1
|
Johnson ML, Lewis MM, Wang EW, Jellen LC, Du G, De Jesus S, Kong L, Pu C, Huang X. Neuropathological findings and in vivo imaging correlates of the red nucleus compared to those of the substantia nigra pars compacta in parkinsonisms. Parkinsonism Relat Disord 2024; 125:107043. [PMID: 38896976 PMCID: PMC11283947 DOI: 10.1016/j.parkreldis.2024.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION The substantia nigra pars compacta (SNc) is the key pathologic locus in neurodegenerative parkinsonian disorders. Recently, in vivo susceptibility MRI metrics were associated with postmortem glial cell density and tau burden in the SNc of parkinsonism subjects. This study investigated the red nucleus (RN), another iron-rich region adjacent to the SNc and a potential site of higher functionality in parkinsonisms. METHODS In vivo MRI and postmortem data were obtained from 34 parkinsonism subjects and 3 controls. Neuron density, glial cell density, and percentages of area occupied by α-synuclein and tau were quantified using digitized midbrain slides. R2* and quantitative susceptibility mapping (QSM) metrics in the RN and SNc were derived from multi-gradient echo images. Histopathology data were compared between the RN and SNc using paired t-tests. MRI-histology associations were analyzed using partial Pearson correlations. RESULTS The RN had greater neuron (t23 = 3.169, P = 0.004) and glial cell densities (t23 = 2.407, P = 0.025) than the SNc, whereas the SNc had greater α-synuclein (t28 = 4.614, P < 0.0001) and tau burden (t24 = 4.513, P = 0.0001). In both the RN (R2*: r = 0.47, P = 0.043; QSM: r = 0.52, P = 0.024) and SNc (R2*: r = 0.57, P = 0.01; QSM: r = 0.58, P = 0.009), MRI values were associated with glial cell density but not neuron density or α-synuclein (Ps > 0.092). QSM associated with tau burden (r = 0.49, P = 0.038) in the SNc, but not the RN. CONCLUSIONS The RN is resilient to parkinsonian-related pathological processes compared to the SNc, and susceptibility MRI captured glial cell density in both regions. These findings help to further our understanding of the underlying pathophysiological processes in parkinsonisms.
Collapse
Affiliation(s)
- Melinda L Johnson
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Translational Brain Research Center, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Mechelle M Lewis
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Translational Brain Research Center, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Ernest W Wang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Translational Brain Research Center, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Leslie C Jellen
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Translational Brain Research Center, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Guangwei Du
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Translational Brain Research Center, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Sol De Jesus
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lan Kong
- Department of Public Health Science, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Cunfeng Pu
- Department of Pathology and Laboratory Medicine, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Translational Brain Research Center, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Kinesiology, Penn State University, University Park, PA, USA.
| |
Collapse
|
2
|
Krimmel SR, Laumann TO, Chauvin RJ, Hershey T, Roland JL, Shimony JS, Willie JT, Norris SA, Marek S, Van AN, Monk J, Scheidter KM, Whiting F, Ramirez-Perez N, Metoki A, Wang A, Kay BP, Nahman-Averbuch H, Fair DA, Lynch CJ, Raichle ME, Gordon EM, Dosenbach NUF. The brainstem's red nucleus was evolutionarily upgraded to support goal-directed action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573730. [PMID: 38260662 PMCID: PMC10802246 DOI: 10.1101/2023.12.30.573730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907). Previously the function of the human red nucleus remained unclear at least partly due to methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here, we used our most advanced resting-state functional connectivity (RSFC) based precision functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity. Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot, and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus was specific to regions of the recently discovered somato-cognitive action network (SCAN; (Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control (Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019), respectively. Functional connectivity to these two networks was organized into discrete dorsal-medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total, our results indicate that far from being a 'motor' structure, the red nucleus is better understood as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence and action plans.
Collapse
Affiliation(s)
- Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Roselyne J Chauvin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara Hershey
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri, USA
| | - Jarod L Roland
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jon T Willie
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Scott A Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Julia Monk
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Forrest Whiting
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nadeshka Ramirez-Perez
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anxu Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Computation and Data Science, Washington University, St. Louis, Missouri, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hadas Nahman-Averbuch
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, USA
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
- Program in Occupational Therapy, Washington University, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Lee EY, Kim J, Prado-Rico JM, Du G, Lewis MM, Kong L, Kim BG, Hong YS, Yanosky JD, Mailman RB, Huang X. Higher hippocampal diffusivity values in welders are associated with greater R2* in the red nucleus and lower psychomotor performance. Neurotoxicology 2023; 96:53-68. [PMID: 36966945 PMCID: PMC10445214 DOI: 10.1016/j.neuro.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
INTRODUCTION Chronic excessive welding exposure may be related to higher metal accumulation and structural differences in different subcortical structures. We examined how welding affected brain structures and their associations with metal exposure and neurobehavioral consequences. METHODS Study includes 42 welders and 31 controls without a welding history. Welding-related structural differences were assessed by volume and diffusion tensor imaging (DTI) metrics in basal ganglia, red nucleus (RN), and hippocampus. Metal exposure was estimated by both exposure questionnaires and whole blood metal levels. Brain metal accumulations were estimated by R1 (for Mn) and R2* (for Fe). Neurobehavioral status was assessed by standard neuropsychological tests. RESULTS Compared to controls, welders displayed higher hippocampal mean (MD), axial (AD), and radial diffusivity (RD) (p's < 0.036), but similar DTI or volume in other ROIs (p's > 0.117). Welders had higher blood metal levels (p's < 0.004), higher caudate and RN R2* (p's < 0.014), and lower performance on processing/psychomotor speed, executive function, and visuospatial processing tasks (p's < 0.046). Higher caudate and RN R2* were associated with higher blood Fe and Pb (p's < 0.043), respectively. RN R2* was a significant predictor of all hippocampal diffusivity metrics (p's < 0.006). Higher hippocampal MD and RD values were associated with lower Trail Making Test-A scores (p's < 0.025). A mediation analysis of both groups revealed blood Pb indirectly affected hippocampal diffusivity via RN R2* (p's < 0.041). DISCUSSION Welding-related higher hippocampal diffusivity metrics may be associated with higher RN R2* and lower psychomotor speed performance. Future studies are warranted to test the role of Pb exposure in these findings.
Collapse
Affiliation(s)
- Eun-Young Lee
- Department of Health Care and Science, Dong-A University, Busan, South Korea.
| | - Juhee Kim
- Department of Health Care and Science, Dong-A University, Busan, South Korea
| | - Janina Manzieri Prado-Rico
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Guangwei Du
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mechelle M Lewis
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Lan Kong
- Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Byoung-Gwon Kim
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, South Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, South Korea
| | - Jeff D Yanosky
- Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Richard B Mailman
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Kinesiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
4
|
Steidl E, Rauch M, Hattingen E, Breuer S, Schüre JR, Grapengeter M, Shrestha M, Foerch C, Schaller-Paule MA. Qualitative and quantitative detectability of hypertrophic olivary degeneration in T2, FLAIR, PD, and DTI: A prospective MRI study. Front Neurol 2022; 13:950191. [PMID: 35989923 PMCID: PMC9381965 DOI: 10.3389/fneur.2022.950191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Hypertrophic olivary degeneration (HOD) is a pathology of the inferior olivary nucleus (ION) that occurs after injuries to the Guillain-Mollaret triangle (GMT). Lacking a diagnostic gold standard, diagnosis is usually based on T2 or FLAIR imaging and expert rating. To facilitate precise HOD diagnosis in future studies, we assessed the reliability of this rater-based approach and explored alternative, quantitative analysis. Methods Patients who had suffered strokes in the GMT and a matched control group prospectively underwent an MRI examination including T2, FLAIR, and proton density (PD). Diffusion tensor imaging (DTI) was additionally performed in the patient group. The presence of HOD was assessed on FLAIR, T2, and PD separately by 3 blinded reviewers. Employing an easily reproducible segmentation approach, relative differences in intensity, fractional anisotropy (FA), and mean diffusivity (MD) between both IONs were calculated. Results In total, 15 patients were included in this study. The interrater reliability was best for FLAIR, followed by T2 and PD (Fleiss κ = 0.87 / 0.77 / 0.65). The 3 raters diagnosed HOD in 38–46% (FLAIR), 40–47% (T2), and 53–67% (PD) of patients. False-positive findings in the control group were less frequent in T2 than in PD and FLAIR (2.2% / 8.9% / 6.7%). In 53% of patients, the intensity difference between both IONs on PD was significantly increased in comparison with the control group. These patients also showed significantly decreased FA and increased MD. Conclusion While the rater-based approach yielded the best performance on T2 imaging, a quantitative, more sensitive HOD diagnosis based on ION intensities in PD and DTI imaging seems possible.
Collapse
Affiliation(s)
- Eike Steidl
- Institute of Neuroradiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Maximilian Rauch
- Institute of Neuroradiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stella Breuer
- Institute of Neuroradiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jan Rüdiger Schüre
- Institute of Neuroradiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Marike Grapengeter
- Brain Imaging Center (BIC), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Manoj Shrestha
- Department of Neurology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Christian Foerch
- Brain Imaging Center (BIC), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Martin A. Schaller-Paule
- Brain Imaging Center (BIC), Goethe-University Frankfurt, Frankfurt am Main, Germany
- *Correspondence: Martin A. Schaller-Paule
| |
Collapse
|
5
|
Noseda R. Cerebro-Cerebellar Networks in Migraine Symptoms and Headache. FRONTIERS IN PAIN RESEARCH 2022; 3:940923. [PMID: 35910262 PMCID: PMC9326053 DOI: 10.3389/fpain.2022.940923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing—all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Rodrigo Noseda
| |
Collapse
|
6
|
Sung YW, Kiyama S, Choi US, Ogawa S. Involvement of the intrinsic functional network of the red nucleus in complex behavioral processing. Cereb Cortex Commun 2022; 3:tgac037. [PMID: 36159204 PMCID: PMC9491841 DOI: 10.1093/texcom/tgac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Previous studies suggested the possibility that the red nucleus (RN) is involved in other cognitive functions than motion per se, even though such functions have yet to be clarified. We investigated the activation of RN during several tasks and its intrinsic functional network associated with social cognition and musical practice. The tasks included finger tapping, n-back, and memory recall tasks. Region of interest for RN was identified through those tasks, anatomical information of RN, and a brain atlas. The intrinsic functional network was identified for RN by an analysis of connectivity between RN and other regions typically involved in seven known resting state functional networks with RN used as the seed region. Association of the RN network with a psychological trait of the interpersonal reactivity index and musical training years revealed subnetworks that included empathy related regions or music practice related regions. These social or highly coordinated motor activity represent the most complex functions ever known to involve the RN, adding further evidence for the multifunctional roles of RN. These discoveries may lead to a new direction of investigations to clarify probable novel roles for RN in high-level human behavior.
Collapse
Affiliation(s)
- Yul-Wan Sung
- Kansei Fukushi Research Institute, Tohoku Fukushi University , Sendai, Miyagi 9893201 , Japan
| | - Sachiko Kiyama
- Department of Linguistics, Tohoku University , Sendai, Miyagi 9800862 , Japan
| | - Uk-Su Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Seiji Ogawa
- Kansei Fukushi Research Institute, Tohoku Fukushi University , Sendai, Miyagi 9893201 , Japan
| |
Collapse
|
7
|
García-Gomar MG, Singh K, Cauzzo S, Bianciardi M. In vivo structural connectome of arousal and motor brainstem nuclei by 7 Tesla and 3 Tesla MRI. Hum Brain Mapp 2022; 43:4397-4421. [PMID: 35633277 PMCID: PMC9435015 DOI: 10.1002/hbm.25962] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Brainstem nuclei are key participants in the generation and maintenance of arousal, which is a basic function that modulates wakefulness/sleep, autonomic responses, affect, attention, and consciousness. Their mechanism is based on diffuse pathways ascending from the brainstem to the thalamus, hypothalamus, basal forebrain and cortex. Several arousal brainstem nuclei also participate in motor functions that allow humans to respond and interact with the surrounding through a multipathway motor network. Yet, little is known about the structural connectivity of arousal and motor brainstem nuclei in living humans. This is due to the lack of appropriate tools able to accurately visualize brainstem nuclei in conventional imaging. Using a recently developed in vivo probabilistic brainstem nuclei atlas and 7 Tesla diffusion‐weighted images (DWI), we built the structural connectome of 18 arousal and motor brainstem nuclei in living humans (n = 19). Furthermore, to investigate the translatability of our findings to standard clinical MRI, we acquired 3 Tesla DWI on the same subjects, and measured the association of the connectome across scanners. For both arousal and motor circuits, our results showed high connectivity within brainstem nuclei, and with expected subcortical and cortical structures based on animal studies. The association between 3 Tesla and 7 Tesla connectivity values was good, especially within the brainstem. The resulting structural connectome might be used as a baseline to better understand arousal and motor functions in health and disease in humans.
Collapse
Affiliation(s)
- María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Escuela Nacional de Estudios Superiores, Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
9
|
Milardi D, Antonio Basile G, Faskowitz J, Bertino S, Quartarone A, Anastasi G, Bramanti A, Ciurleo R, Cacciola A. Effects of diffusion signal modeling and segmentation approaches on subthalamic nucleus parcellation. Neuroimage 2022; 250:118959. [PMID: 35122971 DOI: 10.1016/j.neuroimage.2022.118959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
The subthalamic nucleus (STN) is commonly used as a surgical target for deep brain stimulation in movement disorders such as Parkinson's Disease. Tractography-derived connectivity-based parcellation (CBP) has been recently proposed as a suitable tool for non-invasive in vivo identification and pre-operative targeting of specific functional territories within the human STN. However, a well-established, accurate and reproducible protocol for STN parcellation is still lacking. The present work aims at testing the effects of different tractography-based approaches for the reconstruction of STN functional territories. We reconstructed functional territories of the STN on the high-quality dataset of 100 unrelated healthy subjects and on the test-retest dataset of the Human Connectome Project (HCP) repository. Connectivity-based parcellation was performed with a hypothesis-driven approach according to cortico-subthalamic connectivity, after dividing cortical areas into three groups: associative, limbic and sensorimotor. Four parcellation pipelines were compared, combining different signal modeling techniques (single-fiber vs multi-fiber) and different parcellation approaches (winner takes all parcellation vs fiber density thresholding). We tested these procedures on STN regions of interest obtained from three different, commonly employed, subcortical atlases. We evaluated the pipelines both in terms of between-subject similarity, assessed on the cohort of 100 unrelated healthy subjects, and of within-subject similarity, using a second cohort of 44 subjects with available test-retest data. We found that each parcellation provides converging results in terms of location of the identified parcels, but with significative variations in size and shape. All pipelines obtained very high within-subject similarity, with tensor-based approaches outperforming multi-fiber pipelines. On the other hand, higher between-subject similarity was found with multi-fiber signal modeling techniques combined with fiber density thresholding. We suggest that a fine-tuning of tractography-based parcellation may lead to higher reproducibility and aid the development of an optimized surgical targeting protocol.
Collapse
Affiliation(s)
- Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Joshua Faskowitz
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giuseppe Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno"- University of Salerno, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| |
Collapse
|
10
|
Singh K, Cauzzo S, García-Gomar MG, Stauder M, Vanello N, Passino C, Bianciardi M. Functional connectome of arousal and motor brainstem nuclei in living humans by 7 Tesla resting-state fMRI. Neuroimage 2022; 249:118865. [PMID: 35031472 DOI: 10.1016/j.neuroimage.2021.118865] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023] Open
Abstract
Brainstem nuclei play a pivotal role in many functions, such as arousal and motor control. Nevertheless, the connectivity of arousal and motor brainstem nuclei is understudied in living humans due to the limited sensitivity and spatial resolution of conventional imaging, and to the lack of atlases of these deep tiny regions of the brain. For a holistic comprehension of sleep, arousal and associated motor processes, we investigated in 20 healthy subjects the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans. To do so, we used high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in stereotactic space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Arousal brainstem nuclei displayed high interconnectivity, as well as connectivity to the thalamus, hypothalamus, basal forebrain and frontal cortex, in line with animal studies and as expected for arousal regions. Motor brainstem nuclei showed expected connectivity to the cerebellum, basal ganglia and motor cortex, as well as high interconnectivity. Comparison of 3 Tesla to 7 Tesla connectivity results indicated good translatability of our brainstem connectome approach to conventional fMRI, especially for cortical and subcortical (non-brainstem) targets and to a lesser extent for brainstem targets. The functional connectome of 18 arousal and motor brainstem nuclei with the rest of the brain might provide a better understanding of arousal, sleep and accompanying motor function in living humans in health and disease.
Collapse
Affiliation(s)
- Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew Stauder
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicola Vanello
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Sleep Medicine, Harvard University, Boston, MA.
| |
Collapse
|
11
|
Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K. Recent Advances in the Understanding of Specific Efferent Pathways Emerging From the Cerebellum. Front Neuroanat 2021; 15:759948. [PMID: 34975418 PMCID: PMC8716603 DOI: 10.3389/fnana.2021.759948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a long history in terms of research on its network structures and motor functions, yet our understanding of them has further advanced in recent years owing to technical developments, such as viral tracers, optogenetic and chemogenetic manipulation, and single cell gene expression analyses. Specifically, it is now widely accepted that the cerebellum is also involved in non-motor functions, such as cognitive and psychological functions, mainly from studies that have clarified neuronal pathways from the cerebellum to other brain regions that are relevant to these functions. The techniques to manipulate specific neuronal pathways were effectively utilized to demonstrate the involvement of the cerebellum and its pathways in specific brain functions, without altering motor activity. In particular, the cerebellar efferent pathways that have recently gained attention are not only monosynaptic connections to other brain regions, including the periaqueductal gray and ventral tegmental area, but also polysynaptic connections to other brain regions, including the non-primary motor cortex and hippocampus. Besides these efferent pathways associated with non-motor functions, recent studies using sophisticated experimental techniques further characterized the historically studied efferent pathways that are primarily associated with motor functions. Nevertheless, to our knowledge, there are no articles that comprehensively describe various cerebellar efferent pathways, although there are many interesting review articles focusing on specific functions or pathways. Here, we summarize the recent findings on neuronal networks projecting from the cerebellum to several brain regions. We also introduce various techniques that have enabled us to advance our understanding of the cerebellar efferent pathways, and further discuss possible directions for future research regarding these efferent pathways and their functions.
Collapse
Affiliation(s)
- Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soo Ji Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
12
|
Basile GA, Bertino S, Bramanti A, Ciurleo R, Anastasi GP, Milardi D, Cacciola A. Striatal topographical organization: Bridging the gap between molecules, connectivity and behavior. Eur J Histochem 2021; 65. [PMID: 34643358 PMCID: PMC8524362 DOI: 10.4081/ejh.2021.3284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
The striatum represents the major hub of the basal ganglia, receiving projections from the entire cerebral cortex and it is assumed to play a key role in a wide array of complex behavioral tasks. Despite being extensively investigated during the last decades, the topographical organization of the striatum is not well understood yet. Ongoing efforts in neuroscience are focused on analyzing striatal anatomy at different spatial scales, to understand how structure relates to function and how derangements of this organization are involved in various neuropsychiatric diseases. While being subdivided at the macroscale level into dorsal and ventral divisions, at a mesoscale level the striatum represents an anatomical continuum sharing the same cellular makeup. At the same time, it is now increasingly ascertained that different striatal compartments show subtle histochemical differences, and their neurons exhibit peculiar patterns of gene expression, supporting functional diversity across the whole basal ganglia circuitry. Such diversity is further supported by afferent connections which are heterogenous both anatomically, as they originate from distributed cortical areas and subcortical structures, and biochemically, as they involve a variety of neurotransmitters. Specifically, the cortico-striatal projection system is topographically organized delineating a functional organization which is maintained throughout the basal ganglia, subserving motor, cognitive and affective behavioral functions. While such functional heterogeneity has been firstly conceptualized as a tripartite organization, with sharply defined limbic, associative and sensorimotor territories within the striatum, it has been proposed that such territories are more likely to fade into one another, delineating a gradient-like organization along medio-lateral and ventro-dorsal axes. However, the molecular and cellular underpinnings of such organization are less understood, and their relations to behavior remains an open question, especially in humans. In this review we aimed at summarizing the available knowledge on striatal organization, especially focusing on how it links structure to function and its alterations in neuropsychiatric diseases. We examined studies conducted on different species, covering a wide array of different methodologies: from tract-tracing and immunohistochemistry to neuroimaging and transcriptomic experiments, aimed at bridging the gap between macroscopic and molecular levels.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno", University of Salerno.
| | | | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| |
Collapse
|
13
|
Bertino S, Basile GA, Bramanti A, Ciurleo R, Tisano A, Anastasi GP, Milardi D, Cacciola A. Ventral intermediate nucleus structural connectivity-derived segmentation: anatomical reliability and variability. Neuroimage 2021; 243:118519. [PMID: 34461233 DOI: 10.1016/j.neuroimage.2021.118519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/24/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
The Ventral intermediate nucleus (Vim) of thalamus is the most targeted structure for the treatment of drug-refractory tremors. Since methodological differences across existing studies are remarkable and no gold-standard pipeline is available, in this study, we tested different parcellation pipelines for tractography-derived putative Vim identification. Thalamic parcellation was performed on a high quality, multi-shell dataset and a downsampled, clinical-like dataset using two different diffusion signal modeling techniques and two different voxel classification criteria, thus implementing a total of four parcellation pipelines. The most reliable pipeline in terms of inter-subject variability has been picked and parcels putatively corresponding to motor thalamic nuclei have been selected by calculating similarity with a histology-based mask of Vim. Then, spatial relations with optimal stimulation points for the treatment of essential tremor have been quantified. Finally, effect of data quality and parcellation pipelines on a volumetric index of connectivity clusters has been assessed. We found that the pipeline characterized by higher-order signal modeling and threshold-based voxel classification criteria was the most reliable in terms of inter-subject variability regardless data quality. The maps putatively corresponding to Vim were those derived by precentral and dentate nucleus-thalamic connectivity. However, tractography-derived functional targets showed remarkable differences in shape and sizes when compared to a ground truth model based on histochemical staining on seriate sections of human brain. Thalamic voxels connected to contralateral dentate nucleus resulted to be the closest to literature-derived stimulation points for essential tremor but at the same time showing the most remarkable inter-subject variability. Finally, the volume of connectivity parcels resulted to be significantly influenced by data quality and parcellation pipelines. Hence, caution is warranted when performing thalamic connectivity-based segmentation for stereotactic targeting.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | - Adriana Tisano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| |
Collapse
|
14
|
Basile GA, Bertino S, Bramanti A, Ciurleo R, Anastasi GP, Milardi D, Cacciola A. In Vivo Super-Resolution Track-Density Imaging for Thalamic Nuclei Identification. Cereb Cortex 2021; 31:5613-5636. [PMID: 34296740 DOI: 10.1093/cercor/bhab184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/12/2022] Open
Abstract
The development of novel techniques for the in vivo, non-invasive visualization and identification of thalamic nuclei has represented a major challenge for human neuroimaging research in the last decades. Thalamic nuclei have important implications in various key aspects of brain physiology and many of them show selective alterations in various neurologic and psychiatric disorders. In addition, both surgical stimulation and ablation of specific thalamic nuclei have been proven to be useful for the treatment of different neuropsychiatric diseases. The present work aimed at describing a novel protocol for histologically guided delineation of thalamic nuclei based on short-tracks track-density imaging (stTDI), which is an advanced imaging technique exploiting high angular resolution diffusion tractography to obtain super-resolved white matter maps. We demonstrated that this approach can identify up to 13 distinct thalamic nuclei bilaterally with very high inter-subject (ICC: 0.996, 95% CI: 0.993-0.998) and inter-rater (ICC:0.981; 95% CI:0.963-0.989) reliability, and that both subject-based and group-level thalamic parcellation show a fair share of similarity to a recent standard-space histological thalamic atlas. Finally, we showed that stTDI-derived thalamic maps can be successfully employed to study structural and functional connectivity of the thalamus and may have potential implications both for basic and translational research, as well as for presurgical planning purposes.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno", University of Salerno, 84084 Baronissi, Italy
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy
| | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| |
Collapse
|
15
|
Schaller-Paule MA, Steidl E, Shrestha M, Deichmann R, Steinmetz H, Seiler A, Lapa S, Steiner T, Thonke S, Weidauer S, Konczalla J, Hattingen E, Foerch C. Multicenter Prospective Analysis of Hypertrophic Olivary Degeneration Following Infratentorial Stroke (HOD-IS): Evaluation of Disease Epidemiology, Clinical Presentation, and MR-Imaging Aspects. Front Neurol 2021; 12:675123. [PMID: 34335445 PMCID: PMC8322740 DOI: 10.3389/fneur.2021.675123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022] Open
Abstract
Introduction: Ischemic and hemorrhagic strokes in the brainstem and cerebellum with injury to the functional loop of the Guillain-Mollaret triangle (GMT) can trigger a series of events that result in secondary trans-synaptic neurodegeneration of the inferior olivary nucleus. In an unknown percentage of patients, this leads to a condition called hypertrophic olivary degeneration (HOD). Characteristic clinical symptoms of HOD progress slowly over months and consist of a rhythmic palatal tremor, vertical pendular nystagmus, and Holmes tremor of the upper limbs. Diffusion Tensor Imaging (DTI) with tractography is a promising method to identify functional pathway lesions along the cerebello-thalamo-cortical connectivity and to generate a deeper understanding of the HOD pathophysiology. The incidence of HOD development following stroke and the timeline of clinical symptoms have not yet been determined in prospective studies—a prerequisite for the surveillance of patients at risk. Methods and Analysis: Patients with ischemic and hemorrhagic strokes in the brainstem and cerebellum with a topo-anatomical relation to the GMT are recruited within certified stroke units of the Interdisciplinary Neurovascular Network of the Rhine-Main. Matching lesions are identified using a predefined MRI template. Eligible patients are prospectively followed up and present at 4 and 8 months after the index event. During study visits, a clinical neurological examination and brain MRI, including high-resolution T2-, proton-density-weighted imaging, and DTI tractography, are performed. Fiberoptic endoscopic evaluation of swallowing is optional if palatal tremor is encountered. Study Outcomes: The primary endpoint of this prospective clinical multicenter study is to determine the frequency of radiological HOD development in patients with a posterior fossa stroke affecting the GMT at 8 months after the index event. Secondary endpoints are identification of (1) the timeline and relevance of clinical symptoms, (2) lesion localizations more prone to HOD occurrence, and (3) the best MR-imaging regimen for HOD identification. Additionally, (4) DTI tractography data are used to analyze individual pathway lesions. The aim is to contribute to the epidemiological and pathophysiological understanding of HOD and hereby facilitate future research on therapeutic and prophylactic measures. Clinical Trial Registration: HOD-IS is a registered trial at https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00020549.
Collapse
Affiliation(s)
- Martin A Schaller-Paule
- Department of Neurology, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Eike Steidl
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Manoj Shrestha
- Brain Imaging Center (BIC), Goethe-University, Frankfurt, Germany
| | - Ralf Deichmann
- Brain Imaging Center (BIC), Goethe-University, Frankfurt, Germany
| | - Helmuth Steinmetz
- Department of Neurology, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Alexander Seiler
- Department of Neurology, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Sriramya Lapa
- Department of Neurology, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Thorsten Steiner
- Department of Neurology, Klinikum Frankfurt Höchst, Teaching Hospital of the Goethe-University, Frankfurt, Germany.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sven Thonke
- Department of Neurology, Klinikum Hanau, Teaching Hospital of the Goethe-University, Frankfurt, Germany
| | - Stefan Weidauer
- Department of Neurology, Sankt Katharinen Hospital, Teaching Hospital of the Goethe-University Frankfurt, Frankfurt, Germany
| | - Juergen Konczalla
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Christian Foerch
- Department of Neurology, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| |
Collapse
|
16
|
Lo Voi E, Basile GC, Bramanti A, Paladina G, Militi A, Bruschetta D, Alito A, Cavallaro F, Bertino S, Milardi D. Cerebellar Atrophy Associated with Primary Sjögren's Syndrome: Diagnosis, Therapy, and Virtual Reality Rehabilitation: A Case Report. INNOVATIONS IN CLINICAL NEUROSCIENCE 2021; 18:11-17. [PMID: 34980988 PMCID: PMC8667698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cerebellar involvement in primary Sjögren's syndrome (pSS) is an uncommon condition, with only a limited number of cases described worldwide. A 43-year-old woman affected by cerebellar atrophy associated with pSS was referred to our center to undergo a cycle of physical rehabilitation therapy. Although motor symptoms started when the patient was 23 years of age, the underlying disease remained undiagnosed for several years. Neurological examination before rehabilitation revealed ataxic gait, dysmetria, nystagmus, and hypermetric saccades; the patients complained about unsteadiness while standing or walking. To improve balance and gait abilities, a 20-session cycle of balance rehabilitation, based on a combination of conventional physical therapy and virtual reality exergames, was prescribed. The outcomes of rehabilitation were evaluated with balance tests and three-dimensional (3D) gait analysis. To our knowledge, this is the first case describing the diagnostic workout for cerebellar atrophy associated with pSS and the subsequent motor rehabilitation. This work highlights the importance of early diagnosis and rehabilitation in patients with central nervous system involvement in pSS.
Collapse
Affiliation(s)
- Emanuele Lo Voi
- Drs. Lo Voi, Bramanti, and Paladina are with the IRCCS Centro Neurolesi Bonino Pulejo in Messina, Italy
- Drs. Basile, Militi, Bertino, and Milardi are with the Department of Biomedical, Dental Sciences, and Morphological and Functional Images at the University of Messina, Messina, Italy
- Dr. Alito, Dr. Bruschetta, and Mr. Cavallaro are with U.O.C of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico Universitario G. Martino in Messina, Italy
| | - Giorgio Carmelo Basile
- Drs. Lo Voi, Bramanti, and Paladina are with the IRCCS Centro Neurolesi Bonino Pulejo in Messina, Italy
- Drs. Basile, Militi, Bertino, and Milardi are with the Department of Biomedical, Dental Sciences, and Morphological and Functional Images at the University of Messina, Messina, Italy
- Dr. Alito, Dr. Bruschetta, and Mr. Cavallaro are with U.O.C of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico Universitario G. Martino in Messina, Italy
| | - Alessia Bramanti
- Drs. Lo Voi, Bramanti, and Paladina are with the IRCCS Centro Neurolesi Bonino Pulejo in Messina, Italy
- Drs. Basile, Militi, Bertino, and Milardi are with the Department of Biomedical, Dental Sciences, and Morphological and Functional Images at the University of Messina, Messina, Italy
- Dr. Alito, Dr. Bruschetta, and Mr. Cavallaro are with U.O.C of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico Universitario G. Martino in Messina, Italy
| | - Giuseppe Paladina
- Drs. Lo Voi, Bramanti, and Paladina are with the IRCCS Centro Neurolesi Bonino Pulejo in Messina, Italy
- Drs. Basile, Militi, Bertino, and Milardi are with the Department of Biomedical, Dental Sciences, and Morphological and Functional Images at the University of Messina, Messina, Italy
- Dr. Alito, Dr. Bruschetta, and Mr. Cavallaro are with U.O.C of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico Universitario G. Martino in Messina, Italy
| | - Annalisa Militi
- Drs. Lo Voi, Bramanti, and Paladina are with the IRCCS Centro Neurolesi Bonino Pulejo in Messina, Italy
- Drs. Basile, Militi, Bertino, and Milardi are with the Department of Biomedical, Dental Sciences, and Morphological and Functional Images at the University of Messina, Messina, Italy
- Dr. Alito, Dr. Bruschetta, and Mr. Cavallaro are with U.O.C of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico Universitario G. Martino in Messina, Italy
| | - Daniele Bruschetta
- Drs. Lo Voi, Bramanti, and Paladina are with the IRCCS Centro Neurolesi Bonino Pulejo in Messina, Italy
- Drs. Basile, Militi, Bertino, and Milardi are with the Department of Biomedical, Dental Sciences, and Morphological and Functional Images at the University of Messina, Messina, Italy
- Dr. Alito, Dr. Bruschetta, and Mr. Cavallaro are with U.O.C of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico Universitario G. Martino in Messina, Italy
| | - Angelo Alito
- Drs. Lo Voi, Bramanti, and Paladina are with the IRCCS Centro Neurolesi Bonino Pulejo in Messina, Italy
- Drs. Basile, Militi, Bertino, and Milardi are with the Department of Biomedical, Dental Sciences, and Morphological and Functional Images at the University of Messina, Messina, Italy
- Dr. Alito, Dr. Bruschetta, and Mr. Cavallaro are with U.O.C of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico Universitario G. Martino in Messina, Italy
| | - Filippo Cavallaro
- Drs. Lo Voi, Bramanti, and Paladina are with the IRCCS Centro Neurolesi Bonino Pulejo in Messina, Italy
- Drs. Basile, Militi, Bertino, and Milardi are with the Department of Biomedical, Dental Sciences, and Morphological and Functional Images at the University of Messina, Messina, Italy
- Dr. Alito, Dr. Bruschetta, and Mr. Cavallaro are with U.O.C of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico Universitario G. Martino in Messina, Italy
| | - Salvatore Bertino
- Drs. Lo Voi, Bramanti, and Paladina are with the IRCCS Centro Neurolesi Bonino Pulejo in Messina, Italy
- Drs. Basile, Militi, Bertino, and Milardi are with the Department of Biomedical, Dental Sciences, and Morphological and Functional Images at the University of Messina, Messina, Italy
- Dr. Alito, Dr. Bruschetta, and Mr. Cavallaro are with U.O.C of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico Universitario G. Martino in Messina, Italy
| | - Demetrio Milardi
- Drs. Lo Voi, Bramanti, and Paladina are with the IRCCS Centro Neurolesi Bonino Pulejo in Messina, Italy
- Drs. Basile, Militi, Bertino, and Milardi are with the Department of Biomedical, Dental Sciences, and Morphological and Functional Images at the University of Messina, Messina, Italy
- Dr. Alito, Dr. Bruschetta, and Mr. Cavallaro are with U.O.C of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico Universitario G. Martino in Messina, Italy
| |
Collapse
|
17
|
Olivares-Moreno R, Rodriguez-Moreno P, Lopez-Virgen V, Macías M, Altamira-Camacho M, Rojas-Piloni G. Corticospinal vs Rubrospinal Revisited: An Evolutionary Perspective for Sensorimotor Integration. Front Neurosci 2021; 15:686481. [PMID: 34177458 PMCID: PMC8226017 DOI: 10.3389/fnins.2021.686481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The knowledge about how different subsystems participate and interplay in sensorimotor control is fundamental to understand motor deficits associated with CNS injury and movement recovery. The role of corticospinal (CS) and rubrospinal (RS) projections in motor control has been extensively studied and compared, and it is clear that both systems are important for skilled movement. However, during phylogeny, the emerging cerebral cortex took a higher hierarchical role controlling rubro-cerebellar circuits. Here, we present anatomical, neurophysiological, and behavioral evidence suggesting that both systems modulate complex segmental neuronal networks in a parallel way, which is important for sensorimotor integration at spinal cord level. We also highlight that, although specializations exist, both systems could be complementary and potentially subserve motor recovery associated with CNS damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerardo Rojas-Piloni
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
18
|
Zhang HY, Shen H, Gao M, Ma Z, Hempel BJ, Bi GH, Gardner EL, Wu J, Xi ZX. Cannabinoid CB 2 receptors are expressed in glutamate neurons in the red nucleus and functionally modulate motor behavior in mice. Neuropharmacology 2021; 189:108538. [PMID: 33789118 PMCID: PMC8122071 DOI: 10.1016/j.neuropharm.2021.108538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/14/2023]
Abstract
Cannabinoids produce a number of central nervous system effects via the CB2 receptor (CB2R), including analgesia, antianxiety, anti-reward, hypoactivity and attenuation of opioid-induced respiratory depression. However, the cellular distributions of the CB2Rs in the brain remain unclear. We have reported that CB2Rs are expressed in midbrain dopamine (DA) neurons and functionally regulate DA-mediated behavior(s). Unexpectedly, high densities of CB2-like signaling were also found in a neighboring motor structure - the red nucleus (RN) of the midbrain. In the present study, we systematically explored CB2R expression and function in the RN. Immunohistochemistry and in situ hybridization assays showed high densities of CB2R-immunostaining and mRNA signal in RN magnocellular glutamate neurons in wildtype and CB1-knockout, but not CB2-knockout, mice. Ex vivo electrophysiological recordings in midbrain slices demonstrated that CB2R activation by JWH133 dose-dependently inhibited firing rates of RN magnocellular neurons in wildtype, but not CB2-knockout, mice, while having no effect on RN GABA neurons in transgenic GAD67-GFP reporter mice, suggesting CB2-mediated effects on glutamatergic neurons. In addition, microinjection of JWH133 into the RN produced robust ipsilateral rotations in wildtype, but not CB2-knockout mice, which was blocked by pretreatment with either a CB2 or DA D1 or D2 receptor antagonist, suggesting a DA-dependent effect. Finally, fluorescent tract tracing revealed glutamatergic projections from the RN to multiple brain areas including the ventral tegmental area, thalamus, and cerebellum. These findings suggest that CB2Rs in RN glutamate neurons functionally modulate motor activity, and therefore, constitute a new target in cannabis-based medication development for motor disorders.
Collapse
Affiliation(s)
- Hai-Ying Zhang
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Hui Shen
- Synaptic Plasticity Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Ming Gao
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Zegang Ma
- Institute of Brain Science and Diseases, Qingdao University, Qingdao, Shandong, 266071, China
| | - Briana J Hempel
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Eliot L Gardner
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Jie Wu
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA; Institute of Brain Science and Diseases, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
19
|
The corticotegmental connectivity as an integral component of the descending extrapyramidal pathway: novel and direct structural evidence stemming from focused fiber dissections. Neurosurg Rev 2021; 44:3283-3296. [PMID: 33564983 DOI: 10.1007/s10143-021-01489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
This study opts to investigate the thus far ill-defined intra-hemispheric topography, morphology, and connectivity of the extrapyramidal fibers that originate from the frontoparietal cortex and project to the tegmental area and to explore structural correlations to the pyramidal pathway. To this end, twenty normal adult, formalin-fixed cerebral hemispheres were studied through the fiber micro-dissection technique. Stepwise and in-tandem medial to lateral and lateral to medial dissections were carried out in all specimens. The cortical termination of the fibers under investigation was carefully defined, and their entry zone at the tegmental area was meticulously recorded. We consistently identified the corticotegmental tract (CTT) as a distinct fiber pathway lying in the white matter of the genu and posterior limb of the internal capsule and travelling medial to the corticospinal tract (CST) and lateral to the thalamic radiations. The CTT exhibits a fan-shaped configuration and can be classified into three discrete segments: a rostral one receiving fibers from BA8 (pre-SMA, frontal eye fields, dorsal prefrontal cortex), a middle one arising from areas BA4 and BA6 (primary motor cortex and premotor cortex), and a caudal one stemming from areas BA1/2/3 (somatosensory cortex). The anatomical location, configuration, trajectory, and axonal connectivity of this tract are attuned to the descending component of the extrapyramidal system, and therefore, it is believed to be implicated in locomotion, postural control, motor inhibition, and motor modification. Our results provide further support on the emerging concept of a dynamic, parallel, and delocalized theory for complex human motor behavior.
Collapse
|
20
|
Basile GA, Bramanti A, Bertino S, Cutroneo G, Bruno A, Tisano A, Paladina G, Milardi D, Anastasi G. Structural Connectivity-Based Parcellation of the Dopaminergic Midbrain in Healthy Subjects and Schizophrenic Patients. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E686. [PMID: 33322072 PMCID: PMC7764101 DOI: 10.3390/medicina56120686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Background and objectives: Functional deregulation of dopaminergic midbrain regions is a core feature of schizophrenia pathophysiology. Anatomical research on primates suggests that these regions may be subdivided into distinct, topographically organized functional territories according to their connectivity to the striatum. The aim of the present work was the reconstruction of dopaminergic midbrain subregions in healthy subjects and schizophrenic patients and the evaluation of their structural connectivity profiles. Materials and Methods: A hypothesis-driven connectivity-based parcellation derived from diffusion tractography was applied on 24 healthy subjects and 30 schizophrenic patients to identify distinct territories within the human dopaminergic midbrain in vivo and non-invasively. Results: We identified a tripartite subdivision of dopaminergic midbrain, including limbic, prefrontal and sensorimotor territories. No significant differences in structural features or connectivity were found between subjects and patients. Conclusions: The parcellation scheme proposed herein may help to achieve detailed characterization of structural and functional anomalies of the dopaminergic midbrain in schizophrenic patients.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy; (S.B.); (G.C.); (G.A.)
| | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (G.P.)
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy; (S.B.); (G.C.); (G.A.)
| | - Giuseppina Cutroneo
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy; (S.B.); (G.C.); (G.A.)
| | - Antonio Bruno
- Psychiatry Unit, Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98124 Messina, Italy;
| | - Adriana Tisano
- Physical, Rehabilitation Medicine and Sport Medicine Unit, University Hospital G. Martino, 98124 Messina, Italy;
| | - Giuseppe Paladina
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (G.P.)
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy; (S.B.); (G.C.); (G.A.)
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (G.P.)
| | - Giuseppe Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy; (S.B.); (G.C.); (G.A.)
| |
Collapse
|
21
|
Rahmani F, Sanjari Moghaddam H, Aarabi MH. Intact microstructure of the right corticostriatal pathway predicts creative ability in healthy adults. Brain Behav 2020; 10:e01895. [PMID: 33063472 PMCID: PMC7749564 DOI: 10.1002/brb3.1895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Creativity is one of the most complex functions of the human brain. The corticostriatal pathways have been implicated in creative thinking, yet few studies have addressed the microstructural underpinnings of creative ability, especially those related to the corticostriatal dopaminergic circuitry. We hypothesized that performance in creativity tests can be predicted based on diffusion metrics of the corticostriatal pathways and basal ganglia. METHODS A total of 37 healthy adults were included. Neuropsychological tests of creativity, including the alternative uses task (AUT), test of creative imagery abilities (TCIA), remote associates test (RAT), and creative achievement questionnaire (CAQ), as well as diffusion MRI data were acquired for each participant. RESULTS We demonstrated an independent effect of TCIA originality and TCIA transformativeness subscores, and RAT score in predicting the mean diffusivity (MD), mean axial diffusivity (AD), mean fractional anisotropy (FA), and mean generalized FA of the right corticostriatal pathway. We also observed independent effects of AUT elaboration subscore in predicting the AD of the right substantia nigra, and radial diffusivity (RD) of the right globus pallidus. CONCLUSION Our results put a further spin on the "creative right brain" notion and question the presence of high-creative and low-creative networks in the brain.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | | |
Collapse
|
22
|
Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Struct Funct 2020; 226:69-91. [PMID: 33180142 PMCID: PMC7817566 DOI: 10.1007/s00429-020-02171-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
The red nucleus (RN) is a large subcortical structure located in the ventral midbrain. Although it originated as a primitive relay between the cerebellum and the spinal cord, during its phylogenesis the RN shows a progressive segregation between a magnocellular part, involved in the rubrospinal system, and a parvocellular part, involved in the olivocerebellar system. Despite exhibiting distinct evolutionary trajectories, these two regions are strictly tied together and play a prominent role in motor and non-motor behavior in different animal species. However, little is known about their function in the human brain. This lack of knowledge may have been conditioned both by the notable differences between human and non-human RN and by inherent difficulties in studying this structure directly in the human brain, leading to a general decrease of interest in the last decades. In the present review, we identify the crucial issues in the current knowledge and summarize the results of several decades of research about the RN, ranging from animal models to human diseases. Connecting the dots between morphology, experimental physiology and neuroimaging, we try to draw a comprehensive overview on RN functional anatomy and bridge the gap between basic and translational research.
Collapse
|
23
|
Bertino S, Basile GA, Anastasi G, Bramanti A, Fonti B, Cavallaro F, Bruschetta D, Milardi D, Cacciola A. Anatomical Characterization of the Human Structural Connectivity between the Pedunculopontine Nucleus and Globus Pallidus via Multi-Shell Multi-Tissue Tractography. ACTA ACUST UNITED AC 2020; 56:medicina56090452. [PMID: 32906651 PMCID: PMC7557768 DOI: 10.3390/medicina56090452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Background and objectives: The internal (GPi) and external segments (GPe) of the globus pallidus represent key nodes in the basal ganglia system. Connections to and from pallidal segments are topographically organized, delineating limbic, associative and sensorimotor territories. The topography of pallidal afferent and efferent connections with brainstem structures has been poorly investigated. In this study we sought to characterize in-vivo connections between the globus pallidus and the pedunculopontine nucleus (PPN) via diffusion tractography. Materials and Methods: We employed structural and diffusion data of 100 subjects from the Human Connectome Project repository in order to reconstruct the connections between the PPN and the globus pallidus, employing higher order tractography techniques. We assessed streamline count of the reconstructed bundles and investigated spatial relations between pallidal voxels connected to the PPN and pallidal limbic, associative and sensorimotor functional territories. Results: We successfully reconstructed pallidotegmental tracts for the GPi and GPe in all subjects. The number of streamlines connecting the PPN with the GPi was greater than the number of those joining it with the GPe. PPN maps within pallidal segments exhibited a distinctive spatial organization, being localized in the ventromedial portion of the GPi and in the ventral-anterior portion in the GPe. Regarding their spatial relations with tractography-derived maps of pallidal functional territories, the highest value of percentage overlap was noticed between PPN maps and the associative territory. Conclusions: We successfully reconstructed the anatomical course of the pallidotegmental pathways and comprehensively characterized their topographical arrangement within both pallidal segments. PPM maps were localized in the ventromedial aspect of the GPi, while they occupied the anterior pole and the most ventral portion of the GPe. A better understanding of the spatial and topographical arrangement of the pallidotegmental pathways may have pathophysiological and therapeutic implications in movement disorders.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
- Correspondence: (S.B.); (A.C.); Tel.: +39-090-2217143 (S.B. & A.C.)
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
| | - Giuseppe Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
| | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (B.F.)
| | - Bartolo Fonti
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (B.F.)
| | - Filippo Cavallaro
- Physical Rehabilitation Medicine and Sport Medicine Unit, University Hospital Policlinico “G. Martino”, 98124 Messina, Italy; (F.C.); (D.B.)
| | - Daniele Bruschetta
- Physical Rehabilitation Medicine and Sport Medicine Unit, University Hospital Policlinico “G. Martino”, 98124 Messina, Italy; (F.C.); (D.B.)
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
- Physical Rehabilitation Medicine and Sport Medicine Unit, University Hospital Policlinico “G. Martino”, 98124 Messina, Italy; (F.C.); (D.B.)
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
- Correspondence: (S.B.); (A.C.); Tel.: +39-090-2217143 (S.B. & A.C.)
| |
Collapse
|
24
|
Poma S, Modica DM, Cascio F, Mattina G, Lentini VL, Basile GC, Pitruzzella A, Galfano GM. Endoscopic Endonasal Resection of a Schwannoma of the Anterior Cranial Fossa. EAR, NOSE & THROAT JOURNAL 2020; 101:NP41-NP44. [PMID: 32790588 DOI: 10.1177/0145561320943348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Salvatore Poma
- Department of Otorhinolaryngology, 9341Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Domenico Michele Modica
- Department of Otorhinolaryngology, 9341Villa Sofia-Cervello Hospital, Palermo, Italy.,Otorhinolaryngology Section, Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, Italy
| | - Filippo Cascio
- Department of Otorhinolaryngology, 18597Papardo Hospital, Messina, Italy
| | - Gianfranco Mattina
- Department of Otorhinolaryngology, 9341Villa Sofia-Cervello Hospital, Palermo, Italy.,Otorhinolaryngology Section, Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, Italy
| | | | - Giorgio Carmelo Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, 18980University of Messina, Italy
| | - Alessandro Pitruzzella
- Department of Biomedicine Neuroscience and Advanced Diagnostics, University of Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | | |
Collapse
|
25
|
Bertino S, Basile GA, Bramanti A, Anastasi GP, Quartarone A, Milardi D, Cacciola A. Spatially coherent and topographically organized pathways of the human globus pallidus. Hum Brain Mapp 2020; 41:4641-4661. [PMID: 32757349 PMCID: PMC7555102 DOI: 10.1002/hbm.25147] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022] Open
Abstract
Internal and external segments of globus pallidus (GP) exert different functions in basal ganglia circuitry, despite their main connectional systems share the same topographical organization, delineating limbic, associative, and sensorimotor territories. The identification of internal GP sensorimotor territory has therapeutic implications in functional neurosurgery settings. This study is aimed at assessing the spatial coherence of striatopallidal, subthalamopallidal, and pallidothalamic pathways by using tractography‐derived connectivity‐based parcellation (CBP) on high quality diffusion MRI data of 100 unrelated healthy subjects from the Human Connectome Project. A two‐stage hypothesis‐driven CBP approach has been carried out on the internal and external GP. Dice coefficient between functionally homologous pairs of pallidal maps has been computed. In addition, reproducibility of parcellation according to different pathways of interest has been investigated, as well as spatial relations between connectivity maps and existing optimal stimulation points for dystonic patients. The spatial organization of connectivity clusters revealed anterior limbic, intermediate associative and posterior sensorimotor maps within both internal and external GP. Dice coefficients showed high degree of coherence between functionally similar maps derived from the different bundles of interest. Sensorimotor maps derived from the subthalamopallidal pathway resulted to be the nearest to known optimal pallidal stimulation sites for dystonic patients. Our findings suggest that functionally homologous afferent and efferent connections may share similar spatial territory within the GP and that subcortical pallidal connectional systems may have distinct implications in the treatment of movement disorders.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
26
|
Slavova N, Wiest R. Degeneration of the Ipsilateral Substantia Nigra and Red Nucleus as Well as Contralateral Dentate Nucleus after Middle Cerebral Artery Infarction. Radiology 2020; 296:E14. [DOI: 10.1148/radiol.2020201009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nedelina Slavova
- University Institute of Diagnostic, Interventional and Paediatric Radiology and
| | - Roland Wiest
- Support Centre for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Bern University Hospital, Freiburgstrasse 8, 3010 Bern, Switzerland
| |
Collapse
|
27
|
Cascio F, Cacciola A, Portaro S, Basile GA, Rizzo G, Felippu AWD, Felippu AWD, Bruschetta A, Anfuso C, Cascio F, Milardi D, Bramanti A. In Vivo Computed Tomography Direct Volume Rendering of the Anterior Ethmoidal Artery: A Descriptive Anatomical Study. Int Arch Otorhinolaryngol 2020; 24:e38-e46. [PMID: 31929832 PMCID: PMC6952292 DOI: 10.1055/s-0039-1698776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/18/2019] [Indexed: 11/24/2022] Open
Abstract
Introduction The clinical relevance of the anatomy and variations of the anterior ethmoidal artery (AEA) is outstanding, considering its role as a landmark in endoscopic surgery, its importance in the therapy of epistaxis, and the high risks related to iatrogenic injuries. Objective To provide an anatomical description of the course and relationships of the AEA, based on direct computed-tomography (CT)-based 3D volume rendering. Methods Direct volume rendering was performed on 18 subjects who underwent (CT) with contrast medium for suspected cerebral aneurism. Results The topographical location of 36 AEAs was assessed as shown: 10 dehiscent (27.8%), 20 intracanal (55.5%), 6 incomplete canals (16.7%). Distances from important topographic landmarks are reported. Conclusion This work demonstrates that direct 3D volume rendering is a valid imaging technique for a detailed description of the anterior ethmoidal artery thus representing a useful tool for head pre-operatory assessments.
Collapse
Affiliation(s)
- Filippo Cascio
- Department of Otorhinolaryngology, Papardo Piemonte Reunited Hospitals, Messina, Sicilia, Italy
| | - Alberto Cacciola
- Department of Biomedical, Odontoiatric, Morphological and Functional Imaging Sciences, Università degli Studi di Messina, Messina, Italy
| | - Simona Portaro
- Scientific Institute for Research, Hospitalization and Health Care Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Gianpaolo Antonio Basile
- Department of Biomedical, Odontoiatric, Morphological and Functional Imaging Sciences, Università degli Studi di Messina, Messina, Italy
| | - Giuseppina Rizzo
- Department of Biomedical, Odontoiatric, Morphological and Functional Imaging Sciences, Università degli Studi di Messina, Messina, Italy
| | | | | | - Antongiulio Bruschetta
- Department of Biomedical, Odontoiatric, Morphological and Functional Imaging Sciences, Università degli Studi di Messina, Messina, Italy
| | - Carmelo Anfuso
- Scientific Institute for Research, Hospitalization and Health Care Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Felice Cascio
- Department of Otorhinolaryngology, Papardo Piemonte Reunited Hospitals, Messina, Sicilia, Italy
| | - Demetrio Milardi
- Department of Biomedical, Odontoiatric, Morphological and Functional Imaging Sciences, Università degli Studi di Messina, Messina, Italy
- Scientific Institute for Research, Hospitalization and Health Care Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Alessia Bramanti
- Scientific Institute for Research, Hospitalization and Health Care Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
28
|
Guo J, Liu J, Wang C, Cao C, Fu L, Han T, Cheng J, Yu C, Qin W. Differential involvement of rubral branches in chronic capsular and pontine stroke. NEUROIMAGE-CLINICAL 2019; 24:102090. [PMID: 31835285 PMCID: PMC6911903 DOI: 10.1016/j.nicl.2019.102090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022]
Abstract
Rubral branches were differentially involved in chronic capsular and pontine stroke. The impairment severity of each rubral branch was dependent on lesion locations. The integrity of the rubral branches is related to the severity of motor impairment.
Background and Purpose Early studies have indicated that the cortico-rubro-spinal tracts play important roles in motor dysfunction after stroke. However, the differential involvement of the rubral branches in capsular and pontine stroke, and their associations with the motor impairment are still unknown. Methods The present study recruited 144 chronic stroke patients and 91 normal controls (NC) from three hospitals, including 102 cases with capsular stroke (CS) and 42 cases with pontine stroke (PS). The rubral branches, including bilateral corticorubral tracts (CRT), dentatorubral tracts (DRT), and rubrospinal tracts (RST), and the cortico-spinal tract (CST) were reconstructed based on the dataset of the Human Connectome Project. Group differences in diffusion scalars of each rubral branch were compared, and the associations between the diffusion measures of rubral branches and the Fugl-Meyer assessment (FMA) scores were tested. Results The bilateral CRT of the CS cases showed significantly lower factional anisotropy (FA) than in the NC. The bilateral DRT of the PS cases had lower FA than in the NC. Both CS and PS cases had significantly lower FA of the bilateral RST than the NC. Besides, the stroke patients demonstrated significantly lower FA in bilateral CSTs than the NC. Partial correlation analysis identified significantly positive correlations between the FA of the ipsilesional and CRT and the FMA scores in the CS group, and significantly positive correlations between the FA of the RST bilaterally and the FMA scores in the CS and PS groups. Furthermore, the association between RST integrity and FMA scores still survived after controlling for the effect of the CST. Finally, multiple regression modelling found that rubral tract FA explained 39.2% of the variance in FMA scores for CS patients, and 48.8% of the variance in FMA scores for PS patients. Conclusions The bilateral rubral branches were differentially involved in the chronic capsular and pontine stroke, and the impairment severity of each rubral branch was dependent on lesion locations. The integrity of the rubral branches is related to motor impairment in both the chronic capsular and pontine stroke.
Collapse
Affiliation(s)
- Jun Guo
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Radiology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jingchun Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chen Cao
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Lejun Fu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Radiology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|