1
|
Aarestrup FM, Hansen EB, Kumburu HH, Mzee T, Otani S. Improved ability to utilize lactose and grow in milk as a potential explanation for emergence of the novel bovine Staphylococcus aureus ST5477. Int J Med Microbiol 2024; 317:151637. [PMID: 39442481 DOI: 10.1016/j.ijmm.2024.151637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Staphyloccous aureus belonging to sequence type 5477 have recently been identified as a predominant clone causing bovine mastitis in Rwanda and Tanzania. We compared nine S. aureus ST5477 to 17 isolates belonging to other sequence types by their biochemical profile and ability to acidify milk and grow in minimum media containing lactose. We found that ST5477 isolates all were positive in ONPG (o-nitrophenyl-β-D-galactopyranoside) test and negative for mannitol fermentation potentially challenging the correct identification of this sequence type as S. aureus. In addition, ST5477 isolates were all much faster in acidifying milk and grew faster in minimal media with lactose compared to other strains suggesting an increased lactose utilization and thereby adaptation to the bovine udder environment as a possible reason for the recent successful emergence. Comparison of the lac gene region of the genome of a recently sequenced ST5477 and that of S. aureus reference genome showed that both strains contained the known lacABCD genes involved in the lactose degradation, but that ST5477 had a 12 amino-acid deletion and two amino-acid differences in the lac gene transcription regulator, suggesting that increased transcription might play a role. In conclusion, these preliminary data suggests that improved lactose utilization and the ability to grow faster in milk may have been a key feature for the recent success of ST5477 as a bovine adapted clone.
Collapse
Affiliation(s)
| | | | - Happiness H Kumburu
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Tanzania; Kilimanjaro Christian Medical Centre, Tanzania
| | - Tutu Mzee
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, Tanzania
| | | |
Collapse
|
2
|
Lohova E, Pilmane M, Šerstņova K, Melderis I, Gontar Ł, Kochański M, Drutowska A, Maróti G, Prieto-Simón B. Analysis of Inflammatory and Regulatory Cytokines in the Milk of Dairy Cows with Mastitis: A Comparative Study with Healthy Animals. Immunol Invest 2024; 53:1397-1421. [PMID: 39287131 DOI: 10.1080/08820139.2024.2404623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Bovine mastitis remains a major problem in the global dairy cattle industry. The acute invasion of udder by pathogens induces innate immune response as the first defence mechanism in subclinical and clinical mastitis. The aim of the study was to determine inflammatory and regulatory cytokines IL-2, IL-4, TGF-β1, IL-17A, beta-defensin 3 and IL-10 and their potential changes in milk of dairy cows with subclinical and clinical mastitis, and to compare the findings with healthy animals. Milk samples from 15 holstein Friesian breed cows were used in the study. Cows were divided into three groups based on their health status (5 healthy, 5 subclinical and 5 clinical animals). All samples were tested using immunohistochemistry to evaluate IL-2, IL-4, IL-10, IL17A, TGF-β1 and β-Def 3 proteins. Expression of all proteins was detected in all milk samples. High expression of IL-2, IL-4, IL17A, TGF-β1 was detected in healthy cows' milk and in milk of cows with subclinical and clinical mastitis. However, expression of IL-10 and β-Def 3 in milk samples of healthy cows was significantly higher compared to the milk of cows with subclinical and clinical mastitis (p < .001). IL-10 and β-Def 3 can be considered as informative biomarkers in diagnosis of subclinical and clinical mastitis.
Collapse
Affiliation(s)
- Elizabeta Lohova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Mara Pilmane
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Ksenija Šerstņova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Ivars Melderis
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Łukasz Gontar
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Maksymilian Kochański
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Andzelika Drutowska
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Gergely Maróti
- Seqomics Biotechnology Ltd., Morahalom, Hungary
- Biological Research Center, Plant Biology Institute, Szeged, Hungary
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
3
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
4
|
Balta I, McCleery D, David SRF, Pet E, Stef D, Iancu T, Pet I, Stef L, Corcionivoschi N. The mechanistic role of natural antimicrobials in preventing Staphylococcus aureus invasion of MAC-T cells using an in vitro mastitis model. Ir Vet J 2024; 77:3. [PMID: 38414081 PMCID: PMC10898119 DOI: 10.1186/s13620-024-00265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Starting primarily as an inflammation of the mammary gland, mastitis is frequently driven by infectious agents such as Staphylococcus aureus. Mastitis has a large economic impact globally, which includes diagnostic, treatment, and the production costs not to mention the potential milk contamination with antimicrobial residues. Currently, mastitis prevention and cure depends on intramammary infusion of antimicrobials, yet, their overuse risks engendering resistant pathogens, posing further threats to livestock. METHODS In our study we aimed to investigate, in vitro, using bovine mammary epithelial cells (MAC-T), the efficacy of the AuraShield an antimicrobial mixture (As) in preventing S. aureus attachment, internalisation, and inflammation. The antimicrobial mixture (As) included: 5% maltodextrin, 1% sodium chloride, 42% citric acid, 18% sodium citrate, 10% silica, 12% malic acid, 9% citrus extract and 3% olive extract (w/w). RESULTS AND DISCUSSION Herein we show that As can significantly reduce both adherence and invasion of MAC-T cells by S. aureus, with no impact on cell viability at all concentrations tested (0.1, 0.2, 0.5, 1%) compared with untreated controls. The anti-apoptotic effect of As was achieved by significantly reducing cellular caspase 1, 3 and 8 activities in the infected MAC-T cells. All As concentrations were proven to be subinhibitory, suggesting that Ac can reduce S. aureus virulence without bacterial killing and that the effect could be dual including a host modulation effect. In this context, we show that As can reduce the expression of S. aureus clumping factor (ClfB) and block its interaction with the host Annexin A2 (AnxA2), resulting in decreased bacterial adherence in infection of MAC-T cells. Moreover, the ability of As to block AnxA2 had a significant decreasing effect on the levels of pro inflammatory cytokine released upon S. aureus interaction with MAC-T cells. CONCLUSION The results presented in this study indicate that mixtures of natural antimicrobials could potentially be considered an efficient alternative to antibiotics in treating S. aureus induced mastitis.
Collapse
Affiliation(s)
- Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK
| | - Saida Roxana Feier David
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Elena Pet
- Faculty of Management and Rural Development, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Ducu Stef
- Faculty of Food Engineering, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Tiberiu Iancu
- Faculty of Management and Rural Development, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Ioan Pet
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK
| | - Lavinia Stef
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania.
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK.
| |
Collapse
|
5
|
Srithanasuwan A, Schukken YH, Pangprasit N, Chuammitri P, Suriyasathaporn W. Different cellular and molecular responses of Bovine milk phagocytes to persistent and transient strains of Streptococcus uberis causing mastitis. PLoS One 2024; 19:e0295547. [PMID: 38206970 PMCID: PMC10783761 DOI: 10.1371/journal.pone.0295547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024] Open
Abstract
Streptococcus uberis is frequently isolated from milk collected from dairy cows with mastitis. According to the host's immunity, bacterial virulence, and their interaction, infection with some strains can induce persistent subclinical inflammation, while infection with others induces severe inflammation and transient mastitis. This study compared the inflammatory response of milk-isolated white blood cells (mWBCs) to persistent and transient S. uberis strains. Quarter milk samples were collected aseptically for bacterial culture from all lactating cows once a week over a 10-week period. A transient and noncapsular strain with a 1-week intramammary infection duration was selected from this herd, while a persistent and capsular S. uberis strain with an intramammary infection longer than 2 months from our previous study was selected based on an identical pulse field gel electrophoresis pattern during the IMI episode. Cellular and molecular responses of mWBCs were tested, and the data were analyzed using repeated analysis of variance. The results showed a higher response in migration, reactive oxygen species generation, and bacterial killing when cells were stimulated with transient S. uberis. In contrast, the persistent strain led to increased neutrophil extracellular trap release. This study also highlighted several important molecular aspects of mWBCs. Gene expression analyses by real-time RT-PCR revealed a significant elevation in the expression of Toll-like receptors (TLR-1, TLR-2, TLR-6) and proinflammatory cytokines (tumor necrosis factor-alpha or TNF-α) with the transient strain. Additionally, Streptococcus uberis capsule formation might contribute to the capability of these strains to induce different immune responses. Altogether, these results focus on the immune function of activated mWBCs which demonstrate that a transient strain can elicit a stronger local immune response and, subsequently, lead to rapid recovery from mastitis.
Collapse
Affiliation(s)
- Anyaphat Srithanasuwan
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Ynte H. Schukken
- Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
- GD Animal Health, Deventer, the Netherlands
- Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Noppason Pangprasit
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Phongsakorn Chuammitri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand
| | - Witaya Suriyasathaporn
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand
- Asian Satellite Campuses Institute-Cambodian Campus, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Di Mauro S, Filipe J, Facchin A, Roveri L, Addis MF, Monistero V, Piccinini R, Sala G, Pravettoni D, Zamboni C, Ceciliani F, Lecchi C. The secretome of Staphylococcus aureus strains with opposite within-herd epidemiological behavior affects bovine mononuclear cell response. Vet Res 2023; 54:120. [PMID: 38098120 PMCID: PMC10720180 DOI: 10.1186/s13567-023-01247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
Staphylococcus aureus modulates the host immune response directly by interacting with the immune cells or indirectly by secreting molecules (secretome). Relevant differences in virulence mechanisms have been reported for the secretome produced by different S. aureus strains. The present study investigated the S. aureus secretome impact on peripheral bovine mononuclear cells (PBMCs) by comparing two S. aureus strains with opposite epidemiological behavior, the genotype B (GTB)/sequence type (ST) 8, associated with a high within-herd prevalence, and GTS/ST398, associated with a low within-herd prevalence. PBMCs were incubated with different concentrations (0%, 0.5%, 1%, and 2.5%) of GTB/ST8 and GTS/ST398 secretome for 18 and 48 h, and the viability was assessed. The mRNA levels of pro- (IL1-β and STAT1) and anti-inflammatory (IL-10, STAT6, and TGF-β) genes, and the amount of pro- (miR-155-5p and miR-125b-5p) and anti-inflammatory (miR-146a and miR-145) miRNAs were quantified by RT-qPCR. Results showed that incubation with 2.5% of GTB/ST8 secretome increased the viability of cells. In contrast, incubation with the GTS/ST398 secretome strongly decreased cell viability, preventing any further assays. The GTB/ST8 secretome promoted PBMC polarization towards the pro-inflammatory phenotype inducing the overexpression of IL1-β, STAT1 and miR-155-5p, while the expression of genes involved in the anti-inflammatory response was not affected. In conclusion, the challenge of PBMC to the GTS/ST398 secretome strongly impaired cell viability, while exposure to the GTB/ST8 secretome increased cell viability and enhanced a pro-inflammatory response, further highlighting the different effects exerted on host cells by S. aureus strains with epidemiologically divergent behaviors.
Collapse
Affiliation(s)
- Susanna Di Mauro
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Alessia Facchin
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Laura Roveri
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Maria Filippa Addis
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Valentina Monistero
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Renata Piccinini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Giulia Sala
- Department of Veterinary Sciences, University of Pisa, via Livornese s.n.c, 56122, San Piero a Grado, Italy
| | - Davide Pravettoni
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Clarissa Zamboni
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy.
| |
Collapse
|
7
|
Drumm SD, Cormican P, Owens RA, Mitchell J, Keane OM. Immunoproteomic analysis of the serum IgG response to cell wall-associated proteins of Staphylococcus aureus strains belonging to CC97 and CC151. Vet Res 2023; 54:79. [PMID: 37723537 PMCID: PMC10506246 DOI: 10.1186/s13567-023-01212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
CC97 and CC151 are two of the most common Staphylococcus aureus lineages associated with bovine intramammary infection. The genotype of the infecting S. aureus strain influences virulence and the progression of intramammary disease. Strains from CC97 and CC151 encode a distinct array of virulence factors. Identification of proteins elaborated in vivo will provide insights into the molecular mechanism of pathogenesis of these lineages, as well as facilitating the development of tailored treatments and pan-lineage vaccines and diagnostics. The repertoire of genes encoding cell wall-anchored (CWA) proteins was identified for S. aureus strains MOK023 (CC97) and MOK124 (CC151); MOK023 encoded more CWA proteins than MOK124. Serum collected during an in vivo challenge trial was used to investigate whether the humoral response to cell wall proteins was strain-specific. Immunoproteomic analysis demonstrated that the humoral response in MOK023-infected cows predominantly targeted high molecular weight proteins while the response in MOK124-infected cows targeted medium or low molecular weight proteins. Antigenic proteins were identified by two-dimensional serum blotting followed by mass spectometry-based identification of immunoreactive spots, with putative antigens subsequently validated. The CWA proteins ClfB, SdrE/Bbp and IsdA were identified as immunogenic regardless of the infecting strain. In addition, a number of putative strain-specific imunogens were identified. The variation in antigens produced by different strains may indicate that these strains have different strategies for exploiting the intramammary niche. Such variation should be considered when developing novel control strategies including vaccines, therapeutics and diagnostics.
Collapse
Affiliation(s)
- Shauna D Drumm
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Seed Testing Laboratory, DAFM Laboratories, Backweston, Celbridge, Co. Kildare, Ireland
| | - Paul Cormican
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jennifer Mitchell
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
8
|
Souza FN, Santos KR, Ferronatto JA, Ramos Sanchez EM, Toledo-Silva B, Heinemann MB, De Vliegher S, Della Libera AMMP. Bovine-associated staphylococci and mammaliicocci trigger T-lymphocyte proliferative response and cytokine production differently. J Dairy Sci 2023; 106:2772-2783. [PMID: 36870844 DOI: 10.3168/jds.2022-22529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/04/2022] [Indexed: 03/05/2023]
Abstract
We examined whether distinct staphylococcal and mammaliicoccal species and strains trigger B- and T-lymphocyte proliferation and interleukin (IL)-17A and interferon (IFN)-γ production by peripheral blood mononuclear cells in nulliparous, primiparous, and multiparous dairy cows. Flow cytometry was used to measure lymphocyte proliferation with the Ki67 antibody, and specific monoclonal antibodies were used to identify CD3, CD4, and CD8 T lymphocyte and CD21 B lymphocyte populations. The supernatant of the peripheral blood mononuclear cell culture was used to measure IL-17A and IFN-γ production. Two distinct, inactivated strains of bovine-associated Staphylococcus aureus [one causing a persistent intramammary infection (IMI) and the other from the nose], 2 inactivated Staphylococcus chromogenes strains [one causing an IMI and the other from a teat apex), as well as an inactivated Mammaliicoccus fleurettii strain originating from sawdust from a dairy farm, and the mitogens concanavalin A and phytohemagglutinin M-form (both specifically to measure lymphocyte proliferation) were studied. In contrast to the "commensal" Staph. aureus strain originating from the nose, the Staph. aureus strain causing a persistent IMI triggered proliferation of CD4+ and CD8+ subpopulations of T lymphocytes. The M. fleurettii strain and the 2 Staph. chromogenes strains had no effect on T- or B-cell proliferation. Furthermore, both Staph. aureus and Staph. chromogenes strains causing persistent IMI significantly increased IL-17A and IFN-γ production by peripheral blood mononuclear cells. Overall, multiparous cows tended to have a higher B-lymphocyte and a lower T-lymphocyte proliferative response than primiparous and nulliparous cows. Peripheral blood mononuclear cells of multiparous cows also produced significantly more IL-17A and IFN-γ. In contrast to concanavalin A, phytohemagglutinin M-form selectively stimulated T-cell proliferation.
Collapse
Affiliation(s)
- Fernando N Souza
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, Brazil; M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium; Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil.
| | - Kamila R Santos
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, Brazil
| | - José A Ferronatto
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, Brazil
| | - Eduardo M Ramos Sanchez
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil; Laboratório de Sorologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil; Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Bruno Toledo-Silva
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Marcos B Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Sarne De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Alice M M P Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, Brazil
| |
Collapse
|
9
|
Torres G, Sánchez-Jiménez M, Reyes-Vélez J, Bach H, Olivera-Angel M. Evaluation of three Staphylococcus aureus proteins involved in the adhesion process as antigens for the detection of bovine intramammary infections. J Med Microbiol 2022; 71. [PMID: 36748695 DOI: 10.1099/jmm.0.001613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction. Fast and accurate diagnosis is one of the key strategies in the successful control of intramammary infections caused by Staphylococcus aureus. Immunoassays are one of the diagnostic tools that have been proposed for the detection of S. aureus infection because they offer an advantage in terms of cost and are fast and easy to use compared to other diagnostic tests.Gap statement. The main challenge of the immunoassays is to identify antigens or serological markers that allow accurate discrimination between infected and uninfected cows with S. aureus, since this bacterium can naturally colonize different areas of the animal body.Aim. To evaluate three S. aureus proteins (IsdA, ClfA, SdrD) involved in the adhesion process as antigens to detect indicator antibodies of bovine intramammary infections.Methodology. Ninety-six cows in lactation and not vaccinated against S. aureus were included. Forty-eight of these cows were infected with S. aureus, while the rest (n=48 cows) were uninfected. Blood and milk samples were collected from each animal to recover serum and whey. IgG titres against the three proteins individually and combined (Mix) were measured in each sample using an enzyme-linked immunosorbent assay (ELISA) test.Results. Significant differences in the IgG response against the proteins evaluated were observed, highlighting the antigenic potential of IsdA and demonstrating that some antigens can detect specific antibodies of infection better than others. According to receiver operating characteristic (ROC) curve analysis, the combined proteins showed the most remarkable capacity (sensitivity of 79 % and specificity of 77 %) to differentiate between infected and uninfected cows when blood samples were used. In addition, the combined proteins also showed the highest specificity (94 %) when using milk samples.Conclusion. Our findings provide information on the usefulness of three adhesion-associated S. aureus proteins in detecting serological markers of intramammary infections in bovines.
Collapse
Affiliation(s)
- Giovanny Torres
- Instituto Colombiano de Medicina Tropical, Universidad CES, Cra. 43A No. 52 sur-99 Sabaneta, Antioquia, Colombia.,Biogenesis Research Group, Faculty of Agricultural sciences, University of Antioquia, Cra. 75 No. 65-87, Medellín, Antioquia, Colombia
| | - Miryan Sánchez-Jiménez
- Instituto Colombiano de Medicina Tropical, Universidad CES, Cra. 43A No. 52 sur-99 Sabaneta, Antioquia, Colombia
| | - Julián Reyes-Vélez
- Instituto Colombiano de Medicina Tropical, Universidad CES, Cra. 43A No. 52 sur-99 Sabaneta, Antioquia, Colombia.,Biogenesis Research Group, Faculty of Agricultural sciences, University of Antioquia, Cra. 75 No. 65-87, Medellín, Antioquia, Colombia
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, 410-2660 Oak Street, Vancouver, BC, Canada
| | - Martha Olivera-Angel
- Biogenesis Research Group, Faculty of Agricultural sciences, University of Antioquia, Cra. 75 No. 65-87, Medellín, Antioquia, Colombia
| |
Collapse
|
10
|
Engler C, Renna MS, Beccaria C, Silvestrini P, Pirola SI, Pereyra EAL, Baravalle C, Camussone CM, Monecke S, Calvinho LF, Dallard BE. Differential immune response to two Staphylococcus aureus strains with distinct adaptation genotypes after experimental intramammary infection of dairy cows. Microb Pathog 2022; 172:105789. [PMID: 36176246 DOI: 10.1016/j.micpath.2022.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
The aim of this study was to evaluate and compare the ability of two S. aureus strains with different adaptation genotypes (low and high) to the bovine mammary gland (MG) to establish an intramammary infection (IMI) and induce an immune response after an experimental challenge in lactating cows. Two isolates (designated 806 and 5011) from bovine IMI with different genotypic profiles, harboring genes involved in adherence and biofilm production, belonging to different capsular polysaccharide (CP) type, accessory gene regulator (agr) group, pulsotype (PT) and sequence type/clonal complex (ST/CC) were selected. Strains 806 and 5011 were associated with low (nonpersistent-NP) and high (persistent-P) adaptation to the MG, respectively. Strain 806 (NP) was characterized as agr group II, cap5 positive and ST350; strain 5011 (P) agr group I, cap8 positive and CC188. Three groups of clinically healthy cows, 4 cows/treatment group, were inoculated by the intramammary route with strain 806 (NP), strain 5011 (P) and pyrogen-free saline solution. All mammary quarters challenged with strain 806 (NP) developed mild clinical mastitis between 1 and 7 d post inoculation (pi). Quarters challenged with strain 5011 (P) developed a persistent IMI; bacteria were recovered from milk from d 7 pi and up to d 56 pi. In quarters inoculated with strain 806 (NP) the inflammatory response induced was greater and earlier than the one induced by strain 5011 (P), since a somatic cell count (SCC) peak was observed at d 2 pi, while in quarters inoculated with strain 5011 (P) no variations in SCC were observed until d 4 pi reaching the maximum values at d 14 pi; indicating a lower and delayed initial inflammatory response. The highest levels of nitric oxide (NO) and lactoferrin (Lf) detected in milk from quarters inoculated with both S. aureus strains coincided with the highest SCC at the same time periods, indicating an association with the magnitude of inflammation. The high levels of IL-1β induced by strain 806 (NP) were associated with the highest SCC detected (d 2 pi); while quarters inoculated with strain 5011 (P) showed similar IL-1β levels to those found in control quarters. In quarters inoculated with strain 806 (NP) two peaks of IL-6 levels on d 2 and 14 pi were observed; while in quarters inoculated with strain 5011 (P) IL-6 levels were similar to those found in control quarters. The strain 806 (NP) induced a higher total IgG and IgG1 response; while strain 5011 (P) generated a higher IgG2 response (even against the heterologous strain). The present study demonstrated that S. aureus strains with different genotype and adaptability to bovine MG influence the local host immune response and the course and severity of the infectious process.
Collapse
Affiliation(s)
- Carolina Engler
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - María S Renna
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Camila Beccaria
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Paula Silvestrini
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Silvana I Pirola
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Elizabet A L Pereyra
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Celina Baravalle
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Cecilia M Camussone
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - Stefan Monecke
- Institute for Medical Microbiology and Hygiene, TU Dresden, Dresden, Germany; Alere Technologies GmbH, Jena, Germany
| | - Luis F Calvinho
- Cátedra de Enfermedades Infecciosas. Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - Bibiana E Dallard
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina.
| |
Collapse
|
11
|
Immunoproteomic analysis of the secretome of bovine-adapted strains of Staphylococcus aureus demonstrates a strain-specific humoral response. Vet Immunol Immunopathol 2022; 249:110428. [DOI: 10.1016/j.vetimm.2022.110428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
|
12
|
Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Vet Res 2022; 18:115. [PMID: 35331225 PMCID: PMC8944054 DOI: 10.1186/s12917-022-03197-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.
Collapse
|
13
|
Vitenberga-Verza Z, Pilmane M, Šerstņova K, Melderis I, Gontar Ł, Kochański M, Drutowska A, Maróti G, Prieto-Simón B. Identification of Inflammatory and Regulatory Cytokines IL-1α-, IL-4-, IL-6-, IL-12-, IL-13-, IL-17A-, TNF-α-, and IFN-γ-Producing Cells in the Milk of Dairy Cows with Subclinical and Clinical Mastitis. Pathogens 2022; 11:372. [PMID: 35335696 PMCID: PMC8954094 DOI: 10.3390/pathogens11030372] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
In naturally occurring bovine mastitis, effects of infection depend on the host inflammatory response, including the effects of secreted cytokines. Knowledge about the inflammatory and regulatory cytokines in milk cells of free-stall barn dairy cows and in naturally occurring mastitis is lacking as most studies focus on induced mastitis. Hereby, the aim of the study was to determine inflammatory and regulatory cytokines in the milk of dairy cows with subclinical and clinical mastitis. The following examinations of milk samples were performed: differential counting of somatic cells (SCC), bacteriological examination, and immunocytochemical analysis. Mean SCC increased in subclinical and clinical mastitis cases. The number of pathogenic mastitis-causing bacteria on plates increased in subclinical mastitis cases but decreased in clinical mastitis. The inflammatory and regulatory markers in the milk cells of healthy cows showed the highest mean cell numbers (%). In mastitis cases, immunoreactivity was more pronounced for IL-4, IL-6, IL-12, IL-13, IL-17A, TNF-α, and IFN-γ. Data about subclinical and clinical mastitis demonstrate inflammatory responses to intramammary infection driven by IL-1α, IL-4, and IL-17A. Moreover, the host defense response in mastitis is characterized by continuation or resolution of initial inflammation. IL-12 and INF-γ immunoreactivity was recognized to differ mastitis cases from the relative health status.
Collapse
Affiliation(s)
- Zane Vitenberga-Verza
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Māra Pilmane
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Ksenija Šerstņova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Ivars Melderis
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Łukasz Gontar
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Maksymilian Kochański
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Andżelika Drutowska
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Gergely Maróti
- Seqomics Biotechnology Ltd., 6782 Morahalom, Hungary;
- Biological Research Center, Plant Biology Institute, 6726 Szeged, Hungary
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|
14
|
Escherichia coli and Staphylococcus aureus Differentially Regulate Nrf2 Pathway in Bovine Mammary Epithelial Cells: Relation to Distinct Innate Immune Response. Cells 2021; 10:cells10123426. [PMID: 34943933 PMCID: PMC8700232 DOI: 10.3390/cells10123426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli and Staphylococcus aureus are major mastitis causing pathogens in dairy cattle but elicit distinct immune and an inflammatory response in the udder. However, the host determinants responsible for this difference remains largely unknown. Our initial studies focused on the global transcriptomic response of primary bovine mammary epithelial cells (pbMECs) to heat-killed E. coli and S. aureus. RNA-sequencing transcriptome analysis demonstrates a significant difference in expression profiles induced by E. coli compared with S. aureus. A major differential response was the activation of innate immune response by E. coli, but not by S. aureus. Interestingly, E. coli stimulation increased transcript abundance of several genes downstream of Nrf2 (nuclear factor erythroid 2-related factor 2) that were enriched in gene sets with a focus on metabolism and immune system. However, none of these genes was dysregulated by S. aureus. Western blot analysis confirms that S. aureus impairs Nrf2 activation as compared to E. coli. Using Nrf2-knockdown cells we demonstrate that Nrf2 is necessary for bpMECs to mount an effective innate defensive response. In support of this notion, nuclear Nrf2 overexpression augmented S. aureus-stimulated inflammatory response. We also show that, unlike E. coli, S. aureus disrupts the non-canonical p62/SQSTM1-Keap1 pathway responsible for Nrf2 activation through inhibiting p62/SQSTM1 phosphorylation at S349. Collectively, our findings provide important insights into the contribution of the Nrf2 pathway to the pathogen-species specific immune response in bovine mammary epithelial cells and raise a possibility that impairment of Nrf2 activation contributes to, at least in part, the weak inflammatory response in S. aureus mastitis.
Collapse
|
15
|
Mi S, Tang Y, Shi L, Liu X, Si J, Yao Y, Augustino SMA, Fang L, Yu Y. Protective Roles of Folic Acid in the Responses of Bovine Mammary Epithelial Cells to Different Virulent Staphylococcus aureus Strains. BIOLOGY 2021; 10:biology10111164. [PMID: 34827157 PMCID: PMC8615268 DOI: 10.3390/biology10111164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Mastitis caused by Staphylococcus aureus (S. aureus) infection is one of the most difficult diseases to treat in dairy cattle. Exploring the biological progression of S. aureus mastitis via the interaction between host, pathogen, and environment is the key to an effective and sustainable improvement of animal health. Here, two strains of S. aureus and a strain of MRSA (Methicillin-resistant Staphylococcus aureus) isolated from cows with different inflammation phenotypes were used to challenge Mac-T cells and to investigate their effects on the global transcriptome of the cells, then to explore the potential regulatory mechanisms of folic acid on S. aureus mastitis prevention. Differential gene expression or splicing analysis showed that different strains of S. aureus led to distinct transcriptional responses from the host immune system. Folic acid could protect host defense against the challenge of S. aureus and MRSA partially through activating cytoplasmic DNA sensing and tight junction pathway. ZBP1 at the upstream of cytoplasmic DNA sensing pathway was verified and related to anti-pathogen through RNA interference. Further enrichment analysis using these transcriptome data with cattle large-scale genome-wide association study (GWAS) data confirmed that ZBP1 gene is highly associated with bovine somatic cell score (SCS) trait. Our data shed light on the potential effect of FA through regulating key gene and then protect host cells' defense against S. aureus and MRSA.
Collapse
Affiliation(s)
- Siyuan Mi
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
| | - Yongjie Tang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
| | - Liangyu Shi
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
| | - Xueqin Liu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
| | - Jingfang Si
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
| | - Yuelin Yao
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK;
| | - Serafino M. A. Augustino
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
- College of Natural Resources and Environmental Studies, University of Juba, Juba P.O. Box 82, South Sudan
| | - Lingzhao Fang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK;
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
- Correspondence:
| |
Collapse
|
16
|
Niedziela DA, Cormican P, Foucras G, Leonard FC, Keane OM. Bovine milk somatic cell transcriptomic response to Staphylococcus aureus is dependent on strain genotype. BMC Genomics 2021; 22:796. [PMID: 34740333 PMCID: PMC8571842 DOI: 10.1186/s12864-021-08135-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023] Open
Abstract
Background Mastitis is an economically important disease of dairy cows with Staphylococcus aureus a major cause worldwide. Challenge of Holstein-Friesian cows demonstrated that S. aureus strain MOK124, which belongs to Clonal Complex (CC)151, caused clinical mastitis, while strain MOK023, belonging to CC97, caused mild or subclinical mastitis. The aim of this study was to elucidate the molecular mechanisms of the host immune response utilising a transcriptomic approach. Milk somatic cells were collected from cows infected with either S. aureus MOK023 or MOK124 at 0, 24, 48, 72 and 168 h post-infection (hpi) and analysed for differentially expressed (DE) genes in response to each strain. Results In response to MOK023, 1278, 2278, 1986 and 1750 DE genes were found at 24, 48, 72 and 168 hpi, respectively, while 2293, 1979, 1428 and 1544 DE genes were found in response to MOK124 at those time points. Genes involved in milk production (CSN1, CSN10, CSN1S2, CSN2, a-LACTA and PRLR) were downregulated in response to both strains, with a more pronounced decrease in the MOK124 group. Immune response pathways such as NF-κB and TNF signalling were overrepresented in response to both strains at 24 hpi. These immune pathways continued to be overrepresented in the MOK023 group at 48 and 72 hpi, while the Hippo signalling, extracellular matrix interaction (ECM) and tight junction pathways were overrepresented in the MOK124 group between 48 and 168 hpi. Cellular composition analysis demonstrated that a neutrophil response was predominant in response to MOK124, while M1 macrophages were the main milk cell type post-infection in the MOK023 group. Conclusions A switch from immune response pathways to pathways involved in maintaining the integrity of the epithelial cell layer was observed in the MOK124 group from 48 hpi, which coincided with the occurrence of clinical signs in the infected animals. The higher proportion of M1 macrophages in the MOK023 group and lack of substantial neutrophil recruitment in response to MOK023 may indicate immune evasion by this strain. The results of this study highlight that the somatic cell transcriptomic response to S. aureus is dependent on the genotype of the infecting strain. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08135-7.
Collapse
Affiliation(s)
- Dagmara A Niedziela
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.,School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Paul Cormican
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Gilles Foucras
- IHAP, Université de Toulouse, ENVT, INRAE, UMR1225, F-31076, Toulouse, France
| | - Finola C Leonard
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
17
|
Guzmán-Rodríguez JJ, León-Galván MF, Barboza-Corona JE, Valencia-Posadas M, Loeza-Lara PD, Sánchez-Ceja M, Ochoa-Zarzosa A, López-Meza JE, Gutiérrez-Chávez AJ. Analysis of virulence traits of Staphylococcus aureus isolated from bovine mastitis in semi-intensive and family dairy farms. J Vet Sci 2020; 21:e77. [PMID: 33016022 PMCID: PMC7533384 DOI: 10.4142/jvs.2020.21.e77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the main microorganisms that causes bovine mastitis, and its well-known virulence characteristics and interactions with the environment are used to aid the design of more efficient therapies. OBJECTIVES To determine whether the virulence traits, such as antibiotic resistance and biofilm-forming and internalization abilities, of S. aureus isolated from bovine mastitis are related to dairy production system types. METHODS The study was performed in the Mexican states of Guanajuato and Michoacan. Semi-intensive dairy farms (SIDFs) and family dairy farms (FDFs) (454 and 363 cows, respectively) were included. The 194 milk samples from mastitis affected quarters were collected and 92 strains of S. aureus were isolated and identified by biochemical and molecular tests. Antibiotic resistance, biofilm and internalization assays were performed on 30 randomly selected isolated strains to determine virulence traits, and these strains were equally allocated to the 2 dairy production systems. RESULTS All 30 selected strains displayed a high degree of resistance (50%-91.7%) to the antibiotics tested, but no significant difference was found between SIDF and FDF isolates. S. aureus strains from SIDFs had an average biofilm forming capacity of up to 36% (18.9%-53.1%), while S. aureus strains from FDFs registered an average of up to 53% (31.5%-77.8%) (p > 0.05). Internalization assays revealed a higher frequency of internalization capacity for strains isolated from FDFs (33.3%) than for those isolated from SIDFs (6.7%) (p > 0.05). fnbpA gen was detected in 46.6% of FDF strains and 33.3% of SIDF strains, and this difference was significant (p < 0.05). CONCLUSIONS Our findings show that the virulence traits of S. aureus isolates analyzed in this study, depend significantly on several factors, such as phenotype, genotype, and environmental conditions, which are significantly related to dairy production system type and daily management practices.
Collapse
Affiliation(s)
- Jaquelina J Guzmán-Rodríguez
- Life Science Division, Postgraduate Program in Bioscience, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
| | - Ma Fabiola León-Galván
- Life Science Division, Postgraduate Program in Bioscience, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
- Life Science Division, Department of Food, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
| | - José E Barboza-Corona
- Life Science Division, Postgraduate Program in Bioscience, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
- Life Science Division, Department of Food, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
| | - Mauricio Valencia-Posadas
- Life Science Division, Postgraduate Program in Bioscience, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
- Life Science Division, Department of Veterinary Medicine and Zootechnics, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
| | - Pedro D Loeza-Lara
- Department of Food Genomics, University of La Cienega of the State of Michoacan de Ocampo, 59103 Sahuayo, Michoacan, Mexico
| | - Mónica Sánchez-Ceja
- Department of Food Genomics, University of La Cienega of the State of Michoacan de Ocampo, 59103 Sahuayo, Michoacan, Mexico
| | - Alejandra Ochoa-Zarzosa
- Multidisciplinary Center for Biotechnology Studies, Faculty of Veterinary Medicine and Zootechnics, Universidad Michoacana de San Nicolas de Hidalgo, 58893 Morelia, Michoacán, Mexico
| | - Joel E López-Meza
- Multidisciplinary Center for Biotechnology Studies, Faculty of Veterinary Medicine and Zootechnics, Universidad Michoacana de San Nicolas de Hidalgo, 58893 Morelia, Michoacán, Mexico
| | - Abner J Gutiérrez-Chávez
- Life Science Division, Postgraduate Program in Bioscience, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
- Life Science Division, Department of Veterinary Medicine and Zootechnics, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
18
|
Liu K, Ding T, Fang L, Cui L, Li J, Meng X, Zhu G, Qian C, Wang H, Li J. Organic Selenium Ameliorates Staphylococcus aureus-Induced Mastitis in Rats by Inhibiting the Activation of NF-κB and MAPK Signaling Pathways. Front Vet Sci 2020; 7:443. [PMID: 32851026 PMCID: PMC7406644 DOI: 10.3389/fvets.2020.00443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Mastitis is an economically important disease in dairy cows, which is often caused by Staphylococcus aureus (S. aureus). Selenium is an indispensable element for physiological function and contributes to reduce injury of the mammary glands in mastitis. However, adequate sources of selenium have always been an important consideration for livestock. Therefore, the study aimed to explore the protective effect and mechanism of Selenohomolanthionine (SeHLan) on mastitis induced by S. aureus. The S. aureus-induced rat model was established and three doses (0.2, 2, 20 μg/kg body weight/day) of dietary OS were supplemented. The bacterial load, histopathology, and myeloperoxidase (MPO) of the mammary glands were performed and determined. Cytokines, including interleukin (IL)-1β, TNF-α, and IL-6, were detected using qRT-PCR. The key proteins of NF-κB and MAPK signaling pathways were analyzed by Western blot. The results revealed that OS supplementation could reduce the recruitment of neutrophils and macrophages in mammary tissues, but did not decrease S. aureus load in the tissues. The overexpression levels of IL-1β, TNF-α, and IL-6 induced by S. aureus were inhibited after OS treatment. Furthermore, the increased phosphorylation of NF-κB and MAPKs proteins were also suppressed. The results suggest that dietary supplementation with adequate OS during pregnancy contributes to protect the mammary glands from injury caused by S. aureus and alleviate the inflammatory response.
Collapse
Affiliation(s)
- Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Li Fang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chen Qian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
19
|
Arend N, Pittner A, Ramoji A, Mondol AS, Dahms M, Rüger J, Kurzai O, Schie IW, Bauer M, Popp J, Neugebauer U. Detection and Differentiation of Bacterial and Fungal Infection of Neutrophils from Peripheral Blood Using Raman Spectroscopy. Anal Chem 2020; 92:10560-10568. [PMID: 32613830 DOI: 10.1021/acs.analchem.0c01384] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophils are important cells of the innate immune system and the major leukocyte subpopulation in blood. They are responsible for recognizing and neutralizing invading pathogens, such as bacteria or fungi. For this, neutrophils are well equipped with pathogen recognizing receptors, cytokines, effector molecules, and granules filled with reactive oxygen species (ROS)-producing enzymes. Depending on the pathogen type, different reactions are triggered, which result in specific activation states of the neutrophils. Here, we aim to establish a label-free method to indirectly detect infections and to identify the cause of infection by spectroscopic characterization of the neutrophils. For this, isolated neutrophils from human peripheral blood were stimulated in an in vitro infection model with heat-inactivated Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacterial pathogens as well as with heat-inactivated and viable fungi (Candida albicans). Label-free and nondestructive Raman spectroscopy was used to characterize neutrophils on a single cell level. Phagocytized fungi could be visualized in a few high-resolution false color images of individual neutrophils using label-free Raman spectroscopic imaging. Using a high-throughput screening Raman spectroscope (HTS-RS), Raman spectra of more than 2000 individual neutrophils from three different donors were collected in each treatment group, yielding a data set of almost 20 000 neutrophil spectra. Random forest classification models were trained to differentiate infected and noninfected cells with high accuracy (90%). Among the neutrophils challenged with pathogens, even the cause of infection, bacterial or fungal, was predicted correctly with 92% accuracy. Therefore, Raman spectroscopy enables reliable neutrophil phenotyping and infection diagnosis in a label-free manner. In contrast to the microbiological diagnostic standard, where the pathogen is isolated in time-consuming cultivation, this Raman-based method could potentially be blood-culture independent, thus saving precious time in bloodstream infection diagnostics.
Collapse
Affiliation(s)
- Natalie Arend
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Angelina Pittner
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.,Institute for Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
| | - Abdullah S Mondol
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Marcel Dahms
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.,InfectoGnostics Research Campus Jena, Reg. Assoc., Philosophenweg 7, 07743 Jena, Germany
| | - Jan Rüger
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Oliver Kurzai
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.,Centre for Innovation Competence Septomics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Albert-Einstein-Straße 10, 07745 Jena, Germany.,Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080 Würzburg, Germany
| | - Iwan W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.,InfectoGnostics Research Campus Jena, Reg. Assoc., Philosophenweg 7, 07743 Jena, Germany.,Institute for Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.,InfectoGnostics Research Campus Jena, Reg. Assoc., Philosophenweg 7, 07743 Jena, Germany.,Institute for Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
20
|
Niedziela DA, Murphy MP, Grant J, Keane OM, Leonard FC. Clinical presentation and immune characteristics in first-lactation Holstein-Friesian cows following intramammary infection with genotypically distinct Staphylococcus aureus strains. J Dairy Sci 2020; 103:8453-8466. [PMID: 32622604 DOI: 10.3168/jds.2019-17433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is an important cause of bovine mastitis, and intramammary infections caused by this pathogen are often characterized as mild, chronic, or persistent. The strains of Staph. aureus associated with mastitis belong to several distinct bovine-adapted bacterial lineages. Studies of host-pathogen interactions have demonstrated that significant differences exist between Staph. aureus strains and lineages in their ability to internalize and to elicit expression of chemokines and pro-inflammatory mediators in bovine cells in vitro. To determine the effect of bacterial strain on the response to intramammary infection in vivo, 14 disease-free, first-lactation cows were randomly allocated to 2 groups and challenged with Staph. aureus strain MOK023 (belonging to CC97) or MOK124 (belonging to CC151). Clinical signs of infection, as well as somatic cell count (SCC), bacterial load, IL-8 and IL-1β in milk, anti-Staph. aureus IgG in milk and serum, anti-Staph. aureus IgA in milk, and white blood cell populations in milk and blood were monitored for 30 d after the challenge. Cows infected with MOK023 generally developed subclinical mastitis, whereas cows infected with MOK124 generally developed clinical mastitis. Milk yield was reduced to a greater extent in response to infection with MOK124 compared with MOK023 in the first week of the study. Significantly higher SCC, IL-8, and IL-1β in milk as well as higher anti-Staph. aureus IgG and IgA in milk and anti-Staph. aureus IgG in serum were also observed in response to MOK124 compared with the response to MOK023. Higher proportions of neutrophils were observed in milk of animals infected with MOK124 than in animals infected with MOK023. Higher neutrophil concentration in blood was also observed in the MOK124 group compared with the MOK023 group. Overall, the results indicate that the outcome of mastitis mediated by Staph. aureus is strain dependent.
Collapse
Affiliation(s)
- Dagmara A Niedziela
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93; School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Mark P Murphy
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93
| | - Jim Grant
- Statistics and Applied Physics, Teagasc, Ashtown, Dublin 15, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93
| | - Finola C Leonard
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
21
|
Zaatout N, Ayachi A, Kecha M. Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. J Appl Microbiol 2020; 129:1102-1119. [PMID: 32416020 DOI: 10.1111/jam.14706] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/15/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is an important agent of contagious bovine intramammary infections in dairy cattle. Its ability to persist inside the udder is based on the presence of important mechanisms such as its ability to form biofilms, polysaccharide capsules small colony variants, and their ability to invade professional and nonprofessional cells, which will protect S. aureus from the innate and adaptive immune response of the cow, and from antibiotics that are no longer considered to be sufficient against S. aureus bovine mastitis. In this review, we present the recent research outlining S. aureus persistence properties inside the mammary gland, including its regulation mechanisms, and we highlight alternative therapeutic strategies that were tested against S. aureus isolated from bovine mastitis such as the use of probiotic bacteria, bacteriocins and bacteriophages. Overall, the persistence of S. aureus inside the mammary gland remains a pressing veterinary problem. A thorough understanding of staphylococcal persistence mechanisms will elucidate novel ways that can help in the identification of novel treatments.
Collapse
Affiliation(s)
- N Zaatout
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| | - A Ayachi
- Institute of Veterinary and Agricultural Sciences, University of Batna, Batna, Algeria
| | - M Kecha
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| |
Collapse
|
22
|
Ducey TF, Durso LM, Ibekwe AM, Dungan RS, Jackson CR, Frye JG, Castleberry BL, Rashash DMC, Rothrock MJ, Boykin D, Whitehead TR, Ramos Z, McManus M, Cook KL. A newly developed Escherichia coli isolate panel from a cross section of U.S. animal production systems reveals geographic and commodity-based differences in antibiotic resistance gene carriage. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:120991. [PMID: 31446353 DOI: 10.1016/j.jhazmat.2019.120991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
There are limited numbers of Escherichia coli isolate panels that represent United States food animal production. The majority of existing Escherichia coli isolate panels are typically designed: (i) to optimize genetic and/or phenotypic diversity; or (ii) focus on human isolates. To address this shortfall in agriculturally-related resources, we have assembled a publicly-available isolate panel (AgEc) from the four major animal production commodities in the United States, including beef, dairy, poultry, and swine, as well as isolates from agriculturally-impacted environments, and other commodity groups. Diversity analyses by phylotyping and Pulsed-field Gel Electrophoresis revealed a highly diverse composition, with the 300 isolates clustered into 71 PFGE sub-types based upon an 80% similarity cutoff. To demonstrate the panel's utility, tetracycline and sulfonamide resistance genes were assayed, which identified 131 isolates harboring genes involved in tetracycline resistance, and 41 isolates containing sulfonamide resistance genes. There was strong overlap in the two pools of isolates, 38 of the 41 isolates harboring sulfonamide resistance genes also contained tetracycline resistance genes. Analysis of antimicrobial resistance gene patterns revealed significant differences along commodity and geographical lines. This panel therefore provides the research community an E. coli isolate panel for study of issues pertinent to U.S. food animal production.
Collapse
Affiliation(s)
- Thomas F Ducey
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service, Department of Agriculture, Florence, SC, United States.
| | - Lisa M Durso
- Agroecosystem Management Research Unit, Agricultural Research Service, Department of Agriculture, Lincoln, NE, United States
| | - Abasiofiok M Ibekwe
- U.S. Salinity Laboratory, Agricultural Research Service, Department of Agriculture, Riverside, CA, United States
| | - Robert S Dungan
- Northwest Irrigation and Soils Research Laboratory, Agricultural Research Service, Department of Agriculture, Kimberly, ID, United States
| | - Charlene R Jackson
- Bacterial Epidemiology & Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, Department of Agriculture, Athens, GA, United States
| | - Jonathan G Frye
- Bacterial Epidemiology & Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, Department of Agriculture, Athens, GA, United States
| | - B Lana Castleberry
- Livestock Nutrient Management Research Unit, Agricultural Research Service, Department of Agriculture, Bushland, TX, United States
| | - Diana M C Rashash
- North Carolina Cooperative Extension Service, Jacksonville, NC, United States
| | - Michael J Rothrock
- Egg Safety & Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, Department of Agriculture, Athens, GA, United States
| | - Debbie Boykin
- Jamie Whitten Delta States Research Center, Agricultural Research Service, Department of Agriculture, Stoneville, MS, United States
| | - Terence R Whitehead
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, Department of Agriculture, Peoria, IL, United States
| | - Zeanmarj Ramos
- South Carolina Governor's School for Science and Mathematics, Hartsville, SC, United States
| | - Morgan McManus
- South Carolina Governor's School for Science and Mathematics, Hartsville, SC, United States
| | - Kimberly L Cook
- Bacterial Epidemiology & Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, Department of Agriculture, Athens, GA, United States
| |
Collapse
|
23
|
Activation of a Bovine Mammary Epithelial Cell Line by Ruminant-Associated Staphylococcus aureus is Lineage Dependent. Microorganisms 2019; 7:microorganisms7120688. [PMID: 31842337 PMCID: PMC6955728 DOI: 10.3390/microorganisms7120688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 11/25/2022] Open
Abstract
Bovine mastitis is a costly disease to the dairy industry and intramammary infections (IMI) with Staphylococcus aureus are a major cause of mastitis. Staphylococcus aureus strains responsible for mastitis in cattle predominantly belong to ruminant-associated clonal complexes (CCs). Recognition of pathogens by bovine mammary epithelial cells (bMEC) plays a key role in activation of immune responsiveness during IMI. However, it is still largely unknown to what extent the bMEC response differs according to S. aureus CC. The aim of this study was to determine whether ruminant-associated S. aureus CCs differentially activate bMEC. For this purpose, the immortalized bMEC line PS was stimulated with S. aureus mastitis isolates belonging to four different clonal complexes (CCs; CC133, CC479, CC151 and CC425) and interleukin 8 (IL-8) release was measured as indicator of activation. To validate our bMEC model, we first stimulated PS cells with genetically modified S. aureus strains lacking (protein A, wall teichoic acid (WTA) synthesis) or expressing (capsular polysaccharide (CP) type 5 or type 8) factors expected to affect S. aureus recognition by bMEC. The absence of functional WTA synthesis increased IL-8 release by bMEC in response to bacterial stimulation compared to wildtype. In addition, bMEC released more IL-8 after stimulation with S. aureus expressing CP type 5 compared to CP type 8 or a strain lacking CP expression. Among the S. aureus lineages, isolates belonging to CC133 induced a significantly stronger IL-8 release from bMEC than isolates from the other CCs, and the IL-8 response to CC479 was higher compared to CC151 and CC425. Transcription levels of IL-8, tumor necrosis factor alpha (TNFα), serum amyloid A3 (SAA3), Toll-like receptor (TLR)-2 and nuclear factor κB (NF-κB) in bMEC after bacterial stimulation tended to follow a similar pattern as IL-8 release, but there were no significant differences between the CCs. This study demonstrates a differential activation of bMEC by ruminant-associated CCs of S. aureus, which may have implications for the severity of mastitis during IMI by S. aureus belonging to these lineages.
Collapse
|