santa Catarina, Brazil
| | | | - Svenja Maschke
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | | |
Collapse
|
27
|
Mole JP, Fasano F, Evans J, Sims R, Kidd E, Aggleton JP, Metzler-Baddeley C. APOE-ε4-related differences in left thalamic microstructure in cognitively healthy adults. Sci Rep 2020; 10:19787. [PMID: 33188215 PMCID: PMC7666117 DOI: 10.1038/s41598-020-75992-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 01/05/2023] Open
Abstract
APOE-ε4 is a main genetic risk factor for developing late onset Alzheimer's disease (LOAD) and is thought to interact adversely with other risk factors on the brain. However, evidence regarding the impact of APOE-ε4 on grey matter structure in asymptomatic individuals remains mixed. Much attention has been devoted to characterising APOE-ε4-related changes in the hippocampus, but LOAD pathology is known to spread through the whole of the Papez circuit including the limbic thalamus. Here, we tested the impact of APOE-ε4 and two other risk factors, a family history of dementia and obesity, on grey matter macro- and microstructure across the whole brain in 165 asymptomatic individuals (38-71 years). Microstructural properties of apparent neurite density and dispersion, free water, myelin and cell metabolism were assessed with Neurite Orientation Density and Dispersion (NODDI) and quantitative magnetization transfer (qMT) imaging. APOE-ε4 carriers relative to non-carriers had a lower macromolecular proton fraction (MPF) in the left thalamus. No risk effects were present for cortical thickness, subcortical volume, or NODDI indices. Reduced thalamic MPF may reflect inflammation-related tissue swelling and/or myelin loss in APOE-ε4. Future prospective studies should investigate the sensitivity and specificity of qMT-based MPF as a non-invasive biomarker for LOAD risk.
Collapse
Affiliation(s)
- Jilu P Mole
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Fabrizio Fasano
- Siemens Healthcare, Henkestrasse 127, 91052, Erlangen, Germany
| | - John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Haydn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Emma Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue,, Cardiff, CF10 3NB, UK
| | - John P Aggleton
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
28
|
Franco CY, Petok JR, Langley J, Hu X, Bennett IJ. Implicit associative learning relates to basal ganglia gray matter microstructure in young and older adults. Behav Brain Res 2020; 397:112950. [PMID: 33017642 DOI: 10.1016/j.bbr.2020.112950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 01/01/2023]
Abstract
Older adults are impaired at implicit associative learning (IAL), or the learning of relationships between stimuli in the environment without conscious awareness. These age effects have been attributed to differential engagement of the basal ganglia (e.g. caudate, globus pallidus) and hippocampus throughout learning. However, no studies have examined gray matter diffusion relations with IAL, which can reveal microstructural properties that vary with age and contribute to learning. In this study, young (18-29 years) and older (65-87 years) adults completed the Triplet Learning Task, in which participants implicitly learn that the location of cues predict the target location on some trials (high frequency triplets). Diffusion imaging was also acquired and multicompartment diffusion metrics were calculated using neurite orientation dispersion and density imaging (NODDI). As expected, results revealed age deficits in IAL (smaller differences in performance to high versus low frequency triplets in the late learning stage) and age-related differences in basal ganglia and hippocampus free, hindered, and restricted diffusion. Significant correlations were seen between restricted caudate diffusion and early IAL and between hindered globus pallidus diffusion and late IAL, which were not moderated by age group. These findings indicate that individual differences in basal ganglia, but not hippocampal, gray matter microstructure contribute to learning, independent of age, further supporting basal ganglia involvement in IAL.
Collapse
Affiliation(s)
- Corinna Y Franco
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| | - Jessica R Petok
- Department of Psychology, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Xiaoping Hu
- Center for Advanced Neuroimaging, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
29
|
Archer DB, Moore EE, Shashikumar N, Dumitrescu L, Pechman KR, Landman BA, Gifford KA, Jefferson AL, Hohman TJ. Free-water metrics in medial temporal lobe white matter tract projections relate to longitudinal cognitive decline. Neurobiol Aging 2020; 94:15-23. [PMID: 32502831 PMCID: PMC7483422 DOI: 10.1016/j.neurobiolaging.2020.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022]
Abstract
Although hippocampal volume has served as a long-standing predictor of cognitive decline, diffusion magnetic resonance imaging studies of white matter have shown similar relationships. Still, it remains unclear if gray matter and white matter interact to predict cognitive impairment and longitudinal decline. Here, we investigate whether free-water (FW) and FW-corrected fractional anisotropy (FAT) within medial temporal lobe white matter tracts provides meaningful contribution to cognition and cognitive decline beyond hippocampal volume. Using data from the Vanderbilt Memory & Aging Project (n = 319), we found that FW was associated with baseline memory and executive function beyond that of hippocampal volume and other comorbidities. Longitudinal analyses demonstrated significant interactions of hippocampal volume and inferior longitudinal fasciculus (p = 0.043) and cingulum bundle (p = 0.025) FAT on memory decline and with fornix FAT (p = 0.025) on decline in executive function. Results suggest that FW metrics of white matter have a unique role in cognitive decline and should be included in theoretical models of aging, cerebrovascular disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Derek B Archer
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Neurology, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elizabeth E Moore
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Niranjana Shashikumar
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Neurology, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kimberly R Pechman
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Neurology, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
30
|
Mole JP, Fasano F, Evans J, Sims R, Hamilton DA, Kidd E, Metzler-Baddeley C. Genetic risk of dementia modifies obesity effects on white matter myelin in cognitively healthy adults. Neurobiol Aging 2020; 94:298-310. [PMID: 32736120 DOI: 10.1016/j.neurobiolaging.2020.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/05/2023]
Abstract
APOE-ε4 is a major genetic risk factor for late-onset Alzheimer's disease that interacts with other risk factors, but the nature of such combined effects remains poorly understood. We quantified the impact of APOE-ε4, family history (FH) of dementia, and obesity on white matter (WM) microstructure in 165 asymptomatic adults (38-71 years old) using quantitative magnetization transfer and neurite orientation dispersion and density imaging. Microstructural properties of the fornix, parahippocampal cingulum, and uncinate fasciculus were compared with those in motor and whole-brain WM regions. Widespread interaction effects between APOE, FH, and waist-hip ratio were found in the myelin-sensitive macromolecular proton fraction from quantitative magnetization transfer. Among individuals with the highest genetic risk (FH+ and APOE-ε4), obesity was associated with reduced macromolecular proton fraction in the right parahippocampal cingulum, whereas no effects were present for those without FH. Risk effects on apparent myelin were moderated by hypertension and inflammation-related markers. These findings suggest that genetic risk modifies the impact of obesity on WM myelin consistent with neuroglia models of aging and late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Jilu P Mole
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | | | - John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Derek A Hamilton
- Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Emma Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
31
|
Andreotti DZ, Silva JDN, Matumoto AM, Orellana AM, de Mello PS, Kawamoto EM. Effects of Physical Exercise on Autophagy and Apoptosis in Aged Brain: Human and Animal Studies. Front Nutr 2020; 7:94. [PMID: 32850930 PMCID: PMC7399146 DOI: 10.3389/fnut.2020.00094] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
The aging process is characterized by a series of molecular and cellular changes over the years that could culminate in the deterioration of physiological parameters important to keeping an organism alive and healthy. Physical exercise, defined as planned, structured and repetitive physical activity, has been an important force to alter physiology and brain development during the process of human beings' evolution. Among several aspects of aging, the aim of this review is to discuss the balance between two vital cellular processes such as autophagy and apoptosis, based on the fact that physical exercise as a non-pharmacological strategy seems to rescue the imbalance between autophagy and apoptosis during aging. Therefore, the effects of different types or modalities of physical exercise in humans and animals, and the benefits of each of them on aging, will be discussed as a possible preventive strategy against neuronal death.
Collapse
Affiliation(s)
- Diana Zukas Andreotti
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Josiane do Nascimento Silva
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Amanda Midori Matumoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paloma Segura de Mello
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Hayek D, Thams F, Flöel A, Antonenko D. Dentate Gyrus Volume Mediates the Effect of Fornix Microstructure on Memory Formation in Older Adults. Front Aging Neurosci 2020; 12:79. [PMID: 32265687 PMCID: PMC7098987 DOI: 10.3389/fnagi.2020.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Age-related deterioration in white and gray matter is linked to cognitive deficits. Reduced microstructure of the fornix, the major efferent pathway of the hippocampus, and volume of the dentate gyrus (DG), may cause age-associated memory decline. However, the linkage between these anatomical determinants and memory retrieval in healthy aging are poorly understood. In 30 older adults, we acquired diffusion tensor and T1-weighted images for individual deterministic tractography and volume estimation. A memory task, administered outside of the scanner to assess retrieval of learned associations, required discrimination of previously acquired picture-word pairs. The results showed that fornix fractional anisotropy (FA) and left DG volumes were related to successful retrieval. These brain-behavior associations were observed for correct rejections, but not hits, indicating specificity of memory network functioning for detecting false associations. Mediation analyses showed that left DG volume mediated the effect of fornix FA on memory (48%), but not vice versa. These findings suggest that reduced microstructure induces volume loss and thus negatively affects retrieval of learned associations, complementing evidence of a pivotal role of the fornix in healthy aging. Our study offers a neurobehavioral model to explain variability in memory retrieval in older adults, an important prerequisite for the development of interventions to counteract cognitive decline.
Collapse
Affiliation(s)
- Dayana Hayek
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
33
|
Coad BM, Craig E, Louch R, Aggleton JP, Vann SD, Metzler-Baddeley C. Precommissural and postcommissural fornix microstructure in healthy aging and cognition. Brain Neurosci Adv 2020; 4:2398212819899316. [PMID: 32219177 PMCID: PMC7085915 DOI: 10.1177/2398212819899316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/11/2019] [Indexed: 11/23/2022] Open
Abstract
The fornix is a key tract of the hippocampal formation, whose status is presumed to contribute to age-related cognitive decline. The precommissural and postcommissural fornix subdivisions form respective basal forebrain/frontal and diencephalic networks that may differentially affect aging and cognition. We employed multi-parametric magnetic resonance imaging (MRI) including neurite orientation density and dispersion imaging, quantitative magnetization transfer (qMT), and T1-relaxometry MRI to investigate the microstructural properties of these fornix subdivisions and their relationship with aging and cognition in 149 asymptomatic participants (38-71 years). Aging was associated with increased free water signal and reductions in myelin-sensitive R1 and qMT indices but no apparent axon density differences in both precommissural and postcommissural fibers. Precommissural relative to postcommissural fibers showed a distinct microstructural pattern characterised by larger free water signal and axon orientation dispersion, with lower apparent myelin and axon density. Furthermore, differences in postcommissural microstructure were related to performance differences in object-location paired-associate learning. These results provide novel in vivo neuroimaging evidence for distinct microstructural properties of precommissural and postcommissural fibers that are consistent with their anatomy as found in axonal tracer studies, as well as for a contribution of postcommissural fibers to the learning of spatial configurations.
Collapse
Affiliation(s)
- Bethany M. Coad
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
| | - Emma Craig
- School of Psychology, Cardiff University, Cardiff, UK
| | - Rebecca Louch
- School of Psychology, Cardiff University, Cardiff, UK
| | | | | | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
34
|
Schilling KG, By S, Feiler HR, Box BA, O'Grady KP, Witt A, Landman BA, Smith SA. Diffusion MRI microstructural models in the cervical spinal cord - Application, normative values, and correlations with histological analysis. Neuroimage 2019; 201:116026. [PMID: 31326569 DOI: 10.1016/j.neuroimage.2019.116026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Multi-compartment tissue modeling using diffusion magnetic resonance imaging has proven valuable in the brain, offering novel indices sensitive to the tissue microstructural environment in vivo on clinical MRI scanners. However, application, characterization, and validation of these models in the spinal cord remain relatively under-studied. In this study, we apply a diffusion "signal" model (diffusion tensor imaging, DTI) and two commonly implemented "microstructural" models (neurite orientation dispersion and density imaging, NODDI; spherical mean technique, SMT) in the human cervical spinal cord of twenty-one healthy controls. We first provide normative values of DTI, SMT, and NODDI indices in a number of white matter ascending and descending pathways, as well as various gray matter regions. We then aim to validate the sensitivity and specificity of these diffusion-derived contrasts by relating these measures to indices of the tissue microenvironment provided by a histological template. We find that DTI indices are sensitive to a number of microstructural features, but lack specificity. The microstructural models also show sensitivity to a number of microstructure features; however, they do not capture the specific microstructural features explicitly modelled. Although often regarded as a simple extension of the brain in the central nervous system, it may be necessary to re-envision, or specifically adapt, diffusion microstructural models for application to the human spinal cord with clinically feasible acquisitions - specifically, adjusting, adapting, and re-validating the modeling as it relates to both theory (i.e. relevant biology, assumptions, and signal regimes) and parameter estimation (for example challenges of acquisition, artifacts, and processing).
Collapse
Affiliation(s)
- Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Samantha By
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Haley R Feiler
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bailey A Box
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Atlee Witt
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
35
|
Metzler-Baddeley C, Mole JP, Leonaviciute E, Sims R, Kidd EJ, Ertefai B, Kelso-Mitchell A, Gidney F, Fasano F, Evans J, Jones DK, Baddeley RJ. Sex-specific effects of central adiposity and inflammatory markers on limbic microstructure. Neuroimage 2019; 189:793-803. [PMID: 30735826 PMCID: PMC6435101 DOI: 10.1016/j.neuroimage.2019.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Midlife obesity is a risk factor of late onset Alzheimer's disease (LOAD) but why this is the case remains unknown. As systemic inflammation is involved in both conditions, obesity-related neuroinflammation may contribute to damage in limbic structures important in LOAD. Here, we investigated the hypothesis that systemic inflammation would mediate central obesity related effects on limbic tissue microstructure in 166 asymptomatic individuals (38-71 years old). We employed MRI indices sensitive to myelin and neuroinflammation [macromolecular proton fraction (MPF) and kf] from quantitative magnetization transfer (qMT) together with indices from neurite orientation dispersion and density imaging (NODDI) to investigate the effects of central adiposity on the fornix, parahippocampal cingulum, uncinate fasciculus (compared with whole brain white matter and corticospinal tract) and the hippocampus. Central obesity was assessed with the Waist Hip Ratio (WHR) and abdominal visceral and subcutaneous fat area fractions (VFF, SFF), and systemic inflammation with blood plasma concentrations of leptin, adiponectin, C-reactive protein and interleukin 8. Men were significantly more centrally obese and had higher VFF than women. Individual differences in WHR and in VFF were negatively correlated with differences in fornix MPF and kf, but not with any differences in neurite microstructure. In women, age mediated the effects of VFF on fornix MPF and kf, whilst in men differences in the leptin and adiponectin ratio fully mediated the effect of WHR on fornix MPF. These results suggest that visceral fat related systemic inflammation may damage myelin-related properties of the fornix, a key limbic structure known to be involved in LOAD.
Collapse
Affiliation(s)
- Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK.
| | - Jilu P Mole
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Erika Leonaviciute
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Rebecca Sims
- Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Emma J Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Benyamin Ertefai
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Aurora Kelso-Mitchell
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Florence Gidney
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Fabrizio Fasano
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK; Siemens Healthcare, Head Office, Sir William Siemens Square, Surrey, GU16 8QD, UK
| | - John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria 3065, Australia
| | - Roland J Baddeley
- Experimental Psychology, University of Bristol, 12a Priory Road, BS8 1TU, UK
| |
Collapse
|