1
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. mBio 2024:e0351124. [PMID: 39727417 DOI: 10.1128/mbio.03511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to the formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point toward their having a joint role in controlling metabolism, cell division, and cell growth.IMPORTANCECell division is a fundamental biological process, and the mechanisms that control it in Escherichia coli have been the subject of intense research scrutiny for many decades. Similarly, both the (p)ppGpp-dependent stringent response and inorganic polyphosphate (polyP) synthesis are well-studied, evolutionarily ancient, and widely conserved pathways in diverse bacteria. Our results indicate that these systems, normally studied as stress-response mechanisms, play a coordinated and novel role in regulating cell division, morphology, and metabolism even under non-stress conditions.
Collapse
Affiliation(s)
- Christopher W Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Liu P, Jin Q, Li X, Zhang R, Yuan H, Liu C, Wang P. Directed evolution and metabolic engineering generate an Escherichia coli cell factory for de novo production of 4-hydroxymandelate. BIORESOURCE TECHNOLOGY 2024; 413:131497. [PMID: 39299347 DOI: 10.1016/j.biortech.2024.131497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
4-hydroxymandelate is a high-value aromatic compound used in the medicine, cosmetics, food, and chemical industry. However, existing natural extraction and chemical synthesis methods are costly and lead to environmental pollution. This study employed metabolic engineering and directed evolution strategies for de novo 4-hydroxymandelate biosynthesis. Two key challenges were addressed: insufficient precursor supply and limited activity of crucial enzymes. Through gene overexpression and multi-level gene interference using CRISPRi, An Escherichia coli chassis capable of producing the key precursor 4-hydroxyphenylpyruvate and the titer reached 5.05 mM (0.91 g/L). A mutant clone was obtained, HmaSV152G, which showed a 5.13-fold improvement in the catalytic rate. During fermentation, a high production of 194.87 mM (32.768 g/L) 4-hydroxymandelate was achieved in 76 h with a batch supply of glucose in a 5-L bioreactor. This study demonstrated the great potential of biosensors in protein engineering and provides a reference for large-scale production of other high-value aromatic compounds.
Collapse
Affiliation(s)
- Peipei Liu
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Qianwen Jin
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Xuanye Li
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Ruilin Zhang
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Haiming Yuan
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Chengwei Liu
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Pengchao Wang
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
3
|
Gonsalves LJ, Tran A, Gardiner T, Freeman T, Dutta A, Miller CJ, McNamara S, Waalkes A, Long DR, Salipante SJ, Hoffman LR, Wolter DJ. Mechanisms of Staphylococcus aureus survival of trimethoprim-sulfamethoxazole-induced thymineless death. mBio 2024; 15:e0163424. [PMID: 39445807 PMCID: PMC11559000 DOI: 10.1128/mbio.01634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Trimethoprim-sulfamethoxazole (SXT) is commonly used to treat diverse Staphylococcus aureus infections, including those associated with cystic fibrosis (CF) pulmonary disease. Studies with Escherichia coli found that SXT impairs tetrahydrofolate production, leading to DNA damage, stress response induction, and accumulation of reactive oxygen species (ROS) in a process known as thymineless death (TLD). TLD survival can occur through the uptake of exogenous thymidine, countering the effects of SXT; however, a growing body of research has implicated central metabolism as another potentially important determinant of bacterial survival of SXT and other antibiotics. Here, we conducted studies to better understand the mechanisms of TLD survival in S. aureus. We found that thymidine abundances in CF sputum were insufficient to prevent TLD of S. aureus, highlighting the importance of alternative survival mechanisms in vivo. In S. aureus cultured in vitro with SXT and low thymidine, we frequently identified adaptive mutations in genes encoding carbohydrate, nucleotide, and amino acid metabolism, supporting reduced metabolism as a common survival mechanism. Although intracellular ROS levels rose with SXT treatment in vitro, survival was not improved in the presence of ROS scavengers, unlike in E. coli. SXT challenge induced the SOS response, which was alleviated by added thymidine. Finally, an inactivating mutation in the phosphotransferase gene ptsI conferred both limitation in cellular ATP and improved survival against TLD. Collectively, these results suggest that alterations in core metabolic functions, particularly those that reduce ATP levels, predominantly confer S. aureus survival and persistence during SXT treatment, potentially identifying novel targets for co-treatment.IMPORTANCEStaphylococcus aureus is a ubiquitous organism and one of the leading causes of human infections, many of which are difficult to treat due to persistence, antibiotic resistance, or antibiotic tolerance. As our arsenal of effective antibiotics dwindles, the need for improved treatments becomes increasingly urgent, necessitating a better understanding of the precise mechanisms by which pathogens evade our most critical antimicrobial agents. Here, we report a systematic characterization of the mechanisms of S. aureus survival to treatment with the first-line antistaphylococcal antibiotic trimethoprim-sulfamethoxazole, identifying pathways and candidate targets for enhancing the efficacy of available antimicrobial agents.
Collapse
Affiliation(s)
- Lauren J. Gonsalves
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Allyson Tran
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Tessa Gardiner
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Tiia Freeman
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Angshita Dutta
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Carson J. Miller
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Sharon McNamara
- Pulmonary Division, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Lucas R. Hoffman
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Pulmonary Division, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Daniel J. Wolter
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Pulmonary Division, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|
4
|
Smith EL, Panis G, Woldemeskel SA, Viollier PH, Chien P, Goley ED. Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in Caulobacter. PNAS NEXUS 2024; 3:pgae154. [PMID: 38650860 PMCID: PMC11034885 DOI: 10.1093/pnasnexus/pgae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in Caulobacter crescentus, SpoT synthesizes the secondary messengers guanosine 5'-diphosphate 3'-diphosphate and guanosine 5'-triphosphate 3'-diphosphate (collectively known as (p)ppGpp), which affect transcription by binding RNA polymerase (RNAP) to down-regulate anabolic genes. (p)ppGpp also impacts the expression of anabolic genes by controlling the levels and activities of their transcriptional regulators. In Caulobacter, a major regulator of anabolic genes is the transcription factor CdnL. If and how CdnL is controlled during the SR and why that might be functionally important are unclear. In this study, we show that CdnL is down-regulated posttranslationally during starvation in a manner dependent on SpoT and the ClpXP protease. Artificial stabilization of CdnL during starvation causes misregulation of ribosomal and metabolic genes. Functionally, we demonstrate that the combined action of SR transcriptional regulators and CdnL clearance allows for rapid adaptation to nutrient repletion. Moreover, cells that are unable to clear CdnL during starvation are outcompeted by wild-type cells when subjected to nutrient fluctuations. We hypothesize that clearance of CdnL during the SR, in conjunction with direct binding of (p)ppGpp and DksA to RNAP, is critical for altering the transcriptome in order to permit cell survival during nutrient stress.
Collapse
Affiliation(s)
- Erika L Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Selamawit Abi Woldemeskel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Lai HY, Cooper TF. Interaction with a phage gene underlie costs of a β-lactamase. mBio 2024; 15:e0277623. [PMID: 38194254 PMCID: PMC10865808 DOI: 10.1128/mbio.02776-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
The fitness cost of an antibiotic resistance gene (ARG) can differ across host strains, creating refuges that allow the maintenance of an ARG in the absence of direct selection for its resistance phenotype. Despite the importance of such ARG-host interactions for predicting ARG dynamics, the basis of ARG fitness costs and their variability between hosts are not well understood. We determined the genetic basis of a host-dependent cost of a β-lactamase, blaTEM-116*, that conferred a significant cost in one Escherichia coli strain but was close to neutral in 11 other Escherichia spp. strains. Selection of a blaTEM-116*-encoding plasmid in the strain in which it initially had a high cost resulted in rapid and parallel compensation for that cost through mutations in a P1-like phage gene, relAP1. When the wild-type relAP1 gene was added to a strain in which it was not present and in which blaTEM-116* was neutral, it caused the ARG to become costly. Thus, relAP1 is both necessary and sufficient to explain blaTEM-116* costs in at least some host backgrounds. To our knowledge, these findings represent the first demonstrated case of the cost of an ARG being influenced by a genetic interaction with a phage gene. The interaction between a phage gene and a plasmid-borne ARG highlights the complexity of selective forces determining the maintenance and spread of ARGs and, by extension, encoding phage and plasmids in natural bacterial communities.IMPORTANCEAntibiotic resistance genes (ARGs) play a major role in the increasing problem of antibiotic resistance in clinically relevant bacteria. Selection of these genes occurs in the presence of antibiotics, but their eventual success also depends on the sometimes substantial costs they impose on host bacteria in antibiotic-free environments. We evolved an ARG that confers resistance to penicillin-type antibiotics in one host in which it did confer a cost and in one host in which it did not. We found that costs were rapidly and consistently reduced through parallel genetic changes in a gene encoded by a phage that was infecting the costly host. The unmutated version of this gene was sufficient to cause the ARG to confer a cost in a host in which it was originally neutral, demonstrating an antagonism between the two genetic elements and underlining the range and complexity of pressures determining ARG dynamics in natural populations.
Collapse
Affiliation(s)
- Huei-Yi Lai
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Tim F. Cooper
- School of Natural Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
6
|
Ontai-Brenning A, Hamchand R, Crawford JM, Goodman AL. Gut microbes modulate (p)ppGpp during a time-restricted feeding regimen. mBio 2023; 14:e0190723. [PMID: 37971266 PMCID: PMC10746209 DOI: 10.1128/mbio.01907-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Mammals do not eat continuously, instead concentrating their feeding to a restricted portion of the day. This behavior presents the mammalian gut microbiota with a fluctuating environment with consequences for host-microbiome interaction, infection risk, immune response, drug metabolism, and other aspects of health. We demonstrate that in mice, gut microbes elevate levels of an intracellular signaling molecule, (p)ppGpp, during the fasting phase of a time-restricted feeding regimen. Disabling this response in a representative human gut commensal species significantly reduces colonization during this host-fasting phase. This response appears to be general across species and conserved across mammalian gut communities, highlighting a pathway that allows healthy gut microbiomes to maintain stability in an unstable environment.
Collapse
Affiliation(s)
- Amy Ontai-Brenning
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Randy Hamchand
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Jason M. Crawford
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Andrew L. Goodman
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Brückner S, Müller F, Schadowski L, Kalle T, Weber S, Marino EC, Kutscher B, Möller AM, Adler S, Begerow D, Steinchen W, Bange G, Narberhaus F. (p)ppGpp and moonlighting RNases influence the first step of lipopolysaccharide biosynthesis in Escherichia coli. MICROLIFE 2023; 4:uqad031. [PMID: 37426605 PMCID: PMC10326835 DOI: 10.1093/femsml/uqad031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
The outer membrane (OM) protects Gram-negative bacteria from harsh environmental conditions and provides intrinsic resistance to many antimicrobial compounds. The asymmetric OM is characterized by phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. Previous reports suggested an involvement of the signaling nucleotide ppGpp in cell envelope homeostasis in Escherichia coli. Here, we investigated the effect of ppGpp on OM biosynthesis. We found that ppGpp inhibits the activity of LpxA, the first enzyme of LPS biosynthesis, in a fluorometric in vitro assay. Moreover, overproduction of LpxA resulted in elongated cells and shedding of outer membrane vesicles (OMVs) with altered LPS content. These effects were markedly stronger in a ppGpp-deficient background. We further show that RnhB, an RNase H isoenzyme, binds ppGpp, interacts with LpxA, and modulates its activity. Overall, our study uncovered new regulatory players in the early steps of LPS biosynthesis, an essential process with many implications in the physiology and susceptibility to antibiotics of Gram-negative commensals and pathogens.
Collapse
Affiliation(s)
- Simon Brückner
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Fabian Müller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Laura Schadowski
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Tyll Kalle
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Sophia Weber
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Emily C Marino
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Blanka Kutscher
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Anna-Maria Möller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Sabine Adler
- Evolution of Plants and Fungi, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Dominik Begerow
- Evolution of Plants and Fungi, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
- Organismische Botanik und Mykologie, Institut für Planzenwissenschaften und Mikrobiologie, Fachbereich Biologie, Universität Hamburg,Ohnhorststrasse 18, Hamburg, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Karl-von-Frisch-Strasse 14, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Karl-von-Frisch-Strasse 14, Marburg, Germany
| | - Franz Narberhaus
- Corresponding author. Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Universitätsstrasse 150, NDEF 06/784, 44780 Bochum, Germany. Tel: +492343223100; Fax: +492343214620; E-mail:
| |
Collapse
|
9
|
Trotta KL, Hayes BM, Schneider JP, Wang J, Todor H, Rockefeller Grimes P, Zhao Z, Hatleberg WL, Silvis MR, Kim R, Koo BM, Basler M, Chou S. Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin. PLoS Pathog 2023; 19:e1011454. [PMID: 37363922 PMCID: PMC10328246 DOI: 10.1371/journal.ppat.1011454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the functional basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli (Eco) genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa, Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, lipopolysaccharide, that modulate Tae1 toxicity in vivo. Disruption of genes in early lipopolysaccharide biosynthesis provided Eco with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study reveals the complex functional underpinnings of susceptibility to Tae1 and T6SS which regulate the impact of toxin-substrate interactions in vivo.
Collapse
Affiliation(s)
- Kristine L. Trotta
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | - Beth M. Hayes
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | | | - Jing Wang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Horia Todor
- Department of Cell and Tissue Biology, University of California–San Francisco, San Francisco, California, United States of America
| | - Patrick Rockefeller Grimes
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | - Ziyi Zhao
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | | | - Melanie R. Silvis
- Department of Cell and Tissue Biology, University of California–San Francisco, San Francisco, California, United States of America
| | - Rachel Kim
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | - Byoung Mo Koo
- Department of Cell and Tissue Biology, University of California–San Francisco, San Francisco, California, United States of America
| | - Marek Basler
- Biozentrum, University of Basel, Basel, Switzerland
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
10
|
Trotta KL, Hayes BM, Schneider JP, Wang J, Todor H, Grimes PR, Zhao Z, Hatleberg WL, Silvis MR, Kim R, Koo BM, Basler M, Chou S. Lipopolysaccharide integrity primes bacterial sensitivity to a cell wall-degrading intermicrobial toxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524922. [PMID: 36747731 PMCID: PMC9900751 DOI: 10.1101/2023.01.20.524922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the molecular basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa , Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, surface lipopolysaccharide, that modulate Tae1 toxicity in vivo . Disruption of lipopolysaccharide synthesis provided Escherichia coli (Eco) with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study highlights the consequences of co-regulating essential pathways on recipient fitness during interbacterial competition, and how antibacterial toxins leverage cellular vulnerabilities that are both direct and indirect to their specific targets in vivo .
Collapse
Affiliation(s)
- Kristine L Trotta
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Beth M Hayes
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Johannes P Schneider
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056 Basel, Switzerland
| | - Jing Wang
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056 Basel, Switzerland
| | - Horia Todor
- Department of Cell and Tissue Biology, University of California – San Francisco, San Francisco, CA, USA
| | - Patrick Rockefeller Grimes
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Ziyi Zhao
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | | | - Melanie R Silvis
- Department of Cell and Tissue Biology, University of California – San Francisco, San Francisco, CA, USA
| | - Rachel Kim
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Byoung Mo Koo
- Department of Cell and Tissue Biology, University of California – San Francisco, San Francisco, CA, USA
| | - Marek Basler
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056 Basel, Switzerland
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Wang X, Wang J, Liu SY, Guo JS, Fang F, Chen YP, Yan P. Mechanisms of survival mediated by the stringent response in Pseudomonas aeruginosa under environmental stress in drinking water systems: Nitrogen deficiency and bacterial competition. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130941. [PMID: 36758433 DOI: 10.1016/j.jhazmat.2023.130941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Pseudomonas aeruginosa causes public health problems in drinking water systems. This study investigated the potential role of the stringent response in regulating the adaptive physiological metabolic behaviors of P. aeruginosa to low nitrogen stress and bacterial competition in drinking water systems. The results indicated that guanosine tetraphosphate (ppGpp) concentrations in P. aeruginosa increased to 135.5 pmol/g SS under short-term nitrogen deficiency. Meanwhile, the expression levels of the ppGpp synthesis genes (ppx, relA) and degradation gene (spoT) were upregulated by 37.0% and downregulated by 26.8%, respectively, indicating that the stringent response was triggered. The triggered stringent response inhibited the growth of P. aeruginosa and enhanced the metabolic activity of P. aeruginosa to adapt to nutrient deprivation. The interspecific competition significantly affected the regulation of the stringent response in P. aeruginosa. During short-term nitrogen deficiency, the extracellular polymeric substances concentration of P. aeruginosa decreased significantly, leading to desorption and diffusion of attached bacteria and increased ecological risks. The regulatory effect of stringent response on P. aeruginosa gradually weakened under long-term nitrogen deficiency. However, the expression of pathogenic genes (nalD/PA3310) and flagellar assembly genes (fliC) in P. aeruginosa was upregulated by the stringent response, which increased the risk of disease.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jing Wang
- Chongqing Jianzhu College, Chongqing 400072, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL 36082, USA
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
12
|
Murashko ON, Yeh KH, Yu CHA, Kaberdin VR, Lin-Chao S. Sodium Fluoride Exposure Leads to ATP Depletion and Altered RNA Decay in Escherichia coli under Anaerobic Conditions. Microbiol Spectr 2023; 11:e0415822. [PMID: 36939343 PMCID: PMC10100675 DOI: 10.1128/spectrum.04158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/11/2023] [Indexed: 03/21/2023] Open
Abstract
Although fluoride-containing compounds are widely used to inhibit bacterial growth, the reprogramming of gene expression underlying cellular responses to fluoride, especially under anaerobic conditions, is still poorly understood. Here, we compare the genome-wide transcriptomic profiles of E. coli grown in the absence (control) or presence (20 and 70 mM) of sodium fluoride (NaF) under anaerobic conditions and assess the impact of fluoride-dependent ATP depletion on RNA turnover. Tiling array analysis revealed transcripts displaying altered abundance in response to NaF treatments. Quantile-based K-means clustering uncovered a subset of genes that were highly upregulated and then downregulated in response to increased and subsequently decreased fluoride concentrations, many of which (~40%) contained repetitive extragenic palindromic (REP) sequences. Northern blot analysis of some of these highly upregulated REP-containing transcripts (i.e., osmC, proP, efeO and yghA) confirmed their considerably enhanced abundance in response to NaF treatment. An mRNA stability analysis of osmC and yghA transcripts demonstrated that fluoride treatment slows down RNA degradation, thereby enhancing RNA stability and steady-state mRNA levels. Moreover, we demonstrate that turnover of these transcripts depends on RNase E activity and RNA degradosome. Thus, we show that NaF exerts significant effects at the whole-transcriptome level under hypoxic growth (i.e., mimicking the host environment), and fluoride can impact gene expression posttranscriptionally by slowing down ATP-dependent degradation of structured RNAs. IMPORTANCE Gram-negative Escherichia coli is a rod-shaped facultative anaerobic bacterium commonly found in microaerobic/anaerobic environments, including the dental plaques of warm-blooded organisms. These latter can be treated efficiently with fluoride-rich compounds that act as anticaries agents to prevent tooth decay. Although fluoride inhibits microbial growth by affecting metabolic pathways, the molecular mechanisms underlying its activity under anaerobic conditions remain poorly defined. Here, using genome-wide transcriptomics, we explore the impact of fluoride treatments on E. coli gene expression under anaerobic conditions. We reveal key gene clusters associated with cellular responses to fluoride and define its ATP-dependent stabilizing effects on transcripts containing repetitive extragenic palindromic sequences. We demonstrate the mechanisms controlling the RNA stability of these REP-containing mRNAs. Thus, fluoride can affect gene expression posttranscriptionally by stabilizing structured RNAs.
Collapse
Affiliation(s)
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Vladimir R. Kaberdin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), Plentzia, Spain
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
13
|
Yee JX, Kim J, Yeom J. Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria. J Microbiol 2023; 61:331-341. [PMID: 36800168 DOI: 10.1007/s12275-023-00024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023]
Abstract
Antibiotic treatment failure threatens our ability to control bacterial infections that can cause chronic diseases. Persister bacteria are a subpopulation of physiological variants that becomes highly tolerant to antibiotics. Membrane proteins play crucial roles in all living organisms to regulate cellular physiology. Although a diverse membrane component involved in persistence can result in antibiotic treatment failure, the regulations of antibiotic persistence by membrane proteins has not been fully understood. In this review, we summarize the recent advances in our understanding with regards to membrane proteins in Gram-negative bacteria as a regulator for antibiotic persistence, highlighting various physiological mechanisms in bacteria.
Collapse
Affiliation(s)
- Jia Xin Yee
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Juhyun Kim
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jinki Yeom
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore. .,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
14
|
Revealing novel synergistic defense and acid tolerant performance of Escherichia coli in response to organic acid stimulation. Appl Microbiol Biotechnol 2022; 106:7577-7594. [DOI: 10.1007/s00253-022-12241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
15
|
Nakatani RJ, Itabashi M, Yamada TG, Hiroi NF, Funahashi A. Intercellular interaction mechanisms promote diversity in intracellular ATP concentration in Escherichia coli populations. Sci Rep 2022; 12:17946. [PMID: 36289258 PMCID: PMC9605964 DOI: 10.1038/s41598-022-22189-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
In fluctuating environments, many microorganisms acquire phenotypic heterogeneity as a survival tactic to increase the likelihood of survival of the overall population. One example of this interindividual heterogeneity is the diversity of ATP concentration among members of Escherichia coli populations under glucose deprivation. Despite the importance of such environmentally driven phenotypic heterogeneity, how the differences in intracellular ATP concentration emerge among individual E. coli organisms is unknown. In this study, we focused on the mechanism through which individual E. coli achieve high intracellular ATP concentrations. First, we measured the ATP retained by E. coli over time when cultured at low (0.1 mM) and control (22.2 mM) concentrations of glucose and obtained the chronological change in ATP concentrations. Then, by comparing these chronological change of ATP concentrations and analyzing whether stochastic state transitions, periodic oscillations, cellular age, and intercellular communication-which have been reported as molecular biological mechanisms for generating interindividual heterogeneity-are involved, we showed that the appearance of high ATP-holding individuals observed among E. coli can be explained only by intercellular transmission. By performing metabolomic analysis of post-culture medium, we revealed a significant increase in the ATP, especially at low glucose, and that the number of E. coli that retain significantly higher ATP can be controlled by adding large amounts of ATP to the medium, even in populations cultured under control glucose concentrations. These results reveal for the first time that ATP-mediated intercellular transmission enables some individuals in E. coli populations grown at low glucose to retain large amounts of ATP.
Collapse
Affiliation(s)
- Ryo J. Nakatani
- grid.26091.3c0000 0004 1936 9959Graduate School of Fundamental Science and Technology, Center for Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Masahiro Itabashi
- grid.26091.3c0000 0004 1936 9959Graduate School of Fundamental Science and Technology, Center for Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Takahiro G. Yamada
- grid.26091.3c0000 0004 1936 9959Graduate School of Fundamental Science and Technology, Center for Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan ,grid.26091.3c0000 0004 1936 9959Present Address: Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Noriko F. Hiroi
- grid.26091.3c0000 0004 1936 9959School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582 Japan ,grid.419709.20000 0004 0371 3508Faculty of Creative Engineering, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292 Japan
| | - Akira Funahashi
- grid.26091.3c0000 0004 1936 9959Graduate School of Fundamental Science and Technology, Center for Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan ,grid.26091.3c0000 0004 1936 9959Present Address: Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| |
Collapse
|
16
|
Jalalvand F, Su YC, Manat G, Chernobrovkin A, Kadari M, Jonsson S, Janousková M, Rutishauser D, Semsey S, Løbner-Olesen A, Sandblad L, Flärdh K, Mengin-Lecreulx D, Zubarev RA, Riesbeck K. Protein domain-dependent vesiculation of Lipoprotein A, a protein that is important in cell wall synthesis and fitness of the human respiratory pathogen Haemophilus influenzae. Front Cell Infect Microbiol 2022; 12:984955. [PMID: 36275016 PMCID: PMC9585305 DOI: 10.3389/fcimb.2022.984955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
The human pathogen Haemophilus influenzae causes respiratory tract infections and is commonly associated with prolonged carriage in patients with chronic obstructive pulmonary disease. Production of outer membrane vesicles (OMVs) is a ubiquitous phenomenon observed in Gram-negative bacteria including H. influenzae. OMVs play an important role in various interactions with the human host; from neutralization of antibodies and complement activation to spread of antimicrobial resistance. Upon vesiculation certain proteins are found in OMVs and some proteins are retained at the cell membrane. The mechanism for this phenomenon is not fully elucidated. We employed mass spectrometry to study vesiculation and the fate of proteins in the outer membrane. Functional groups of proteins were differentially distributed on the cell surface and in OMVs. Despite its supposedly periplasmic and outer membrane location, we found that the peptidoglycan synthase-activator Lipoprotein A (LpoA) was accumulated in OMVs relative to membrane fractions. A mutant devoid of LpoA lost its fitness as revealed by growth and electron microscopy. Furthermore, high-pressure liquid chromatography disclosed a lower concentration (55%) of peptidoglycan in the LpoA-deficient H. influenzae compared to the parent wild type bacterium. Using an LpoA-mNeonGreen fusion protein and fluorescence microscopy, we observed that LpoA was enriched in “foci” in the cell envelope, and further located in the septum during cell division. To define the fate of LpoA, C-terminally truncated LpoA-variants were constructed, and we found that the LpoA C-terminal domain promoted optimal transportation to the OMVs as revealed by flow cytometry. Taken together, our study highlights the importance of LpoA for H. influenzae peptidoglycan biogenesis and provides novel insights into cell wall integrity and OMV production.
Collapse
Affiliation(s)
- Farshid Jalalvand
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Guillaume Manat
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Alexey Chernobrovkin
- Physiological Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mahendar Kadari
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Sandra Jonsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Martina Janousková
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Dorothea Rutishauser
- Physiological Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Szabolcs Semsey
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Løbner-Olesen
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Klas Flärdh
- Department of Biology, Lund University, Lund, Sweden
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Roman A. Zubarev
- Physiological Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- *Correspondence: Kristian Riesbeck,
| |
Collapse
|
17
|
Bai K, Jiang N, Chen X, Xu X, Li J, Luo L. RNA-Seq Analysis Discovers the Critical Role of Rel in ppGpp Synthesis, Pathogenicity, and the VBNC State of Clavibacter michiganensis. PHYTOPATHOLOGY 2022; 112:1844-1858. [PMID: 35341314 DOI: 10.1094/phyto-01-22-0023-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The viable but nonculturable (VBNC) state is a unique survival strategy of bacteria in response to stress conditions. It was confirmed that Clavibacter michiganensis, the causal agent of bacterial canker in tomato, could be induced into the VBNC state by exposure to CuSO4 in an oligotrophic solution. RNA-sequencing analysis was used to monitor the mechanisms of the VBNC state during CuSO4 induction in C. michiganensis. The results identified that numerous genes involved in stringent response, copper resistance, and stress resistance were upregulated, and some involved in cell division were downregulated significantly. The study investigated the importance of Rel, which is an essential enzyme in the synthesis of the molecular alarmone ppGpp, via the generation of a Δrel mutant and its complementation strain. Biological characterization revealed that deficiency of rel reduced the bacterial growth, production of exopolysaccharides, and pathogenicity as well as ppGpp production. The Δrel mutant increased the sensitivity to environmental stress, exhibiting reduced growth on minimal media and a propensity to enter the VBNC state in response to CuSO4. These findings have important implications for the understanding of survival mechanism and management of C. michiganensis and other phytopathogenic bacteria.
Collapse
Affiliation(s)
- Kaihong Bai
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Na Jiang
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Xing Chen
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Xiaoli Xu
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| |
Collapse
|
18
|
Single-Fluorescence ATP Sensor Based on Fluorescence Resonance Energy Transfer Reveals Role of Antibiotic-Induced ATP Perturbation in Mycobacterial Killing. mSystems 2022; 7:e0020922. [PMID: 35615956 PMCID: PMC9238375 DOI: 10.1128/msystems.00209-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The rapid emergence of multidrug-resistant/extensively drug-resistant tuberculosis (TB) is responsible for treatment failure in patients with TB and significantly endangers global public health. Recently, bioenergetics has become a new paradigm for anti-TB drug discovery and is based on the link between bacterial ATP levels and drug efficacy. A better understanding of the role of ATP fluctuations during antibiotic treatment may provide insight into antibiotic-mediated killing of mycobacteria. Here, we employed an advanced single-fluorescence FRET (fluorescence resonance energy transfer)-based ATP biosensor, ATPser, for the stable and convenient detection of intracellular ATP fluctuations in mycobacteria. This strategy correlated closely with the results obtained from conventional luminescence ATP assays, indicating the reliability of the system for bioenergetics analysis in mycobacteria. Moreover, the reporter strains expressing ATPser displayed obvious ATP changes when subjected to different stresses, such as starvation and ATP depletion. Interestingly, we observed that different antibiotics induced fluctuations in cellular ATP levels in individual cells of various magnitudes, revealing a strong connection between ATP fluctuations and drug efficacy. Furthermore, drug combinations accelerated ATP perturbation, resulting in increased cell death. We concluded that ATPser enabled real-time measurement of ATP at the single-cell level in mycobacteria, and monitoring ATP dynamics in drug-treated bacteria may shed light on novel treatment strategies. IMPORTANCE Bioenergetics has emerged as a new paradigm for antituberculosis (anti-TB) drug discovery, and the cellular ATP level is the core indicator reflecting bacterial metabolic homeostasis. Although several bulk assays have been designed for the measurement of cellular ATP content, a more convenient strategy is required for real-time ATP measurement of single viable cells. In this study, by combining the ε-subunit of Bacillus subtilis FoF1-ATP synthase with a circularly permuted green fluorescent protein [(cp)GFP], we constructed a FRET-based single-fluorescence ATP sensor, ATPser, for real-time single-cell ATP detection among a mycobacterial population. Using the ATPser, we designed different drug combinations containing components that have similar/opposite effects on ATP alternation. Our results demonstrated that increased cellular ATP fluctuations were associated with depletion of mycobacterial viability, while counteracting ATP fluctuations weakened the killing effect of the drug regime. Thus, potentially efficient drug combinations can be considered based on their similar effects on mycobacterial ATP levels, and ATPser may be a useful tool to study mycobacterial bioenergetics and to guide drug regime design.
Collapse
|
19
|
Transcriptomic profiling of Escherichia coli K-12 in response to a compendium of stressors. Sci Rep 2022; 12:8788. [PMID: 35610252 PMCID: PMC9130244 DOI: 10.1038/s41598-022-12463-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Environmental perturbations impact multiple cellular traits, including gene expression. Bacteria respond to these stressful situations through complex gene interaction networks, thereby inducing stress tolerance and survival of cells. In this paper, we study the response mechanisms of E. coli when exposed to different environmental stressors via differential expression and co-expression analysis. Gene co-expression networks were generated and analyzed via Weighted Gene Co-expression Network Analysis (WGCNA). Based on the gene co-expression networks, genes with similar expression profiles were clustered into modules. The modules were analysed for identification of hub genes, enrichment of biological processes and transcription factors. In addition, we also studied the link between transcription factors and their differentially regulated targets to understand the regulatory mechanisms involved. These networks validate known gene interactions and provide new insights into genes mediating transcriptional regulation in specific stress environments, thus allowing for in silico hypothesis generation.
Collapse
|
20
|
Kataoka N, Matsutani M, Matsumoto N, Oda M, Mizumachi Y, Ito K, Tanaka S, Kanesaki Y, Yakushi T, Matsushita K. Mutations in degP and spoT Genes Mediate Response to Fermentation Stress in Thermally Adapted Strains of Acetic Acid Bacterium Komagataeibacter medellinensis NBRC 3288. Front Microbiol 2022; 13:802010. [PMID: 35633714 PMCID: PMC9135448 DOI: 10.3389/fmicb.2022.802010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
An acetic acid bacterium, Komagataeibacter medellinensis NBRC 3288, was adapted to higher growth temperatures through an experimental evolution approach in acetic acid fermentation conditions, in which the cells grew under high concentrations of ethanol and acetic acid. The thermally adapted strains were shown to exhibit significantly increased growth and fermentation ability, compared to the wild strain, at higher temperatures. Although the wild cells were largely elongated and exhibited a rough cell surface, the adapted strains repressed the elongation and exhibited a smaller cell size and a smoother cell surface than the wild strain. Among the adapted strains, the ITO-1 strain isolated during the initial rounds of adaptation was shown to have three indel mutations in the genes gyrB, degP, and spoT. Among these, two dispensable genes, degP and spoT, were further examined in this study. Rough cell surface morphology related to degP mutation suggested that membrane vesicle-like structures were increased on the cell surface of the wild-type strain but repressed in the ITO-1 strain under high-temperature acetic acid fermentation conditions. The ΔdegP strain could not grow at higher temperatures and accumulated a large amount of membrane vesicles in the culture supernatant when grown even at 30°C, suggesting that the degP mutation is involved in cell surface stability. As the spoT gene of ITO-1 lost a 3′-end of 424 bp, which includes one (Act-4) of the possible two regulatory domains (TGS and Act-4), two spoT mutant strains were created: one (ΔTGSAct) with a drug cassette in between the 5′-half catalytic domain and 3′-half regulatory domains of the gene, and the other (ΔAct-4) in between TGS and Act-4 domains of the regulatory domain. These spoT mutants exhibited different growth responses; ΔTGSAct grew better in both the fermentation and non-fermentation conditions, whereas ΔAct-4 did only under fermentation conditions, such as ITO-1 at higher temperatures. We suggest that cell elongation and/or cell size are largely related to these spoT mutations, which may be involved in fermentation stress and thermotolerance.
Collapse
Affiliation(s)
- Naoya Kataoka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Nami Matsumoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Misuzu Oda
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Mizumachi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kohei Ito
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Shuhei Tanaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
- *Correspondence: Kazunobu Matsushita,
| |
Collapse
|
21
|
The Role of RelA and SpoT on ppGpp Production, Stress Response, Growth Regulation, and Pathogenicity in Xanthomonas campestris pv. campestris. Microbiol Spectr 2021; 9:e0205721. [PMID: 34935430 PMCID: PMC8693919 DOI: 10.1128/spectrum.02057-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The alarmone ppGpp plays an important role in the survival of bacteria by triggering the stringent response when exposed to environmental stress. Although Xanthomonas campestris pv. campestris (Xcc), which causes black rot disease in crucifers, is a representative species of Gram-negative phytopathogenic bacteria, relatively little is known regarding the factors influencing the stringent response in this species. However, previous studies in other Gram-negative bacteria have indicated that RelA and SpoT play a critical role in ppGpp synthesis. The current study found that these proteins also had an important role in Xcc, with a ΔrelAΔspoT double mutant being unable to produce ppGpp, resulting in changes to phenotype including reduced production of exopolysaccharides (EPS), exoenzymes, and biofilm, as well the loss of swarming motility and pathogenicity. The ppGpp-deficient mutant also exhibited greater sensitivity to environment stress, being almost incapable of growth on modified minimal medium (mMM) and having a much greater propensity to enter the viable but nonculturable (VBNC) state in response to oligotrophic conditions (0.85% NaCl). These findings much advance our understanding of the role of ppGpp in the biology of Xcc and could have important implications for more effective management of this important pathogen. IMPORTANCEXanthomonas campestris pv. campestris (Xcc) is a typical seedborne phytopathogenic bacterium that causes large economic losses worldwide, and this is the first original research article to investigate the role of ppGpp in this important species. Here, we revealed the function of RelA and SpoT in ppGpp production, physiology, pathogenicity, and stress resistance in Xcc. Most intriguingly, we found that ppGpp levels and downstream ppGpp-dependent phenotypes were mediated predominantly by SpoT, with RelA having only a supplementary role. Taken together, the results of the current study provide new insight into the role of ppGpp in the biology of Xcc, which could also have important implications for the role of ppGpp in the survival and pathogenicity of other pathogenic bacteria.
Collapse
|
22
|
Backes N, Phillips GJ. Repurposing CRISPR-Cas Systems as Genetic Tools for the Enterobacteriales. EcoSal Plus 2021; 9:eESP00062020. [PMID: 34125584 PMCID: PMC11163844 DOI: 10.1128/ecosalplus.esp-0006-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
Over the last decade, the study of CRISPR-Cas systems has progressed from a newly discovered bacterial defense mechanism to a diverse suite of genetic tools that have been applied across all domains of life. While the initial applications of CRISPR-Cas technology fulfilled a need to more precisely edit eukaryotic genomes, creative "repurposing" of this adaptive immune system has led to new approaches for genetic analysis of microorganisms, including improved gene editing, conditional gene regulation, plasmid curing and manipulation, and other novel uses. The main objective of this review is to describe the development and current state-of-the-art use of CRISPR-Cas techniques specifically as it is applied to members of the Enterobacteriales. While many of the applications covered have been initially developed in Escherichia coli, we also highlight the potential, along with the limitations, of this technology for expanding the availability of genetic tools in less-well-characterized non-model species, including bacterial pathogens.
Collapse
Affiliation(s)
- Nicholas Backes
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
23
|
Pulschen AA, Fernandes AZN, Cunha AF, Sastre DE, Matsuguma BE, Gueiros-Filho FJ. Many birds with one stone: targeting the (p)ppGpp signaling pathway of bacteria to improve antimicrobial therapy. Biophys Rev 2021; 13:1039-1051. [DOI: 10.1007/s12551-021-00895-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
|
24
|
Silvis MR, Rajendram M, Shi H, Osadnik H, Gray AN, Cesar S, Peters JM, Hearne CC, Kumar P, Todor H, Huang KC, Gross CA. Morphological and Transcriptional Responses to CRISPRi Knockdown of Essential Genes in Escherichia coli. mBio 2021; 12:e0256121. [PMID: 34634934 PMCID: PMC8510551 DOI: 10.1128/mbio.02561-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023] Open
Abstract
CRISPR interference (CRISPRi) has facilitated the study of essential genes in diverse organisms using both high-throughput and targeted approaches. Despite the promise of this technique, no comprehensive arrayed CRISPRi library targeting essential genes exists for the model bacterium Escherichia coli, or for any Gram-negative species. Here, we built and characterized such a library. Each of the ∼500 strains in our E. coli library contains an inducible, chromosomally integrated single guide RNA (sgRNA) targeting an essential (or selected nonessential) gene and can be mated with a pseudo-Hfr donor strain carrying a dcas9 cassette to create a CRISPRi knockdown strain. Using this system, we built an arrayed library of CRISPRi strains and performed population and single-cell growth and morphology measurements as well as targeted follow-up experiments. These studies found that inhibiting translation causes an extended lag phase, identified new modulators of cell morphology, and revealed that the morphogene mreB is subject to transcriptional feedback regulation, which is critical for the maintenance of morphology. Our findings highlight canonical and noncanonical roles for essential genes in numerous aspects of cellular homeostasis. IMPORTANCE Essential genes make up only ∼5 to 10% of the genetic complement in most organisms but occupy much of their protein synthesis and account for almost all antibiotic targets. Despite the importance of essential genes, their intractability has, until recently, hampered efforts to study them. CRISPRi has facilitated the study of essential genes by allowing inducible and titratable depletion. However, all large-scale CRISPRi studies in Gram-negative bacteria thus far have used plasmids to express CRISPRi components and have been constructed in pools, limiting their utility for targeted assays and complicating the determination of antibiotic effects. Here, we use a modular method to construct an arrayed library of chromosomally integrated CRISPRi strains targeting the essential genes of the model bacterium Escherichia coli. This library enables targeted studies of essential gene depletions and high-throughput determination of antibiotic targets and facilitates studies targeting the outer membrane, an essential component that serves as the major barrier to antibiotics.
Collapse
Affiliation(s)
- Melanie R. Silvis
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Manohary Rajendram
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Hendrik Osadnik
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Andrew N. Gray
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Spencer Cesar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Cameron C. Hearne
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Parth Kumar
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Horia Todor
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Carol A. Gross
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
25
|
Transcriptomic Reprograming of Xanthomonas campestris pv. campestris after Treatment with Hydrolytic Products Derived from Glucosinolates. PLANTS 2021; 10:plants10081656. [PMID: 34451701 PMCID: PMC8400333 DOI: 10.3390/plants10081656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
The bacterium Xanthomonas campestris pv. campestris (Xcc) causes black rot disease in Brassica crops. Glucosinolates are known to be part of the defence system of Brassica crops against Xcc infection. They are activated upon pathogen attack by myrosinase enzymes. Their hydrolytic products (GHPs) inhibit the growth of Xcc in vitro. However, the mechanisms underlying this inhibition and the way Xcc can overcome it are not well understood. We studied the transcriptomic reprogramming of Xcc after being supplemented with two chemically different GHPs, one aliphatic isothiocyanate (allyl-ITC) and one indole (indol-3-carbinol), by RNA-seq. Based on our results, the arrest in Xcc growth is related to the need to stop cell division to repair damaged DNA and cell envelope components. Otherwise, GHPs modify energy metabolism by inhibiting aerobic respiration and increasing the synthesis of glycogen. Xcc induces detoxification mechanisms such as the antioxidant defence system and the multidrug efflux system to cope with the toxic effects driven by GHPs. This is the first time that the transcriptomic reprogramming of a plant pathogenic bacterium treated with GHPs has been studied. This information will allow a better understanding of the interaction of a plant pathogen mediated by GSLs.
Collapse
|
26
|
Persister Escherichia coli Cells Have a Lower Intracellular pH than Susceptible Cells but Maintain Their pH in Response to Antibiotic Treatment. mBio 2021; 12:e0090921. [PMID: 34281389 PMCID: PMC8406257 DOI: 10.1128/mbio.00909-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Persister and viable but non-culturable (VBNC) cells are two clonal subpopulations that can survive multidrug exposure via a plethora of putative molecular mechanisms. Here, we combine microfluidics, time-lapse microscopy, and a plasmid-encoded fluorescent pH reporter to measure the dynamics of the intracellular pH of individual persister, VBNC, and susceptible Escherichia coli cells in response to ampicillin treatment. We found that even before antibiotic exposure, persisters have a lower intracellular pH than those of VBNC and susceptible cells. We then investigated the molecular mechanisms underlying the observed differential pH regulation in persister E. coli cells and found that this is linked to the activity of the enzyme tryptophanase, which is encoded by tnaA. In fact, in a ΔtnaA strain, we found no difference in intracellular pH between persister, VBNC, and susceptible E. coli cells. Whole-genome transcriptomic analysis revealed that, besides downregulating tryptophan metabolism, the ΔtnaA strain downregulated key pH homeostasis pathways, including the response to pH, oxidation reduction, and several carboxylic acid catabolism processes, compared to levels of expression in the parental strain. Our study sheds light on pH homeostasis, proving that the regulation of intracellular pH is not homogeneous within a clonal population, with a subset of cells displaying a differential pH regulation to perform dedicated functions, including survival after antibiotic treatment. IMPORTANCE Persister and VBNC cells can phenotypically survive environmental stressors, such as antibiotic treatment, limitation of nutrients, and acid stress, and have been linked to chronic infections and antimicrobial resistance. It has recently been suggested that pH regulation might play a role in an organism's phenotypic survival to antibiotics; however, this hypothesis remains to be tested. Here, we demonstrate that even before antibiotic treatment, cells that will become persisters have a more acidic intracellular pH than clonal cells that will be either susceptible or VBNC upon antibiotic treatment. Moreover, after antibiotic treatment, persisters become more alkaline than VBNC and susceptible E. coli cells. This newly found phenotypic feature is remarkable because it distinguishes persister and VBNC cells that have often been thought to display the same dormant phenotype. We then show that this differential pH regulation is abolished in the absence of the enzyme tryptophanase via a major remodeling of bacterial metabolism and pH homeostasis. These new whole-genome transcriptome data should be taken into account when modeling bacterial metabolism at the crucial transition from exponential to stationary phase. Overall, our findings indicate that the manipulation of the intracellular pH represents a bacterial strategy for surviving antibiotic treatment. In turn, this suggests a strategy for developing persister-targeting antibiotics by interfering with cellular components, such as tryptophanase, that play a major role in pH homeostasis.
Collapse
|
27
|
Antibiotic Cycling Reverts Extensive Drug Resistance in Burkholderia multivorans. Antimicrob Agents Chemother 2021; 65:e0061121. [PMID: 34097494 DOI: 10.1128/aac.00611-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic collateral sensitivity, in which acquired resistance to one drug leads to decreased resistance to a different drug, occurs in Burkholderia multivorans. Here, we observed that treatment of extensively drug-resistant variants evolved from a cystic fibrosis (CF) sputum sample isolate with either meropenem or sulfamethoxazole-trimethoprim, depending on past resistance phenotypes, resulted in increased sensitivity to five different classes of antibiotics. We further identified mutations, including putative resistance-nodulation-division efflux pump regulators and uncharacterized pumps, that may be involved in this phenotype in B. multivorans.
Collapse
|
28
|
Jervis AJ, Hanko EK, Dunstan MS, Robinson CJ, Takano E, Scrutton NS. A plasmid toolset for CRISPR-mediated genome editing and CRISPRi gene regulation in Escherichia coli. Microb Biotechnol 2021; 14:1120-1129. [PMID: 33710766 PMCID: PMC8085919 DOI: 10.1111/1751-7915.13780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
CRISPR technologies have become standard laboratory tools for genetic manipulations across all kingdoms of life. Despite their origins in bacteria, the development of CRISPR tools for engineering bacteria has been slower than for eukaryotes; nevertheless, their function and application for genome engineering and gene regulation via CRISPR interference (CRISPRi) has been demonstrated in various bacteria, and adoption has become more widespread. Here, we provide simple plasmid-based systems for genome editing (gene knockouts/knock-ins, and genome integration of large DNA fragments) and CRISPRi in E. coli using a CRISPR-Cas12a system. The described genome engineering protocols allow markerless deletion or genome integration in just seven working days with high efficiency (> 80% and 50%, respectively), and the CRISPRi protocols allow robust transcriptional repression of target genes (> 90%) with a single cloning step. The presented minimized plasmids and their associated design and experimental protocols provide efficient and effective CRISPR-Cas12 genome editing, genome integration and CRISPRi implementation. These simple-to-use systems and protocols will allow the easy adoption of CRISPR technology by any laboratory.
Collapse
Affiliation(s)
- Adrian J. Jervis
- Manchester Centre for Fine and Speciality Chemicals (SYNBIOCHEM)Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | - Erik K.R. Hanko
- Manchester Centre for Fine and Speciality Chemicals (SYNBIOCHEM)Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | - Mark S. Dunstan
- Manchester Centre for Fine and Speciality Chemicals (SYNBIOCHEM)Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | - Christopher J. Robinson
- Manchester Centre for Fine and Speciality Chemicals (SYNBIOCHEM)Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | - Eriko Takano
- Manchester Centre for Fine and Speciality Chemicals (SYNBIOCHEM)Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | - Nigel S. Scrutton
- Manchester Centre for Fine and Speciality Chemicals (SYNBIOCHEM)Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| |
Collapse
|
29
|
relA and spoT Gene Expression is Modulated in Salmonella Grown Under Static Magnetic Field. Curr Microbiol 2021; 78:887-893. [PMID: 33515321 DOI: 10.1007/s00284-021-02346-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Virtually all bacterial species synthesize high levels of (p)ppGpp (guanosine penta- or tetraphosphate), a pleiotropic regulator of the stringent response and other stresses in bacteria. relA and spoT genes are, respectively, involved in synthesis and synthesis/biodegradation of (p)ppGpp. We aimed in this work to evaluate the impact of static magnetic field (SMF) 200 mT exposure on the expression of relA and spoT genes in Salmonella enterica Hadar. Bacteria were exposed to a SMF during 9 h, and RNA extraction was followed by reverse transcriptase polymerase chain reaction (RT-PCR). The relative quantification of mRNA expression levels using the 16S rRNA reference gene did not change during the SMF exposure. However, results showed a significant increase in gene expression for relA after 3 h of exposure (P < 0.05) and after 6 h for spoT (P < 0.05). The differential gene expression of relA and spoT could be considered as a potential stress response to a SMF exposure in Salmonella related to the production/degradation of (p)ppGpp.
Collapse
|
30
|
Irving SE, Choudhury NR, Corrigan RM. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol 2020; 19:256-271. [PMID: 33149273 DOI: 10.1038/s41579-020-00470-y] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
The stringent response is a stress signalling system mediated by the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) in response to nutrient deprivation. Recent research highlights the complexity and broad range of functions that these alarmones control. This Review provides an update on our current understanding of the enzymes involved in ppGpp, pppGpp and guanosine 5'-monophosphate 3'-diphosphate (pGpp) (collectively (pp)pGpp) turnover, including those shown to produce pGpp and its analogue (pp)pApp. We describe the well-known interactions with RNA polymerase as well as a broader range of cellular target pathways controlled by (pp)pGpp, including DNA replication, transcription, nucleotide synthesis, ribosome biogenesis and function, as well as lipid metabolism. Finally, we review the role of ppGpp and pppGpp in bacterial pathogenesis, providing examples of how these nucleotides are involved in regulating many aspects of virulence and chronic infection.
Collapse
Affiliation(s)
- Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Naznin R Choudhury
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
31
|
Krishnan S, Chatterji D. Pleiotropic Effects of Bacterial Small Alarmone Synthetases: Underscoring the Dual-Domain Small Alarmone Synthetases in Mycobacterium smegmatis. Front Microbiol 2020; 11:594024. [PMID: 33154743 PMCID: PMC7591505 DOI: 10.3389/fmicb.2020.594024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
The nucleotide alarmone (p)ppGpp, signaling the stringent response, is known for more than 5 decades. The cellular turnover of the alarmone is regulated by RelA/SpoT homolog (RSH) superfamily of enzymes. There are long RSHs (RelA, SpoT, and Rel) and short RSHs [small alarmone synthetases (SAS) and small alarmone hydrolases (SAH)]. Long RSHs are multidomain proteins with (p)ppGpp synthesis, hydrolysis, and regulatory functions. Short RSHs are single-domain proteins with a single (p)ppGpp synthesis/hydrolysis function with few exceptions having two domains. Mycobacterial RelZ is a dual-domain SAS with RNase HII and the (p)ppGpp synthetase activity. SAS is known to impact multiple cellular functions independently and in accordance with the long RSH. Few SAS in bacteria including RelZ synthesize pGpp, the third small alarmone, along with the conventional (p)ppGpp. SAS can act as an RNA-binding protein for the negative allosteric inhibition of (p)ppGpp synthesis. Here, we initially recap the important features and molecular functions of different SAS that are previously characterized to understand the obligation for the “alarmone pool” produced by the long and short RSHs. Then, we focus on the RelZ, especially the combined functions of RNase HII and (p)ppGpp synthesis from a single polypeptide to connect with the recent findings of SAS as an RNA-binding protein. Finally, we conclude with the possibilities of using single-stranded RNA (ssRNA) as an additional therapeutic strategy to combat the persistent infections by inhibiting the redundant (p)ppGpp synthetases.
Collapse
|
32
|
Fernández-Coll L, Cashel M. Possible Roles for Basal Levels of (p)ppGpp: Growth Efficiency Vs. Surviving Stress. Front Microbiol 2020; 11:592718. [PMID: 33162969 PMCID: PMC7581894 DOI: 10.3389/fmicb.2020.592718] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022] Open
Abstract
Two (p)ppGpp nucleotide analogs, sometimes abbreviated simply as ppGpp, are widespread in bacteria and plants. Their name alarmone reflects a view of their function as intracellular hormone-like protective alarms that can increase a 100-fold when sensing any of an array of physical or nutritional dangers, such as abrupt starvation, that trigger lifesaving adjustments of global gene expression and physiology. The diversity of mechanisms for stress-specific adjustments of this sort is large and further compounded by almost infinite microbial diversity. The central question raised by this review is whether the small basal levels of (p)ppGpp functioning during balanced growth serve very different roles than alarmone-like functions. Recent discoveries that abrupt amino acid starvation of Escherichia coli, accompanied by very high levels of ppGpp, occasion surprising instabilities of transfer RNA (tRNA), ribosomal RNA (rRNA), and ribosomes raises new questions. Is this destabilization, a mode of regulation linearly related to (p)ppGpp over the entire continuum of (p)ppGpp levels, including balanced growth? Are regulatory mechanisms exerted by basal (p)ppGpp levels fundamentally different than for high levels? There is evidence from studies of other organisms suggesting special regulatory features of basal levels compared to burst of (p)ppGpp. Those differences seem to be important even during bacterial infection, suggesting that unbalancing the basal levels of (p)ppGpp may become a future antibacterial treatment. A simile for this possible functional duality is that (p)ppGpp acts like a car’s brake, able to stop to avoid crashes as well as to slow down to drive safely.
Collapse
Affiliation(s)
- Llorenç Fernández-Coll
- Intramural Research Program, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, United States
| | - Michael Cashel
- Intramural Research Program, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, United States
| |
Collapse
|
33
|
The Absence of (p)ppGpp Renders Initiation of Escherichia coli Chromosomal DNA Synthesis Independent of Growth Rates. mBio 2020; 11:mBio.03223-19. [PMID: 32156825 PMCID: PMC7064777 DOI: 10.1128/mbio.03223-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The initiation of Escherichia coli chromosomal DNA replication starts with the oligomerization of the DnaA protein at repeat sequences within the origin (ori) region. The amount of ori DNA per cell directly correlates with the growth rate. During fast growth, the cell generation time is shorter than the time required for complete DNA replication; therefore, overlapping rounds of chromosome replication are required. Under these circumstances, the ori region DNA abundance exceeds the DNA abundance in the termination (ter) region. Here, high ori/ter ratios are found to persist in (p)ppGpp-deficient [(p)ppGpp0] cells over a wide range of balanced exponential growth rates determined by medium composition. Evidently, (p)ppGpp is necessary to maintain the usual correlation of slow DNA replication initiation with a low growth rate. Conversely, ori/ter ratios are lowered when cell growth is slowed by incrementally increasing even low constitutive basal levels of (p)ppGpp without stress, as if (p)ppGpp alone is sufficient for this response. There are several previous reports of (p)ppGpp inhibition of chromosomal DNA synthesis initiation that occurs with very high levels of (p)ppGpp that stop growth, as during the stringent starvation response or during serine hydroxamate treatment. This work suggests that low physiological levels of (p)ppGpp have significant functions in growing cells without stress through a mechanism involving negative supercoiling, which is likely mediated by (p)ppGpp regulation of DNA gyrase.IMPORTANCE Bacterial cells regulate their own chromosomal DNA synthesis and cell division depending on the growth conditions, producing more DNA when growing in nutritionally rich media than in poor media (i.e., human gut versus water reservoir). The accumulation of the nucleotide analog (p)ppGpp is usually viewed as serving to warn cells of impending peril due to otherwise lethal sources of stress, which stops growth and inhibits DNA, RNA, and protein synthesis. This work importantly finds that small physiological changes in (p)ppGpp basal levels associated with slow balanced exponential growth incrementally inhibit the intricate process of initiation of chromosomal DNA synthesis. Without (p)ppGpp, initiations mimic the high rates present during fast growth. Here, we report that the effect of (p)ppGpp may be due to the regulation of the expression of gyrase, an important enzyme for the replication of DNA that is a current target of several antibiotics.
Collapse
|
34
|
Synthesis of ppGpp impacts type IX secretion and biofilm matrix formation in Porphyromonas gingivalis. NPJ Biofilms Microbiomes 2020; 6:5. [PMID: 32005827 PMCID: PMC6994654 DOI: 10.1038/s41522-020-0115-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
In order to persist, bacteria need to adjust their physiological state in response to external and internal cues. External stimuli are often referred to as stressors. The stringent response, mediated by the alarmone (p)ppGpp, is central to the stress response in many bacteria; yet, there is limited knowledge regarding the role of (p)ppGpp signaling in bacteria belonging to the phylum Bacteroidetes. Like its counterparts in the gut (e.g., Bacteroides thetaiotaomicron and Bacteroides fragilis), Porphyromonas gingivalis persists in close association with its human host. Given the potential for numerous perturbations in the oral cavity, and the fact that P. gingivalis can enter and replicate within host cells, we hypothesized that (p)ppGpp is a key signaling molecule for stress adaptation and persistence. Here, we show that accumulation of ppGpp in P. gingivalis is governed by two homologous enzymes, designated Rel, and RshB, and that ppGpp signaling affects growth rate, survival, biofilm formation, production of outer membrane vesicles, and expression of genes encoding type IX secretion structural and cargo proteins. Overall, our findings provide a potential mechanism by which biofilm formation and virulence of P. gingivalis are integrated via ppGpp signaling, a regulatory mechanism central to bacterial survival in dynamic environments.
Collapse
|