1
|
Lamb HO, Benfield AH, Henriques ST. Peptides as innovative strategies to combat drug resistance in cancer therapy. Drug Discov Today 2024; 29:104206. [PMID: 39395530 DOI: 10.1016/j.drudis.2024.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Drug resistance is the leading cause of treatment failure in patients with cancer. Thus, innovative therapeutic strategies are required to overcome this critical challenge and improve patient outcomes. In this review, we examine the potential of peptide-based therapies to combat drug resistance in cancer. We highlight the unique strategies and mechanisms that can be explored by using peptides, including their ability to selectively target tumours, facilitate drug delivery into cancer cells, and inhibit key intracellular proteins that drive cancer progression and resistance. Peptides offer a promising approach to overcoming both intrinsic and adaptative cancer resistance against chemotherapy, targeted therapies, and biologics.
Collapse
Affiliation(s)
- Henry O Lamb
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
3
|
Cao XY, Li X, Wang F, Duan Y, Wu X, Lin GQ, Geng M, Huang M, Tian P, Tang S, Gao D. Identification of benzo[b]thiophene-1,1-dioxide derivatives as novel PHGDH covalent inhibitors. Bioorg Chem 2024; 146:107330. [PMID: 38579615 DOI: 10.1016/j.bioorg.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The increased de novo serine biosynthesis confers many advantages for tumorigenesis and metastasis. Phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in serine biogenesis, exhibits hyperactivity across multiple tumors and emerges as a promising target for cancer treatment. Through screening our in-house compound library, we identified compound Stattic as a potent PHGDH inhibitor (IC50 = 1.98 ± 0.66 µM). Subsequent exploration in structural activity relationships led to the discovery of compound B12 that demonstrated the increased enzymatic inhibitory activity (IC50 = 0.29 ± 0.02 μM). Furthermore, B12 exhibited robust inhibitory effects on the proliferation of MDA-MB-468, NCI-H1975, HT1080 and PC9 cells that overexpress PHGDH. Additionally, using a [U-13C6]-glucose tracing assay, B12 was found to reduce the production of glucose-derived serine in MDA-MB-468 cells. Finally, mass spectrometry-based peptide profiling, mutagenesis experiment and molecular docking study collectively suggested that B12 formed a covalent bond with Cys421 of PHGDH.
Collapse
Affiliation(s)
- Xin-Yu Cao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinge Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yichen Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingmei Wu
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiyu Geng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264100, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264100, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Shuai Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264100, China.
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Israr J, Alam S, Kumar A. System biology approaches for drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:221-245. [PMID: 38789180 DOI: 10.1016/bs.pmbts.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Drug repurposing, or drug repositioning, refers to the identification of alternative therapeutic applications for established medications that go beyond their initial indications. This strategy has becoming increasingly popular since it has the potential to significantly reduce the overall costs of drug development by around $300 million. System biology methodologies have been employed to facilitate medication repurposing, encompassing computational techniques such as signature matching and network-based strategies. These techniques utilize pre-existing drug-related data types and databases to find prospective repurposed medications that have minimal or acceptable harmful effects on patients. The primary benefit of medication repurposing in comparison to drug development lies in the fact that approved pharmaceuticals have already undergone multiple phases of clinical studies, thereby possessing well-established safety and pharmacokinetic properties. Utilizing system biology methodologies in medication repurposing offers the capacity to expedite the discovery of viable candidates for drug repurposing and offer novel perspectives for structure-based drug design.
Collapse
Affiliation(s)
- Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, Uttar Pradesh, India; Department of Biotechnology Era University, Lucknow, Uttar Pradesh, India
| | - Shabroz Alam
- Department of Biotechnology Era University, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
5
|
Ni X, Ye C, Yu X, Zhang Y, Hou Y, Zheng Q, Chen Z, Wang L, Weng X, Yang C, Liu X. Overcoming the compensatory increase in NRF2 induced by NPL4 inhibition enhances disulfiram/copper-induced oxidative stress and ferroptosis in renal cell carcinoma. Eur J Pharmacol 2023; 960:176110. [PMID: 37838104 DOI: 10.1016/j.ejphar.2023.176110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer, and it appears to be highly susceptible to ferroptosis. Disulfiram, an alcoholism drug, has been shown to have anticancer properties in various studies, including those on RCC. However, the mechanism of the anticancer effect of disulfiram/copper on RCC remains unclear. In this study, we investigated the impact of disulfiram/copper on RCC treatment using both RCC cells and mouse subcutaneous tumor models. Our findings demonstrate that disulfiram/copper treatment reduced the viability of RCC cells, inhibited their invasion and migration, and disrupted mitochondrial homeostasis, ultimately leading to oxidative stress and ferroptosis. Mechanistically, disulfiram/copper treatment prolonged the half-life of NRF2 and reduced its degradation, but had no effect on transcription, indicating that the disulfiram/copper-induced increase in NRF2 was not related to transcription. Furthermore, we observed that disulfiram/copper treatment reduced the expression of NPL4, a ubiquitin protein-proteasome system involved in NRF2 degradation, while overexpression of NPL4 reversed NRF2 levels and enhanced disulfiram/copper-induced oxidative stress and ferroptosis. These results suggest that overcoming the compensatory increase in NRF2 induced by NPL4 inhibition enhances disulfiram/copper-induced oxidative stress and ferroptosis in RCC. In addition, our in vivo experiments revealed that disulfiram/copper synergized with sorafenib to inhibit the growth of RCC cells and induce ferroptosis. In conclusion, our study sheds light on a possible mechanism for disulfiram/copper treatment in RCC and provides a potential synergistic strategy to overcome sorafenib resistance.
Collapse
Affiliation(s)
- Xinmiao Ni
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China; Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Chenglin Ye
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Xi Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Ye Zhang
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China; Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Yanguang Hou
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China; Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China; Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China; Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China; Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China; Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| | - Chuan Yang
- Department of Urology, The People's Hospital of Hanchuan City, 431600, Hanchuan, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China; Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Kang X, Jadhav S, Annaji M, Huang CH, Amin R, Shen J, Ashby CR, Tiwari AK, Babu RJ, Chen P. Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems. Pharmaceutics 2023; 15:1567. [PMID: 37376016 DOI: 10.3390/pharmaceutics15061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Disulfiram (DSF) is a thiocarbamate based drug that has been approved for treating alcoholism for over 60 years. Preclinical studies have shown that DSF has anticancer efficacy, and its supplementation with copper (CuII) significantly potentiates the efficacy of DSF. However, the results of clinical trials have not yielded promising results. The elucidation of the anticancer mechanisms of DSF/Cu (II) will be beneficial in repurposing DSF as a new treatment for certain types of cancer. DSF's anticancer mechanism is primarily due to its generating reactive oxygen species, inhibiting aldehyde dehydrogenase (ALDH) activity inhibition, and decreasing the levels of transcriptional proteins. DSF also shows inhibitory effects in cancer cell proliferation, the self-renewal of cancer stem cells (CSCs), angiogenesis, drug resistance, and suppresses cancer cell metastasis. This review also discusses current drug delivery strategies for DSF alone diethyldithocarbamate (DDC), Cu (II) and DSF/Cu (II), and the efficacious component Diethyldithiocarbamate-copper complex (CuET).
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chung-Hui Huang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY 11431, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Fabrication of Novel Omeprazole-Based Chitosan Coated Nanoemulgel Formulation for Potential Anti-Microbia; In Vitro and Ex Vivo Characterizations. Polymers (Basel) 2023; 15:polym15051298. [PMID: 36904539 PMCID: PMC10007571 DOI: 10.3390/polym15051298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Infectious diseases remain inevitable factors for high mortality and morbidity rate in the modern world to date. Repurposing is a novel approach to drug development has become an intriguing research topic in the literature. Omeprazole is one of the top ten proton pump inhibitors prescribed in the USA. The literature suggests that no reports based on omeprazole anti-microbial actions have been discovered to date. This study entails the potential of omeprazole to treat skin and soft tissue infections based on the literature's evident anti-microbial effects. To get a skin-friendly formulation, a chitosan-coated omeprazole-loaded nanoemulgel formulation was fabricated using olive oil, carbopol 940, Tween 80, Span 80, and triethanolamine by high-speed homogenization technique. The optimized formulation was physicochemically characterized for zeta potential, size distribution, pH, drug content, entrapment efficiency, viscosity, spreadability, extrudability, in-vitro drug release, ex-vivo permeation analysis, and minimum inhibitory concentration determination. The FTIR analysis indicated that there was no incompatibility between the drug and formulation excipients. The optimized formulation exhibited particle size, PDI, zeta potential, drug content, and entrapment efficiency of 369.7 ± 8.77 nm, 0.316, -15.3 ± 6.7 mV, 90.92 ± 1.37% and 78.23 ± 3.76%, respectively. In-vitro release and ex-vivo permeation data of optimized formulation showed 82.16% and 72.21 ± 1.71 μg/cm2, respectively. The results of minimum inhibitory concentration (1.25 mg/mL) against selected bacterial strains were satisfactory, suggesting a successful treatment approach for the topical application of omeprazole to treat microbial infections. Furthermore, chitosan coating synergistically increases the antibacterial activity of the drug.
Collapse
|
8
|
Virtual Screening of FDA-Approved Drugs for Enhanced Binding with Mitochondrial Aldehyde Dehydrogenase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248773. [PMID: 36557906 PMCID: PMC9781114 DOI: 10.3390/molecules27248773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Mitochondrial aldehyde dehydrogenase (ALDH2) is a potential target for the treatment of substance use disorders such as alcohol addiction. Here, we adopted computational methods of molecular dynamics (MD) simulation, docking, and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis to perform a virtual screening of FDA-approved drugs, hitting potent inhibitors against ALDH2. Using MD-derived conformations as receptors, butenafine (net charge q = +1 e) and olaparib (q = 0) were selected as promising compounds with a low toxicity and a binding strength equal to or stronger than previously reported potent inhibitors of daidzin and CVT-10216. A few negatively charged compounds were also hit from the docking with the Autodock Vina software, while the MM-PBSA analysis yielded positive binding energies (unfavorable binding) for these compounds, mainly owing to electrostatic repulsion in association with a negatively charged receptor (q = -6 e for ALDH2 plus the cofactor NAD+). This revealed a deficiency of the Vina scoring in dealing with strong charge-charge interactions between binding partners, due to its built-in protocol of not using atomic charges for electrostatic interactions. These observations indicated a requirement of further verification using MD and/or MM-PBSA after docking prediction. The identification of key residues for the binding implied that the receptor residues at the bottom and entrance of the substrate-binding hydrophobic tunnel were able to offer additional interactions with different inhibitors such as π-π, π-alkyl, van der Waals contacts, and polar interactions, and that the rational use of these interactions is beneficial to the design of potent inhibitors against ALDH2.
Collapse
|
9
|
Van de Gucht M, Dufait I, Kerkhove L, Corbet C, de Mey S, Jiang H, Law KL, Gevaert T, Feron O, De Ridder M. Inhibition of Phosphoglycerate Dehydrogenase Radiosensitizes Human Colorectal Cancer Cells under Hypoxic Conditions. Cancers (Basel) 2022; 14:cancers14205060. [PMID: 36291844 PMCID: PMC9599856 DOI: 10.3390/cancers14205060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Colorectal cancer is the third most prevalent cancer worldwide. Treatment options for these patients consist of surgery combined with chemotherapy and/or radiotherapy. However, a subset of tumors will not respond to therapy or acquire resistance during the course of the treatment, leading to patient relapse. The interplay between reprogramming cancer metabolism and radiotherapy has become an appealing strategy to improve a patient’s outcome. Due to the overexpression of certain enzymes in a variety of cancer types, including colorectal cancer, the serine synthesis pathway has recently become an attractive metabolic target. We demonstrated that by inhibiting the first enzyme of this pathway, namely phosphoglycerate dehydrogenase (PHGDH), tumor cells that are deprived of oxygen (as is generally the case in solid tumors) respond better to radiation, leading to increased tumor cell killing in an experimental model of human colorectal cancer. Abstract Augmented de novo serine synthesis activity is increasingly apparent in distinct types of cancers and has mainly sparked interest by investigation of phosphoglycerate dehydrogenase (PHGDH). Overexpression of PHGDH has been associated with higher tumor grade, shorter relapse time and decreased overall survival. It is well known that therapeutic outcomes in cancer patients can be improved by reprogramming metabolic pathways in combination with standard treatment options, for example, radiotherapy. In this study, possible metabolic changes related to radioresponse were explored upon PHGDH inhibition. Additionally, we evaluated whether PHGDH inhibition could improve radioresponse in human colorectal cancer cell lines in both aerobic and radiobiological relevant hypoxic conditions. Dysregulation of reactive oxygen species (ROS) homeostasis and dysfunction in mitochondrial energy metabolism and oxygen consumption rate were indicative of potential radiomodulatory effects. We demonstrated that PHGDH inhibition radiosensitized hypoxic human colorectal cancer cells while leaving intrinsic radiosensitivity unaffected. In a xenograft model, the first hints of additive effects between PHGDH inhibition and radiotherapy were demonstrated. In conclusion, this study is the first to show that modulation of de novo serine biosynthesis enhances radioresponse in hypoxic colorectal cancer cells, mainly mediated by increased levels of intracellular ROS.
Collapse
Affiliation(s)
- Melissa Van de Gucht
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Lisa Kerkhove
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Mounier 53, 1200 Brussels, Belgium
| | - Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ka Lun Law
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Mounier 53, 1200 Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-4776144
| |
Collapse
|
10
|
Sarker JC, Nash R, Boonrungsiman S, Pugh D, Hogarth G. Diaryl dithiocarbamates: synthesis, oxidation to thiuram disulfides, Co(III) complexes [Co(S 2CNAr 2) 3] and their use as single source precursors to CoS 2. Dalton Trans 2022; 51:13061-13070. [PMID: 35972272 DOI: 10.1039/d2dt01767a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Air and moisture stable diaryl dithiocarbamate salts, Ar2NCS2Li, result from addition of CS2 to Ar2NLi, the latter being formed upon deprotonation of diarylamines by nBuLi. Oxidation with K3[Fe(CN)6] affords the analogous thiuram disulfides, (Ar2NCS2)2, two examples of which (Ar = p-C6H4X; X = Me, OMe) have been crystallographically characterised. The interconversion of dithiocarbamate and thiuram disulfides has also been probed electrochemically and compared with that established for the widely-utilised diethyl system. While oxidation reactions are generally clean and high yielding, for Ph(2-naphthyl)NCS2Li an ortho-cyclisation product, 3-phenylnaphtho[2,1-d]thiazole-2(3H)-thione, is also formed, resulting from a competitive intramolecular free-radical cyclisation. To demonstrate the coordinating ability of diaryl dithiocarbamates, a small series of Co(III) complexes have been prepared, with two examples, [Co{S2CN(p-tolyl)2}3] and [Co{S2CNPh(m-tolyl)}3] being crystallographically characterised. Solvothermal decomposition of [Co{S2CN(p-tolyl)2}3] in oleylamine generates phase pure CoS2 nanospheres in an unexpected phase-selective manner.
Collapse
Affiliation(s)
- Jagodish C Sarker
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK. .,Department of Chemistry, Jagannath University, Dhaka-1100, Bangladesh
| | - Rosie Nash
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK.
| | - Suwimon Boonrungsiman
- Centre for Ultrastructural Engineering, King's College London, New Hunt's House, London SE1 1UL, UK
| | - David Pugh
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK.
| | - Graeme Hogarth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK.
| |
Collapse
|
11
|
Zhong S, Shengyu Liu, Xin Shi, Zhang X, Li K, Liu G, Li L, Tao S, Zheng B, Sheng W, Ye Z, Xing Q, Zhai Q, Ren L, Wu Y, Bao Y. Disulfiram in glioma: Literature review of drug repurposing. Front Pharmacol 2022; 13:933655. [PMID: 36091753 PMCID: PMC9448899 DOI: 10.3389/fphar.2022.933655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common malignant brain tumors. High-grade gliomas, represented by glioblastoma multiforme (GBM), have a poor prognosis and are prone to recurrence. The standard treatment strategy is tumor removal combined with radiotherapy and chemotherapy, such as temozolomide (TMZ). However, even after conventional treatment, they still have a high recurrence rate, resulting in an increasing demand for effective anti-glioma drugs. Drug repurposing is a method of reusing drugs that have already been widely approved for new indication. It has the advantages of reduced research cost, safety, and increased efficiency. Disulfiram (DSF), originally approved for alcohol dependence, has been repurposed for adjuvant chemotherapy in glioma. This article reviews the drug repurposing method and the progress of research on disulfiram reuse for glioma treatment.
Collapse
|
12
|
Rennar GA, Gallinger TL, Mäder P, Lange-Grünweller K, Haeberlein S, Grünweller A, Grevelding CG, Schlitzer M. Disulfiram and dithiocarbamate analogues demonstrate promising antischistosomal effects. Eur J Med Chem 2022; 242:114641. [PMID: 36027862 DOI: 10.1016/j.ejmech.2022.114641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Schistosomiasis is a neglected tropical disease with more than 200 million new infections per year. It is caused by parasites of the genus Schistosoma and can lead to death if left untreated. Currently, only two drugs are available to combat schistosomiasis: praziquantel and, to a limited extent, oxamniquine. However, the intensive use of these two drugs leads to an increased probability of the emergence of resistance. Thus, the search for new active substances and their targeted development are mandatory. In this study the substance class of "dithiocarbamates" and their potential as antischistosomal agents is highlighted. These compounds are derived from the basic structure of the human aldehyde dehydrogenase inhibitor disulfiram (tetraethylthiuram disulfide, DSF) and its metabolites. Our compounds revealed promising activity (in vitro) against adults of Schistosoma mansoni, such as the reduction of egg production, pairing stability, vitality, and motility. Moreover, tegument damage as well as gut dilatations or even the death of the parasite were observed. We performed detailed structure-activity relationship studies on both sides of the dithiocarbamate core leading to a library of approximately 300 derivatives (116 derivatives shown here). Starting with 100 μm we improved antischistosomal activity down to 25 μm by substitution of the single bonded sulfur atom for example with different benzyl moieties and integration of the two residues on the nitrogen atom into a cyclic structure like piperazine. Its derivatization at the 4-nitrogen with a sulfonyl group or an acyl group led to the most active derivatives of this study which were active at 10 μm. In light of this SAR study, we identified 17 derivatives that significantly reduced motility and induced several other phenotypes at 25 μm, and importantly five of them have antischistosomal activity also at 10 μm. These derivatives were found to be non-cytotoxic in two human cell lines at 100 μm. Therefore, dithiocarbamates seem to be interesting new candidates for further antischistosomal drug development.
Collapse
Affiliation(s)
- Georg A Rennar
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Tom L Gallinger
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Patrick Mäder
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Kerstin Lange-Grünweller
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Simone Haeberlein
- BFS, Institute of Parasitology, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Arnold Grünweller
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Christoph G Grevelding
- BFS, Institute of Parasitology, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392, Gießen, Germany.
| | - Martin Schlitzer
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany.
| |
Collapse
|
13
|
Male contraceptive development: A medicinal chemistry perspective. Eur J Med Chem 2022; 243:114709. [DOI: 10.1016/j.ejmech.2022.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
14
|
Discovery of Triple Inhibitors of Both SARS-CoV-2 Proteases and Human Cathepsin L. Pharmaceuticals (Basel) 2022; 15:ph15060744. [PMID: 35745663 PMCID: PMC9230533 DOI: 10.3390/ph15060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
One inhibitor of the main SARS-CoV-2 protease has been approved recently by the FDA, yet it targets only SARS-CoV-2 main protease (Mpro). Here, we discovered inhibitors containing thiuram disulfide or dithiobis-(thioformate) tested against three key proteases involved in SARS-CoV-2 replication, including Mpro, SARS-CoV-2 papain-like protease (PLpro), and human cathepsin L. The use of thiuram disulfide and dithiobis-(thioformate) covalent inhibitor warheads was inspired by an idea to find a better alternative than disulfiram, an approved treatment for chronic alcoholism that is currently in phase 2 clinical trials against SARS-CoV-2. Our goal was to find more potent inhibitors that target both viral proteases and one essential human protease to reduce the dosage, improve the efficacy, and minimize the adverse effects associated with these agents. We found that compounds coded as RI175, RI173, and RI172 were the most potent inhibitors in an enzymatic assay against SARS-CoV-2 Mpro, SARS-CoV-2 PLpro, and human cathepsin L, with IC50s of 300, 200, and 200 nM, which is about 5-, 19-, and 11-fold more potent than disulfiram, respectively. In addition, RI173 was tested against SARS-CoV-2 in a cell-based and toxicity assay and was shown to have a greater antiviral effect than disulfiram. The identified compounds demonstrated the promising potential of thiuram disulfide or dithiobis-(thioformate) as a reactive functional group in small molecules that could be further developed for treatment of the COVID-19 virus or related variants.
Collapse
|
15
|
Zhang Y, Qiu Y, Zhang H. Computational Investigation of Structural Basis for Enhanced Binding of Isoflavone Analogues with Mitochondrial Aldehyde Dehydrogenase. ACS OMEGA 2022; 7:8115-8127. [PMID: 35284766 PMCID: PMC8908493 DOI: 10.1021/acsomega.2c00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Isoflavone compounds are potent inhibitors against mitochondrial aldehyde dehydrogenase (ALDH2) for the treatment of alcoholism and drug addiction, and an in-depth understanding of the underlying structural basis helps design new inhibitors for enhanced binding. Here, we investigated the binding poses and strengths of eight isoflavone analogues (including CVT-10216 and daidzin) with ALDH2 via computational methods of molecular docking, molecular dynamics (MD) simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA), steered MD, and umbrella sampling. Neither the Vina scoring of docked and MD-sampled complexes nor the nonbonded protein-inhibitor interaction energy from MD simulations is able to reproduce the relative binding strength of the inhibitors compared to experimental IC50 values. Considering the solvation contribution, MM-PBSA and relatively expensive umbrella sampling yield good performance for the relative binding (free) energies. The isoflavone skeleton prefers to form π-π stacking, π-sulfur, and π-alkyl interactions with planar (Phe and Trp) or sulfur-containing (Cys and Met) residues. The enhanced inhibition of CVT-10216 originates from both end groups of the isoflavone skeleton offering strong van der Waals contacts and from the methylsulfonamide group at the 4' position by hydrogen bonding (HB) with neighboring receptor residues. These results indicate that the hydrophobic binding tunnel of ALDH2 is larger than the isoflavone skeleton in length and thus an extended hydrophobic core is likely a premise for potent inhibitors.
Collapse
|
16
|
Chen C, Zhu T, Liu X, Zhu D, Zhang Y, Wu S, Han C, Zhang H, Luo J, Kong L. Identification of a novel PHGDH covalent inhibitor by chemical proteomics and phenotypic profiling. Acta Pharm Sin B 2022; 12:246-261. [PMID: 35127383 PMCID: PMC8799887 DOI: 10.1016/j.apsb.2021.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
The first rate-limiting enzyme of the serine synthesis pathway (SSP), phosphoglycerate dehydrogenase (PHGDH), is hyperactive in multiple tumors, which leads to the activation of SSP and promotes tumorigenesis. However, only a few inhibitors of PHGDH have been discovered to date, especially the covalent inhibitors of PHGDH. Here, we identified withangulatin A (WA), a natural small molecule, as a novel covalent inhibitor of PHGDH. Affinity-based protein profiling identified that WA could directly bind to PHGDH and inactivate the enzyme activity of PHGDH. Biolayer interferometry and LC-MS/MS analysis further demonstrated the selective covalent binding of WA to the cysteine 295 residue (Cys295) of PHGDH. With the covalent modification of Cys295, WA blocked the substrate-binding domain (SBD) of PHGDH and exerted an allosteric effect to induce PHGDH inactivation. Further studies revealed that with the inhibition of PHGDH mediated by WA, the glutathione synthesis was decreased and intracellular levels of reactive oxygen species (ROS) were elevated, leading to the inhibition of tumor proliferation. This study indicates WA as a novel PHGDH covalent inhibitor, which identifies Cys295 as a novel allosteric regulatory site of PHGDH and holds great potential in developing anti-tumor agents for targeting PHGDH.
Collapse
Key Words
- 3-PG, 3-phosphoglycerate
- 3-PHP, 3-phosphohydroxypyruvate
- ABPP, affinity-based protein profiling
- BLI, biolayer interferometry assay
- CETSA, cellular thermal shift assay
- Chemical proteomics
- Colon cancer
- Covalent inhibitor
- CuAAC, copper-catalyzed alkyne–azide cycloaddition
- DARTS, drug affinity responsive target stability
- GSH, glutathione
- MD, molecular dynamics
- NADPH, nicotinamide adenine dinucleotide phosphate
- Oxidative stress
- PHGDH, phosphoglycerate dehydrogenase
- PSAT, phosphoserine aminotransferase
- Phosphoglycerate dehydrogenase
- RMSD, root mean square deviation
- RMSF, root mean square fluctuations
- ROS, reactive oxygen species
- SBD, substrate-binding domain
- SSP, serine synthesis pathway
- Serine synthesis pathway
- TBTA, tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine
- TCEP, tris(2-carboxyethyl) phosphine
- Withangulatin A
- Withanolides
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianguang Luo
- Corresponding authors. Tel./fax: +86 25 83271405, +86 25 83271402.
| | - Lingyi Kong
- Corresponding authors. Tel./fax: +86 25 83271405, +86 25 83271402.
| |
Collapse
|
17
|
System and network biology-based computational approaches for drug repositioning. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300680 DOI: 10.1016/b978-0-323-91172-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in computational biology have not only fastened the drug discovery process but have also proven to be a powerful tool for the search of existing molecules of therapeutic value for drug repurposing. The system biology-based drug repurposing approaches shorten the time and reduced the cost of the whole process when compared to de novo drug discovery. In the present pandemic situation, these computational approaches have emerged as a boon to tackle the COVID-19 associated morbidities and mortalities. In this chapter, we present the overview of system biology-based network system approaches which can be exploited for the drug repurposing of disease. Besides, we have included information on relevant repurposed drugs which are currently used for the treatment of COVID-19.
Collapse
|
18
|
Tan Y, Zhou X, Gong Y, Gou K, Luo Y, Jia D, Dai L, Zhao Y, Sun Q. Biophysical and biochemical properties of PHGDH revealed by studies on PHGDH inhibitors. Cell Mol Life Sci 2021; 79:27. [PMID: 34971423 PMCID: PMC11073335 DOI: 10.1007/s00018-021-04022-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
The rate-limiting serine biogenesis enzyme PHGDH is overexpressed in cancers. Both serine withdrawal and genetic/pharmacological inhibition of PHGDH have demonstrated promising tumor-suppressing activities. However, the enzyme properties of PHGDH are not well understood and the discovery of PHGDH inhibitors is still in its infancy. Here, oridonin was identified from a natural product library as a new PHGDH inhibitor. The crystal structure of PHGDH in complex with oridonin revealed a new allosteric site. The binding of oridonin to this site reduced the activity of the enzyme by relocating R54, a residue involved in substrate binding. Mutagenesis studies showed that PHGDH activity was very sensitive to cysteine mutations, especially those in the substrate binding domain. Conjugation of oridonin and other reported covalent PHGDH inhibitors to these sites will therefore inhibit PHGDH. In addition to being inhibited enzymatically, PHGDH can also be inhibited by protein aggregation and proteasome-mediated degradation. Several tested PHGDH cancer mutants showed altered enzymatic activity, which can be explained by protein structure and stability. Overall, the above studies present new biophysical and biochemical insights into PHGDH and may facilitate the future design of PHGDH inhibitors.
Collapse
Affiliation(s)
- Yuping Tan
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, 17#, 3rd Section, Ren min South Road, Chengdu, 610041, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, 17#, 3rd Section, Ren min South Road, Chengdu, 610041, China
| | - Youfu Luo
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Division of Neurology, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, 17#, 3rd Section, Ren min South Road, Chengdu, 610041, China.
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
19
|
Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens. Biomaterials 2021; 281:121335. [PMID: 34979419 DOI: 10.1016/j.biomaterials.2021.121335] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
Disulfiram (DSF) has been used as an alcoholism drug for 70 years. Recently, it has attracted increasing attention owing to the distinguished anticancer activity, which can be further potentiated by the supplementation of Cu2+. Although encouraging anticancer results are obtained in lab, the clinical outcomes of oral DSF are not satisfactory, which urges an in-depth understanding of the underlying mechanisms, bottlenecks, and proposal of potential methods to address the dilemma. In this review, a critical summarization of various molecular biological anticancer mechanisms of DSF/Cu2+ is provided and the predicament of orally delivering DSF in clinical oncotherapy is explained by the metabolic barriers. We highlight the recent advances in the DSF/Cu2+ delivery strategies and the emerging treatment regimens for cancer treatment. Last but not the least, we summarize the clinical trials regarding DSF and make a prospect of DSF/Cu-based cancer therapy.
Collapse
|
20
|
Nasrollahzadeh A, Momeny M, Fasehee H, Yaghmaie M, Bashash D, Hassani S, Mousavi SA, Ghaffari SH. Anti-proliferative activity of disulfiram through regulation of the AKT-FOXO axis: A proteomic study of molecular targets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119087. [PMID: 34182011 DOI: 10.1016/j.bbamcr.2021.119087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023]
Abstract
Due to its potent anti-tumor activity, well-investigated pharmacokinetic properties and safety profile, disulfiram (DSF) has emerged as a promising candidate for drug repurposing in cancer therapy. Although several molecular mechanisms have been proposed for its anti-cancer effects, the precise underlying mechanisms remain unclear. In the present study, we showed that DSF inhibited proliferation of cancer cells by inducing reactive oxygen species (ROS) production, a G1 cell cycle arrest and autophagy. Moreover, DSF triggered apoptosis via suppression of the anti-apoptotic protein survivin. To elucidate the mechanisms for the anti-proliferative activities of DSF, we applied a 2-DE combined with MALDI-TOF-MS/MS analysis to identify differentially expressed proteins in breast cancer cells upon treatment with DSF. Nine differentially expressed proteins were identified among which, three candidates including calmodulin (CaM), peroxiredoxin 1 (PRDX1) and collagen type I alpha 1 (COL1A1) are involved in the regulation of the AKT signaling pathway. The results of western blot analysis confirmed that DSF inhibited p-AKT, suggesting that DSF induces its anti-tumor effects via AKT blockade. Moreover, we found that DSF increased the mRNA levels of FOXO1, FOXO3 and FOXO4, and upregulated the expression of their target genes involved in G1 cell cycle arrest, apoptosis and autophagy. Finally, DSF potentiated the anti-proliferative effects of well-known chemotherapeutic agents such as arsenic trioxide (ATO), doxorubicin, paclitaxel and cisplatin. Altogether, these findings provide mechanistic insights into the anti-growth activities of DSF.
Collapse
Affiliation(s)
- Ali Nasrollahzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Hamidreza Fasehee
- Tissue Engineering and Biomaterials Research Center, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Hassani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Seyed A Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Spillier Q, Frédérick R. Phosphoglycerate dehydrogenase (PHGDH) inhibitors: a comprehensive review 2015-2020. Expert Opin Ther Pat 2021; 31:597-608. [PMID: 33571419 DOI: 10.1080/13543776.2021.1890028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction:The phosphoglycerate dehydrogenase (PHGDH), a metabolic enzyme involved in the serine synthetic pathway (SSP), appears to play a central role in supporting cancer growth and proliferation. PHGDH is a dehydrogenase whose expression in cancers was first demonstrated in 2010. Because its silencing allows a significant reduction in tumor proliferation, it appears to be a promising target in the development of new anti-cancer agents.Areas covered: In this review, we will detail PHGDH inhibitors that were reported since 2015. These compounds will be ranked according to their chemical class and their site of action. Representative examples of each series will be presented as well as their inhibitory potency in vitro and/or in vivo. Finally, their most significant biological effects will be detailed.Expert opinion: Currently, and despite significant efforts, the search for PHGDH inhibitors has not yet led to the development of compounds that can be used therapeutically. The available inhibitors have either too weak inhibitory potency or limited selectivity. Therefore, it seems crucial, given the importance of this enzyme in the progression of cancer but also in other pathologies, to pursue the development of new chemical series.
Collapse
Affiliation(s)
- Quentin Spillier
- Department of Radiation Oncology, Perlmutter Cancer Center and New York University, Langone Health, New York, New York, USA
| | - Raphaël Frédérick
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain, Brussels, Belgium
| |
Collapse
|
22
|
Xu H, Qing X, Wang Q, Li C, Lai L. Dimerization of PHGDH via the catalytic unit is essential for its enzymatic function. J Biol Chem 2021; 296:100572. [PMID: 33753166 PMCID: PMC8081924 DOI: 10.1016/j.jbc.2021.100572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
Human D-3-phosphoglycerate dehydrogenase (PHGDH), a key enzyme in de novo serine biosynthesis, is amplified in various cancers and serves as a potential target for anticancer drug development. To facilitate this process, more information is needed on the basic biochemistry of this enzyme. For example, PHGDH was found to form tetramers in solution and the structure of its catalytic unit (sPHGDH) was solved as a dimer. However, how the oligomeric states affect PHGDH enzyme activity remains elusive. We studied the dependence of PHGDH enzymatic activity on its oligomeric states. We found that sPHGDH forms a mixture of monomers and dimers in solution with a dimer dissociation constant of ∼0.58 μM, with the enzyme activity depending on the dimer content. We computationally identified hotspot residues at the sPHGDH dimer interface. Single-point mutants at these sites disrupt dimer formation and abolish enzyme activity. Molecular dynamics simulations showed that dimer formation facilitates substrate binding and maintains the correct conformation required for enzyme catalysis. We further showed that the full-length PHGDH exists as a dynamic mixture of monomers, dimers, and tetramers in solution with enzyme concentration-dependent activity. Mutations that can completely disrupt the sPHGDH dimer show different abilities to interrupt the full-length PHGDH tetramer. Among them, E108A and I121A can also disrupt the oligomeric structures of the full-length PHGDH and abolish its enzyme activity. Our study indicates that disrupting the oligomeric structure of PHGDH serves as a novel strategy for PHGDH drug design and the hotspot residues identified can guide the design process.
Collapse
Affiliation(s)
- Hanyu Xu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyu Qing
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chunmei Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
23
|
Li M, Wu C, Yang Y, Zheng M, Yu S, Wang J, Chen L, Li H. 3-Phosphoglycerate dehydrogenase: a potential target for cancer treatment. Cell Oncol (Dordr) 2021; 44:541-556. [PMID: 33735398 DOI: 10.1007/s13402-021-00599-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Metabolic changes have been recognized as an important hallmark of cancer cells. Cancer cells can promote their own growth and proliferation through metabolic reprogramming. Particularly, serine metabolism has frequently been reported to be dysregulated in tumor cells. 3-Phosphoglycerate dehydrogenase (PHGDH) catalyzes the first step in the serine biosynthesis pathway and acts as a rate-limiting enzyme involved in metabolic reprogramming. PHGDH upregulation has been observed in many tumor types, and inhibition of PHGDH expression has been reported to inhibit the proliferation of PHGDH-overexpressing tumor cells, indicating that it may be utilized as a target for cancer treatment. Recently identified inhibitors targeting PHGDH have already shown effectiveness. A further in-depth analysis and concomitant development of PHGDH inhibitors will be of great value for the treatment of cancer. CONCLUSIONS In this review we describe in detail the role of PHGDH in various cancers and inhibitors that have recently been identified to highlight progression in cancer treatment. We also discuss the development of new drugs and treatment modalities based on PHGDH targets. Overexpression of PHGDH has been observed in melanoma, breast cancer, nasopharyngeal carcinoma, parathyroid adenoma, glioma, cervical cancer and others. PHGDH may serve as a molecular biomarker for the diagnosis, prognosis and treatment of these cancers. The design and development of novel PHGDH inhibitors may have broad implications for cancer treatment. Therapeutic strategies of PHGDH inhibitors in combination with traditional chemotherapeutic drugs may provide new perspectives for precision medicine and effective personalized treatment for cancer patients.
Collapse
Affiliation(s)
- Mingxue Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Canrong Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yueying Yang
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Silin Yu
- Department of Medicinal Chemistry and Natural Medicine Chemistry (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, 150081, China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, 150081, China.
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. .,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
24
|
A retrospective overview of PHGDH and its inhibitors for regulating cancer metabolism. Eur J Med Chem 2021; 217:113379. [PMID: 33756126 DOI: 10.1016/j.ejmech.2021.113379] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
Emerging evidence suggests that cancer metabolism is closely associated to the serine biosynthesis pathway (SSP), in which glycolytic intermediate 3-phosphoglycerate is converted to serine through a three-step enzymatic transformation. As the rate-limiting enzyme in the first step of SSP, phosphoglycerate dehydrogenase (PHGDH) is overexpressed in various diseases, especially in cancer. Genetic knockdown or silencing of PHGDH exhibits obvious anti-tumor response both in vitro and in vivo, demonstrating that PHGDH is a promising drug target for cancer therapy. So far, several types of PHGDH inhibitors have been identified as a significant and newly emerging option for anticancer treatment. Herein, this comprehensive review summarizes the recent achievements of PHGDH, especially its critical role in cancer and the development of PHGDH inhibitors in drug discovery.
Collapse
|
25
|
Sánchez-Salazar MG, Álvarez MM, Trujillo-de Santiago G. Advances in 3D bioprinting for the biofabrication of tumor models. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bprint.2020.e00120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Targeting protein self-association in drug design. Drug Discov Today 2021; 26:1148-1163. [PMID: 33548462 DOI: 10.1016/j.drudis.2021.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Protein self-association is a universal phenomenon essential for stability and molecular recognition. Disrupting constitutive homomers constitutes an original and emerging strategy in drug design. Inhibition of homomeric proteins can be achieved through direct complex disruption, subunit intercalation, or by promoting inactive oligomeric states. Targeting self-interaction grants several advantages over active site inhibition because of the stimulation of protein degradation, the enhancement of selectivity, substoichiometric inhibition, and by-pass of compensatory mechanisms. This new landscape in protein inhibition is driven by the development of biophysical and biochemical tools suited for the study of homomeric proteins, such as differential scanning fluorimetry (DSF), native mass spectrometry (MS), Förster resonance energy transfer (FRET) spectroscopy, 2D nuclear magnetic resonance (NMR), and X-ray crystallography. In this review, we discuss the different aspects of this new paradigm in drug design.
Collapse
|
27
|
Servidio C, Stellacci F. Therapeutic approaches against coronaviruses acute respiratory syndrome. Pharmacol Res Perspect 2021; 9:e00691. [PMID: 33378565 PMCID: PMC7773137 DOI: 10.1002/prp2.691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses represent global health threat. In this century, they have already caused two epidemics and one serious pandemic. Although, at present, there are no approved drugs and therapies for the treatment and prevention of human coronaviruses, several agents, FDA-approved, and preclinical, have shown in vitro and/or in vivo antiviral activity. An in-depth analysis of the current situation leads to the identification of several potential drugs that could have an impact on the fight against coronaviruses infections. In this review, we discuss the virology of human coronaviruses highlighting the main biological targets and summarize the current state-of-the-art of possible therapeutic options to inhibit coronaviruses infections. We mostly focus on FDA-approved and preclinical drugs targeting viral conserved elements.
Collapse
Affiliation(s)
- Camilla Servidio
- Department of Pharmacy, Health and Nutrition SciencesUniversity of CalabriaRendeItaly
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Francesco Stellacci
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Bioengineering Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
28
|
Unravelling the Allosteric Targeting of PHGDH at the ACT-Binding Domain with a Photoactivatable Diazirine Probe and Mass Spectrometry Experiments. Molecules 2021; 26:molecules26020477. [PMID: 33477510 PMCID: PMC7835887 DOI: 10.3390/molecules26020477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
The serine biosynthetic pathway is a key element contributing to tumor proliferation. In recent years, targeting of phosphoglycerate dehydrogenase (PHGDH), the first enzyme of this pathway, intensified and revealed to be a promising strategy to develop new anticancer drugs. Among attractive PHGDH inhibitors are the α-ketothioamides. In previous work, we have demonstrated their efficacy in the inhibition of PHGDH in vitro and in cellulo. However, the precise site of action of this series, which would help the rational design of new inhibitors, remained undefined. In the present study, the detailed mechanism-of-action of a representative α-ketothioamide inhibitor is reported using several complementary experimental techniques. Strikingly, our work led to the identification of an allosteric site on PHGDH that can be targeted for drug development. Using mass spectrometry experiments and an original α-ketothioamide diazirine-based photoaffinity probe, we identified the 523Q-533F sequence on the ACT regulatory domain of PHGDH as the binding site of α-ketothioamides. Mutagenesis experiments further documented the specificity of our compound at this allosteric site. Our results thus pave the way for the development of new anticancer drugs using a completely novel mechanism-of-action.
Collapse
|
29
|
Murtas G, Marcone GL, Sacchi S, Pollegioni L. L-serine synthesis via the phosphorylated pathway in humans. Cell Mol Life Sci 2020; 77:5131-5148. [PMID: 32594192 PMCID: PMC11105101 DOI: 10.1007/s00018-020-03574-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
L-serine is a nonessential amino acid in eukaryotic cells, used for protein synthesis and in producing phosphoglycerides, glycerides, sphingolipids, phosphatidylserine, and methylenetetrahydrofolate. Moreover, L-serine is the precursor of two relevant coagonists of NMDA receptors: glycine (through the enzyme serine hydroxymethyltransferase), which preferentially acts on extrasynaptic receptors and D-serine (through the enzyme serine racemase), dominant at synaptic receptors. The cytosolic "phosphorylated pathway" regulates de novo biosynthesis of L-serine, employing 3-phosphoglycerate generated by glycolysis and the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase (the latter representing the irreversible step). In the human brain, L-serine is primarily found in glial cells and is supplied to neurons for D-serine synthesis. Serine-deficient patients show severe neurological symptoms, including congenital microcephaly, psychomotor retardation, and intractable seizures, thus highlighting the relevance of de novo production of this amino acid in brain development and morphogenesis. Indeed, the phosphorylated pathway is strictly linked to cancer. Moreover, L-serine has been suggested as a ready-to-use treatment, as also recently proposed for Alzheimer's disease. Here, we present our current state of knowledge concerning the three mammalian enzymes of the phosphorylated pathway and known mutations related to pathological conditions: although the structure of these enzymes has been solved, how enzyme activity is regulated remains largely unknown. We believe that an in-depth investigation of these enzymes is crucial to identify the molecular mechanisms involved in modulating concentrations of the serine enantiomers and for studying the interplay between glial and neuronal cells and also to determine the most suitable therapeutic approach for various diseases.
Collapse
Affiliation(s)
- Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
30
|
Alvarez-Manzo HS, Zhang Y, Shi W, Zhang Y. Evaluation of Disulfiram Drug Combinations and Identification of Other More Effective Combinations against Stationary Phase Borrelia burgdorferi. Antibiotics (Basel) 2020; 9:E542. [PMID: 32858987 PMCID: PMC7559458 DOI: 10.3390/antibiotics9090542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Lyme disease, caused by Borrelia burgdorferi, is the most common vector-borne disease in USA, and 10-20% of patients will develop persistent symptoms despite treatment ("post-treatment Lyme disease syndrome"). B. burgdorferi persisters, which are not killed by the current antibiotics for Lyme disease, are considered one possible cause. Disulfiram has shown to be active against B. burgdorferi, but its activity against persistent forms is not well characterized. We assessed disulfiram as single drug and in combinations against stationary-phase B. burgdorferi culture enriched with persisters. Disulfiram was not very effective in the drug exposure experiment (survival rate (SR) 46.3%) or in combinations. Clarithromycin (SR 41.1%) and nitroxoline (SR 37.5%) were equally effective when compared to the current Lyme antibiotic cefuroxime (SR 36.8%) and more active than disulfiram. Cefuroxime + clarithromycin (SR 25.9%) and cefuroxime + nitroxoline (SR 27.5%) were significantly more active than cefuroxime + disulfiram (SR 41.7%). When replacing disulfiram with clarithromycin or nitroxoline in three-drug combinations, bacterial viability decreased significantly and subculture studies showed that combinations with these two drugs (cefuroxime + clarithromycin/nitroxoline + furazolidone/nitazoxanide) inhibited the regrowth, while disulfiram combinations did not (cefuroxime + disulfiram + furazolidone/nitazoxanide). Thus, clarithromycin and nitroxoline should be further assessed to determine their role as potential treatment alternatives in the future.
Collapse
Affiliation(s)
| | | | | | - Ying Zhang
- Department of Molecular microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (H.S.A.-M.); (Y.Z.); (W.S.)
| |
Collapse
|
31
|
Yoshino H, Yamada Y, Enokida H, Osako Y, Tsuruda M, Kuroshima K, Sakaguchi T, Sugita S, Tatarano S, Nakagawa M. Targeting NPL4 via drug repositioning using disulfiram for the treatment of clear cell renal cell carcinoma. PLoS One 2020; 15:e0236119. [PMID: 32667929 PMCID: PMC7363112 DOI: 10.1371/journal.pone.0236119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
The alcohol-abuse drug disulfiram has antitumor effects against diverse cancer types via inhibition of the ubiquitin-proteasome protein nuclear protein localization protein 4 (NPL4). However, the antitumor effects of NPL4 and disulfiram in clear cell renal cell carcinoma (ccRCC) are unclear. Here, we evaluated the therapeutic potential of targeting the ubiquitin-proteasome pathway using disulfiram and RNA interference and investigated the mechanisms underlying disulfiram in ccRCC. According to data from The Cancer Genome Atlas, NPL4 mRNA expression was significantly upregulated in clinical ccRCC samples compared with that in normal kidney samples, and patients with high NPL4 expression had poor overall survival compared with patients with low NPL4 expression. Disulfiram and NPL4 siRNA inhibited ccRCC cell proliferation in vitro, and disulfiram inhibited ccRCC tumor growth in a xenograft model. Synergistic antiproliferative effects were observed for combination treatment with disulfiram and sunitinib in vitro and in vivo. In RCC cells from mice treated with disulfiram and/or sunitinib, several genes associated with serine biosynthesis and aldose reductase were downregulated in cells treated with disulfiram or sunitinib alone and further downregulated in cells treated with both disulfiram and sunitinib. These findings provided insights into the mechanisms of disulfiram and suggested novel therapeutic strategies for RCC treatment.
Collapse
MESH Headings
- Acetaldehyde Dehydrogenase Inhibitors/pharmacology
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation
- Disulfiram/pharmacology
- Drug Repositioning/methods
- Drug Resistance, Neoplasm/drug effects
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Prognosis
- RNA, Small Interfering/genetics
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasutoshi Yamada
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- * E-mail:
| | - Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masafumi Tsuruda
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuki Kuroshima
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Sugita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
32
|
Ramesh V, Brabletz T, Ceppi P. Targeting EMT in Cancer with Repurposed Metabolic Inhibitors. Trends Cancer 2020; 6:942-950. [PMID: 32680650 DOI: 10.1016/j.trecan.2020.06.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) determines the most lethal features of cancer, metastasis formation and chemoresistance, and therefore represents an attractive target in oncology. However, direct targeting of EMT effector molecules is, in most cases, pharmacologically challenging. Since emerging research has highlighted the distinct metabolic circuits involved in EMT, we propose the use of metabolism-specific inhibitors, FDA approved or under clinical trials, as a drug repurposing approach to target EMT in cancer. Metabolism-inhibiting drugs could be coupled with standard chemo- or immunotherapy to combat EMT-driven resistant and aggressive cancers.
Collapse
Affiliation(s)
- Vignesh Ramesh
- Interdisciplinary Centre for Clinical Research, University Hospital Erlangen, FAU-Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine-I and Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Paolo Ceppi
- Interdisciplinary Centre for Clinical Research, University Hospital Erlangen, FAU-Erlangen-Nuremberg, Erlangen, Germany; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
33
|
Zhao X, Fu J, Du J, Xu W. The Role of D-3-Phosphoglycerate Dehydrogenase in Cancer. Int J Biol Sci 2020; 16:1495-1506. [PMID: 32226297 PMCID: PMC7097917 DOI: 10.7150/ijbs.41051] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Serine, a non-essential amino acid, can be imported from the extracellular environment by transporters and de novo synthesized from glycolytic 3-phosphoglycerate (3-PG) in the serine biosynthetic pathway (SSP). It has been reported that active serine synthesis might be needed for the synthesis of proteins, lipids, and nucleotides and the balance of folate metabolism and redox homeostasis, which are necessary for cancer cell proliferation. Human D-3-phosphoglycerate dehydrogenase (PHGDH), the first and only rate-limiting enzyme in the de novo serine biosynthetic pathway, catalyzes the oxidation of 3-PG derived from glycolysis to 3-phosphohydroxypyruvate (3-PHP). PHGDH is highly expressed in tumors as a result of amplification, transcription, or its degradation and stability alteration, which dysregulates the serine biosynthesis pathway via metabolic enzyme activity to nourish tumors. And some recent researches reported that PHGDH promoted some tumors growth via non-metabolic way by upregulating target cancer-promoting genes. In this article, we reviewed the type, structure, expression and inhibitors of PHGDH, as well as the role it plays in cancer and tumor resistance to chemotherapy.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Central Laboratory, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| | - Jianfei Fu
- Department of Medical Oncology, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| | - Jinlin Du
- Department of Colorectal Surgery, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| | - Wenxia Xu
- Central Laboratory, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| |
Collapse
|
34
|
Ekinci E, Rohondia S, Khan R, Dou QP. Repurposing Disulfiram as An Anti-Cancer Agent: Updated Review on Literature and Patents. Recent Pat Anticancer Drug Discov 2020; 14:113-132. [PMID: 31084595 DOI: 10.2174/1574892814666190514104035] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite years of success of most anti-cancer drugs, one of the major clinical problems is inherent and acquired resistance to these drugs. Overcoming the drug resistance or developing new drugs would offer promising strategies in cancer treatment. Disulfiram, a drug currently used in the treatment of chronic alcoholism, has been found to have anti-cancer activity. OBJECTIVE To summarize the anti-cancer effects of Disulfiram through a thorough patent review. METHODS This article reviews molecular mechanisms and recent patents of Disulfiram in cancer therapy. RESULTS Several anti-cancer mechanisms of Disulfiram have been proposed, including triggering oxidative stress by the generation of reactive oxygen species, inhibition of the superoxide dismutase activity, suppression of the ubiquitin-proteasome system, and activation of the mitogen-activated protein kinase pathway. In addition, Disulfiram can reverse the resistance to chemotherapeutic drugs by inhibiting the P-glycoprotein multidrug efflux pump and suppressing the activation of NF-kB, both of which play an important role in the development of drug resistance. Furthermore, Disulfiram has been found to reduce angiogenesis because of its metal chelating properties as well as its ability to inactivate Cu/Zn superoxide dismutase and matrix metalloproteinases. Disulfiram has also been shown to inhibit the proteasomes, DNA topoisomerases, DNA methyltransferase, glutathione S-transferase P1, and O6- methylguanine DNA methyltransferase, a DNA repair protein highly expressed in brain tumors. The patents described in this review demonstrate that Disulfiram is useful as an anti-cancer drug. CONCLUSION For years the FDA-approved, well-tolerated, inexpensive, orally-administered drug Disulfiram was used in the treatment of chronic alcoholism, but it has recently demonstrated anti-cancer effects in a range of solid and hematological malignancies. Its combination with copper at clinically relevant concentrations might overcome the resistance of many anti-cancer drugs in vitro, in vivo, and in patients.
Collapse
Affiliation(s)
- Elmira Ekinci
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Sagar Rohondia
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Raheel Khan
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Qingping P Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
35
|
Gruber FS, Johnston ZC, Barratt CLR, Andrews PD. A phenotypic screening platform utilising human spermatozoa identifies compounds with contraceptive activity. eLife 2020; 9:e51739. [PMID: 31987071 PMCID: PMC7046468 DOI: 10.7554/elife.51739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need to develop new methods for male contraception, however a major barrier to drug discovery has been the lack of validated targets and the absence of an effective high-throughput phenotypic screening system. To address this deficit, we developed a fully-automated robotic screening platform that provided quantitative evaluation of compound activity against two key attributes of human sperm function: motility and acrosome reaction. In order to accelerate contraceptive development, we screened the comprehensive collection of 12,000 molecules that make up the ReFRAME repurposing library, comprising nearly all the small molecules that have been approved or have undergone clinical development, or have significant preclinical profiling. We identified several compounds that potently inhibit motility representing either novel drug candidates or routes to target identification. This platform will now allow for major drug discovery programmes that address the critical gap in the contraceptive portfolio as well as uncover novel human sperm biology.
Collapse
Affiliation(s)
- Franz S Gruber
- National Phenotypic Screening Centre, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Zoe C Johnston
- National Phenotypic Screening Centre, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
- Reproductive and Developmental Biology, Division of Systems Medicine, School of MedicineNinewells Hospital and Medical School, University of DundeeDundeeUnited Kingdom
| | - Christopher LR Barratt
- Reproductive and Developmental Biology, Division of Systems Medicine, School of MedicineNinewells Hospital and Medical School, University of DundeeDundeeUnited Kingdom
| | - Paul D Andrews
- National Phenotypic Screening Centre, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
36
|
Structure-Activity Relationships (SARs) of α-Ketothioamides as Inhibitors of Phosphoglycerate Dehydrogenase (PHGDH). Pharmaceuticals (Basel) 2020; 13:ph13020020. [PMID: 31979167 PMCID: PMC7168936 DOI: 10.3390/ph13020020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
For many years now, targeting deregulation within cancer cells’ metabolism has appeared as a promising strategy for the development of more specific and efficient cancer treatments. Recently, numerous reports highlighted the crucial role of the serine synthetic pathway, and particularly of the phosphoglycerate dehydrogenase (PHGDH), the first enzyme of the pathway, to sustain cancer progression. Yet, because of very weak potencies usually in cell-based settings, the inhibitors reported so far failed to lay ground on the potential of this approach. In this paper, we report a structure–activity relationship study of a series of α-ketothioamides that we have recently identified. Interestingly, this study led to a deeper understanding of the structure–activity relationship (SAR) in this series and to the identification of new PHGDH inhibitors. The activity of the more potent compounds was confirmed by cellular thermal shift assays and in cell-based experiments. We hope that this research will eventually provide a new entry point, based on this promising chemical scaffold, for the development of therapeutic agents targeting PHGDH.
Collapse
|
37
|
Recent advances in the delivery of disulfiram: a critical analysis of promising approaches to improve its pharmacokinetic profile and anticancer efficacy. ACTA ACUST UNITED AC 2019; 27:853-862. [PMID: 31758497 DOI: 10.1007/s40199-019-00308-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Disulfiram (DSF) has a long history of being used as a first-line promising therapy for treatment of alcoholism in human. Besides its prominence in the treatment of alcoholism, extensive investigations have been carried out to explore other biomedical and pharmacological effects of DSF. Amongst other biomedical implications, plenty researches have shown evidence of promising anticancer efficacy of this agent for treatment of wide range of cancers such as breast cancer, liver cancer and lung carcinoma. METHODS Electronic databases, including Google scholar, PubMed and Web of science were searched with the keywords disulfiram, nanoparticles, cancer, drug delivery systems. RESULT Despite its excellent anticancer efficacy, the pharmaceutical significance and clinical applicability of DSF are hampered due to poor stability, low solubility, short plasma half-life, rapid metabolism, and early clearance from systemic circulation. Various attempts have been made to eradicate these issues. Nanotechnology based interventions have gained remarkable recognition in improving pharmacokinetic and pharmacodynamic profile of DSF by improving its stability and avoiding its degradation. CONCLUSION The aim of the present review is to critically analyse all recent developments in designing various nanotechnology-based delivery systems, to ponder their relevance in improving stability, pharmacokinetic and pharmacodynamic profile, and achieving target-specific delivery of this agent to cancer cells to effectively eradicate cancer and abolish its metastasis. Nanotechnology is a novel approach for overcoming such obstacles faced presently, the results obtained so far using different novel drug delivery systems seem to be very promising to increase the stability and half-life of DSF. Graphical abstract Nanocrrier mediated drug delivery systems for disulfiram.
Collapse
|
38
|
Patnaik A, Buttar BS, Ataallah B, Kumar V. Rare Anaphylactic Reaction to Acamprosate in a Young Alcoholic. Cureus 2019; 11:e6210. [PMID: 31890411 PMCID: PMC6925377 DOI: 10.7759/cureus.6210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Alcoholism is a worldwide health issue that affects people from all walks of life. Effective alcohol abuse treatment programs, which combine cognitive behavioral therapy with medications, are necessary to provide the appropriate care that patients need. Treatment options include Naltrexone, Acamprosate, or Disulfiram. Due to poor compliance, Disulfiram is used as a second line agent. These medications play an integral role in treating alcohol abuse. Healthcare providers must be aware of their side effect profiles. This includes a rare and fatal anaphylactic reaction to Acamprosate which is not well documented in the current literature.
Collapse
Affiliation(s)
- Asha Patnaik
- Rheumatology, Stony Brook University, Stony Brook, USA
| | - Barjinder S Buttar
- Internal Medicine, Northwell Health Mather Hospital, Port Jefferson, USA
| | - Basma Ataallah
- Internal Medicine, Zucker School of Medicine at Mather, New York, USA
| | - Vikas Kumar
- Internal Medicine, Donald and Barbara Zucker School of Medicine at Hofstra / Northwell, Port Jefferson, USA
| |
Collapse
|
39
|
Kumar R, Harilal S, Gupta SV, Jose J, Thomas Parambi DG, Uddin MS, Shah MA, Mathew B. Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. Eur J Med Chem 2019; 182:111602. [PMID: 31421629 PMCID: PMC7127402 DOI: 10.1016/j.ejmech.2019.111602] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Drug discovery and development are long and financially taxing processes. On an average it takes 12-15 years and costs 1.2 billion USD for successful drug discovery and approval for clinical use. Many lead molecules are not developed further and their potential is not tapped to the fullest due to lack of resources or time constraints. In order for a drug to be approved by FDA for clinical use, it must have excellent therapeutic potential in the desired area of target with minimal toxicities as supported by both pre-clinical and clinical studies. The targeted clinical evaluations fail to explore other potential therapeutic applications of the candidate drug. Drug repurposing or repositioning is a fast and relatively cheap alternative to the lengthy and expensive de novo drug discovery and development. Drug repositioning utilizes the already available clinical trials data for toxicity and adverse effects, at the same time explores the drug's therapeutic potential for a different disease. This review addresses recent developments and future scope of drug repositioning strategy.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Manglore, 575018, India
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 2014, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Muhammad Ajmal Shah
- Department of Pharmacogonosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India.
| |
Collapse
|
40
|
Turanli B, Altay O, Borén J, Turkez H, Nielsen J, Uhlen M, Arga KY, Mardinoglu A. Systems biology based drug repositioning for development of cancer therapy. Semin Cancer Biol 2019; 68:47-58. [PMID: 31568815 DOI: 10.1016/j.semcancer.2019.09.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/20/2023]
Abstract
Drug repositioning is a powerful method that can assists the conventional drug discovery process by using existing drugs for treatment of a disease rather than its original indication. The first examples of repurposed drugs were discovered serendipitously, however data accumulated by high-throughput screenings and advancements in computational biology methods have paved the way for rational drug repositioning methods. As chemotherapeutic agents have notorious side effects that significantly reduce quality of life, drug repositioning promises repurposed noncancer drugs with little or tolerable adverse effects for cancer patients. Here, we review current drug-related data types and databases including some examples of web-based drug repositioning tools. Next, we describe systems biology approaches to be used in drug repositioning for effective cancer therapy. Finally, we highlight examples of mostly repurposed drugs for cancer treatment and provide an overview of future expectations in the field for development of effective treatment strategies.
Collapse
Affiliation(s)
- Beste Turanli
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden; Department of Bioengineering, Marmara University, Istanbul, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital Gothenburg, Sweden
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25240, Turkey
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden
| | | | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|