1
|
Du F, Li J, Zhong X, Zhang Z, Zhao Y. Endothelial-to-mesenchymal transition in the tumor microenvironment: Roles of transforming growth factor-β and matrix metalloproteins. Heliyon 2024; 10:e40118. [PMID: 39568849 PMCID: PMC11577214 DOI: 10.1016/j.heliyon.2024.e40118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Cancer is a leading cause of global morbidity and mortality. Tumor cells grow in a complex microenvironment, comprising immune cells, stromal cells, and vascular cells, collaborating to support tumor growth and facilitate metastasis. Transforming growth factor-beta (TGF-β) is a multipotent factor that can not only affect fibrosis promotion but also assume distinct roles in the early and late stages of the tumor. Matrix metalloproteinases (MMPs) primarily function to degrade the extracellular matrix, a pivotal cellular player in tumor progression. Moreover, endothelial-to-mesenchymal transition (EndMT), similar to epithelial-to-mesenchymal transition, is associated with cancer progression by promoting angiogenesis, disrupting the endothelial barrier, and leading to cancer-associated fibroblasts. Recent studies have underscored the pivotal roles of TGF-β and MMPs in EndMT. This review delves into the contributions of TGF-β and MMPs, as well as their regulatory mechanisms, within the tumor microenvironment. This collective understanding offers fresh insights into the potential for combined targeted therapies in the fight against cancer.
Collapse
Affiliation(s)
- Fei Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacy, Meishan TianFu New Area People's Hospital, Meishan, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Li Y, Xu H, Wang Y, Zhu Y, Xu K, Yang Z, Li Y, Guo C. Epithelium-derived exosomes promote silica nanoparticles-induced pulmonary fibroblast activation and collagen deposition via modulating fibrotic signaling pathways and their epigenetic regulations. J Nanobiotechnology 2024; 22:331. [PMID: 38867284 PMCID: PMC11170844 DOI: 10.1186/s12951-024-02609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND In the context of increasing exposure to silica nanoparticles (SiNPs) and ensuing respiratory health risks, emerging evidence has suggested that SiNPs can cause a series of pathological lung injuries, including fibrotic lesions. However, the underlying mediators in the lung fibrogenesis caused by SiNPs have not yet been elucidated. RESULTS The in vivo investigation verified that long-term inhalation exposure to SiNPs induced fibroblast activation and collagen deposition in the rat lungs. In vitro, the uptake of exosomes derived from SiNPs-stimulated lung epithelial cells (BEAS-2B) by fibroblasts (MRC-5) enhanced its proliferation, adhesion, and activation. In particular, the mechanistic investigation revealed SiNPs stimulated an increase of epithelium-secreted exosomal miR-494-3p and thereby disrupted the TGF-β/BMPR2/Smad pathway in fibroblasts via targeting bone morphogenetic protein receptor 2 (BMPR2), ultimately resulting in fibroblast activation and collagen deposition. Conversely, the inhibitor of exosomes, GW4869, can abolish the induction of upregulated miR-494-3p and fibroblast activation in MRC-5 cells by the SiNPs-treated supernatants of BEAS-2B. Besides, inhibiting miR-494-3p or overexpression of BMPR2 could ameliorate fibroblast activation by interfering with the TGF-β/BMPR2/Smad pathway. CONCLUSIONS Our data suggested pulmonary epithelium-derived exosomes serve an essential role in fibroblast activation and collagen deposition in the lungs upon SiNPs stimuli, in particular, attributing to exosomal miR-494-3p targeting BMPR2 to modulate TGF-β/BMPR2/Smad pathway. Hence, strategies targeting exosomes could be a new avenue in developing therapeutics against lung injury elicited by SiNPs.
Collapse
Affiliation(s)
- Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Ying Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yurou Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
4
|
Hussain MS, Moglad E, Afzal M, Gupta G, Hassan Almalki W, Kazmi I, Alzarea SI, Kukreti N, Gupta S, Kumar D, Chellappan DK, Singh SK, Dua K. Non-coding RNA mediated regulation of PI3K/Akt pathway in hepatocellular carcinoma: Therapeutic perspectives. Pathol Res Pract 2024; 258:155303. [PMID: 38728793 DOI: 10.1016/j.prp.2024.155303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the primary reasons for fatalities caused by cancer globally, highlighting the need for comprehensive knowledge of its molecular aetiology to develop successful treatment approaches. The PI3K/Akt system is essential in the course of HCC, rendering it an intriguing candidate for treatment. Non-coding RNAs (ncRNAs), such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are important mediators of the PI3K/Akt network in HCC. The article delves into the complex regulatory functions of ncRNAs in influencing the PI3K/Akt system in HCC. The study explores how lncRNAs, miRNAs, and circRNAs impact the expression as well as the function of the PI3K/Akt network, either supporting or preventing HCC growth. Additionally, treatment strategies focusing on ncRNAs in HCC are examined, such as antisense oligonucleotide-based methods, RNA interference, and small molecule inhibitor technologies. Emphasizing the necessity of ensuring safety and effectiveness in clinical settings, limitations, and future approaches in using ncRNAs as therapies for HCC are underlined. The present study offers useful insights into the complex regulation system of ncRNAs and the PI3K/Akt cascade in HCC, suggesting possible opportunities for developing innovative treatment approaches to address this lethal tumor.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll Booth, Indore, Madhya Pradesh 452020, India
| | - Dinesh Kumar
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
5
|
Xin X, Cheng X, Zeng F, Xu Q, Hou L. The Role of TGF-β/SMAD Signaling in Hepatocellular Carcinoma: from Mechanism to Therapy and Prognosis. Int J Biol Sci 2024; 20:1436-1451. [PMID: 38385079 PMCID: PMC10878151 DOI: 10.7150/ijbs.89568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with high incidence and mortality, accounting for approximately 90% of liver cancer. The development of HCC is a complex process involving the abnormal activation or inactivation of multiple signaling pathways. Transforming growth factor-β (TGF-β)/Small mothers against decapentaplegic (SMAD) signaling pathway regulates the development of HCC. TGF-β activates intracellular SMADs protein through membrane receptors, resulting in a series of biological cascades. Accumulating studies have demonstrated that TGF-β/SMAD signaling plays multiple regulatory functions in HCC. However, there is still controversy about the role of TGF-β/SMAD in HCC. Because it involves different pathogenic factors, disease stages, and cell microenvironment, as well as upstream and downstream relationships with other signaling pathways. This review will summary the regulatory mechanism of the TGF-β/SMAD signaling pathway in HCC, involving the regulation of different pathogenic factors, different disease stages, different cell populations, microenvironments, and the interaction with microRNAs. In addition, we also introduced small molecule inhibitors, therapeutic vaccines, and traditional Chinese medicine extracts based on targeting the TGF-β/SMAD signaling pathway, which will provide future research direction for HCC therapy targeting the TGF-β/SMAD signaling pathway.
Collapse
Affiliation(s)
- Xin Xin
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiyu Cheng
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan province, China
| | - Qing Xu
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lingling Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
6
|
Zhang J, Ye J, Zhu S, Han B, Liu B. Context-dependent role of SIRT3 in cancer. Trends Pharmacol Sci 2024; 45:173-190. [PMID: 38242748 DOI: 10.1016/j.tips.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
Sirtuin 3 (SIRT3), an NAD+-dependent deacetylase, plays a key role in the modulation of metabolic reprogramming and regulation of cell death, as well as in shaping tumor phenotypes. Owing to its critical role in determining tumor-type specificity or the direction of tumor evolution, the development of small-molecule modulators of SIRT3, including inhibitors and activators, is of significant interest. In this review, we discuss recent studies on the oncogenic or tumor-suppressive functions of SIRT3, evaluate advances in SIRT3-targeted drug discovery, and present potential avenues for the design of small-molecule modulators of SIRT3 for cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiou Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Patil N, Abdelrahim OG, Leupold JH, Allgayer H. JAK1 Is a Novel Target of Tumor- and Invasion-Suppressive microRNA 494-5p in Colorectal Cancer. Cancers (Basel) 2023; 16:24. [PMID: 38201452 PMCID: PMC10778350 DOI: 10.3390/cancers16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MiR-494-5p expression has been suggested to be associated with colorectal cancer (CRC) and its metastases in our previous studies. However, functional investigations on the molecule-mediating actions of this miR in CRC are lacking. In silico analysis in the present study revealed a putative binding sequence within the 3'UTR of JAK1. Overexpression of miR-494-5p in cultured CRC significantly reduced the luciferase activity of a reporter plasmid containing the wild-type JAK1-3'UTR, which was abolished by seed sequence mutation. Furthermore, the overexpression of miR-494-5p in CRC cell lines led to a significant reduction in JAK1 expression, proliferation, in vitro migration, and invasion. These effects were abolished by co-transfection with a specific double-stranded RNA that inhibits endogenous miR-494-5p. Moreover, IL-4-induced migration, invasion, and phosphorylation of JAK1, STAT6, and AKT proteins were reduced after an overexpression of this miR, suggesting that this miR affects one of the most essential pathways in CRC. A Kaplan-Meier plotter analysis revealed that patients with high JAK1 expression show reduced survival. Together, these data suggest that miR-494-5p physically inhibits the expression of JAK1 at the translational level as well as in migration and invasion, supporting the hypothesis of miR-494-5p as an early tumor suppressor and inhibitor of early steps of metastasis in CRC.
Collapse
Affiliation(s)
| | | | | | - Heike Allgayer
- Correspondence: ; Tel.: +49-(0)621-383-71630 or +49-(0)621-383-71635; Fax: +49-(0)621-383-71631
| |
Collapse
|
8
|
Matsuoka T, Yashiro M. The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules 2023; 13:1551. [PMID: 37892233 PMCID: PMC10605301 DOI: 10.3390/biom13101551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Transforming growth factor-β (TGF-β) has attracted attention as a tumor suppressor because of its potent growth-suppressive effect on epithelial cells. Dysregulation of the TGF-β signaling pathway is considered to be one of the key factors in carcinogenesis, and genetic alterations affecting TGF-β signaling are extraordinarily common in cancers of the gastrointestinal system, such as hereditary nonpolyposis colon cancer and pancreatic cancer. Accumulating evidence suggests that TGF-β is produced from various types of cells in the tumor microenvironment and mediates extracellular matrix deposition, tumor angiogenesis, the formation of CAFs, and suppression of the anti-tumor immune reaction. It is also being considered as a factor that promotes the malignant transformation of cancer, particularly the invasion and metastasis of cancer cells, including epithelial-mesenchymal transition. Therefore, elucidating the role of TGF-β signaling in carcinogenesis, cancer invasion, and metastasis will provide novel basic insight for diagnosis and prognosis and the development of new molecularly targeted therapies for gastrointestinal cancers. In this review, we outline an overview of the complex mechanisms and functions of TGF-β signaling. Furthermore, we discuss the therapeutic potentials of targeting the TGF-β signaling pathway for gastrointestinal cancer treatment and discuss the remaining challenges and future perspectives on targeting this pathway.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
9
|
叶 雨, 岳 林, 邹 晓, 王 晓. [Characteristics and microRNA expression profile of exosomes derived from odontogenic dental pulp stem cells]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2023; 55:689-696. [PMID: 37534653 PMCID: PMC10398757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Indexed: 08/04/2023]
Abstract
OBJECTIVE To investigate the characteristics of exosomes derived from dental pulp stem cells (DPSCs) in the direction of odontogenic differentiation, to analyze the differences in microRNA expression profile between exosomes derived from undifferentiated and odontogenic DPSCs, and to analyze their possible signal transduction pathways. METHODS (1) DPSCs were cultured in α minimum Eagle' s medium (α-MEM), and odontogenic DPSCs were cultured in odontogenic differentiation medium for 21 days, using alizarin red staining and alkaline phosphatase staining to identify the odontogenic differentiation. Exosomes from the cell supernatant were isolated respectively, named as dental pulp stem cells-exosomes (DPSCs-Exo) and dental pulp stem cells-odontogenic-exosomes (DPSCs-OD-Exo). The exosomes were identified by transmission electron microscopy, nanoparticle tracking analysis and Western blot. (2) The microRNA expression profiles of DPSCs-Exo and DPSCs-OD-Exo were investigated by microRNA microarray. To validate the result of the microRNA microarray, real-time quantitative polymerase chain reaction (real-time PCR) assay was applied on 3 most significantly differential expressed microRNA. Pathway analysis was taken to detect enriched pathways associated with the predicted target genes of microRNA. RESULTS (1) The DPSCs were isolated and cultured in vitro showed typical fibroblast-like morphology. The odontogenic differentiated DPSCs were spindle-shaped, polygonal, and uniform in size. Odontogenic differentiation group showed a large number of dark deposits in alizarin red staining and the cells were darkly stained in alkaline phosphatase staining, while the cells in normal culture medium group did not show obvious dyeing. The DPSCs-Exo and DPSCs-OD-Exo had the same morphology, both showed bilayer membrane and cup-shape. The peak sizes of DPSCs-Exo and DPSCs-OD-Exo were (114.67±9.07) nm and (134.00±8.54) nm, respectively. The difference between the two was statistically significant. DPSCs-Exo and DPSCs-OD-Exo both expressed the markers of exosomes, tumor susceptibility gene (TSG)101 and CD63. (2) microRNA microarray results showed that the expression profiles of DPSCs-Exo and DPSCs-OD-Exo were different. Nineteen increased by more than two times, and one decreased by 64%. Real-time PCR results showed that the expression levels of microRNA-1246, microRNA-1246-100-5p and microRNA-1246-494-3p in DPSCs-OD-Exo were significantly up-regulated. The difference was statistically significant. microRNA target prediction database and gene signaling pathway database were used to analyze differentially expressed microRNA, and it was predicted that differentially expressed microRNA could target axis inhibition protein 2(AXIN2) gene and Wnt/β-catenin signaling pathway. CONCLUSION DPSCs-OD-Exo and DPSCs-Exo had differences in their microRNA expression profile. Those differentially expressed microRNA may be involved in the regulation of DPSCs odontogenic differentiation.
Collapse
Affiliation(s)
- 雨阳 叶
- />北京大学口腔医学院·口腔医院牙体牙髓科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 林 岳
- />北京大学口腔医学院·口腔医院牙体牙髓科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 晓英 邹
- />北京大学口腔医学院·口腔医院牙体牙髓科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 晓燕 王
- />北京大学口腔医学院·口腔医院牙体牙髓科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
10
|
Gao X, Yang X, He F, Liu X, Liu D, Yuan X. Downregulation of microRNA‑494 inhibits cell proliferation in lung squamous cell carcinoma via the induction of PUMA‑α‑mediated apoptosis. Exp Ther Med 2023; 25:242. [PMID: 37153893 PMCID: PMC10160919 DOI: 10.3892/etm.2023.11941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/16/2023] [Indexed: 05/10/2023] Open
Abstract
Increased evidence has shown that abnormal microRNA (miRNA) plays pivotal roles in numerous types of cancer. However, their expression, function and mechanism in lung squamous cell carcinoma (LSCC) remains to be fully elucidated. The aim of the present study was to investigate the suppressive role of miR-494 in LSCC progression and elucidate its regulatory mechanism. By analyzing expression profiles of miRNAs in LSCC tissues using miRNA microarray, it was revealed that miR-494 was significantly upregulated in 22 pairs of LSCC tissues. Subsequently, reverse transcription-quantitative PCR was performed to determine the expression of miR-494 and p53-upregulated-modulator-of-apoptosis-α (PUMA-α). Western blot analysis was conducted to examine protein levels. Dual-luciferase reporter assay was used to confirm the binding between miR-494 and PUMA-α. Annexin V-fluoresceine isothiocyanate/propidium iodide staining and CCK-8 assays were employed to determine cell apoptosis and cell viability, respectively. It was also revealed that miR-494 was highly expressed in LSCC cell lines compared with that in 16HBE cells. Further experiments confirmed that knockdown of miR-494 reduced cell viability and induced LSCC apoptosis. Bioinformatics analysis predicted that miR-494 could potentially target PUMA-α; also known as Bcl-2-binding component 3, a pro-apoptotic factor, and an inverse correlation between the expression of miR-494 and PUMA-α mRNA levels in LSCC tissues was found. Furthermore, PUMA-α inhibition could reverse the promoting effect of miR-494 knockdown on apoptosis in LSCC cells. Taken together, these findings demonstrated that miR-494 functions as an oncogene by targeting PUMA-α in LSCC, and miR-494 may serve as a novel therapeutic target for treating LSCC.
Collapse
Affiliation(s)
- Xinyuan Gao
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Xiaohua Yang
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Fengzhen He
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Xue Liu
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Ding Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiaomei Yuan
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
- Correspondence to: Professor Xiaomei Yuan, Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, 88 Jiankang Road, Weihui, Xinxiang, Henan 453100, P.R. China
| |
Collapse
|
11
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
12
|
The Elevated Circ_0067835 Could Accelerate Cell Proliferation and Metastasis via miR-1236-3p/Twist2 Axis in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2825172. [PMID: 36262967 PMCID: PMC9576392 DOI: 10.1155/2022/2825172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/16/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant cancer with leading mortality worldwide. Circ_0067835 is a circRNA which plays an important role in various kinds of tumor, while the potential functions of circ_0067835 in HCC remains unclear. In this study, our results of microarray and real-time PCR (RT-PCR) showed that it was obviously elevated in human HCC tumor tissues and HCC cell lines. Inhibition of circ_0067835 restrained cell proliferation and migration in vitro. Furthermore, miR-1236-3p was decreased in tumor samples, and it was indicated to be a target of circ_0067835. Moreover, Twist2 was established to be elevated in HCC tissues, and we identified it as the direct target of miR-1236-3p. Finally, we found that knockdown of miR-1236-3p could reverse the circ_0067835 inhibition effects in HCC cells. In conclusion, our study demonstrated that circ_0067835 contributed to promoting hepatocellular carcinoma cell proliferation and metastasis through downregulating miR-1236-3p expression and then elevating Twist2 expression, which might provide a new vision for HCC patients.
Collapse
|
13
|
Huang W, Chen YY, Li ZQ, He FF, Zhang C. Recent Advances in the Emerging Therapeutic Strategies for Diabetic Kidney Diseases. Int J Mol Sci 2022; 23:ijms231810882. [PMID: 36142794 PMCID: PMC9506036 DOI: 10.3390/ijms231810882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common causes of end-stage renal disease worldwide. The treatment of DKD is strongly associated with clinical outcomes in patients with diabetes mellitus. Traditional therapeutic strategies focus on the control of major risk factors, such as blood glucose, blood lipids, and blood pressure. Renin–angiotensin–aldosterone system inhibitors have been the main therapeutic measures in the past, but the emergence of sodium–glucose cotransporter 2 inhibitors, incretin mimetics, and endothelin-1 receptor antagonists has provided more options for the management of DKD. Simultaneously, with advances in research on the pathogenesis of DKD, some new therapies targeting renal inflammation, fibrosis, and oxidative stress have gradually entered clinical application. In addition, some recently discovered therapeutic targets and signaling pathways, mainly in preclinical and early clinical trial stages, are expected to provide benefits for patients with DKD in the future. This review summarizes the traditional treatments and emerging management options for DKD, demonstrating recent advances in the therapeutic strategies for DKD.
Collapse
|
14
|
Kulkarni A, Gayathrinathan S, Nair S, Basu A, Al-Hilal TA, Roy S. Regulatory Roles of Noncoding RNAs in the Progression of Gastrointestinal Cancers and Health Disparities. Cells 2022; 11:cells11152448. [PMID: 35954293 PMCID: PMC9367924 DOI: 10.3390/cells11152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023] Open
Abstract
Annually, more than a million individuals are diagnosed with gastrointestinal (GI) cancers worldwide. With the advancements in radio- and chemotherapy and surgery, the survival rates for GI cancer patients have improved in recent years. However, the prognosis for advanced-stage GI cancers remains poor. Site-specific GI cancers share a few common risk factors; however, they are largely distinct in their etiologies and descriptive epidemiologic profiles. A large number of mutations or copy number changes associated with carcinogenesis are commonly found in noncoding DNA regions, which transcribe several noncoding RNAs (ncRNAs) that are implicated to regulate cancer initiation, metastasis, and drug resistance. In this review, we summarize the regulatory functions of ncRNAs in GI cancer development, progression, chemoresistance, and health disparities. We also highlight the potential roles of ncRNAs as therapeutic targets and biomarkers, mainly focusing on their ethnicity-/race-specific prognostic value, and discuss the prospects of genome-wide association studies (GWAS) to investigate the contribution of ncRNAs in GI tumorigenesis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Soumya Nair
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anamika Basu
- Copper Mountain College, Joshua Tree, CA 92252, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Taslim A. Al-Hilal
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Correspondence:
| |
Collapse
|
15
|
Zhao Q, Zhou J, Li F, Guo S, Zhang L, Li J, Qi Q, Shi Y. The Role and Therapeutic Perspectives of Sirtuin 3 in Cancer Metabolism Reprogramming, Metastasis, and Chemoresistance. Front Oncol 2022; 12:910963. [PMID: 35832551 PMCID: PMC9272524 DOI: 10.3389/fonc.2022.910963] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Sirtuin 3 (SIRT3), the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, acts as a metabolic modulator mainly located in mitochondria via regulating the process of the relevant biochemical processes by targeting crucial mediators. Recently, owing to its dual role in cancer, SIRT3 has attracted extensive attention. Cancer cells have different metabolic patterns from normal cells, and SIRT3-mediated metabolism reprogramming could be critical in the cancer context, which is closely related to the mechanism of metabolism reprogramming, metastasis, and chemoresistance in tumor cells. Therefore, it is crucial to elucidate the relevant pathological mechanisms and take appropriate countermeasures for the progression of clinical strategies to inhibit the development of cancer. In this review, existing available data on the regulation of cancer metabolism reprogramming, metastasis, and chemoresistance progression of SIRT3 are detailed, as well as the status quo of SIRT3 small molecule modulators is updated in the application of cancer therapy, aiming to highlight strategies directly targeting SIRT3-mediated tumor-suppressing and tumor-promoting, and provide new approaches for therapy application. Furthermore, we offer an effective evidence-based basis for the evolvement of potential personalized therapy management strategies for SIRT3 in cancer settings.
Collapse
Affiliation(s)
- QingYi Zhao
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sen Guo
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| |
Collapse
|
16
|
Hydroquinone destabilizes BIM mRNA through upregulation of p62 in chronic myeloid leukemia cells. Biochem Pharmacol 2022; 199:115017. [DOI: 10.1016/j.bcp.2022.115017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022]
|
17
|
He J, Liu MW, Wang ZY, Shi RJ. Protective effects of the notoginsenoside R1 on acute lung injury by regulating the miR-128-2-5p/Tollip signaling pathway in rats with severe acute pancreatitis. Innate Immun 2022; 28:19-36. [PMID: 35142579 PMCID: PMC8841636 DOI: 10.1177/17534259211068744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Notoginsenoside R1 (NG-R1), the extract and the main ingredient of Panax notoginseng, has anti-inflammatory effects and can be used in treating acute lung injury (ALI). In this study, we explored the pulmonary protective effect and the underlying mechanism of the NG-R1 on rats with ALI induced by severe acute pancreatitis (SAP). MiR-128-2-5p, ERK1, Tollip, HMGB1, TLR4, IκB, and NF-κB mRNA expression levels were measured using real-time qPCR, and TLR4, Tollip, HMGB1, IRAK1, MyD88, ERK1, NF-κB65, and P-IκB-α protein expression levels using Western blot. The NF-κB and the TLR4 activities were determined using immunohistochemistry, and TNF-α, IL-6, IL-1β, and ICAM-1 levels in the bronchoalveolar lavage fluid (BALF) using ELISA. Lung histopathological changes were observed in each group. NG-R1 treatment reduced miR-128-2-5p expression in the lung tissue, increased Tollip expression, inhibited HMGB1, TLR4, TRAF6, IRAK1, MyD88, NF-κB65, and p-IκB-α expression levels, suppressed NF-κB65 and the TLR4 expression levels, reduced MPO activity, reduced TNF-α, IL-1β, IL-6, and ICAM-1 levels in BALF, and alleviated SAP-induced ALI. NG-R1 can attenuate SAP-induced ALI. The mechanism of action may be due to a decreased expression of miR-128-2-5p, increased activity of the Tollip signaling pathway, decreased activity of HMGB1/TLR4 and ERK1 signaling pathways, and decreased inflammatory response to SAP-induced ALI. Tollip was the regulatory target of miR-128-2-5p.
Collapse
Affiliation(s)
- Ju He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Dali University, Dali City, China
| | - Ming-Wei Liu
- Department of Emergency, 36657The First Hospital Affiliated of Kunming Medical University, Kunming, China
| | - Zhi-Yi Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Dali University, Dali City, China
| | - Rong-Jie Shi
- Department of Gastroenterology, First Affiliated Hospital of Dali University, Dali City, China
| |
Collapse
|
18
|
The Expression and Function of Circadian Rhythm Genes in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4044606. [PMID: 34697563 PMCID: PMC8541861 DOI: 10.1155/2021/4044606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/07/2021] [Accepted: 09/25/2021] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most common and lethal form of cancer worldwide. However, its diagnosis and treatment are still dissatisfactory, due to limitations in the understanding of its pathogenic mechanism. Therefore, it is important to elucidate the molecular mechanisms and identify novel therapeutic targets for HCC. Circadian rhythm-related genes control a variety of biological processes. These genes play pivotal roles in the initiation and progression of HCC and are potential diagnostic markers and therapeutic targets. This review gives an update on the research progress of circadian rhythms, their effects on the initiation, progression, and prognosis of HCC, in a bid to provide new insights for the research and treatment of HCC.
Collapse
|
19
|
Li W, Xin X, Li X, Geng J, Sun Y. Exosomes secreted by M2 macrophages promote cancer stemness of hepatocellular carcinoma via the miR-27a-3p/TXNIP pathways. Int Immunopharmacol 2021; 101:107585. [PMID: 34601333 DOI: 10.1016/j.intimp.2021.107585] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/06/2021] [Accepted: 03/09/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Accumulating evidence has suggested that microRNAs (miRNAs) derived from M2 macrophage-derived exosomes (M2 exosomes) can regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the effect of miR-27a-3p derived from M2 exosomes on HCC has not been reported. We aim to explore the role of M2 exosomal miR-27a-3p in the cancer stemness of HCC via regulating thioredoxin-interacting protein (TXNIP). METHODS Exosomes were extracted from transfected M2 macrophages and were then co-cultured with HCC cells. Expression of miR-27a-3p and TXNIP, stemness, proliferation, drug resistance, migration, invasion and in vivo tumorigenicity of HCC cells were determined to assess the role of M2 exosomal miR-27a-3p in HCC. The binding relationship between miR-27a-3p and TXNIP was detected. RESULTS MiR-27a-3p was upregulated and TXNIP was downregulated in HCC cells, and M2 exosomes further upregulated miR-27a-3p. The upregulated M2 exosomal miR-27a-3p promoted stemness, proliferation, drug resistance, migration, invasion and in vivo tumorigenicity of HCC cells. TXNIP was confirmed as a target gene of miR-27a-3p. CONCLUSION M2 macrophages-derived exosomal miR-27a-3p promotes cancer stemness of HCC via downregulating TXNIP.
Collapse
Affiliation(s)
- Wenxiao Li
- Department of Hepatobiliary Surgery, The Municipal Hospital of Weihai, Weihai 264200, China.
| | - Xiaowen Xin
- Department of Clinical Lab, The Municipal Hospital of Weihai, Weihai 264200, China
| | - Xiujun Li
- Department of Hepatobiliary Surgery, The Municipal Hospital of Weihai, Weihai 264200, China
| | - Jianli Geng
- Department of Hepatobiliary Surgery, The Municipal Hospital of Weihai, Weihai 264200, China
| | - Yunfu Sun
- Department of Hepatobiliary Surgery, The Municipal Hospital of Weihai, Weihai 264200, China
| |
Collapse
|
20
|
Abstract
Endothelial-to-mesenchymal transition is a dynamic process in which endothelial cells suppress constituent endothelial properties and take on mesenchymal cell behaviors. To begin the process, endothelial cells loosen their cell-cell junctions, degrade the basement membrane, and migrate out into the perivascular surroundings. These initial endothelial behaviors reflect a transient modulation of cellular phenotype, that is, a phenotypic modulation, that is sometimes referred to as partial endothelial-to-mesenchymal transition. Loosening of endothelial junctions and migration are also seen in inflammatory and angiogenic settings such that endothelial cells initiating endothelial-to-mesenchymal transition have overlapping behaviors and gene expression with endothelial cells responding to inflammatory signals or sprouting to form new blood vessels. Reduced endothelial junctions increase permeability, which facilitates leukocyte trafficking, whereas endothelial migration precedes angiogenic sprouting and neovascularization; both endothelial barriers and quiescence are restored as inflammatory and angiogenic stimuli subside. Complete endothelial-to-mesenchymal transition proceeds beyond phenotypic modulation such that mesenchymal characteristics become prominent and endothelial functions diminish. In proadaptive, regenerative settings the new mesenchymal cells produce extracellular matrix and contribute to tissue integrity whereas in maladaptive, pathologic settings the new mesenchymal cells become fibrotic, overproducing matrix to cause tissue stiffness, which eventually impacts function. Here we will review what is known about how TGF (transforming growth factor) β influences this continuum from junctional loosening to cellular migration and its relevance to cardiovascular diseases.
Collapse
Affiliation(s)
- Zahra Alvandi
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA
| |
Collapse
|
21
|
Chatterjee N, Fraile-Bethencourt E, Baris A, Espinosa-Diez C, Anand S. MicroRNA-494 Regulates Endoplasmic Reticulum Stress in Endothelial Cells. Front Cell Dev Biol 2021; 9:671461. [PMID: 34322482 PMCID: PMC8311360 DOI: 10.3389/fcell.2021.671461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Defects in stress responses are important contributors in many chronic conditions including cancer, cardiovascular disease, diabetes, and obesity-driven pathologies like non-alcoholic steatohepatitis (NASH). Specifically, endoplasmic reticulum (ER) stress is linked with these pathologies and control of ER stress can ameliorate tissue damage. MicroRNAs have a critical role in regulating diverse stress responses including ER stress. Here, we show that miR-494 plays a functional role during ER stress. Pharmacological ER stress inducers (tunicamycin (TCN) and thapsigargin) and hyperglycemia robustly increase the expression of miR-494 in vitro. ATF6 impacts the primary miR-494 levels whereas all three ER stress pathways are necessary for the increase in mature miR-494. Surprisingly, miR-494 pretreatment dampens the induction and magnitude of ER stress in response to TCN in endothelial cells and increases cell viability. Conversely, inhibition of miR-494 increases ER stress de novo and amplifies the effects of ER stress inducers. Using Mass Spectrometry (TMT-MS) we identified 23 proteins that are downregulated by both TCN and miR-494 in cultured human umbilical vein endothelial cells. Among these, we found 6 transcripts which harbor a putative miR-494 binding site. We validated the anti-apoptotic gene BIRC5 (survivin) and GINS4 as targets of miR-494 during ER stress. In summary, our data indicates that ER stress driven miR-494 may act in a feedback inhibitory loop to dampen downstream ER stress signaling.
Collapse
Affiliation(s)
- Namita Chatterjee
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Eugenia Fraile-Bethencourt
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Adrian Baris
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Cristina Espinosa-Diez
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
- Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
22
|
Feng Y, Hu X, Ma K, Zhang B, Sun C. Genome-Wide Screening Identifies Prognostic Long Noncoding RNAs in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6640652. [PMID: 34095306 PMCID: PMC8163536 DOI: 10.1155/2021/6640652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis. Therefore, there is an urgent call for the investigation of novel biomarkers in HCC. In the present study, we identified 6 upregulated lncRNAs in HCC, including LINC01134, RHPN1-AS1, NRAV, CMB9-22P13.1, MKLN1-AS, and MAPKAPK5-AS1. Higher expression of these lncRNAs was correlated to a more advanced cancer stage and a poorer prognosis in HCC patients. Enrichment analysis revealed that these lncRNAs played a crucial role in HCC progression, possibly through a series of cancer-related biological processes, such as cell cycle, DNA replication, histone acetyltransferase complex, fatty acid oxidation, and lipid modification. Moreover, competing endogenous RNA (ceRNA) network analysis revealed that these lncRNAs could bind to certain miRNAs to promote HCC progression. Loss-of-function assays indicated that silencing of RHPN1-AS1 significantly suppressed HCC proliferation and migration. Though further validations are still needed, these identified lncRNAs could serve as valuable potential biomarkers for HCC prognosis.
Collapse
Affiliation(s)
- Yujie Feng
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Xiao Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Kai Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Bingyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Chuandong Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| |
Collapse
|
23
|
Chen J, Chen S, Zhang B, Liu J. SIRT3 as a potential therapeutic target for heart failure. Pharmacol Res 2021; 165:105432. [PMID: 33508434 DOI: 10.1016/j.phrs.2021.105432] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Heart failure causes significant morbidity and mortality worldwide. The underlying mechanisms and pathological changes associated with heart failure are exceptionally complex. Despite recent advances in heart failure research, treatment outcomes remain poor. The sirtuin family member sirtuin-3 (SIRT3) is involved in several key biological processes, including ATP production, catabolism, and reactive oxygen species detoxification. In addition to its role in metabolism, SIRT3 regulates cell death and survival and has been implicated in the pathogenesis of cardiovascular diseases. Emerging evidence also shows that SIRT3 can protect cardiomyocytes from hypertrophy, ischemia-reperfusion injury, cardiac fibrosis, and impaired angiogenesis. In this review article, we summarize the recent advances in SIRT3 research and discuss the role of SIRT3 in heart failure. We also discuss the potential use of SIRT3 as a therapeutic target in heart failure.
Collapse
Affiliation(s)
- Jie Chen
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430071, People's Republic of China
| | - Shiqi Chen
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430071, People's Republic of China
| | - Bingxia Zhang
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430071, People's Republic of China
| | - Junwei Liu
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
24
|
Therapeutic Approaches for Metastases from Colorectal Cancer and Pancreatic Ductal Carcinoma. Pharmaceutics 2021; 13:pharmaceutics13010103. [PMID: 33466892 PMCID: PMC7830403 DOI: 10.3390/pharmaceutics13010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the process of dissemination of a tumor, whereby cells from the primary site dislodge and find their way to other tissues where secondary tumors establish. Metastasis is the primary cause of death related to cancer. This process warrants changes in original tumoral cells and their microenvironment to establish a metastatic niche. Traditionally, cancer therapy has focused on metastasis prevention by systematic treatments or direct surgical re-sectioning. However, metastasis can still occur. More recently, new therapies direct their attention to targeting cancer stem cells. As they propose, these cells could be the orchestrators of the metastatic niche. In this review, we describe conventional and novel developments in cancer therapeutics for liver and lung metastasis. We further discuss the resistance mechanisms of targeted therapy, the advantages, and disadvantages of diverse treatment approaches, and future novel strategies to enhance cancer prognosis.
Collapse
|
25
|
Liang Q, Zhang H. MAP17 contributes to non-small cell lung cancer progression via suppressing miR-27a-3p expression and p38 signaling pathway. Cancer Biol Ther 2020; 22:19-29. [PMID: 33280497 DOI: 10.1080/15384047.2020.1836948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PROBLEM AND AIM The overexpression of MAP17 has been reported in various human carcinomas. However, its molecular mechanism in non-small cell lung cancer (NSCLC) has not been fully understood. Our study aimed to reveal the molecular mechanism of NSCLC that involved MAP17 and identify its target miRNA. METHODS RT-qPCR and immunoblot assays were conducted to measure the expression of mRNA and protein in NSCLC tissues and cell lines. Meanwhile, the A549 cells (an NSCLC cell line) were randomly assigned to the MAP17 overexpression group, the MAP17 knockdown group and negative control group to study the roles of MAP17 in cell viability, cell proliferation, migration, invasion, and apoptosis by performing Trypan blue exclusion, MTT, colony formation, transwell, wound healing and flow-cytometric apoptosis assays. The luciferase reporter assay was conducted to confirm the target relationship between MAP17 and miR-27a-3p. RESULTS The upregulation of MAP17 mRNA and protein was observed in NSCLC tissues and cell lines. In vitro, the positive roles of MAP17 on cell viability, migration, and invasion were confirmed in A549 cells. It was also found that MAP17 could inhibit cell apoptosis by suppressing the activation of the p38 pathway. This research eventually proved the target relationship between MAP17 and miR-27a-3p, and that miR-27a-3p reversed the effects of MAP17 in A549 cells by directly targeting MAP17. CONCLUSIONS MAP17 plays an oncogenic role in NSCLC by suppressing the activation of the p38 pathway. Apart from that, the miR-27a-3p can inhibit the expression of MAP17 to suppress the NSCLC progression.
Collapse
Affiliation(s)
- Qian Liang
- Department of Integrated 2, Affiliated Hospital of Jianghan University , Wuhan, Hubei, China
| | - Huan Zhang
- Department of Integrated 2, Affiliated Hospital of Jianghan University , Wuhan, Hubei, China
| |
Collapse
|
26
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
27
|
Yu Z, Du Y, Li H, Huang J, Jiang D, Fan J, Shen Y, Zhang L, Yu X, Xu N, Ke Q. miR-642 serves as a tumor suppressor in hepatocellular carcinoma by regulating SEMA4C and p38 MAPK signaling pathway. Oncol Lett 2020; 20:74. [PMID: 32863907 PMCID: PMC7436928 DOI: 10.3892/ol.2020.11935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high incidence and high risk. Study of the role and mechanism of miRNAs are a hot spot of research providing new treatment ideas in malignant tumors. The effect of miR-642a on HCC progression and the underlying molecular mechanism were investigated. Expression of miR-642a and SEMA4C was measured by western blot analysis and RT-PCR. miR-642a expression was elevated while SEMA4C expression was attenuated in HCC tissues and cells. Results of luciferase reporter and western blot analyses show that miR-642a modulated SEMA4C expression by binding to its 3'UTR. Moreover, miR-642a negatively regulated SEMA4C expression. HCC cell migration and invasion was tested by Transwell assays. The findings revealed that the number of migrated and invaded cells were reduced by miR-642a mimic and raised by miR-642a inhibitor, indicating that miR-642a showed a suppression effect on HCC cell migration and invasion. Additionally, the migration and invasion of HCC cells were inhibited by SEMA4C siRNA, and SEMA4C reversed miR-642a effect on HCC migration and invasion. Furthermore, p38 MAPK signaling pathway was proven to be inhibited by miR-642a mimic, whereas facilitated by miR-642a inhibitor and SEMA4C siRNA could overturn the promotion effect of miR-642a inhibitor. Briefly, miR-642a targeted SEMA4C to repress HCC cell migration and invasion through p38 MAPK signaling pathway providing a new strategy for treatment of HCC patients.
Collapse
Affiliation(s)
- Zaijun Yu
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| | - Yuehe Du
- Department of Emergency Office, Center for Disease Control and Prevention of Lianyungang, Lianyungang, Jiangsu 222003, P.R. China
| | - Hongying Li
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| | - Jichao Huang
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| | - Deqing Jiang
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| | - Jilong Fan
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| | - Yuelan Shen
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| | - Lingling Zhang
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| | - Xiujuan Yu
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| | - Na Xu
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| | - Qungang Ke
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| |
Collapse
|
28
|
Tian RH, Guo KM, Han GH, Bai Y. Downregulation of MicroRNA-494 inhibits the TGF-β1/Smads signaling pathway and prevents the development of hypospadias through upregulating Nedd4L. Exp Mol Pathol 2020; 115:104452. [PMID: 32413360 DOI: 10.1016/j.yexmp.2020.104452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/15/2020] [Accepted: 05/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypospadias, as a congenital disorder of the urethra, is the second most common birth abnormality of the male reproductive system. This study primarily investigates the effects of microRNA-494 (miR-494) on the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway and on the development of hypospadias by binding to neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4L). METHODS We induced a mouse model of hypospadias through di-(2-ethylhexyl) phthalate treatment. The underlying regulatory mechanisms of miR-494 in this model were analyzed upon treatment of miR-494 mimic, miR-494 inhibitor, or small interfering RNA against Nedd4L in urethral epithelial cells isolated from mice with hypospadias. We then verified the binding site between miR-494 and Nedd4L and applied a gain- and loss-of-function approach to determine the effects of miR-494 on cell proliferation, cycle distribution, and apoptosis. RESULTS Male mice with hypospadias exhibited significantly higher miR-494 expression and lower Nedd4L expression in urethral tissues than normal male mice. Nedd4L was verified as a target gene of miR-494. Treatment with miR-494 inhibitor suppressed the activation of the TGF-β1/Smads signaling pathway, whereas down-regulation of miR-494 exerted protective effects on urethral epithelial cells by impeding cell proliferation and inducing cell apoptosis. CONCLUSIONS The study indicates that downregulation of miR-494 inhibits the TGF-β1/Smads signaling pathway and prevents the development of hypospadias through upregulating Nedd4L.
Collapse
Affiliation(s)
- Run-Hui Tian
- Department of Psychology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Kai-Min Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Guang-Hong Han
- Department of Oral Geriatrics, Stomatology Hospital of Jilin University, Changchun 130021, PR China
| | - Yang Bai
- Department of Ultrasound, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
29
|
Kong B, Li M, Gao B, Han B, Zhao W, Wang F. Retracted Article: Overexpression of circ_0034642 contributes to hypoxia-induced glycolysis, cell proliferation, migration and invasion in gliomas by facilitating TAGLN2 expression via sponging miR-625-5p. RSC Adv 2020; 10:897-908. [PMID: 35494452 PMCID: PMC9048227 DOI: 10.1039/c9ra08600e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022] Open
Abstract
Glioma is an aggressive brain cancer with poor prognosis and high invasiveness. Dysregulation of circular RNAs (circRNAs) has been widely discovered in various cancers, including glioma. However, the molecular mechanism of circ_0034642 in glioma is still unclear. The expression of circ_0034642, microRNA (miR)-625-5p and transgelin-2 (TAGLN2) in glioma tumors and cells was detected by performing a quantitative real-time polymerase chain reaction (qRT-PCR). The stability of circ_0034642 was determined by carrying out RNase R treatment. Cell proliferation was evaluated by performing the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Glycolysis was analyzed by measuring the extracellular acidification rate (ECAR) using glucose detection and lactic acid detection kits. Cell migration and invasion were determined by performing the transwell assay. Protein expression levels of the proteins hexokinase 2 (HK2), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9) and TAGLN2 were analyzed using western blots. The interaction between miR-625-5p and circ_0034642 or TAGLN2 was proved using a dual-luciferase reporter system. Animal models were established by subcutaneously injecting glioma cells stably transfected with sh-NC or sh-circ_0034642. Circ_0034642 and TAGLN2 were overexpressed whereas miR-625-5p was expressed at low levels in glioma tumors and cells. Moreover, circ_0034642 and TAGLN2 were upregulated while miR-625-5p was downregulated under hypoxic conditions in a time-dependent manner. Next, elimination of circ_0034642 was shown to inhibit cell glycolysis, proliferation, migration and invasion under hypoxic conditions in gliomas. Then, we found that circ_0034642 acted as a “sponge” of miR-625-5p while TAGLN2 acted as a target of miR-625-5p. In addition, recovery of circ_0034642 attenuated the repression mediated by miR-625-5p on glioma cell glycolysis and progression under hypoxic conditions. Meanwhile, an inhibitor of miR-625-5p alleviated TAGLN2 deficiency-induced inhibition of glioma cell development under hypoxic conditions. We also discovered that circ_0034642 could interact with miR-625-5p and further alter the expression of TAGLN2. Lastly, a circ_0034642 knockdown hindered tumor growth in vivo by regulating the miR-625-5p/TAGLN2 axis. Enhanced expression of circ_0034642 was found to promote cell glycolysis, proliferation, migration and invasion under hypoxic conditions in gliomas by sponging miR-625-5p to improve TAGLN2 expression, providing prospective biomarkers for the diagnosis of glioma. Circ_0034642 was upregulated under hypoxic conditions in gliomas.![]()
Collapse
Affiliation(s)
- Bo Kong
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| | - Mingxuan Li
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| | - Bo Gao
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| | - Bin Han
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| | - Wanju Zhao
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| | - Fujun Wang
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| |
Collapse
|