1
|
Sojoudi K, Solaimani M, Azizi H. Exosomal insights into ovarian cancer stem cells: revealing the molecular hubs. J Ovarian Res 2025; 18:20. [PMID: 39891297 PMCID: PMC11784003 DOI: 10.1186/s13048-025-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025] Open
Abstract
Ovarian cancer is a deadly disease, often diagnosed at advanced stages due to a lack of reliable biomarkers. Exosomes, which carry a variety of molecules such as proteins, lipids, DNA, and non-coding RNAs, have recently emerged as promising tools for early cancer detection. While exosomes have been studied in various cancer types, comprehensive network analyses of exosome proteins in ovarian cancer remain limited. In this study, we used a protein-protein interaction (PPI) network. Using the Clustermaker2 app and the MCODE algorithm, we identified six significant clusters within the network, highlighting regions involved in functional pathways. A four-fold algorithmic approach, including MCC, DMNC, Degree, and EPC, identified 12 common hub genes. STRING analysis and visualization techniques provided a detailed understanding of the biological processes associated with these hub genes. Notably, 91.7% of the identified hub genes were involved in translational processes, showing an important role in protein synthesis regulation in ovarian cancer. In addition, we identified the miRNAs and LncRNAs carried by ovarian cancer exosomes. These findings highlight potential biomarkers for early detection and therapeutic targets.
Collapse
Affiliation(s)
- Kiana Sojoudi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 49767, Iran
| | - Maryam Solaimani
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 49767, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 49767, Iran.
| |
Collapse
|
2
|
Derogar R, Nejadi Orang F, Abdoli Shadbad M. Competing endogenous RNA networks in ovarian cancer: from bench to bedside. EXCLI JOURNAL 2025; 24:86-112. [PMID: 39967908 PMCID: PMC11830916 DOI: 10.17179/excli2024-7827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Epithelial ovarian cancer is responsible for the majority of ovarian malignancies, and its highly invasive nature and chemoresistant development have been major obstacles to treating patients with mainstream treatments. In recent decades, the significance of microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and competing endogenous RNAs (ceRNAs) has been highlighted in ovarian cancer development. This hidden language between these RNAs has led to the discovery of enormous regulatory networks in ovarian cancer cells that substantially affect gene expression. Aside from providing ample opportunities for targeted therapies, circRNA- and lncRNA-mediated ceRNA network components provide invaluable biomarkers. The current study provides a comprehensive and up-to-date review of the recent findings on the significance of these ceRNA networks in the hallmarks of ovarian cancer oncogenesis, treatment, diagnosis, and prognosis. Also, it provides the authorship with future perspectives in the era of single-cell RNA sequencing and personalized medicine.
Collapse
Affiliation(s)
- Roghaiyeh Derogar
- Fellowship in Gynecologic Oncology, Department of Gynecology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | | | - Mahdi Abdoli Shadbad
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Amer H, Kampan NC, Itsiopoulos C, Flanagan KL, Scott CL, Kartikasari AER, Plebanski M. Interleukin-6 Modulation in Ovarian Cancer Necessitates a Targeted Strategy: From the Approved to Emerging Therapies. Cancers (Basel) 2024; 16:4187. [PMID: 39766086 PMCID: PMC11674514 DOI: 10.3390/cancers16244187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Despite significant advances in treatments, ovarian cancer (OC) remains one of the most prevalent and lethal gynecological cancers in women. The frequent detection at the advanced stages has contributed to low survival rates, resistance to various treatments, and disease recurrence. Thus, a more effective approach is warranted to combat OC. The cytokine Interleukin-6 (IL6) has been implicated in various stages of OC development. High IL6 levels are also correlated with a lower survival rate in OC patients. In this current review, we summarized the pivotal roles of IL6 in OC, including the initiation, development, invasion, metastasis, and drug resistance mechanisms. This article systematically highlights how targeting IL6 improves OC outcomes by altering various cancer processes and reports the ongoing clinical trials that would further shape the IL6-based targeted therapies. This review also suggests how combining IL6-targeted therapies with other therapeutic strategies could further enhance their efficacy to combat OC.
Collapse
Affiliation(s)
- Hina Amer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Nirmala C. Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Catherine Itsiopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Katie L. Flanagan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
- School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
- The Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Apriliana E. R. Kartikasari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| |
Collapse
|
4
|
Xing N, Gao L, Xie W, Deng H, Yang F, Liu D, Li A, Pang Q. Mining of potentially stem cell-related miRNAs in planarians. Mol Biol Rep 2024; 51:1045. [PMID: 39377855 DOI: 10.1007/s11033-024-09977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Stem cells and regenerative medicine have recently become important research topics. However, the complex stem cell regulatory networks involved in various microRNA (miRNA)-mediated mechanisms have not yet been fully elucidated. Planarians are ideal animal models for studying stem cells owing to their rich stem cell populations (neoblasts) and extremely strong regeneration capacity. The roles of planarian miRNAs in stem cells and regeneration have long attracted attention. However, previous studies have generally provided simple datasets lacking integrative analysis. Here, we have summarized the miRNA family reported in planarians and highlighted conservation in both sequence and function. Furthermore, we summarized miRNA data related to planarian stem cells and regeneration and screened potential involved candidates. Nevertheless, the roles of these miRNAs in planarian regeneration and stem cells remain unclear. The identification of potential stem cell-related miRNAs offers more precise suggestions and references for future investigations of miRNAs in planarians. Furthermore, it provides potential research avenues for understanding the mechanisms of stem cell regulatory networks. Finally, we compiled a summary of the experimental methods employed for studying planarian miRNAs, with the aim of highlighting special considerations in certain procedures and providing more convenient technical support for future research endeavors.
Collapse
Affiliation(s)
- Nianhong Xing
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| | - Wenshuo Xie
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Hongkuan Deng
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Fengtang Yang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| |
Collapse
|
5
|
Antonelli A, Battaglia AM, Sacco A, Petriaggi L, Giorgio E, Barone S, Biamonte F, Giudice A. Ferroptosis and oral squamous cell carcinoma: connecting the dots to move forward. FRONTIERS IN ORAL HEALTH 2024; 5:1461022. [PMID: 39296524 PMCID: PMC11408306 DOI: 10.3389/froh.2024.1461022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive disease whose incomplete biological comprehension contributes to the inappropriate clinical management and poor prognosis. Thus, the identification of new promising molecular targets to treat OSCC is of paramount importance. Ferroptosis is a regulated cell death caused by the iron-dependent accumulation of reactive oxygen species and the consequent oxidative damage of lipid membranes. Over the last five years, a growing number of studies has reported that OSCC is sensitive to ferroptosis induction and that ferroptosis inducers exert a remarkable antitumor effect in OSCC, even in those displaying low response to common approaches, such as chemotherapy and radiotherapy. In addition, as ferroptosis is considered an immunogenic cell death, it may modulate the immune response against OSCC. In this review, we summarize the so far identified ferroptosis regulatory mechanisms and prognostic models based on ferroptosis-related genes in OSCC. In addition, we discuss the perspective of inducing ferroptosis as a novel strategy to directly treat OSCC or, alternatively, to improve sensitivity to other approaches. Finally, we integrate data emerging from the research studies, reviewed here, through in silico analysis and we provide a novel personal perspective on the potential interconnection between ferroptosis and autophagy in OSCC.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
6
|
Bahojb Mahdavi SZ, Pouladi N, Amini M, Baradaran B, Najafi S, Vaghef Mehrabani S, Yari A, Ghobadi Alamdari S, Mokhtarzadeh AA. Let-7a-3p overexpression increases chemosensitivity to carmustine and synergistically promotes autophagy and suppresses cell survival in U87MG glioblastoma cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6903-6918. [PMID: 38587542 DOI: 10.1007/s00210-024-03060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
In terms of primary brain tumors, glioblastoma is one of the most aggressive and common brain tumors. The high resistance of glioblastoma to chemotherapy has made it vital to find alternative treatments and biological mechanisms to reduce the survival of cancer cells. Given that, the objective of the present research was to explore the potential of let-7a-3p when used in combination with carmustine in human glioblastoma cancer cells. Based on previous studies, the expression of let-7a is downregulated in the U87MG cell line. Let-7a-3p transfected into U87MG glioblastoma cells. Cell viability of the cells was assessed by MTT assay. The apoptotic induction in U87MG cancerous cells was determined through the utilization of DAPI and Annexin V/PI staining techniques. Moreover, the induction of autophagy and cell cycle arrest was evaluated by flow cytometry. Furthermore, cell migration was evaluated by the wound healing assay while colony formation assay was conducted to evaluate colony formation. Also, the expression of the relevant genes was evaluated using qRT-PCR. Transfection of let-7a-3p mimic in U87MG cells increased the expression of the miRNA and also increased the sensitivity of U87MG cells to carmustine. Let-7a-3p and carmustine induced sub-G1 and S phase cell cycle arrest, respectively. Combination treatment of let-7a-3p and carmustine synergistically increased arrested cells and induced apoptosis through regulating involved genes including P53, caspase-3, Bcl-2, and Bax. Combined treatment with let-7a-3p and carmustine also induced autophagy and increased the expression of the ATG5 and Beclin 1 (ATG6). Furthermore, let-7a-3p combined with carmustine inhibited cell migration via decreasing the expression of MMP-2. Moreover, the combination therapy decreased the ability of U87MG to form colonies through downregulating CD-44. In conclusion, our work suggests that combining let-7a-3p replacement therapy with carmustine treatment could be considered a promising strategy in treatment and can increase efficiency of glioblastoma chemotherapy.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Vaghef Mehrabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sania Ghobadi Alamdari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, Iran
| | | |
Collapse
|
7
|
Qin R, Huang M, Jiang Y, Jiang D, Chang D, Xie Y, Dou Y, Wu L, Wei L, Wang M, Tian Z, Li C, Wang C. N6-Methyladenosine (m6A) Sequencing Reveals Heterodera glycines-Induced Dynamic Methylation Promoting Soybean Defense. PHYTOPATHOLOGY 2024; 114:1612-1625. [PMID: 38478699 DOI: 10.1094/phyto-12-23-0474-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Unraveling the intricacies of soybean cyst nematode (Heterodera glycines) race 4 resistance and susceptibility in soybean breeding lines-11-452 (highly resistant) and Dongsheng1 (DS1, highly susceptible)-was the focal point of this study. Employing cutting-edge N6-methyladenosine (m6A) and RNA sequencing techniques, we delved into the impact of m6A modification on gene expression and plant defense responses. Through the evaluation of nematode development in both resistant and susceptible roots, a pivotal time point (3 days postinoculation) for m6A methylation sequencing was identified. Our sequencing data exhibited robust statistics, successful soybean genome mapping, and prevalent m6A peak distributions, primarily in the 3' untranslated region and stop codon regions. Analysis of differential methylation peaks and differentially expressed genes revealed distinctive patterns between resistant and susceptible genotypes. In the highly resistant line (11-452), key resistance and defense-associated genes displayed increased expression coupled with inhibited methylation, encompassing crucial players such as R genes, receptor kinases, and transcription factors. Conversely, the highly susceptible DS1 line exhibited heightened expression correlated with decreased methylation in genes linked to susceptibility pathways, including Mildew Locus O-like proteins and regulatory elements affecting defense mechanisms. Genome-wide assessments, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and differential methylation peak/differentially expressed gene overlap emphasized the intricate interplay of m6A modifications, alternative splicing, microRNA, and gene regulation in plant defense. Protein-protein interaction networks illuminated defense-pivotal genes, delineating divergent mechanisms in resistant and susceptible responses. This study sheds light on the dynamic correlation between methylation, splicing, and gene expression, providing profound insights into plant responses to nematode infection.
Collapse
Affiliation(s)
- Ruifeng Qin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Huang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Ye Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Dan Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Doudou Chang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Xie
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuewen Dou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuli Wei
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Mingze Wang
- Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, China
| | - Zhongyan Tian
- Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, China
| | - Chunjie Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Congli Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| |
Collapse
|
8
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Oyejobi GK, Yan X, Sliz P, Wang L. Regulating Protein-RNA Interactions: Advances in Targeting the LIN28/Let-7 Pathway. Int J Mol Sci 2024; 25:3585. [PMID: 38612395 PMCID: PMC11011352 DOI: 10.3390/ijms25073585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Originally discovered in C. elegans, LIN28 is an evolutionarily conserved zinc finger RNA-binding protein (RBP) that post-transcriptionally regulates genes involved in developmental timing, stem cell programming, and oncogenesis. LIN28 acts via two distinct mechanisms. It blocks the biogenesis of the lethal-7 (let-7) microRNA (miRNA) family, and also directly binds messenger RNA (mRNA) targets, such as IGF-2 mRNA, and alters downstream splicing and translation events. This review focuses on the molecular mechanism of LIN28 repression of let-7 and current strategies to overcome this blockade for the purpose of cancer therapy. We highlight the value of the LIN28/let-7 pathway as a drug target, as multiple oncogenic proteins that the pathway regulates are considered undruggable due to their inaccessible cellular location and lack of cavities for small molecule binding.
Collapse
Affiliation(s)
- Greater Kayode Oyejobi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Xiaodan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Longfei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| |
Collapse
|
10
|
Wu X, Zhong Y, Zhang H, Li M. MiR-5590-3p inhibits the proliferation and invasion of ovarian cancer cells through mediating the Wnt/β-catenin signaling pathway by targeting TNIK. Histol Histopathol 2024; 39:345-355. [PMID: 37318197 DOI: 10.14670/hh-18-636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
MicroRNAs (miRNAs) are crucial regulatory molecules involved in diverse biological processes and human diseases, including ovarian cancer (OC). miR-5590-3p has been involved in multiple malignant solid tumors, but its exact role in the progression of OC is largely unknown. This study mainly focuses on how miR-5590-3p works in OC and illuminating the underlying mechanism. We found that miR-5590-3p was significantly downregulated in human OC cell lines and patient tissues. Cell counting 8 (CCK-8) and Transwell assays proved that overexpression or inhibition of miR-5590-3p suppressed or promoted cell proliferation and cell invasion. Subsequently, TNIK was identified as a target of miR-5590-3p. Silence of TNIK by small interfering RNA (siRNA) reversed the increasing effect of miR-5590-3p inhibition on cell proliferation and invasion in OC cell lines. Furthermore, our results showed that the Wnt/β-catenin pathway was inhibited by its specific inhibitor XAV-939, but miR-5590-3p inhibitor and adenoviral TNIK overexpression vector (Ad-TNIK) reactivated the activation of Wnt/β-catenin signaling and increased cell malignancy. Lastly, tumorigenicity assay demonstrated that inhibition of miR-5590-3p increased tumor volume and weight in vivo. In conclusion, miR-5590-3p may function as a cancer suppressor gene in OC progression through the Wnt/β-catenin signaling by transcriptionally suppressing TNIK expression, which provides a potential therapeutic approach for ovarian cancer treatment.
Collapse
Affiliation(s)
- Xiaoling Wu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Youwen Zhong
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mu Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Chen Y, Zhang B, Zhong C, Zhou Y, Xue L, Luo C, Yi L, Gong Q, Long Y. let-7g sensitized liver cancer cells to 5-fluorouracil by downregulating ABCC10 expression. Chem Biol Drug Des 2024; 103:e14396. [PMID: 38054583 DOI: 10.1111/cbdd.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
Patients with advanced liver cancer may benefit from 5-fluorouracil (5-FU) therapy. However, most of them eventually faced drug resistance, resulting in a poor prognosis. The present study aims to explore the potential mechanism of let-7g/ABCC10 axis in the regulation of 5-FU resistance in liver cancer cells. Huh-7 cells were used to construct 5-FU resistant Huh-7/4X cells. CCK8, flow cytometry, and TUNEL staining were used to detect the characterization of Huh-7 cells and Huh-7/4X cells. Double luciferase report, PCR, and western blot analyses were used to detect the regulatory effects between let-7g and ABCC10. The levels of biomarkers related to cell cycle progression and apoptosis were detected by western blot assays. The role of let-7g in 5-FU sensitivity of liver cancer cells was evaluated in nude mice. Compared with LX-2 cells, the expression of let-7g was decreased in Hep3B, HepG2, Huh-7, and SK-Hep1 cells, with the lowest expression in Huh-7 cells. The sensitivity of Huh-7 cell to 5-FU was positively correlated with let-7g expression. Transfection of let-7g mimics inhibited the viability of Huh-7/4X cells by prolonging the G1 phase, with the downregulation of ABCC10, PCNA, Cyclin D1, and CDK4. Meanwhile, let-7g promoted apoptosis to increase 5-FU sensitivity of Huh-7/4X by downregulating ABCC10, Bcl-XL as well as upregulating Bax, C-caspase 3, and C-PARP. Dual-luciferase assay further confirmed that let-7g inhibited ABCC10 expression by binding to the ABCC10 3'-UTR region. Furthermore, let-7g increased the sensitivity of Huh-7/4X to 5-FU in vitro and in vivo, which can be reversed by ABCC10 overexpression. In conclusion, let-7g sensitized liver cancer cells to 5-FU by downregulating ABCC10 expression.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacy, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Translational Medicine Centre, Hunan Cancer Hospital / The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Bocheng Zhang
- Translational Medicine Centre, Hunan Cancer Hospital / The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Department of Pathology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, P. R. China
| | - Cui Zhong
- College of Life Sciences, Hunan Normal University, Changsha, P. R. China
| | - Yuqing Zhou
- College of Life Sciences, Hunan Normal University, Changsha, P. R. China
| | - Lei Xue
- Department of Pathology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Chenhui Luo
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Liang Yi
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Qian Gong
- Department of Pharmacy, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Ying Long
- Translational Medicine Centre, Hunan Cancer Hospital / The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
12
|
Wilczyński J, Paradowska E, Wilczyńska J, Wilczyński M. Prediction of Chemoresistance-How Preclinical Data Could Help to Modify Therapeutic Strategy in High-Grade Serous Ovarian Cancer. Curr Oncol 2023; 31:229-249. [PMID: 38248100 PMCID: PMC10814576 DOI: 10.3390/curroncol31010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is one of the most lethal tumors generally and the most fatal cancer of the female genital tract. The approved standard therapy consists of surgical cytoreduction and platinum/taxane-based chemotherapy, and of targeted therapy in selected patients. The main therapeutic problem is chemoresistance of recurrent and metastatic HGSOC tumors which results in low survival in the group of FIGO III/IV. Therefore, the prediction and monitoring of chemoresistance seems to be of utmost importance for the improvement of HGSOC management. This type of cancer has genetic heterogeneity with several subtypes being characterized by diverse gene signatures and disturbed peculiar epigenetic regulation. HGSOC develops and metastasizes preferentially in the specific intraperitoneal environment composed mainly of fibroblasts, adipocytes, and immune cells. Different HGSOC subtypes could be sensitive to distinct sets of drugs. Moreover, primary, metastatic, and recurrent tumors are characterized by an individual biology, and thus diverse drug responsibility. Without a precise identification of the tumor and its microenvironment, effective treatment seems to be elusive. This paper reviews tumor-derived genomic, mutational, cellular, and epigenetic biomarkers of HGSOC drug resistance, as well as tumor microenvironment-derived biomarkers of chemoresistance, and discusses their possible use in the novel complex approach to ovarian cancer therapy and monitoring.
Collapse
Affiliation(s)
- Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| | - Justyna Wilczyńska
- Department of Tele-Radiotherapy, Mikolaj Kopernik Provincial Multi-Specialized Oncology and Traumatology Center, 62 Pabianicka Str., 93-513 Lodz, Poland;
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| |
Collapse
|
13
|
Maklad A, Sedeeq M, Chan KM, Gueven N, Azimi I. Exploring Lin28 proteins: Unravelling structure and functions with emphasis on nervous system malignancies. Life Sci 2023; 335:122275. [PMID: 37984514 DOI: 10.1016/j.lfs.2023.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Cancer and stem cells share many characteristics related to self-renewal and differentiation. Both cell types express the same critical proteins that govern cellular stemness, which provide cancer cells with the growth and survival benefits of stem cells. LIN28 is an example of one such protein. LIN28 includes two main isoforms, LIN28A and LIN28B, with diverse physiological functions from tissue development to control of pluripotency. In addition to their physiological roles, LIN28A and LIN28B affect the progression of several cancers by regulating multiple cancer hallmarks. Altered expression levels of LIN28A and LIN28B have been proposed as diagnostic and/or prognostic markers for various malignancies. This review discusses the structure and modes of action of the different LIN28 proteins and examines their roles in regulating cancer hallmarks with a focus on malignancies of the nervous system. This review also highlights some gaps in the field that require further exploration to assess the potential of targeting LIN28 proteins for controlling cancer.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Kai Man Chan
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia; Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton 3168, Victoria, Australia.
| |
Collapse
|
14
|
Sacco A, Battaglia AM, Santamaria G, Buffone C, Barone S, Procopio A, Lavecchia AM, Aversa I, Giorgio E, Petriaggi L, Cristofaro MG, Biamonte F, Giudice A. SOX2 promotes a cancer stem cell-like phenotype and local spreading in oral squamous cell carcinoma. PLoS One 2023; 18:e0293475. [PMID: 38096163 PMCID: PMC10721099 DOI: 10.1371/journal.pone.0293475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/13/2023] [Indexed: 12/17/2023] Open
Abstract
Emerging evidence shows that oral squamous cell carcinoma (OSCC) invasiveness can be attributed to a small subpopulation of cancer stem cells (CSCs) in the bulk of the tumor. However, the presence of CSCs in the OSCC close resection margins is still poorly unexplored. Here, we found that BMI1, CD44, SOX2, OCT4, UBE2C, CXCR4 CSCs marker genes are significantly upregulated, while IGF1-R, KLF4, ALDH1A1, CD133, FAM3C are downregulated in the tumor core vs healthy mucosa of 24 patients with OSCC. Among these, SOX2 appears also upregulated in the tumor close margin vs healthy mucosa and this significantly correlates with tumor size and lymph node compromise. In vitro analyses in CAL27 and SCC15 tongue squamous cell carcinoma cell lines, show that SOX2 transient knockdown i) promotes the mesenchymal-to-epithelial transition, ii) smooths the invasiveness, iii) attenuates the 3D tumor sphere-forming capacity, and iv) partially increases the sensitivity to cisplatin treatment. Overall, our study highlights that the OSCC close margins can retain CSC-specific markers. Notably, SOX2 may represent a useful CSCs marker to predict a more aggressive phenotype and a suitable target to prevent local invasiveness.
Collapse
Affiliation(s)
- Alessandro Sacco
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Caterina Buffone
- Department of Health Sciences, School of Dentistry, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- Department of Health Sciences, School of Dentistry, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Anna Procopio
- Department of Experimental and Clinical Medicine, Biomechatronics Laboratory, “Magna Græcia” University of Catanzaro, Catanzaro, Italy
| | | | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Maria Giulia Cristofaro
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Center of Interdepartmental Services (CIS), "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Sciences, School of Dentistry, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
15
|
Chen B, Zhao L, Yang R, Xu T. The recent advancements of ferroptosis in the diagnosis, treatment and prognosis of ovarian cancer. Front Genet 2023; 14:1275154. [PMID: 38028615 PMCID: PMC10665572 DOI: 10.3389/fgene.2023.1275154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Ovarian cancer affects the female reproductive system and is the primary cause of cancer related mortality globally. The imprecise and non-specific nature of ovarian cancer symptoms often results in patients being diagnosed at an advanced stage, with metastatic lesions extending beyond the ovary. This presents a significant clinical challenge and imposes a substantial economic burden on both patients and society. Despite advancements in surgery, chemotherapy, and immunotherapy, the prognosis for most patients with ovarian cancer remains unsatisfactory. Therefore, the development of novel treatment strategies is imperative. Ferroptosis, a distinct form of regulated cell death, characterized by iron-dependent lipid peroxidation, differs from autophagy, apoptosis, and necrosis, and may hold promise as a novel cell death. Numerous studies have demonstrated the involvement of ferroptosis in various conventional signaling pathways and biological processes. Recent investigations have revealed the significant contribution of ferroptosis in the initiation, progression, and metastasis of diverse malignant tumors, including ovarian cancer. Moreover, ferroptosis exhibits a synergistic effect with chemotherapy, radiotherapy, and immunotherapy in restraining the proliferation of ovarian cancer cells. The aforementioned implies that ferroptosis holds considerable importance in the management of ovarian cancer and has the potential to serve as a novel therapeutic target. The present review provides a comprehensive overview of the salient features of ferroptosis, encompassing its underlying mechanisms and functional role in ovarian cancer, along with the associated signaling pathways and genes. Furthermore, the review highlights the prospective utility of ferroptosis in the treatment of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Garbin A, Contarini G, Damanti CC, Tosato A, Bortoluzzi S, Gaffo E, Pizzi M, Carraro E, Lo Nigro L, Vinti L, Pillon M, Biffi A, Lovisa F, Mussolin L. MiR-146a-5p enrichment in small-extracellular vesicles of relapsed pediatric ALCL patients promotes macrophages infiltration and differentiation. Biochem Pharmacol 2023; 215:115747. [PMID: 37591448 DOI: 10.1016/j.bcp.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Anaplastic large cell lymphoma (ALCL) is a CD30-positive lymphoma accounting for 20% of all pediatric T-cell lymphomas. Current first line treatment can cure most of ALCL patients but 10-30% of them are resistant or relapse. In this context, liquid biopsy has the potential to help clinicians in disease screening and treatment response monitoring. Small-RNA-sequencing analysis performed on plasma small-extracellular vesicles (s-EVs) from 20 pediatric anaplastic lymphoma kinase positive (ALK + ) ALCL patients at diagnosis revealed a specific miRNAs cargo in relapsed patients compared to non-relapsed, with seven miRNAs enriched in s-EVs of relapsed patients. MiR-146a-5p and miR-378a-3p showed a negative prognostic impact both in univariate and multivariate analysis, possibly representing, together with let-7 g-5p, a miRNA panel for the early identification of high-risk patients. Among them, miR-146a-5p is known to modulate tumor supporting-M2 macrophages differentiation, but the role of these cells in pediatric ALK + ALCL is still unknown. To elucidate the role of miR-146a-5p and M2 macrophages in pediatric ALCL disease, THP-1-derived macrophages were treated with s-EVs from ALK + ALCL cell lines, showing increased miR-146a-5p intracellular expression, migrating capability and M2-markers CD163 and Arginase-1 upregulation. In turn, conditioned media from M2 macrophages or miR-146a-5p-transfected THP-1 increased ALCL cells' aggressive features and were enriched in interleukin-8. Overall, these data suggest a role of miR-146a-5p in promoting macrophage infiltration and M2-like polarization in ALCL. Our findings incite further investigation on the role of M2 macrophages in ALCL aggressiveness and dissemination, also considering the novel treatment options targeting tumor associated macrophages.
Collapse
Affiliation(s)
- Anna Garbin
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Giorgia Contarini
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Carlotta C Damanti
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Anna Tosato
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | | | - Enrico Gaffo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Marco Pizzi
- General Pathology and Cytopathology Unit, Department of Medicine-DMED, University of Padua, Padua, Italy
| | - Elisa Carraro
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
| | - Luca Lo Nigro
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Luciana Vinti
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Pillon
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
| | - Alessandra Biffi
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Federica Lovisa
- Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Lara Mussolin
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy.
| |
Collapse
|
17
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
18
|
Wiseman L, Cinti N, Guinn BA. Identification and prioritization of tumour-associated antigens for immunotherapeutic and diagnostic capacity in epithelial ovarian cancer: a systematic literature review. Carcinogenesis 2022; 43:1015-1029. [PMID: 36318800 DOI: 10.1093/carcin/bgac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/18/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a prevalent carcinoma in the female population associated with poor prognostic outcomes, in part due to the late stage of the disease at diagnosis. Aiming to identify tumour-associated antigens (TAAs) with the potential to facilitate earlier detection and targeted therapy of EOC, five scientific literature repositories were systemically searched for primary literature sources reporting the expression of a TAA in the tissue or serum of adult females diagnosed with EOC and healthy women. We identified 7120 articles of which 32 met our inclusion criteria and passed the bias-quality assessment. Subsequently, data were collated on 29 TAAs whose expression had been analysed in 2181 patients and 589 healthy individuals. Reports of CA125 and EpCAM expression were numerous while tissue expression data were available for 28 TAAs. Data were segregated into three meta-cohorts for statistical scrutiny and their capacity for diagnostic and treatment targeting was assessed. We showed that CA-125 was expressed homogenously in EOC patients while EpCAM was expressed heterogeneously. CA-125 was the most promising TAA target for both diagnosis and treatment, gaining a priority score of 12 (/12) while EpCAM gained a priority score of seven. Tissue expression of EOC TAAs was homogenous; 90% of the EOC population express any identified TAA while just 20% of healthy individuals will be positive for the same TAA. We suggest TAA profiling should be a fundamental aspect of EOC diagnosis, sitting alongside the FIGO framework, promoting reduced mortality and directing the development of TAA-targeted therapeutics.
Collapse
Affiliation(s)
- Lucy Wiseman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Noemi Cinti
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Barbara-Ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
19
|
Davies M, Davey MG, Miller N. The Potential of MicroRNAs as Clinical Biomarkers to Aid Ovarian Cancer Diagnosis and Treatment. Genes (Basel) 2022; 13:2054. [PMID: 36360295 PMCID: PMC9690044 DOI: 10.3390/genes13112054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Ovarian cancer is a commonly diagnosed malignancy in women. When diagnosed at an early stage, survival outcomes are favourable for the vast majority, with up to 90% of ovarian cancer patients being free of disease at 5 years follow-up. Unfortunately, ovarian cancer is typically diagnosed at an advanced stage due to the majority of patients remaining asymptomatic until the cancer has metastasised, resulting in poor outcomes for the majority. While the molecular era has facilitated the subclassification of the disease into distinct clinical subtypes, ovarian cancer remains managed and treated as a single disease entity. MicroRNAs (miRNAs) are small (19-25 nucleotides), endogenous molecules which are integral to regulating gene expression. Aberrant miRNA expression profiles have been described in several cancers, and have been implicated to be useful biomarkers which may aid cancer diagnostics and treatment. Several preliminary studies have identified candidate tumour suppressor and oncogenic miRNAs which may be involved in the development and progression of ovarian cancer, highlighting their candidacy as oncological biomarkers; understanding the mechanisms by which these miRNAs regulate the key processes involved in oncogenesis can improve our overall understanding of cancer development and identify novel biomarkers and therapeutic targets. This review highlights the potential role of miRNAs which may be utilised to aid diagnosis, estimate prognosis and enhance therapeutic strategies in the management of primary ovarian cancer.
Collapse
|
20
|
Ismail A, Abulsoud AI, Fathi D, Elshafei A, El-Mahdy HA, Elsakka EG, Aglan A, Elkhawaga SY, Doghish AS. The role of miRNAs in Ovarian Cancer Pathogenesis and Therapeutic Resistance - A Focus on Signaling Pathways Interplay. Pathol Res Pract 2022; 240:154222. [DOI: 10.1016/j.prp.2022.154222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
|
21
|
De Marco C, Sonego M, Battaglia AM, Viglietto G, Biamonte F. Editorial: New strategies to tackle chemoresistance in cancer. Front Oncol 2022; 12:1062921. [DOI: 10.3389/fonc.2022.1062921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
|
22
|
Banerjee S, Mandal AKA. Role of epigallocatechin-3- gallate in the regulation of known and novel microRNAs in breast carcinoma cells. Front Genet 2022; 13:995046. [PMID: 36276982 PMCID: PMC9582282 DOI: 10.3389/fgene.2022.995046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer comprises 30% of all cancer cases among the world’s women population. MicroRNAs are small, endogenous, non-coding RNAs that regulate cell proliferating and apoptotic pathways by modulating expressions of related genes. Phytochemicals like epigallocatechin-3-gallate (EGCG) are known to have a chemotherapeutic effect on cancer often through the regulation of microRNAs. The aim is to find out the key known and novel miRNAs, which are controlled by EGCG in breast cancer cell line MDA-MB-231. Next-generation sequencing (NGS) revealed 1,258 known and 330 novel miRNAs from untreated and 83 μM EGCG (IC50 value of EGCG) treated cells. EGCG modulated 873 known and 47 novel miRNAs in the control vs. treated sample. The hypothesis of EGCG being a great modulator of miRNAs that significantly control important cancer-causing pathways has been established by analyzing with Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Analysis Through Evolutionary Relationships (PANTHER) database. Validation of known and novel miRNA expression differences in untreated vs. treated cells was done using qPCR. From this study, a few notable miRNAs were distinguished that can be used as diagnostics as well as prognostic markers for breast cancer.
Collapse
|
23
|
Khan MI, Ahmad A. LncRNA SNHG6 sponges miR-101 and induces tamoxifen resistance in breast cancer cells through induction of EMT. Front Oncol 2022; 12:1015428. [PMID: 36212408 PMCID: PMC9539827 DOI: 10.3389/fonc.2022.1015428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Acquired resistance is a major clinical challenge for tamoxifen-based therapy. In this study, we focused on lncRNA SNHG6 which plays a role in chemoresistance of cancer cells, but has never been investigated in the context of tamoxifen resistance. We found elevated levels of SNHG6 in tamoxifen-resistant estrogen receptor (ER)-positive MCF-7 cells (MCF7TR), relative to naïve MCF-7 cells, as well as in tamoxifen-resistant T47D cells (T47DTR), relative to naïve T47D cells, which correlated with induced vimentin, ZEB1/2 and decreased e-cadherin, thus implicating a role of EMT in SNHG6-mediated tamoxifen resistance. Downregulation of SNHG6, using specific siRNA, sensitized MCF7TR as well as T47DTR cells to tamoxifen along with markedly reduced proliferation, invasion and anchorage-independent clonogenicity. Further, SNHG6 was found to sponge and inhibit miR-101 as the endogenous expression levels of SNHG6 and miR-101 inversely correlated in paired parental and tamoxifen-resistant cells and, moreover, silencing of SNHG6 in tamoxifen-resistant cells resulted in de-repression of miR-101, along with reversal of EMT. SNHG6 expression also directly correlated with increased stem cells markers Sox2, Oct4 and EZH2. miR-101 levels, manipulated by transfections with pre/anti-miR-101 oligos, directly affected tamoxifen sensitivity of ER-positive cells with pre-miR-101 sensitizing MCF7TR and T47DTR cells to tamoxifen whereas anti-miR-101 inducing resistance of parental MCF-7 and T47D cells to tamoxifen. Further, miR-101 was found to attenuate SNHG6-mediated effects on tamoxifen resistance, EMT as well as stem cell markers, thereby making a case for SNHG6-miR-101 axis in tamoxifen resistance of ER-positive breast cancer cells. Thus, lncRNA SNHG6 is a novel modulator of tamoxifen resistance through its sponging of miR-101 and the resulting effects on EMT.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- *Correspondence: Aamir Ahmad,
| |
Collapse
|
24
|
Parayath NN, Gandham SK, Amiji MM. Tumor-targeted miRNA nanomedicine for overcoming challenges in immunity and therapeutic resistance. Nanomedicine (Lond) 2022; 17:1355-1373. [PMID: 36255330 PMCID: PMC9706370 DOI: 10.2217/nnm-2022-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
miRNA are critical messengers in the tumor microenvironment (TME) that influence various processes leading to immune suppression, tumor progression, metastasis and resistance. Strategies to modulate miRNAs in the TME have important implications in overcoming these challenges. However, miR delivery to specific cells in the TME has been challenging. This review discusses nanomedicine strategies to achieve cell-specific delivery of miRNAs. The key goal of delivery is to activate the tumor immune landscape as well as to prevent chemotherapy resistance. Specifically, the use of hyaluronic acid-based nanoparticle miRNA delivery to the TME is discussed. The discussion is focused on miRNA-125b for reprogramming tumor-associated macrophages to overcome immunosuppression and miRNA-let-7b to overcome resistance to anticancer chemotherapeutics because both these miRNAs have been extensively evaluated for delivery with hyaluronic acid-based delivery systems.
Collapse
Affiliation(s)
- Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Srujan K Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA,Author for correspondence: Tel.: +1 617 373 3137;
| |
Collapse
|
25
|
Xu J, Ou R, Nie G, Wen J, Ling L, Mo L, Xu R, Lv M, Zhao L, Lai W, Xu Y. LINC01063 functions as an oncogene in melanoma through regulation of miR-5194-mediated SOX12 expression. Melanoma Res 2022; 32:218-230. [PMID: 35256570 DOI: 10.1097/cmr.0000000000000803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melanoma is one of the most aggressive skin cancers and a major cause of cancer-linked deaths worldwide. As the morbidity and mortality of melanoma are increasing, it is necessary to elucidate the potential mechanism influencing melanoma progression. Tumor tissues and adjacent normal tissues (5 cm away from tumors) from 22 melanoma patients at the I-II stage and 39 patients at the III-VI stage were acquired. The expression of LINC01063 in melanoma was estimated by quantitative PCR. Functional assays were employed to investigate the function of LINC01063 in melanoma. Mechanism assays were adopted to explore the mechanism of LINC01063. LINC01063 knockdown impeded melanoma cell proliferation, migration, invasion, and epithelial-mesenchymal transition as well as melanoma tumor growth. Mechanistically, LINC01063 acted as an miR-5194 sponge to upregulate SOX12 expression. Finally, LINC01063 was tested to facilitate the malignant behaviors of melanoma cells via targeting miR-5194/SOX12. LINC01063 was significantly upregulated in melanoma. Specifically, LINC01063 displayed a higher level in patients at an advanced stage or with metastasis than those at an early stage or without metastasis. Our study revealed the oncogenic effects of LINC01063 on melanoma cell/tumor growth and its molecular mechanism involving miR-5194/SOX12, which might support LINC01063 to be the potential prognostic or therapeutic biomarker against melanoma.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenereology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen
- Department of Dermatovenereology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Gang Nie
- Department of Dermatovenereology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Juan Wen
- Department of Dermatovenereology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Li Ling
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen
| | - Laiming Mo
- Clinical Laboratory, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen
| | - Rui Xu
- Department of Dermatovenereology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Mingfen Lv
- Department of Dermatovenereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Lai
- Department of Dermatovenereology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen
| | - Yunsheng Xu
- Department of Dermatovenereology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou
| |
Collapse
|
26
|
Coley AB, DeMeis JD, Chaudhary NY, Borchert GM. Small Nucleolar Derived RNAs as Regulators of Human Cancer. Biomedicines 2022; 10:1819. [PMID: 36009366 PMCID: PMC9404758 DOI: 10.3390/biomedicines10081819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
In the past decade, RNA fragments derived from full-length small nucleolar RNAs (snoRNAs) have been shown to be specifically excised and functional. These sno-derived RNAs (sdRNAs) have been implicated as gene regulators in a multitude of cancers, controlling a variety of genes post-transcriptionally via association with the RNA-induced silencing complex (RISC). In this review, we have summarized the literature connecting sdRNAs to cancer gene regulation. SdRNAs possess miRNA-like functions and are able to fill the role of tumor-suppressing or tumor-promoting RNAs in a tissue context-dependent manner. Indeed, there are many miRNAs that are actually derived from snoRNA transcripts, meaning that they are truly sdRNAs and as such are included in this review. As sdRNAs are frequently discarded from ncRNA analyses, we emphasize that sdRNAs are functionally relevant gene regulators and likely represent an overlooked subclass of miRNAs. Based on the evidence provided by the papers reviewed here, we propose that sdRNAs deserve more extensive study to better understand their underlying biology and to identify previously overlooked biomarkers and therapeutic targets for a multitude of human cancers.
Collapse
Affiliation(s)
- Alexander Bishop Coley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Jeffrey David DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Neil Yash Chaudhary
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Glen Mark Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
- School of Computing, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
27
|
Saburi A, Kahrizi MS, Naghsh N, Etemadi H, İlhan A, Adili A, Ghoreishizadeh S, Tamjidifar R, Akbari M, Ercan G. A comprehensive survey into the role of microRNAs in ovarian cancer chemoresistance; an updated overview. J Ovarian Res 2022; 15:81. [PMID: 35799305 PMCID: PMC9264529 DOI: 10.1186/s13048-022-01012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer (OC), a frequent malignant tumor that affects women, is one of the leading causes of cancer-related death in this group of individuals. For the treatment of ovarian cancer, systemic chemotherapy with platinum-based drugs or taxanes is the first-line option. However, drug resistance developed over time during chemotherapy medications worsens the situation. Since uncertainty exists for the mechanism of chemotherapy resistance in ovarian cancer, there is a need to investigate and overcome this problem. miRNAs are engaged in various signaling pathways that contribute to the chemotherapeutic resistance of ovarian cancer. In the current study, we have tried to shed light on the mechanisms by which microRNAs contribute to the drug resistance of ovarian cancer and the use of some microRNAs to combat this chemoresistance, leading to the worse outcome of ovarian cancer patients treated with systemic chemotherapeutics.
Collapse
Affiliation(s)
- Ahmad Saburi
- Department of Biology, Faculty of Basic Sciences, Gonbad Kavous University, Gonbad Kavous, Iran
| | | | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hasti Etemadi
- Department of Biotechnology, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, Florida USA
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, 35100 Turkey
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gülinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, 35100 Turkey
- Department of Stem Cell, Institute of Health Sciences, Ege University, Izmir, 35100 Turkey
| |
Collapse
|
28
|
Liu YY, Zhao RF, Liu C, Zhou J, Yang L, Li L. MiR-320b and miR-320d as Biomarkers to Predict and Participate in the Formation of Platinum Resistance in Ovarian Cancer Patients. Front Oncol 2022; 12:881496. [PMID: 35592674 PMCID: PMC9110861 DOI: 10.3389/fonc.2022.881496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with ovarian cancer who receive platinum-based chemotherapy typically develop platinum resistance, which leads to tumor recurrence and mortality. Therefore, finding the underlying mechanisms and biomarkers is critical. A total of 51 platinum-resistant and 70 platinum-sensitive ovarian cancer patients were enrolled in this study. We examined the GSE131978 dataset in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus database for differentially expressed long non-coding RNAs and messenger RNAs (mRNAs) between platinum-resistant and platinum-sensitive patients and completed a microRNA chip analysis. After filtering by Pearson correlation analysis, the competitive endogenous RNA (ceRNA) networks were subsequently constructed. Then, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology enrichment analyses about mRNAs in ceRNA networks were accomplished. More crucially, we demonstrated the differentially expressed microRNAs using quantitative real-time PCR and fluorescence in situ hybridization. The feasibility of microRNAs as biomarkers to predict platinum resistance and tumor recurrence was assessed using the receiver operating characteristic curve and survival analysis. MiR-320b and miR-320d exhibited high area under the curve values of 0.757 and 0.702, respectively. In our study, ceRNA networks including miR-320b and miR-320d probably provided novel insights for platinum resistance in ovarian cancer patients.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China.,Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ren-Feng Zhao
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chao Liu
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jie Zhou
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liu Yang
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li Li
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| |
Collapse
|
29
|
Li F, Liang Z, Jia Y, Zhang P, Ling K, Wang Y, Liang Z. microRNA-324-3p suppresses the aggressive ovarian cancer by targeting WNK2/RAS pathway. Bioengineered 2022; 13:12030-12044. [PMID: 35549643 PMCID: PMC9276006 DOI: 10.1080/21655979.2022.2056314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among gynecological cancers, which progresses owing to dysregulated microRNAs (miRNAs) expression. Our study attempts to reveal the mechanism by which decreased miR-324-3p expression suppresses OC proliferation. Quantitative real-time PCR, western blotting, in situ hybridization, and immunohistochemistry were performed to estimate miR-324-3p and WNK2 expression levels in OC cells and tissues. Cell Counting Kit-8, colony formation, EdU, and transwell assays were performed to analyze the influence of miR-324-3p and WNK2 on the proliferation and invasion ability of OC cells. Subsequently, xenograft models were established to examine the effects of WNK2 on OC cell proliferation in vivo, and databases and luciferase reporter assays were used to test the relationship between miR-324-3p and WNK2 expression. Then, we showed that miR-324-3p expression is decreased in OC cells and tissues, indicating its inhibitory effect on OC cell proliferation. Quantitative real-time PCR and luciferase reporter assays demonstrated that miR-324-3p inhibited WNK2 expression by directly binding to its 3’ untranslated region. WNK2, an upregulated kinase, promotes the proliferation and invasion of OC cells by activating the RAS pathway. Moreover, WNK2 can partly reverse the inhibitory effects of miR-324-3p on OC cell proliferation. Hence, we demonstrate that miR-324-3p suppressed ovarian cancer progression by targeting the WNK2/RAS pathway. Our study provides theoretical evidence for the clinical application potential of miR-324-3p.
Collapse
Affiliation(s)
- Fengjie Li
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Zhen Liang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongqin Jia
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Panyang Zhang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Kaijian Ling
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Yanzhou Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| |
Collapse
|
30
|
Abdel Wahab AHA, Hussein MM, Shouman SA, Fouad D, Kobaisi MH, El Habit O. Role of let7-g and miR-221 level as potential predictors for overall survival of hepatocellular carcinoma patients. Arab J Gastroenterol 2022; 23:151-158. [PMID: 35473687 DOI: 10.1016/j.ajg.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/06/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND STUDY AIMS Hepatocellular carcinoma (HCC) is one of the most common cancer types worldwide. A hallmark of epithelial-mesenchymal transition is the loss of epithelial E-cadherin, which is considered an epithelial differentiation marker. MicroRNAs serve vital roles in various biological processes in the cell via post-transcriptional gene regulation. Therefore, the present study aimed to investigate the involvement of certain miRNAs in the progression of HCC. PATIENTS AND METHODS A reverse transcription-quantitative PCR assay was conducted to detect the expression levels of 20 EMT-related miRNAs in 36 fresh tissue biopsies from patients with primary HCC compared with healthy controls. Gene expression levels, as well as immunohistochemistry assays, were performed for E-cadherin, ZEB1 and ZEB2 proteins. The correlation between their expression levels and different clinicopathological factors was also assessed. RESULTS A significant decrease of E-Cadherin and an increase in ZEB1 expression levels were identified in HCC groups compared with controls, while no significant changes for ZEB2 were found. The absence of E-cadherin membranous protein was observed in ∼48% of the cases examined. Moreover, ZEB1 protein was absent in 46% of E-cadherin positive cases. Upregulation of miR-182, miR-221 and miR-222 expression levels, and downregulation of let-7g, miR-9, miR-16, miR29c, miR122, miR-145, miR-148a, miR-193b, miR-194 and miR-215 expression levels were identified. A positive correlation between let7-g with E-Cadherin expression was reported. No significant association was identified between each of E-cadherin, ZEB1, ZEB2 or miRNAs examined with different clinicopathological features of the patients. Furthermore, the low expression of let7-g and high expression of miR-221 were associated with poorer survival. CONCLUSION Collectively, the present data suggested that let7-g functions as a tumor suppressor in the development of HCC via regulating E-Cadherin. Furthermore, both let7-g and miR-221 may be potential biomarkers for the outcomes of HCC patients.
Collapse
Affiliation(s)
| | - Manal M Hussein
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Samia A Shouman
- Department of Cancer Biology, National Cancer Institute, Cairo University, Egypt
| | - Dalia Fouad
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed H Kobaisi
- Department of Pathology, National Institute of Urology and Nephrology, Cairo, Egypt
| | - Ola El Habit
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
31
|
Wang Y, Li N, Zhao J, Dai C. MiR-193a-5p serves as an inhibitor in ovarian cancer cells through RAB11A. Reprod Toxicol 2022; 110:105-112. [DOI: 10.1016/j.reprotox.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
|
32
|
Battaglia AM, Sacco A, Perrotta ID, Faniello MC, Scalise M, Torella D, Levi S, Costanzo F, Biamonte F. Iron Administration Overcomes Resistance to Erastin-Mediated Ferroptosis in Ovarian Cancer Cells. Front Oncol 2022; 12:868351. [PMID: 35433479 PMCID: PMC9008715 DOI: 10.3389/fonc.2022.868351] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Objectives Developing novel therapeutic approaches to defeat chemoresistance is the major goal of ovarian cancer research. Induction of ferroptosis has shown promising antitumor effects in ovarian cancer cells, but the existence of still undefined genetic and metabolic determinants of susceptibility has so far limited the application of ferroptosis inducers in vivo. Methods Erastin and/or the iron compound ferlixit were used to trigger ferroptosis in HEY, COV318, PEO4, and A2780CP ovarian cancer cell lines. Cell viability and cell death were measured by MTT and PI flow cytometry assay, respectively. The “ballooning” phenotype was tested as ferroptosis specific morphological feature. Mitochondrial dysfunction was evaluated based on ultrastructural changes, mitochondrial ROS, and mitochondrial membrane polarization. Lipid peroxidation was tested through both C11-BODIPY and malondialdehyde assays. VDAC2 and GPX4 protein levels were quantified as additional putative indicators of mitochondrial dysfunction or lipid peroxidation, respectively. The effect of erastin/ferlixit treatments on iron metabolism was analyzed by measuring intracellular labile iron pool and ROS. FtH and NCOA4 were measured as biomarkers of ferritinophagy. Results Here, we provide evidence that erastin is unable to induce ferroptosis in a series of ovarian cancer cell lines. In HEY cells, provided with a high intracellular labile iron pool, erastin treatment is accompanied by NCOA4-mediated ferritinophagy and mitochondrial dysfunction, thus triggering ferroptosis. In agreement, iron chelation counteracts erastin-induced ferroptosis in these cells. COV318 cells, with low baseline intracellular labile iron pool, appear resistant to erastin treatment. Notably, the use of ferlixit sensitizes COV318 cells to erastin through a NCOA4-independent intracellular iron accumulation and mitochondrial dysfunction. Ferlixit alone mimics erastin effects and promotes ferroptosis in HEY cells. Conclusion This study proposes both the baseline and the induced intracellular free iron level as a significant determinant of ferroptosis sensitivity and discusses the potential use of ferlixit in combination with erastin to overcome ferroptosis chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
| | - Ida Daniela Perrotta
- Laboratory of Transmission Electron Microscopy, University of Calabria, Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, Cosenza, Italy
| | - Maria Concetta Faniello
- Laboratory of Biochemistry and Cellular Biology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
| | - Mariangela Scalise
- Laboratory of Molecular and Cellular Cardiology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
| | - Daniele Torella
- Laboratory of Molecular and Cellular Cardiology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
| | - Sonia Levi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Costanzo
- Laboratory of Biochemistry and Cellular Biology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
- Magna Graecia University of Catanzaro, Interdepartmental Centre of Services, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
- Magna Graecia University of Catanzaro, Interdepartmental Centre of Services, Catanzaro, Italy
- *Correspondence: Flavia Biamonte,
| |
Collapse
|
33
|
Lee AH, Mejia Peña C, Dawson MR. Comparing the Secretomes of Chemorefractory and Chemoresistant Ovarian Cancer Cell Populations. Cancers (Basel) 2022; 14:1418. [PMID: 35326569 PMCID: PMC8946241 DOI: 10.3390/cancers14061418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) constitutes the majority of all ovarian cancer cases and has staggering rates of both refractory and recurrent disease. While most patients respond to the initial treatment with paclitaxel and platinum-based drugs, up to 25% do not, and of the remaining that do, 75% experience disease recurrence within the subsequent two years. Intrinsic resistance in refractory cases is driven by environmental stressors like tumor hypoxia which alter the tumor microenvironment to promote cancer progression and resistance to anticancer drugs. Recurrent disease describes the acquisition of chemoresistance whereby cancer cells survive the initial exposure to chemotherapy and develop adaptations to enhance their chances of surviving subsequent treatments. Of the environmental stressors cancer cells endure, exposure to hypoxia has been identified as a potent trigger and priming agent for the development of chemoresistance. Both in the presence of the stress of hypoxia or the therapeutic stress of chemotherapy, cancer cells manage to cope and develop adaptations which prime populations to survive in future stress. One adaptation is the modification in the secretome. Chemoresistance is associated with translational reprogramming for increased protein synthesis, ribosome biogenesis, and vesicle trafficking. This leads to increased production of soluble proteins and extracellular vesicles (EVs) involved in autocrine and paracrine signaling processes. Numerous studies have demonstrated that these factors are largely altered between the secretomes of chemosensitive and chemoresistant patients. Such factors include cytokines, growth factors, EVs, and EV-encapsulated microRNAs (miRNAs), which serve to induce invasive molecular, biophysical, and chemoresistant phenotypes in neighboring normal and cancer cells. This review examines the modifications in the secretome of distinct chemoresistant ovarian cancer cell populations and specific secreted factors, which may serve as candidate biomarkers for aggressive and chemoresistant cancers.
Collapse
Affiliation(s)
- Amy H. Lee
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA;
| | - Carolina Mejia Peña
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA;
| | - Michelle R. Dawson
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA;
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA;
| |
Collapse
|
34
|
Lee YJ, Kim SW, Jung MH, Kim YS, Kim KS, Suh DS, Kim KH, Choi EH, Kim J, Kwon BS. Plasma-activated medium inhibits cancer stem cell-like properties and exhibits a synergistic effect in combination with cisplatin in ovarian cancer. Free Radic Biol Med 2022; 182:276-288. [PMID: 35276382 DOI: 10.1016/j.freeradbiomed.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
Ovarian cancer stem-like cells (CSCs) have been implicated in tumor recurrence, metastasis, and drug resistance. Accumulating evidence has demonstrated the antitumor effect of plasma-activated medium (PAM) in various carcinomas, including ovarian cancer. Thus, PAM represents a novel onco-therapeutic strategy. However, its impact on ovarian CSCs is unclear. Here, we show that ovarian CSCs resistant to high-dose conventional chemotherapeutic agents used for ovarian cancer treatment exhibited dose-dependent sensitivity to PAM. In addition, PAM treatment reduced the expression of stem cell markers and sphere formation, along with the aldehyde dehydrogenase- or CD133-positive cell population. We further investigated the effect of PAM in combination with other chemotherapeutics on ovarian CSCs in vitro. PAM exhibited synergistic cytotoxicity with cisplatin (CDDP) but not with paclitaxel and doxorubicin. In a peritoneal metastasis xenograft model established via intraperitoneal spheroid injection, PAM intraperitoneal therapy significantly suppressed peritoneal carcinomatosis (tumor size and number), with a more significant decrease observed due to the combined effects of PAM and CDDP with no side effects. Taken together, our results indicate that PAM inhibits ovarian CSC traits and exhibits synergetic cytotoxicity with CDDP, demonstrating PAM as a promising intraparietal chemotherapy for enhancing antitumor efficacy and reducing side effects.
Collapse
Affiliation(s)
- Young Joo Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul, 02447, South Korea
| | - Sung Wook Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul, 02447, South Korea
| | - Min Hyung Jung
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul, 02447, South Korea
| | - Young Sun Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul, 02447, South Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Dong Soo Suh
- Departments of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, South Korea
| | - Ki Hyung Kim
- Departments of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, South Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 139-701, South Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women's University, Seoul, 04310, South Korea; Research Institute for Women's Health, Sookmyung Women's University, Seoul, 04310, South Korea.
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
35
|
miRNA-Dependent Regulation of AKT1 Phosphorylation. Cells 2022; 11:cells11050821. [PMID: 35269443 PMCID: PMC8909289 DOI: 10.3390/cells11050821] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The phosphoinositide-3-kinase (PI3K)/AKT pathway regulates cell survival and is over-activated in most human cancers, including ovarian cancer. Following growth factor stimulation, AKT1 is activated by phosphorylation at T308 and S473. Disruption of the AKT1 signaling pathway is sufficient to inhibit the epithelial-mesenchymal transition in epithelial ovarian cancer (EOC) cells. In metastatic disease, adherent EOC cells transition to a dormant spheroid state, characterized previously by low S473 phosphorylation in AKT1. We confirmed this finding and observed that T308 phosphorylation was yet further reduced in EOC spheroids and that the transition from adherent to spheroid growth is accompanied by significantly increased levels of let-7 miRNAs. We then used mechanistic studies to investigate the impact of let-7 miRNAs on AKT1 phosphorylation status and activity in cells. In growth factor-stimulated HEK 293T cells supplemented with let-7a, we found increased phosphorylation of AKT1 at T308, decreased phosphorylation at S473, and enhanced downstream AKT1 substrate GSK-3β phosphorylation. Let-7b and let-7g also deregulated AKT signaling by rendering AKT1 insensitive to growth factor simulation. We uncovered let-7a-dependent deregulation of PI3K pathway components, including PI3KC2A, PDK1, and RICTOR, that govern AKT1 phosphorylation and activity. Together, our data show a new role for miRNAs in regulating AKT signaling.
Collapse
|
36
|
Liu M, Zhang H, Li Y, Wang S. Noncoding RNAs Interplay in Ovarian Cancer Therapy and Drug Resistance. Cancer Biother Radiopharm 2022; 37:186-198. [PMID: 35133881 DOI: 10.1089/cbr.2021.0339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Noncoding RNAs (ncRNAs) are several types of RNA that do not encode proteins, but are essential for cell regulation. Ovarian cancer (OC) is a type of gynecological cancer with a high mortality rate and a 5-year prognosis. OC is becoming more common with each passing year, and the symptoms of early-stage OC are sometimes undetectable. Meanwhile, early-stage OC has no symptoms and is difficult to diagnose. Because ncRNA has been shown to affect the development of OC and is widely distributed, it could be employed as a new biomarker for early OC. Furthermore, ncRNA has the potential to promote or inhibit drug resistance in OC, potentially giving a solution to multiple drug resistance. Various prior studies have found that different ncRNAs perform differently in OC. This article examines how mainstream ncRNAs have been expressed in OC in recent years, as well as their function in tumor growth.
Collapse
Affiliation(s)
- Min Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Hui Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shaojia Wang
- Department of Gynecology, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
37
|
Li CH, Liao CC. The Metabolism Reprogramming of microRNA Let-7-Mediated Glycolysis Contributes to Autophagy and Tumor Progression. Int J Mol Sci 2021; 23:113. [PMID: 35008539 PMCID: PMC8745176 DOI: 10.3390/ijms23010113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer is usually a result of abnormal glucose uptake and imbalanced nutrient metabolization. The dysregulation of glucose metabolism, which controls the processes of glycolysis, gives rise to various physiological defects. Autophagy is one of the metabolic-related cellular functions and involves not only energy regeneration but also tumorigenesis. The dysregulation of autophagy impacts on the imbalance of metabolic homeostasis and leads to a variety of disorders. In particular, the microRNA (miRNA) Let-7 has been identified as related to glycolysis procedures such as tissue repair, stem cell-derived cardiomyocytes, and tumoral metastasis. In many cancers, the expression of glycolysis-related enzymes is correlated with Let-7, in which multiple enzymes are related to the regulation of the autophagy process. However, much recent research has not comprehensively investigated how Let-7 participates in glycolytic reprogramming or its links to autophagic regulations, mainly in tumor progression. Through an integrated literature review and omics-related profiling correlation, this review provides the possible linkage of the Let-7 network between glycolysis and autophagy, and its role in tumor progression.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Chiao-Chun Liao
- Department of Tropical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Public Health and Department of Social Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
38
|
Shaw P, Raymond G, Senthilnathan R, Kumarasamy C, Baxi S, Suresh D, Shetty S, Ram M R, Chandramoorthy HC, Sivanandy P, Samiappan S, Rajagopal M, Krishnan S, Jayaraj R. Clinical Theragnostic Relationship between Chemotherapeutic Resistance, and Sensitivity and miRNA Expressions in Head and Neck Cancers: A Systematic Review and Meta-Analysis Protocol. Genes (Basel) 2021; 12:2029. [PMID: 34946979 PMCID: PMC8702026 DOI: 10.3390/genes12122029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The microRNAs (miRNAs) are small noncoding single-stranded RNAs typically 19-25 nucleotides long and regulated by cellular and epigenetic factors. These miRNAs plays important part in several pathways necessary for cancer development, an altered miRNA expression can be oncogenic or tumor-suppressive. Recent experimental results on miRNA have illuminated a different perspective of the molecular pathogenesis of head and neck cancers. Regulation of miRNA can have a detrimental effect on the efficacy of chemotherapeutic drugs in both neoadjuvant and adjuvant settings. This miRNA-induced chemoresistance can influence the prognosis and survival rate. The focus of the study is on how regulations of various miRNA levels contribute to chemoresistance in head and neck cancer (HNC). Recent findings suggest that up or down-regulation of miRNAs may lead to resistance towards various chemotherapeutic drugs, which may influence the prognosis. Methods: Studies on miRNA-specific chemoresistance in HNC were collected through literary (bibliographic) databases, including SCOPUS, PubMed, Nature, Elsevier, etc., and were systematically reviewed following PRISMA-P guidelines (Preferred Reporting Items for Systematic Review and Meta-analysis Protocol). We evaluated various miRNAs, their up and downregulation, the effect of altered regulation on the patient's prognosis, resistant cell lines, etc. The data evaluated will be represented in the form of a review and meta-analysis. Discussion: This meta-analysis aims to explore the miRNA-induced chemoresistance in HNC and thus to aid further researches on this topic. PROSPERO registration: CRD42018104657.
Collapse
Affiliation(s)
- Peter Shaw
- Department of Artificial Intelligence, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China;
- Menzies School of Health Research, Darwin, NT 0810, Australia
| | - Greg Raymond
- Northern Territory Medical Program, CDU Campus, Flinders University, Ellengowan Drive, Darwin, NT 0909, Australia;
| | - Raghul Senthilnathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Chellan Kumarasamy
- Kumarasamy School of Health and Medical Sciences, Curtin University, Perth, WA 6102, Australia;
| | - Siddhartha Baxi
- MBBS, FRANZCR GAICD (SB), Genesis Care Gold Coast Radiation Oncologist, Southport, QLD 4224, Australia;
| | - Deepa Suresh
- Division of Endocrinology, Department of Internal Medicine, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Sameep Shetty
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Mangalore, Academy of Higher Education, A Constituent of MAHE, Manipal 576104, India;
| | - Ravishankar Ram M
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur (South Wing), No.1, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur 57000, Malaysia; (R.R.M.); (M.R.)
| | - Harish C. Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Palanisamy Sivanandy
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Suja Samiappan
- Department of Biochemistry, Bharathiar University, Coimbatore 641046, India;
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur (South Wing), No.1, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur 57000, Malaysia; (R.R.M.); (M.R.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S., Jacksonville, FL 32224, USA;
| | - Rama Jayaraj
- Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| |
Collapse
|
39
|
Khan MA, Vikramdeo KS, Sudan SK, Singh S, Wilhite A, Dasgupta S, Rocconi RP, Singh AP. Platinum-resistant ovarian cancer: From drug resistance mechanisms to liquid biopsy-based biomarkers for disease management. Semin Cancer Biol 2021; 77:99-109. [PMID: 34418576 PMCID: PMC8665066 DOI: 10.1016/j.semcancer.2021.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Resistance to platinum-based chemotherapy is a major clinical challenge in ovarian cancer, contributing to the high mortality-to-incidence ratio. Management of the platinum-resistant disease has been difficult due to diverse underlying molecular mechanisms. Over the past several years, research has revealed several novel molecular targets that are being explored as biomarkers for treatment planning and monitoring of response. The therapeutic landscape of ovarian cancer is also rapidly evolving, and alternative therapies are becoming available for the recurrent platinum-resistant disease. This review provides a snapshot of platinum resistance mechanisms and discusses liquid-based biomarkers and their potential utility in effective management of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Sarabjeet Kour Sudan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Annelise Wilhite
- Department of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Santanu Dasgupta
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Rodney Paul Rocconi
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States.
| |
Collapse
|
40
|
miRNA profiling in adult T-cell leukemia lymphoma (ATLL), a systems virology study. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Khan S, Burciu B, Filipe CDM, Li Y, Dellinger K, Didar TF. DNAzyme-Based Biosensors: Immobilization Strategies, Applications, and Future Prospective. ACS NANO 2021; 15:13943-13969. [PMID: 34524790 DOI: 10.1021/acsnano.1c04327] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since their discovery almost three decades ago, DNAzymes have been used extensively in biosensing. Depending on the type of DNAzyme being used, these functional oligonucleotides can act as molecular recognition elements within biosensors, offering high specificity to their target analyte, or as reporters capable of transducing a detectable signal. Several parameters need to be considered when designing a DNAzyme-based biosensor. In particular, given that many of these biosensors immobilize DNAzymes onto a sensing surface, selecting an appropriate immobilization strategy is vital. Suboptimal immobilization can result in both DNAzyme detachment and poor accessibility toward the target, leading to low sensing accuracy and sensitivity. Various approaches have been employed for DNAzyme immobilization within biosensors, ranging from amine and thiol-based covalent attachment to non-covalent strategies involving biotin-streptavidin interactions, DNA hybridization, electrostatic interactions, and physical entrapment. While the properties of each strategy inform its applicability within a proposed sensor, the selection of an appropriate strategy is largely dependent on the desired application. This is especially true given the diverse use of DNAzyme-based biosensors for the detection of pathogens, metal ions, and clinical biomarkers. In an effort to make the development of such sensors easier to navigate, this paper provides a comprehensive review of existing immobilization strategies, with a focus on their respective advantages, drawbacks, and optimal conditions for use. Next, common applications of existing DNAzyme-based biosensors are discussed. Last, emerging and future trends in the development of DNAzyme-based biosensors are discussed, and gaps in existing research worthy of exploration are identified.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Brenda Burciu
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
42
|
Ravegnini G, De Iaco P, Gorini F, Dondi G, Klooster I, De Crescenzo E, Bovicelli A, Hrelia P, Perrone AM, Angelini S. Role of Circulating miRNAs in Therapeutic Response in Epithelial Ovarian Cancer: A Systematic Revision. Biomedicines 2021; 9:biomedicines9101316. [PMID: 34680433 PMCID: PMC8533254 DOI: 10.3390/biomedicines9101316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal cancers worldwide, mostly due to nonspecific symptoms and a lack of screening tests, which, taken together, contribute to delayed diagnosis and treatment. The current clinical biomarker is serum CA-125, which allows the identification of most advanced primary and relapsed disease and correlates with disease burden; however, as well highlighted in the literature, CA-125 often lacks sensitivity and specificity, and is not helpful in monitoring chemotherapeutic response or in predicting the risk of relapse. Given that, the identification of novel biomarkers able to foster more precise medical approaches and the personalization of patient management represents an unmet clinical requirement. In this context, circulating miRNAs may represent an interesting opportunity as they can be easily detected in all biological fluids. This is particularly relevant when looking for non-invasive approaches that can be repeated over time, with no pain and stress for the oncological patient. Given that, the present review aims to describe the circulating miRNAs currently identified as associated with therapeutic treatments in OC and presents a complete overview of the available evidence.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
- Correspondence:
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
- Department of Medical and Surgical Sciences, DIMEC, University of Bologna, 40138 Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche, University of Bologna, 40138 Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| | - Giulia Dondi
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Isabella Klooster
- Department of Pathology, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA;
| | - Eugenia De Crescenzo
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Alessandro Bovicelli
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| | - Anna Myriam Perrone
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
- Department of Medical and Surgical Sciences, DIMEC, University of Bologna, 40138 Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche, University of Bologna, 40138 Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| |
Collapse
|
43
|
Wang L, Chen J, Lu C. Circular RNA Foxo3 enhances progression of ovarian carcinoma cells. Aging (Albany NY) 2021; 13:22432-22443. [PMID: 34555810 PMCID: PMC8507305 DOI: 10.18632/aging.203550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/03/2021] [Indexed: 01/25/2023]
Abstract
Background: Ovarian carcinoma (OC) is the deadliest gynecologic malignancy in females worldwide. Circular RNA Foxo3 (Foxo3) plays essential roles in various cancers. However, the detailed function of Foxo3 in OC remains unclear. This study aimed to investigate the role of Foxo3 in OC and the underlying molecular mechanism. Methods: The abundance of Foxo3 was detected in OC cell lines by qPCR. Lentivirus transduction, CCK-8, wound healing assays, transwell migration and invasion assays, luciferase reporter assay, western blotting, fluorescence in situ hybridization (FISH), transmission electron microscopy, nanoparticle tracking analysis, and bioinformatics analysis were performed to investigate the underlying mechanism. Results: The results demonstrated that Foxo3 was significantly upregulated in OC cell lines. Overexpression and knockdown of Foxo3 promoted and inhibited the proliferation, migration, and invasion of OC cells, respectively. Foxo3 could bind to miR-422a to negatively regulate miR-422a expression. Also, proteolipid protein 2 (PLP2) was a targeting gene of miR-422a. Additionally, Foxo3 was highly expressed in exosomes derived from OC cells. Furthermore, Foxo3 could be shuttled to OC cells by exosomes and promoted OC progression. Conclusions: Foxo3 promoted OC progression through exosome-mediated intercellular interaction to target miR-422a/PLP2 axis. Foxo3 may serve as a potential biomarker for OC.
Collapse
Affiliation(s)
- Li Wang
- Department of Gynaecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Jing Chen
- Department of Gynaecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Chunhua Lu
- Department of Urinary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
44
|
Yin L, Wang Y. Long non-coding RNA NEAT1 facilitates the growth, migration, and invasion of ovarian cancer cells via the let-7 g/MEST/ATGL axis. Cancer Cell Int 2021; 21:437. [PMID: 34416900 PMCID: PMC8379830 DOI: 10.1186/s12935-021-02018-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background/Aim Growing evidence indicates a significant role of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in ovarian cancer, a frequently occurring malignant tumor in women; however, the possible effects of an interplay of NEAT1 with microRNA (miRNA or miR) let-7 g in ovarian cancer are not known. The current study aimed to investigate the role of the NEAT1/let-7 g axis in the growth, migration, and invasion of ovarian cancer cells and explore underlying mechanisms. Methods NEAT1 expression levels were examined in clinical tissue samples and cell lines. The relationships between NEAT1, let-7 g, and MEST were then analyzed. Gain- or loss-of-function approaches were used to manipulate NEAT1 and let-7 g. The effects of NEAT1 on cell proliferation, migration, invasion, and apoptosis were evaluated. Mouse xenograft models of ovarian cancer cells were established to verify the function of NEAT1 in vivo. Results NEAT1 expression was elevated while let-7 g was decreased in ovarian cancer clinical tissue samples and cell lines. A negative correlation existed between NEAT1 and let-7 g, whereby NEAT1 competitively bound to let-7 g and consequently down-regulate let-7 g expression. By this mechanism, the growth, migration, and invasion of ovarian cancer cells were stimulated. In addition, let-7 g targeted mesoderm specific transcript (MEST) and inhibited its expression, leading to promotion of adipose triglyceride lipase (ATGL) expression and inhibition of ovarian cancer cell growth, migration, and invasion. However, the effect of let-7 g was abolished by overexpression of MEST. Furthermore, silencing of NEAT1 decreased the xenograft tumor growth by decreasing MEST while up-regulating let-7 g and ATGL. Conclusions Cumulatively, the findings demonstrated that NEAT1 could promote malignant phenotypes of ovarian cancer cells by regulating the let-7 g/MEST/ATGL signaling axis. Therefore, NEAT1 can be regarded as an important molecular target and biomarker for ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02018-3.
Collapse
Affiliation(s)
- Lili Yin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, P.R. China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, P.R. China.
| |
Collapse
|
45
|
Xie W, Sun H, Li X, Lin F, Wang Z, Wang X. Ovarian cancer: epigenetics, drug resistance, and progression. Cancer Cell Int 2021; 21:434. [PMID: 34404407 PMCID: PMC8369623 DOI: 10.1186/s12935-021-02136-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/03/2021] [Indexed: 03/05/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignant tumors in women. OC is associated with the activation of oncogenes, the inactivation of tumor suppressor genes, and the activation of abnormal cell signaling pathways. Moreover, epigenetic processes have been found to play an important role in OC tumorigenesis. Epigenetic processes do not change DNA sequences but regulate gene expression through DNA methylation, histone modification, and non-coding RNA. This review comprehensively considers the importance of epigenetics in OC, with a focus on microRNA and long non-coding RNA. These types of RNA are promising molecular markers and therapeutic targets that may support precision medicine in OC. DNA methylation inhibitors and histone deacetylase inhibitors may be useful for such targeting, with a possible novel approach combining these two therapies. Currently, the clinical application of such epigenetic approaches is limited by multiple obstacles, including the heterogeneity of OC, insufficient sample sizes in reported studies, and non-optimized methods for detecting potential tumor markers. Nonetheless, the application of epigenetic approaches to OC patient diagnosis, treatment, and prognosis is a promising area for future clinical investigation.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Huizhen Sun
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Xiaoduan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feikai Lin
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Ziliang Wang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China.
| |
Collapse
|
46
|
Di Vito A, Chiarella E, Baudi F, Scardamaglia P, Antonelli A, Giudice D, Barni T, Fortunato L, Giudice A. Dose-Dependent Effects of Zoledronic Acid on Human Periodontal Ligament Stem Cells: An In Vitro Pilot Study. Cell Transplant 2021; 29:963689720948497. [PMID: 33086890 PMCID: PMC7784504 DOI: 10.1177/0963689720948497] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bisphosphonates (BPs) are widely used to treat several metabolic and oncological diseases affecting the skeletal system. Despite BPs’ well-known therapeutic potential, they also displayed important side effects, among which is BPs-related osteonecrosis of the jaw, by targeting osteoclast activities, osteoblast, and osteocyte behavior. The aim of this study is to evaluate the biological effects of zoledronic acid (ZOL) in an in vitro model of periodontal ligament stem cells (PDLSCs) by using an experimental setting that resembles the in vivo conditions. PDLSCs were treated with different concentrations of ZOL ranging from 0.1 to 5 μM. The effects of ZOL exposure were evaluated on cell viability via 3-[4,5-Dimethylthiaoly]-2,5-diphenyltetrazolium bromide (MTT), cell cycle analysis, apoptosis detection, and immunofluorescence. Quantitative real-time polymerase chain reaction (PCR), colorimetric detection of alkaline phosphatase activity, and Alizarin Red S staining were performed to investigate the osteogenic potential of PDLSCs exposed to ZOL. MTT analysis showed that the viability of PDLSCs exposed to ZOL concentration ≥1.5 μM for 3 and 6 days was significantly lower (P < 0.001) than that of untreated cells. The percentage of apoptotic cells was significantly higher in PDLSCs exposed for 4 days to ZOL at 2 μM (P < 0.01) and 5 μM (P < 0.001) when compared to the control. Moreover, ZOL treatment (3 days) accounted for alterations in cell cycle distribution, with an increase in the proportion of cells in G0/G1 phase and a reduction in the proportion of cells in S phase. Chronic exposure (longer than 7 days) of PDLSCs to ZOL accounted for the downregulation of ALP, RUNX2, and COL1 genes at all tested concentrations, which fit well with the reduced alkaline phosphatase activity reported after 7 and 14 days of treatment. Reduced Col1 deposition in the extracellular matrix was reported after 14 days of treatment. Increased calcium deposits were observed in treated cells when compared to the control cultures. In conclusion, chronic exposure to 1 μM ZOL induced significant reduction of osteogenic differentiation, while ZOL concentrations ≥1.5 μM are required to impair PDLSCs viability and induce apoptosis.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - E Chiarella
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - F Baudi
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - P Scardamaglia
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - A Antonelli
- Department of Health Science, University Magna Graecia of Catanzaro, Italy
| | - D Giudice
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - T Barni
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - L Fortunato
- Department of Health Science, University Magna Graecia of Catanzaro, Italy
| | - A Giudice
- Department of Health Science, University Magna Graecia of Catanzaro, Italy
| |
Collapse
|
47
|
Garai K, Adam Z, Herczeg R, Banfai K, Gyebrovszki A, Gyenesei A, Pongracz JE, Wilhelm M, Kvell K. Physical Activity as a Preventive Lifestyle Intervention Acts Through Specific Exosomal miRNA Species-Evidence From Human Short- and Long-Term Pilot Studies. Front Physiol 2021; 12:658218. [PMID: 34408656 PMCID: PMC8365358 DOI: 10.3389/fphys.2021.658218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Exercise initiates systemic adaptation to promote health and prevent various lifestyle-related chronic diseases. Emerging evidence suggests that circulating exosomes mediate some of the beneficial effects of exercise via the transfer of microRNAs between tissues. Yet to date, a comprehensive profile of the exosomal miRNA (exomiR) content released following short-term (0.5 year in this study) and long-term (25 + years in this study) regular bouts of exercise is still lacking. However, a better understanding of these miRNA species would assist in clarifying the role of regular exercise at the molecular level in the prevention of chronic diseases. In the present pilot studies we analyzed serum exomiR expression in healthy young, sedentary participants (n = 14; age: 23 ± 2 years) at baseline and following a half year-long moderate-intensity regular exercise training. We also analyzed serum exomiR expression in older, healthy trained participants (seniors, n = 11; age: 62 ± 6 years) who engaged in endurance activities for at least 25 years. Following the isolation and enrichment of serum exosomes using Total Exosome Isolation Reagent (TEI) their exomiR levels were determined using the amplification-free Nanostring platform. Hierarchical cluster analysis revealed that the majority of exomiRs overlap for short-term (0.5 year in this study) and long-term (25 + years in this study) regular bouts of exercise. The top 12 significantly altered exomiRs (let-7a-5p; let-7g-5p; miR-130a-3p; miR-142-3p; miR-150-5p; miR-15a-5p; miR-15b-5p; miR-199a-3p; miR-199b-3p; miR-223-3p; miR-23a-3p, and miR-451a-3p) were used for further evaluation. According to KEGG pathway analysis a large portion of the exomiRs target chronic diseases including cancer, neurodegenerative and metabolic diseases, and viral infections. Our results provide evidence that exosomal miRNA modulation is the molecular mechanism through which regular exercise prevents various chronic diseases. The possibility of using such exomiRs to target diseases is of great interest. While further validation is needed, our comprehensive exomiR study presents, for the first time, the disease-preventive molecular pattern of both short and long-term regular exercise.
Collapse
Affiliation(s)
- Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Wnt-Signaling Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Zoltan Adam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Wnt-Signaling Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Robert Herczeg
- Bioinformatics Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Wnt-Signaling Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Adam Gyebrovszki
- Faculty of Science, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- Bioinformatics Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Wnt-Signaling Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Marta Wilhelm
- Faculty of Science, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Wnt-Signaling Research Group, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
48
|
Genetic meta-analysis of cancer diagnosis following statin use identifies new associations and implicates human leukocyte antigen (HLA) in women. THE PHARMACOGENOMICS JOURNAL 2021; 21:446-457. [PMID: 33649522 DOI: 10.1038/s41397-021-00221-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
We sought to perform a genomic evaluation of the risk of incident cancer in statin users, free of cancer at study entry. Patients who previously participated in two phase IV trials (TNT and IDEAL) with genetic data were used (npooled = 11,196). A GWAS meta-analysis using Cox modeling for the prediction of incident cancer was conducted in the pooled cohort and sex-stratified. rs13210472 (near HLA-DOA gene) was associated with higher risk of incident cancer amongst women with prevalent coronary artery disease (CAD) taking statins (hazard ratio [HR]: 2.66, 95% confidence interval [CI]: 1.88-3.76, P = 3.5 × 10-8). Using the UK Biobank and focusing exclusively on women statin users with CAD (nfemale = 2952), rs13210472 remained significantly associated with incident cancer (HR: 1.71, 95% CI: 1.14-2.56, P = 9.0 × 10-3). The association was not observed in non-statin users. In this genetic meta-analysis, we have identified a variant in women statin users with prevalent CAD that was associated with incident cancer, possibly implicating the human leukocyte antigen pathway.
Collapse
|
49
|
Gajek A, Gralewska P, Marczak A, Rogalska A. Current Implications of microRNAs in Genome Stability and Stress Responses of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13112690. [PMID: 34072593 PMCID: PMC8199164 DOI: 10.3390/cancers13112690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Genomic alterations and aberrant DNA damage signaling are hallmarks of ovarian cancer (OC), the leading cause of mortality among gynecological cancers worldwide. Owing to the lack of specific symptoms and late-stage diagnosis, survival chances of patients are significantly reduced. Poly (ADP-ribose) polymerase (PARP) inhibitors and replication stress response inhibitors present attractive therapeutic strategies for OC. Recent research has focused on ovarian cancer-associated microRNAs (miRNAs) that play significant regulatory roles in various cellular processes. While miRNAs have been shown to participate in regulation of tumorigenesis and drug responses through modulating the DNA damage response (DDR), little is known about their potential influence on sensitivity to chemotherapy. The main objective of this review is to summarize recent findings on the utility of miRNAs as cancer biomarkers, in particular, ovarian cancer, and their regulation of DDR or modified replication stress response proteins. We further discuss the suppressive and promotional effects of various miRNAs on ovarian cancer and their participation in cell cycle disturbance, response to DNA damage, and therapeutic functions in multiple cancer types, with particular focus on ovarian cancer. Improved understanding of the mechanisms by which miRNAs regulate drug resistance should facilitate the development of effective combination therapies for ovarian cancer.
Collapse
|
50
|
Tripathi A, Kashyap A, Tripathi G, Yadav J, Bibban R, Aggarwal N, Thakur K, Chhokar A, Jadli M, Sah AK, Verma Y, Zayed H, Husain A, Bharti AC, Kashyap MK. Tumor reversion: a dream or a reality. Biomark Res 2021; 9:31. [PMID: 33958005 PMCID: PMC8101112 DOI: 10.1186/s40364-021-00280-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Reversion of tumor to a normal differentiated cell once considered a dream is now at the brink of becoming a reality. Different layers of molecules/events such as microRNAs, transcription factors, alternative RNA splicing, post-transcriptional, post-translational modifications, availability of proteomics, genomics editing tools, and chemical biology approaches gave hope to manipulation of cancer cells reversion to a normal cell phenotype as evidences are subtle but definitive. Regardless of the advancement, there is a long way to go, as customized techniques are required to be fine-tuned with precision to attain more insights into tumor reversion. Tumor regression models using available genome-editing methods, followed by in vitro and in vivo proteomics profiling techniques show early evidence. This review summarizes tumor reversion developments, present issues, and unaddressed challenges that remained in the uncharted territory to modulate cellular machinery for tumor reversion towards therapeutic purposes successfully. Ongoing research reaffirms the potential promises of understanding the mechanism of tumor reversion and required refinement that is warranted in vitro and in vivo models of tumor reversion, and the potential translation of these into cancer therapy. Furthermore, therapeutic compounds were reported to induce phenotypic changes in cancer cells into normal cells, which will contribute in understanding the mechanism of tumor reversion. Altogether, the efforts collectively suggest that tumor reversion will likely reveal a new wave of therapeutic discoveries that will significantly impact clinical practice in cancer therapy.
Collapse
Affiliation(s)
- Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India
| | - Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India
| | - Joni Yadav
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Rakhi Bibban
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Nikita Aggarwal
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Kulbhushan Thakur
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Arun Chhokar
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Mohit Jadli
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Ashok Kumar Sah
- Department of Medical Laboratory Technology, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), India
- Department of Pathology and Laboratory Medicine, Medanta-The Medicity, Haryana, Gurugram, India
| | - Yeshvandra Verma
- Department of Toxicology, C C S University, Meerut, UP, 250004, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Alok Chandra Bharti
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India.
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India.
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India.
| |
Collapse
|