1
|
Kohlmaier B, Skok K, Lackner C, Haselrieder G, Müller T, Sailer S, Zschocke J, Keller MA, Knisely AS, Janecke AR. Steatotic liver disease associated with 2,4-dienoyl-CoA reductase 1 deficiency. Int J Obes (Lond) 2024; 48:1818-1821. [PMID: 39277655 PMCID: PMC11584395 DOI: 10.1038/s41366-024-01634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered multifactorial with a number of predisposing gene polymorphisms known. METHODS The occurrence of MASLD in 7 and 10 year old siblings, one without classical risk factors and one with type 2 diabetes suggested a monogenic etiology and prompted next-generation sequencing. Exome sequencing was performed in the proband, both parents and both siblings. The impact of a likely disease-causing DNA variant was assessed on the transcript and protein level. RESULTS Two siblings have hepatomegaly, elevated serum transaminase activity, and steatosis and harbor a homozygous DECR1 splice-site variant, c.330+3A>T. The variant caused DECR1 transcript decay. Immunostaining demonstrated lack of DECR1 in patient liver. CONCLUSIONS These patients may represent the first individuals with DECR1 deficiency, then defining within MASLD an autosomal-recessive entity, well corresponding to the reported steatotic liver disease in Decr1 knockout mice. DECR1 may need to be considered in the genetic work-up of MASLD.
Collapse
Affiliation(s)
- Benno Kohlmaier
- Department of General Paediatrics, Medical University of Graz, 8010, Graz, Austria
| | - Kristijan Skok
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Carolin Lackner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Greta Haselrieder
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Sabrina Sailer
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - A S Knisely
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria.
| | - Andreas R Janecke
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria.
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Duan Z, Huang Z, Lei W, Zhang K, Xie W, Jin H, Wu M, Wang N, Li X, Xu A, Zhou H, Wu F, Li Y, Lin Z. Bone Morphogenetic Protein 9 Protects Against Myocardial Infarction by Improving Lymphatic Drainage Function and Triggering DECR1-Mediated Mitochondrial Bioenergetics. Circulation 2024; 150:1684-1701. [PMID: 39315433 DOI: 10.1161/circulationaha.123.065935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/01/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND BMP9 (bone morphogenetic protein 9) is a member of the TGF-β (transforming growth factor β) family of cytokines with pleiotropic effects on glucose metabolism, fibrosis, and lymphatic development. However, the role of BMP9 in myocardial infarction (MI) remains elusive. METHODS The expressional profiles of BMP9 in cardiac tissues and plasma samples of subjects with MI were determined by immunoassay or immunoblot. The role of BMP9 in MI was determined by evaluating the impact of BMP9 deficiency and replenishment with adeno-associated virus-mediated BMP9 expression or recombinant human BMP9 protein in mice. RESULTS We show that circulating BMP9 and its cardiac levels are markedly increased in humans and mice with MI and are negatively associated with cardiac function. It is important to note that BMP9 deficiency exacerbates left ventricular dysfunction, increases infarct size, and augments cardiac fibrosis in mice with MI. In contrast, replenishment of BMP9 significantly attenuates these adverse effects. We further demonstrate that BMP9 improves lymphatic drainage function, thereby leading to a decrease of cardiac edema. In addition, BMP9 increases the expression of mitochondrial DECR1 (2,4-dienoyl-CoA [coenzyme A] reductase 1), a rate-limiting enzyme involved in β-oxidation, which, in turn, promotes cardiac mitochondrial bioenergetics and mitigates MI-induced cardiomyocyte injury. Moreover, DECR1 deficiency exacerbates MI-induced cardiac damage in mice, whereas this adverse effect is restored by the treatment of adeno-associated virus-mediated DECR1. Consistently, DECR1 deletion abrogates the beneficial effect of BMP9 against MI-induced cardiomyopathy and cardiac damage in mice. CONCLUSIONS These results suggest that BMP9 protects against MI by fine-tuning the multiorgan cross-talk among the liver, lymph, and the heart.
Collapse
Affiliation(s)
- Zikun Duan
- Affiliated Dongguan Songshan Lake Central Hospital (Z.D., F.W., Z.L.), Guangdong Medical University, Dongguan, China
| | - Zhouqing Huang
- Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Z.H., W.X., H.Z., Z.L.)
| | - Wei Lei
- Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (W.L.)
| | - Ke Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| | - Wei Xie
- Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Z.H., W.X., H.Z., Z.L.)
| | - Hua Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| | - Maolan Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| | - Ningrui Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, China (A.X.)
| | - Hao Zhou
- Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Z.H., W.X., H.Z., Z.L.)
| | - Fan Wu
- Affiliated Dongguan Songshan Lake Central Hospital (Z.D., F.W., Z.L.), Guangdong Medical University, Dongguan, China
- Innovation Center of Cardiometabolic Disease (F.W., Z.L.), Guangdong Medical University, Dongguan, China
| | - Yulin Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, China (Y.L.)
| | - Zhuofeng Lin
- Affiliated Dongguan Songshan Lake Central Hospital (Z.D., F.W., Z.L.), Guangdong Medical University, Dongguan, China
- Innovation Center of Cardiometabolic Disease (F.W., Z.L.), Guangdong Medical University, Dongguan, China
- Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Z.H., W.X., H.Z., Z.L.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.)
| |
Collapse
|
3
|
Murray GC, Bais P, Hatton CL, Tadenev ALD, Hoffmann BR, Stodola TJ, Morelli KH, Pratt SL, Schroeder D, Doty R, Fiehn O, John SWM, Bult CJ, Cox GA, Burgess RW. Mouse models of NADK2 deficiency analyzed for metabolic and gene expression changes to elucidate pathophysiology. Hum Mol Genet 2022; 31:4055-4074. [PMID: 35796562 PMCID: PMC9703942 DOI: 10.1093/hmg/ddac151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
NADK2 encodes the mitochondrial form of nicotinamide adenine dinucleotide (NAD) kinase, which phosphorylates NAD. Rare recessive mutations in human NADK2 are associated with a syndromic neurological mitochondrial disease that includes metabolic changes, such as hyperlysinemia and 2,4 dienoyl CoA reductase (DECR) deficiency. However, the full pathophysiology resulting from NADK2 deficiency is not known. Here, we describe two chemically induced mouse mutations in Nadk2-S326L and S330P-which cause severe neuromuscular disease and shorten lifespan. The S330P allele was characterized in detail and shown to have marked denervation of neuromuscular junctions by 5 weeks of age and muscle atrophy by 11 weeks of age. Cerebellar Purkinje cells also showed progressive degeneration in this model. Transcriptome profiling on brain and muscle was performed at early and late disease stages. In addition, metabolomic profiling was performed on the brain, muscle, liver and spinal cord at the same ages and on plasma at 5 weeks. Combined transcriptomic and metabolomic analyses identified hyperlysinemia, DECR deficiency and generalized metabolic dysfunction in Nadk2 mutant mice, indicating relevance to the human disease. We compared findings from the Nadk model to equivalent RNA sequencing and metabolomic datasets from a mouse model of infantile neuroaxonal dystrophy, caused by recessive mutations in Pla2g6. This enabled us to identify disrupted biological processes that are common between these mouse models of neurological disease, as well as those processes that are gene-specific. These findings improve our understanding of the pathophysiology of neuromuscular diseases and describe mouse models that will be useful for future preclinical studies.
Collapse
Affiliation(s)
- G C Murray
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - P Bais
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - C L Hatton
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - A L D Tadenev
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - B R Hoffmann
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - T J Stodola
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - K H Morelli
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - S L Pratt
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - D Schroeder
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - R Doty
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - O Fiehn
- West Coast Metabolomics Center, University of California Davis, 451 Health Science Dr., Davis, CA 95618, USA
| | - S W M John
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - C J Bult
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - G A Cox
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - R W Burgess
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
4
|
Yuan Q, Zhou Q, Wang N, Zheng Y, Hu H, Hu S, Wang H. Integrative proteomics and metabolomics of Guizhou Miao Sour Soup affecting simple obese rats. Front Nutr 2022; 9:1019205. [DOI: 10.3389/fnut.2022.1019205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Miao Sour Soup (MSS) is a fermented product from the Qiandongnan region of Guizhou Province, which enrich many beneficial ingredients and is widely consumed in the whole China. Fermented food is beneficial to physical health with the potential positive regulating affection on simple obesity. In this study, we analyzed the mechanism of action of MSS to prevent simple obesity induced by high-fat diet by proteomics and metabolomics. Quantitative proteomics with tandem mass tagging labeling and liquid chromatography-mass spectrometry was used to analyze the changes of liver proteins and metabolites after the MSS intervention. MSS intervention upregulated 33 proteins and 9 metabolites and downregulated 19 proteins and 10 metabolites. Bioinformatics analysis showed that MSS could prevent simple obesity by acting on the PPAR signaling pathway, retinol metabolism, fatty acid β-oxidation, fatty acid degradation, fatty acid biosynthesis, glycine, serine and threonine metabolism, pyruvate metabolism, citrate cycle (TCA cycle) and other signaling pathways. This study provides new insights into the use of MSS to prevent simple obesity caused by high-fat diets and the search for healthy eating patterns with MSS.
Collapse
|
5
|
Shi XQ, Zhu ZH, Yue SJ, Tang YP, Chen YY, Pu ZJ, Tao HJ, Zhou GS, Yang Y, Guo MJ, Ting-Xia Dong T, Tsim KWK, Duan JA. Integration of organ metabolomics and proteomics in exploring the blood enriching mechanism of Danggui Buxue Decoction in hemorrhagic anemia rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113000. [PMID: 32663590 DOI: 10.1016/j.jep.2020.113000] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Decoction (DBD), as a classical Chinese medicine prescription, is composed of Danggui (DG) and Huangqi (HQ) at a ratio of 1:5, and it has been used clinically in treating anemia for hundreds of years. AIM OF THE STUDY The aim of this study was to explore the treatment mechanisms of DBD in anemia rats from the perspective of thymus and spleen. MATERIALS AND METHODS In this study, a successful hemorrhagic anemia model was established, and metabolomics (UPLC-QTOF-MS/MS) and proteomics (label-free approach) together with bioinformatics (Gene Ontology analysis and Reactome pathway enrichment), correlation analysis (pearson correlation matrix) and joint pathway analysis (MetaboAnalyst) were employed to discover the underlying mechanisms of DBD. RESULTS DBD had a significant blood enrichment effect on hemorrhagic anemia rats. Metabolomics and proteomics results showed that DBD regulated a total of 10 metabolites (lysophosphatidylcholines, etc.) and 41 proteins (myeloperoxidase, etc.) in thymus, and 9 metabolites (L-methionine, etc.) and 24 proteins (transferrin, etc.) in spleen. With GO analysis and Reactome pathway enrichment, DBD mainly improved anti-oxidative stress ability of thymocyte and accelerated oxidative phosphorylation to provide ATP for splenocyte. Phenotype key indexes were strongly and positively associated with most of the differential proteins and metabolites, especially nucleosides, amino acids, Fabp4, Decr1 and Ndufs3. 14 pathways in thymus and 9 pathways in spleen were obtained through joint pathway analysis, in addition, the most influential pathway in thymus was arachidonic acid metabolism, while in spleen was the biosynthesis of phenylalanine, tyrosine and tryptophan. Furthermore, DBD was validated to up-regulate Mpo, Hbb and Cp levels and down-regulate Ca2+ level in thymus, as well as up-regulate Fabp4, Ndufs3, Tf, Decr1 and ATP levels in spleen. CONCLUSION DBD might enhance thymus function mainly by reducing excessive lipid metabolism and intracellular Ca2+ level, and promote ATP production in spleen to provide energy.
Collapse
Affiliation(s)
- Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Shi-Jun Yue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Yan-Yan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Zong-Jin Pu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China.
| | - Meng-Jie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China
| | - Tina Ting-Xia Dong
- Division of Life Science and Centre for Chinese Medicine, The Hongkong University of Science and Technology, Hongkong, 999077, China
| | - Karl Wah-Keung Tsim
- Division of Life Science and Centre for Chinese Medicine, The Hongkong University of Science and Technology, Hongkong, 999077, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
6
|
Miniewska K, Godzien J, Mojsak P, Maliszewska K, Kretowski A, Ciborowski M. Mass spectrometry-based determination of lipids and small molecules composing adipose tissue with a focus on brown adipose tissue. J Pharm Biomed Anal 2020; 191:113623. [PMID: 32966938 DOI: 10.1016/j.jpba.2020.113623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Adipose tissue has been the subject of research for a very long time. Many studies perform a comprehensive analysis of different types of adipose tissue with an emphasis on brown adipose tissue. Mass spectrometry-based approaches are particularly useful in the exploration not only of the metabolic composition of adipose tissue but also its function. In the presented review, a complex and critical overview of publications devoted to the analysis of adipose tissue by means of mass spectrometry was performed. Detailed investigation of analytical aspects related to either untargeted or targeted analysis of adipose tissue was performed, leading to the formation of a collection of hints at the available analytical methods. Moreover, a profound analysis of the metabolic composition of brown adipose tissue was performed. Brown adipose tissue metabolome was characterized on structural and functional levels, providing information about its exact metabolic composition but also connecting these molecules and placing them into biochemical pathways. All our work resulted in a very broad picture of the analysis of adipose tissue, starting from the analytical aspects and finishing on the current knowledge about its composition.
Collapse
Affiliation(s)
- Katarzyna Miniewska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Patrycja Mojsak
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
7
|
Nassar ZD, Mah CY, Dehairs J, Burvenich IJG, Irani S, Centenera MM, Helm M, Shrestha RK, Moldovan M, Don AS, Holst J, Scott AM, Horvath LG, Lynn DJ, Selth LA, Hoy AJ, Swinnen JV, Butler LM. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. eLife 2020; 9:e54166. [PMID: 32686647 PMCID: PMC7386908 DOI: 10.7554/elife.54166] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/16/2020] [Indexed: 12/27/2022] Open
Abstract
Fatty acid β-oxidation (FAO) is the main bioenergetic pathway in human prostate cancer (PCa) and a promising novel therapeutic vulnerability. Here we demonstrate therapeutic efficacy of targeting FAO in clinical prostate tumors cultured ex vivo, and identify DECR1, encoding the rate-limiting enzyme for oxidation of polyunsaturated fatty acids (PUFAs), as robustly overexpressed in PCa tissues and associated with shorter relapse-free survival. DECR1 is a negatively-regulated androgen receptor (AR) target gene and, therefore, may promote PCa cell survival and resistance to AR targeting therapeutics. DECR1 knockdown selectively inhibited β-oxidation of PUFAs, inhibited proliferation and migration of PCa cells, including treatment resistant lines, and suppressed tumor cell proliferation and metastasis in mouse xenograft models. Mechanistically, targeting of DECR1 caused cellular accumulation of PUFAs, enhanced mitochondrial oxidative stress and lipid peroxidation, and induced ferroptosis. These findings implicate PUFA oxidation via DECR1 as an unexplored facet of FAO that promotes survival of PCa cells.
Collapse
Grants
- Early Career Fellowship,1138648 National Health and Medical Research Council
- Project Grants C16/15/073 and C32/17/052 KU Leuven
- Future Fellowship,FT130101004 Australian Research Council
- Beat Cancer Fellowship,PRF1117 Cancer Council South Australia
- Revolutionary Team Award,MRTA3 Movember Foundation
- Project Grant,1121057 National Health and Medical Research Council
- Project Grant,1100626 National Health and Medical Research Council
- Fellowship,1084178 National Health and Medical Research Council
- Young Investigator Award,YI 1417 Prostate Cancer Foundation of Australia
- Project Grant,1164798 Cure Cancer Australia Foundation
- Group Leader Award EMBL Australia
- Robinson Fellowship University of Sydney
- Project Grants G.0841.15 and G.0C22.19N Fonds Wetenschappelijk Onderzoek
- 1138648 National Health and Medical Research Council
- 1121057 National Health and Medical Research Council
- 1100626 National Health and Medical Research Council
- 1084178 National Health and Medical Research Council
- YI 1417 Prostate Cancer Foundation of Australia
- 1164798 Cure Cancer Australia Foundation
- FT130101004 Australian Research Council
- PRF1117 Cancer Council South Australia
- MRTA3 Movember Foundation
- Freemasons Foundation Centre for Men's Health, University of Adelaide
Collapse
Affiliation(s)
- Zeyad D Nassar
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Chui Yan Mah
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Jonas Dehairs
- KU Leuven- University of Leuven, LKI- Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and CancerLeuvenBelgium
| | - Ingrid JG Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe UniversityMelbourneAustralia
| | - Swati Irani
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Margaret M Centenera
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Madison Helm
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Raj K Shrestha
- Dame Roma Mitchell Cancer Research Laboratories, University of AdelaideAdelaideAustralia
| | - Max Moldovan
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Anthony S Don
- NHMRC Clinical Trials Centre, and Centenary Institute, The University of SydneyCamperdownAustralia
| | - Jeff Holst
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, UNSW SydneySydneyAustralia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe UniversityMelbourneAustralia
| | - Lisa G Horvath
- Garvan Institute of Medical Research, NSW 2010; University of Sydney, NSW 2006; and University of New South WalesDarlinghurstAustralia
| | - David J Lynn
- South Australian Health and Medical Research InstituteAdelaideAustralia
- College of Medicine and Public Health, Flinders UniversityBedford ParkAustralia
| | - Luke A Selth
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- Dame Roma Mitchell Cancer Research Laboratories, University of AdelaideAdelaideAustralia
- College of Medicine and Public Health, Flinders UniversityBedford ParkAustralia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of SydneyCamperdownAustralia
| | - Johannes V Swinnen
- KU Leuven- University of Leuven, LKI- Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and CancerLeuvenBelgium
| | - Lisa M Butler
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| |
Collapse
|
8
|
Reinisch I, Schreiber R, Prokesch A. Regulation of thermogenic adipocytes during fasting and cold. Mol Cell Endocrinol 2020; 512:110869. [PMID: 32439414 DOI: 10.1016/j.mce.2020.110869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
Cold exposure activates brown and brown-like adipocytes that dissipate large amounts of glucose and fatty acids via uncoupling protein 1 (UCP1) to drive non-shivering thermogenesis (NST). Evidence for the existence of these thermogenic adipocytes in adult humans gave rise to a renaissance in research on brown adipose tissue, establishing it as linchpin of energy homeostasis and metabolic health. Besides low ambient temperature, shortage or excess of food affect thermoregulation. Upon high caloric meals thermogenic adipocytes burn excess calories and maintain energy balance. In contrast, in conditions of nutrient deprivation, counter-regulatory mechanisms prevent thermogenic adipocytes from "wasting" energy substrates that need to be conserved. In this review, we discuss cell-autonomous mechanisms, metabolites, and hormones that modify NST in response to nutrient fluctuations. In particular, we focus on how thermogenic adipocytes balance thermogenesis with systemic energy homeostasis during fasting periods.
Collapse
Affiliation(s)
- Isabel Reinisch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010, Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010, Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|