1
|
Pierron M, Sueur C, Shimada M, MacIntosh AJJ, Romano V. Epidemiological Consequences of Individual Centrality on Wild Chimpanzees. Am J Primatol 2024:e23682. [PMID: 39245992 DOI: 10.1002/ajp.23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Disease outbreaks are one of the key threats to great apes and other wildlife. Because the spread of some pathogens (e.g., respiratory viruses, sexually transmitted diseases, ectoparasites) are mediated by social interactions, there is a growing interest in understanding how social networks predict the chain of pathogen transmission. In this study, we built a party network from wild chimpanzees (Pan troglodytes), and used agent-based modeling to test: (i) whether individual attributes (sex, age) predict individual centrality (i.e., whether it is more or less socially connected); (ii) whether individual centrality affects an individual's role in the chain of pathogen transmission; and, (iii) whether the basic reproduction number (R0) and infectious period modulate the influence of centrality on pathogen transmission. We show that sex and age predict individual centrality, with older males presenting many (degree centrality) and strong (strength centrality) relationships. As expected, males are more central than females within their network, and their centrality determines their probability of getting infected during simulated outbreaks. We then demonstrate that direct measures of social interaction (strength centrality), as well as eigenvector centrality, strongly predict disease dynamics in the chimpanzee community. Finally, we show that this predictive power depends on the pathogen's R0 and infectious period: individual centrality was most predictive in simulations with the most transmissible pathogens and long-lasting diseases. These findings highlight the importance of considering animal social networks when investigating disease outbreaks.
Collapse
Affiliation(s)
- Maxime Pierron
- Département de Biologie, Faculté des Sciences et Technologies, Université de Lille, Lille, France
| | - Cédric Sueur
- IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
- Anthropo-Lab, ETHICS EA7446, Lille Catholic University, Lille, France
| | - Masaki Shimada
- Department of Animal Sciences, Teikyo University of Science, Uenohara, Yamanashi, Japan
| | | | - Valéria Romano
- IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Wildlife Research Center, Kyoto University, Inuyama, Japan
- IMBE, Aix Marseille University, Avignon University, CNRS, IRD, Marseille, France
| |
Collapse
|
2
|
Dietz JM, Mickelberg J, Traylor-Holzer K, Martins AF, Souza MN, Hankerson SJ. Golden lion tamarin metapopulation dynamics five years after heavy losses to yellow fever. Am J Primatol 2024; 86:e23635. [PMID: 38738522 DOI: 10.1002/ajp.23635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/20/2024] [Indexed: 05/14/2024]
Abstract
The golden lion tamarin (GLT) is an Endangered primate endemic to Brazil's lowland Atlantic Forest. After centuries of deforestation and capture for the pet trade, only a few hundred individuals survived, all in isolated forest fragments 85 km from Rio de Janeiro city. Intensive conservation actions, including reintroduction of zoo-born tamarins, increased numbers to about 3700 in 2014. The most severe yellow fever epidemic/epizootic in Brazil in 80 years reduced two of the largest GLT populations by over 90%. Herein we report the results of a 2023 survey of GLTs designed to examine the dynamics of population recovery following yellow fever. Results indicate that populations hard hit by yellow fever are recovering due in part to immigration from adjacent forest fragments. No local extirpations were observed. About 4800 GLTs live in the survey area. This represents a 31% increase since the baseline survey completed in 2014. Two factors explain most of the increase: four large areas that had no GLTs or very low-density populations in 2014 are now at moderate density (three areas) or low density (one area), explaining 71% of overall increase since 2014. Increase in forest area within our survey area may explain up to 16% of the increase in GLT numbers since 2014. Results of computer simulations suggest that strengthening forest connectivity will facilitate metapopulation resilience in the face of mortality factors such as yellow fever.
Collapse
Affiliation(s)
- James M Dietz
- Associação Mico-Leão-Dourado, Silva Jardim, Rio de Janeiro, Brazil
- Save the Golden Lion Tamarin, Silver Spring, Maryland, USA
| | - Jennifer Mickelberg
- Save the Golden Lion Tamarin, Silver Spring, Maryland, USA
- Zoo Atlanta, Atlanta, Georgia, USA
| | | | | | - Mateus N Souza
- Associação Mico-Leão-Dourado, Silva Jardim, Rio de Janeiro, Brazil
| | - Sarah J Hankerson
- Save the Golden Lion Tamarin, Silver Spring, Maryland, USA
- Department of Psychology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Penteado AB, de Oliveira Ribeiro G, Lima Araújo EL, Kato RB, de Melo Freire CC, de Araújo JMG, da Luz Wallau G, Salvato RS, de Jesus R, Bosco GG, Franz HF, da Silva PEA, de Souza Leal E, Goulart Trossini GH, de Lima Neto DF. Binding Evolution of the Dengue Virus Envelope Against DC-SIGN: A Combined Approach of Phylogenetics and Molecular Dynamics Analyses Over 30 Years of Dengue Virus in Brazil. J Mol Biol 2024; 436:168577. [PMID: 38642883 DOI: 10.1016/j.jmb.2024.168577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
The Red Queen Hypothesis (RQH), derived from Lewis Carroll's "Through the Looking-Glass", postulates that organisms must continually adapt in response to each other to maintain relative fitness. Within the context of host-pathogen interactions, the RQH implies an evolutionary arms race, wherein viruses evolve to exploit hosts and hosts evolve to resist viral invasion. This study delves into the dynamics of the RQH in the context of virus-cell interactions, specifically focusing on virus receptors and cell receptors. We observed multiple virus-host systems and noted patterns of co-evolution. As viruses evolved receptor-binding proteins to effectively engage with cell receptors, cells countered by altering their receptor genes. This ongoing mutual adaptation cycle has influenced the molecular intricacies of receptor-ligand interactions. Our data supports the RQH as a driving force behind the diversification and specialization of both viral and host cell receptors. Understanding this co-evolutionary dance offers insights into the unpredictability of emerging viral diseases and potential therapeutic interventions. Future research is crucial to dissect the nuanced molecular changes and the broader ecological consequences of this ever-evolving battle. Here, we combine phylogenetic inferences, structural modeling, and molecular dynamics analyses to describe the epidemiological characteristics of major Brazilian DENV strains that circulated from 1990 to 2022 from a combined perspective, thus providing us with a more detailed picture on the dynamics of such interactions over time.
Collapse
MESH Headings
- Dengue Virus/genetics
- Dengue Virus/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/chemistry
- Phylogeny
- Molecular Dynamics Simulation
- Humans
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/chemistry
- Brazil
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/chemistry
- Evolution, Molecular
- Dengue/virology
- Host-Pathogen Interactions/genetics
- Protein Binding
- Viral Envelope/metabolism
- Receptors, Virus/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
- Viral Envelope Proteins/chemistry
Collapse
Affiliation(s)
- André Berndt Penteado
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Av. Prof. Lineu Prestes, 580, Cidade Universitária, São Paulo, SP 05508-000, Brazil
| | - Geovani de Oliveira Ribeiro
- General-Coordination of Public Health Laboratories, Department of Strategic Coordination and Surveillance in Health and the Environment, Ministry of Health, Brasilia, Brazil; Department of Cellular Biology, University of Brasilia (UNB), Brasilia, Distrito Federal, Brazil
| | - Emerson Luiz Lima Araújo
- General Coordination of Attention to Communicable Diseases in Primary Care of the Department of Comprehensive Care Management of the Secretariat of Primary Health Care of the Ministry of Health (CDTAP/DGCI/SAPS-MS), Brazil
| | - Rodrigo Bentes Kato
- General-Coordination of Public Health Laboratories, Department of Strategic Coordination and Surveillance in Health and the Environment, Ministry of Health, Brasilia, Brazil
| | - Caio Cesar de Melo Freire
- Department of Genetics and Evolution, Centre of Biological and Health Sciences, Federal University of Sao Carlos, PO Box 676, Washington Luis Road, km 235, São Carlos, SP 13565-905, Brazil
| | - Joselio Maria Galvão de Araújo
- Federal University of Rio Grande do Norte, Biosciences Center, Department of Microbiology and Parasitology, Campus Universitário, S/N Lagoa Nova 59078900, Natal, RN, Brazil
| | - Gabriel da Luz Wallau
- Department of Entomology and Bioinformatics Center of the Aggeu Magalhães Institute - FIOCRUZ - IAM, Brazil
| | - Richard Steiner Salvato
- Center for Scientific and Technological Development, State Center for Health Surveillance of Rio Grande do Sul, State Department of Health of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ronaldo de Jesus
- General-Coordination of Public Health Laboratories, Department of Strategic Coordination and Surveillance in Health and the Environment, Ministry of Health, Brasilia, Brazil
| | - Geraldine Goés Bosco
- University of São Paulo, Faculty of Philosophy Sciences and Letters of Ribeirão Preto. Av. Bandeirantes, 3900 Ribeirão Preto, SP, Brazil
| | - Helena Ferreira Franz
- General-Coordination of Public Health Laboratories, Department of Strategic Coordination and Surveillance in Health and the Environment, Ministry of Health, Brasilia, Brazil
| | - Pedro Eduardo Almeida da Silva
- General-Coordination of Public Health Laboratories, Department of Strategic Coordination and Surveillance in Health and the Environment, Ministry of Health, Brasilia, Brazil
| | - Elcio de Souza Leal
- Federal University of Pará, Faculty of Biotechnology, Institute of Biological Sciences, Rua Augusto Corrêa, Guamá, 04039-032 Belem, PA, Brazil
| | - Gustavo Henrique Goulart Trossini
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Av. Prof. Lineu Prestes, 580, Cidade Universitária, São Paulo, SP 05508-000, Brazil
| | - Daniel Ferreira de Lima Neto
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Av. Prof. Lineu Prestes, 580, Cidade Universitária, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
4
|
Sales I, Vieira-da-Motta O, Tavares A, Ruiz-Miranda CR, de Lencastre H, Miragaia M. Impact of human created environments in the pathogenic potential and antimicrobial resistance of staphylococci from wild neotropical primates in Brazil. Comp Immunol Microbiol Infect Dis 2024; 104:102094. [PMID: 38035481 DOI: 10.1016/j.cimid.2023.102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
The non-human primate (NHP) Leontopithecus rosalia is an endangered species native of Brazil and lives in forest fragments with different levels of contact with humans (natural, private and urban). Other NHPs - Callithrix spp. - were introduced by humans and co-exist and interact with the native species in these forests. To evaluate if living in or close to human-modified environments could constitute a risk for L. rosalia, we compared the prevalence, genetic background, antibiotic susceptibility and virulence gene content of staphylococci collected from the native and the introduced species from different forest fragments. We found that presence in human-dominated environments increased the colonization rate of L. rosalia with Mammaliicoccus sciuri (former Staphylococcus sciuri) from 18 % to 85 % (p = 0.0001) and of Callithrix spp with Staphylococcus aureus from 6 % to 100 % (p = 0.0001). According to molecular typing data obtained differences probably resulted from dissemination of these bacterial species from the invader NHP species and from humans. Changes in microbiota were paralleled by an increase in the prevalence of Panton-Valentine Leukocidin gene and in resistance to beta-lactams, macrolides and/or lincosamides as exposure to human environment increased. In particular, erythromycin resistance in S. aureus from Callithrix spp. increased from 0 % to 50 % and resistance rate to at least one antibiotic in coagulase-negative staphylococci species from L. rosalia increased from 13 % to 56 % (p = 0.0003). Our results showed that contact of native animal species with human-created environments increased the content of antimicrobial resistant and pathogenic bacteria on their commensal microbiota, which ultimately can impact on their health. IMPORTANCE: Endangered animal species are vulnerable to environmental alterations and human activities have been repeatedly identified as factors driving drastic changes in the natural landscape. It is extremely important to monitor changes in the environment surrounding protected species, because this could lead to early detection of any potential threats. In this study, we found that the contact of L. rosalia - a protected non-human primate from Brazil - with human environments is related to changes in their commensal microbiota. These included an increase in the number of pathogenic and antibiotic resistant bacteria, which have a higher potential to cause infections that are more difficult to treat. We provided evidence for the harmful impact human contact has on L. rosalia. Also, our results suggest that monitoring of commensal microbiota of protected animal species might be a useful way of sensing the risks of protected species to human exposure.
Collapse
Affiliation(s)
- Indiara Sales
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, NOVA University (ITQB-NOVA), Oeiras, Portugal; Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Centro de Ciências e Tecnologias Agropecuárias, Laboratório de Sanidade Animal-Setor Doenças Infecto-contagiosas, Rio de Janeiro, Brazil
| | - Olney Vieira-da-Motta
- Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Centro de Ciências e Tecnologias Agropecuárias, Laboratório de Sanidade Animal-Setor Doenças Infecto-contagiosas, Rio de Janeiro, Brazil
| | - Ana Tavares
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, NOVA University (ITQB-NOVA), Oeiras, Portugal
| | - Carlos Ramón Ruiz-Miranda
- Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Centro de Biociências e Biotecnologia, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, NOVA University (ITQB-NOVA), Oeiras, Portugal; Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, USA
| | - Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, NOVA University (ITQB-NOVA), Oeiras, Portugal.
| |
Collapse
|
5
|
Giovanetti M, Pinotti F, Zanluca C, Fonseca V, Nakase T, Koishi AC, Tscha M, Soares G, Dorl GG, Marques AEM, Sousa R, Adelino TER, Xavier J, de Oliveira C, Patroca S, Guimaraes NR, Fritsch H, Mares-Guia MA, Levy F, Passos PH, da Silva VL, Pereira LA, Mendonça AF, de Macêdo IL, Ribeiro de Sousa DE, Rodrigues de Toledo Costa G, Botelho de Castro M, de Souza Andrade M, de Abreu FVS, Campos FS, Iani FCDM, Pereira MA, Cavalcante KRLJ, de Freitas ARR, Campelo de Albuquerque CF, Macário EM, dos Anjos MPD, Ramos RC, Campos AAS, Pinter A, Chame M, Abdalla L, Riediger IN, Ribeiro SP, Bento AI, de Oliveira T, Freitas C, Oliveira de Moura NF, Fabri A, dos Santos Rodrigues CD, Dos Santos CC, Barreto de Almeida MA, dos Santos E, Cardoso J, Augusto DA, Krempser E, Mucci LF, Gatti RR, Cardoso SF, Fuck JAB, Lopes MGD, Belmonte IL, Mayoral Pedroso da Silva G, Soares MRF, de Castilhos MDMS, de Souza e Silva JC, Bisetto Junior A, Pouzato EG, Tanabe LS, Arita DA, Matsuo R, dos Santos Raymundo J, Silva PCL, Santana Araújo Ferreira Silva A, Samila S, Carvalho G, Stabeli R, Navegantes W, Moreira LA, Ferreira AGA, Pinheiro GG, Nunes BTD, de Almeida Medeiros DB, Cruz ACR, Venâncio da Cunha R, Van Voorhis W, Bispo de Filippis AM, Almiron M, Holmes EC, Ramos DG, Romano A, Lourenço J, Alcantara LCJ, Duarte dos Santos CN. Genomic epidemiology unveils the dynamics and spatial corridor behind the Yellow Fever virus outbreak in Southern Brazil. SCIENCE ADVANCES 2023; 9:eadg9204. [PMID: 37656782 PMCID: PMC10854437 DOI: 10.1126/sciadv.adg9204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/26/2023] [Indexed: 09/03/2023]
Abstract
Despite the considerable morbidity and mortality of yellow fever virus (YFV) infections in Brazil, our understanding of disease outbreaks is hampered by limited viral genomic data. Here, through a combination of phylogenetic and epidemiological models, we reconstructed the recent transmission history of YFV within different epidemic seasons in Brazil. A suitability index based on the highly domesticated Aedes aegypti was able to capture the seasonality of reported human infections. Spatial modeling revealed spatial hotspots with both past reporting and low vaccination coverage, which coincided with many of the largest urban centers in the Southeast. Phylodynamic analysis unraveled the circulation of three distinct lineages and provided proof of the directionality of a known spatial corridor that connects the endemic North with the extra-Amazonian basin. This study illustrates that genomics linked with eco-epidemiology can provide new insights into the landscape of YFV transmission, augmenting traditional approaches to infectious disease surveillance and control.
Collapse
Affiliation(s)
- Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Department of Science and Technology for Humans and the Environment, Università of Campus Bio-Medico di Roma, Italy
| | | | - Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Vagner Fonseca
- Organização Pan-Americana da Saúde/Organização Mundial da Saúde, Brasília, Distrito Federal, Brazil
| | - Taishi Nakase
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrea C. Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Marcel Tscha
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Guilherme Soares
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Gisiane Gruber Dorl
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | | | - Renato Sousa
- Laboratório de Patologia Veterinária, Hospital Veterinário UFPR, PR Brazil
| | - Talita Emile Ribeiro Adelino
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Joilson Xavier
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carla de Oliveira
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | | | - Natalia Rocha Guimaraes
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Hegger Fritsch
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Flavia Levy
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Pedro Henrique Passos
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde (CGARB/SVS-MS), Brasília, Distrito Federal, Brazil
| | | | - Luiz Augusto Pereira
- Laboratório Central de Saúde Pública Dr Giovanni Cysneiros, Goiânia, Goiás, Brazil
| | - Ana Flávia Mendonça
- Laboratório Central de Saúde Pública Dr Giovanni Cysneiros, Goiânia, Goiás, Brazil
| | - Isabel Luana de Macêdo
- Veterinary Pathology Laboratory, Campus Darcy Ribeiro, University of Brasília, Brasília, DF 70636- 200, Brazil
| | | | | | - Marcio Botelho de Castro
- Veterinary Pathology Laboratory, Campus Darcy Ribeiro, University of Brasília, Brasília, DF 70636- 200, Brazil
- Graduate Program in Animal Sciences, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Miguel de Souza Andrade
- Baculovirus Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | | | - Fabrício Souza Campos
- Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Felipe Campos de Melo Iani
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Maira Alves Pereira
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Marlei Pickler Debiasi dos Anjos
- Laboratorio central de Saude Publica de Santa Catarina, Superintendência de Vigilância em Saúde – SES – Santa Catarina, South Brazil
| | - Rosane Campanher Ramos
- Laboratório Central de Saúde Pública do Estado do Rio Grande do Sul, Superintendência de Vigilância em Saúde – SES – Santa Catarina, South Brazil
| | | | - Adriano Pinter
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Marcia Chame
- Oswaldo Cruz Foundation, Biodiversity, Wildlife Health Institutional Platform (PIBSS/Fiocruz), Rio de Janeiro, Brazil
| | - Livia Abdalla
- Oswaldo Cruz Foundation, Biodiversity, Wildlife Health Institutional Platform (PIBSS/Fiocruz), Rio de Janeiro, Brazil
| | | | - Sérvio Pontes Ribeiro
- Laboratory of Ecology of Diseases & Forests, NUPEB/ICEB, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Ana I. Bento
- Pandemic Prevention Initiative, The Rockefeller Foundation, Washington DC, USA
| | - Tulio de Oliveira
- School for Data Science and Computational Thinking, Faculty of Science and Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Carla Freitas
- Secretaria de Vigilância em Saúde, SVS, Brazilian Ministry of Health, Brasilia, Federal District, Brazil
| | | | - Allison Fabri
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | - Edmilson dos Santos
- Secretaria Estadual de Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Porto Alegre, RS, Brazil
| | - Jader Cardoso
- Secretaria Estadual de Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Porto Alegre, RS, Brazil
| | - Douglas Adriano Augusto
- Plataforma Institucional Biodiversidade e Saúde Silvestre - Centro de Informação em Saúde Silvestre (CISS) - Fiocruz/RJ, Avenida Brasil, 4365. Manguinhos - Rio de Janeiro - RJ Cep: 21.040-360
| | - Eduardo Krempser
- Plataforma Institucional Biodiversidade e Saúde Silvestre - Centro de Informação em Saúde Silvestre (CISS) - Fiocruz/RJ, Avenida Brasil, 4365. Manguinhos - Rio de Janeiro - RJ Cep: 21.040-360
| | - Luís Filipe Mucci
- Secretaria da Saúde (São Paulo - Estado), Av Dr. Enéas Carvalho de Aguiar, 188 - Cerqueira César, São Paulo - SP, 05403-000, Brazil
- Coordenadoria de Controle de Doenças (CCD), Av. Dr. Enéas Carvalho de Aguiar, 188 - Cerqueira César, São Paulo - SP, 05403-000, Brazil
- Instituto Pasteur (IP), Av. Paulista, 363 Cerqueira Cesar – São Paulo- SP – CEP:01311-000
| | - Renata Rispoli Gatti
- Secretaria de Estado da Saude de Santa Catarina, R. Esteves Júnior, 160 - Centro, Florianópolis - SC, 88015-130, Brazil
| | - Sabrina Fernandes Cardoso
- Secretaria de Estado da Saude de Santa Catarina, R. Esteves Júnior, 160 - Centro, Florianópolis - SC, 88015-130, Brazil
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - João Augusto Brancher Fuck
- Diretoria de Vigilância Epidemiológica da Secretaria de Estado da Saúde de Santa Catarina, R. Esteves Júnior, 160 - Centro, Florianópolis - SC, 88015-130, Brazil
| | - Maria Goretti David Lopes
- Secretaria de Estado da Saúde do Paraná, Brazil, R. Piquiri, 170 - Rebouças, Curitiba - PR, 80230-140
| | - Ivana Lucia Belmonte
- Secretaria de Estado da Saúde do Paraná, Brazil, R. Piquiri, 170 - Rebouças, Curitiba - PR, 80230-140
| | | | | | | | | | - Alceu Bisetto Junior
- Secretaria de Estado da Saúde do Paraná, Brazil, R. Piquiri, 170 - Rebouças, Curitiba - PR, 80230-140
| | - Emanuelle Gemin Pouzato
- Secretaria de Estado da Saúde do Paraná, Brazil, R. Piquiri, 170 - Rebouças, Curitiba - PR, 80230-140
| | - Laurina Setsuko Tanabe
- Secretaria de Estado da Saúde do Paraná, Brazil, R. Piquiri, 170 - Rebouças, Curitiba - PR, 80230-140
| | - Daniele Akemi Arita
- Secretaria de Estado da Saúde do Paraná, Brazil, R. Piquiri, 170 - Rebouças, Curitiba - PR, 80230-140
| | - Ricardo Matsuo
- Secretaria de Estado da Saúde do Paraná, Brazil, R. Piquiri, 170 - Rebouças, Curitiba - PR, 80230-140
| | | | | | | | - Sandra Samila
- Secretaria de Estado da Saúde do Paraná, Brazil, R. Piquiri, 170 - Rebouças, Curitiba - PR, 80230-140
| | - Glauco Carvalho
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Stabeli
- Organização Pan-Americana da Saúde/Organização Mundial da Saúde, Brasília, Distrito Federal, Brazil
| | - Wildo Navegantes
- Organização Pan-Americana da Saúde/Organização Mundial da Saúde, Brasília, Distrito Federal, Brazil
| | - Luciano Andrade Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou–Fiocruz, Belo Horizonte 30190-002, MG, Brazil
| | - Alvaro Gil A. Ferreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou–Fiocruz, Belo Horizonte 30190-002, MG, Brazil
| | | | | | | | | | | | - Wes Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, USA
| | | | - Maria Almiron
- Pan American Health Organization/World Health Organization, Washington, DC, USA
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Daniel Garkauskas Ramos
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde (CGARB/SVS-MS), Brasília, Distrito Federal, Brazil
| | - Alessandro Romano
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde (CGARB/SVS-MS), Brasília, Distrito Federal, Brazil
| | - José Lourenço
- BioISI (Biosystems and Integrative Sciences Institute), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa Portugal
| | - Luiz Carlos Junior Alcantara
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
6
|
Machado SL, de Mello CF, Silva SOF, Alencar J. Ecobiology of Haemagogus leucocelaenus arbovirus vector in the golden lion tamarin translocation area of Rio de Janeiro, Brazil. Sci Rep 2023; 13:13129. [PMID: 37573396 PMCID: PMC10423267 DOI: 10.1038/s41598-023-39629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
Significant pathogens that have resurfaced in humans originate from transmission from animal to human populations. In the Americas, yellow fever cases in humans are usually associated with spillover from non-human primates via mosquitoes. The present study characterized the prevalence of the yellow fever vector Haemagogus leucocelaenus in Rio de Janeiro, Brazil. The Atlantic Forest fragment chosen is an area of translocation of the golden lion tamarin (Leontopithecus rosalia), where 10 ovitraps were installed to collect mosquito eggs in Fazenda Três Irmãos, at Silva Jardim city, from March 2020 to October 2022. A total of 1514 eggs were collected, of which 1153 were viable; 50% belonged to medically important mosquito species and 24% to the yellow fever vector species, Hg. leucocelaenus. The months of December 2020 (n = 252), November 2021 (n = 188), and January 2022 (n = 252) had the highest densities of this vector. Haemagogus leucocelaenus was positively correlated with temperature (r = 0.303) and humidity (r = 0.48), with eggs hatching up to the 15th immersion with higher abundance of females. Implementing mosquito monitoring for arbovirus activity can help protect both the golden lion tamarin and human populations from the threat of arbovirus transmission.
Collapse
Affiliation(s)
- Sergio Lisboa Machado
- Laboratory of Molecular Diagnosis and Hematology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- Graduate Program in Animal Biology, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 23890-000, Brazil
| | | | | | - Jeronimo Alencar
- Diptera Laboratory, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
7
|
Silva SOF, de Mello CF, Julião GR, Dias R, Alencar J. Sexual Proportion and Egg Hatching of Vector Mosquitos in an Atlantic Forest Fragment in Rio de Janeiro, Brazil. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010013. [PMID: 36675962 PMCID: PMC9912254 DOI: 10.3390/life13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Some Aedinii mosquitoes are of high importance in the transmission of the sylvatic YFV. Usually, their eggs are very resistant and depend on the rain for their hatching. The present study evaluated the effect of multiple mosquito-egg immersions and the sex ratio of male and female specimens from Atlantic Forest remnants in the state of Rio de Janeiro, Brazil. Three sampling sites were selected in the municipality of Casimiro de Abreu, where 50 ovitraps were randomly installed to collect eggs from the ground level up to different heights, from August 2018 to December 2020. The mosquito sex ratios were compared between seasons and forest sites, using the generalized linear mixed model (GLMM), which included sampling months and trees as random effects. A total of 33,091 mosquito eggs were collected, of which 6152 eggs were already hatched (18%) and 26,939 were unhatched; of these, approximately 76% subsequently hatched. We found that 25% of the eggs corresponded to four species: Aedes albopictus (n = 1277), Ae. terrens (n = 793), Haemagogus janthinomys (n = 89), and Hg. leucocelaenus (n = 3033). The sex ratio (male:female) was variable concerning the sampling sites and the season. For most species, GLMM estimates found no difference in the variation of the average sex ratio as a function of these predictors, and there was no evidence of temporal autocorrelation in the mosquito data. The number of immersions necessary for hatching the eggs differed between mosquito species, and eggs collected in the dry season hatched both in the first immersions and the subsequent events. Co-occurrence of Aedes terrens and Hg. leucocelaenus was the most frequently observed pairwise species combination. Considering recurrent arbovirus outbreaks in Brazil and their burden on the human population, our study helps to shed light on how these vectors behave in nature; therefore, they can be used in surveillance programs.
Collapse
Affiliation(s)
- Shayenne Olsson Freitas Silva
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- Postgraduate Program in Tropical Medicine, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil
| | - Cecilia Ferreira de Mello
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Genimar Rebouças Julião
- Laboratory of Entomology I, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- National Institute of Epidemiology of the Western Amazon—INCT EpiAmO—Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
| | - Rayane Dias
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- Postgraduate Program in Tropical Medicine, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil
| | - Jeronimo Alencar
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- Correspondence:
| |
Collapse
|
8
|
Andrade MS, Campos FS, de Oliveira CH, Oliveira RS, Campos AAS, de Almeida MAB, Fonseca VDS, Simonini-Teixeira D, Sevá ADP, Temponi AOD, Magalhães FM, Chaves DCC, Pereira MA, Lamounier LO, de Menezes GG, Aquino-Teixeira SM, Gonçalves-dos-Santos ME, Bernal-Valle S, Müller NFD, Cardoso JDC, dos Santos E, Mares-Guia MA, Albuquerque GR, Romano APM, Franco AC, Ribeiro BM, Roehe PM, de Abreu FVS. Fast surveillance response reveals the introduction of a new yellow fever virus sub-lineage in 2021, in Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 2022; 117:e220127. [PMID: 36478156 PMCID: PMC9718055 DOI: 10.1590/0074-02760220127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In Brazil, the yellow fever virus (YFV) is maintained in a sylvatic cycle involving wild mosquitoes and non-human primates (NHPs). The virus is endemic to the Amazon region; however, waves of epidemic expansion reaching other Brazilian states sporadically occur, eventually causing spillovers to humans. OBJECTIVES To report a surveillance effort that led to the first confirmation of YFV in NHPs in the state of Minas Gerais (MG), Southeast region, in 2021. METHODS A surveillance network was created, encompassing the technology of smartphone applications and coordinated actions of several research institutions and health services to monitor and investigate NHP epizootics. FINDINGS When alerts were spread through the network, samples from NHPs were collected and YFV infection confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and genome sequencing at an interval of only 10 days. Near-complete genomes were generated using the Nanopore MinION sequencer. Phylogenetic analysis indicated that viral genomes were related to the South American genotype I, clustering with a genome detected in the Amazon region (state of Pará) in 2017, named YFVPA/MG sub-lineage. Fast YFV confirmation potentialised vaccination campaigns. MAIN CONCLUSIONS A new YFV introduction was detected in MG 6 years after the beginning of the major outbreak reported in the state (2015-2018). The YFV strain was not related to the sub-lineages previously reported in MG. No human cases have been reported, suggesting the importance of coordinated surveillance of NHPs using available technologies and supporting laboratories to ensure a quick response and implementation of contingency measures to avoid YFV spillover to humans.
Collapse
Affiliation(s)
- Miguel Souza Andrade
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Baculovírus, Brasília, DF, Brasil
| | - Fabrício Souza Campos
- Universidade Federal do Tocantins, Laboratório de Bioinformática e Biotecnologia, Gurupi, TO, Brasil ,Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brasil,+ Corresponding author: /
| | | | - Ramon Silva Oliveira
- Instituto Federal do Norte de Minas Gerais, Laboratório de Comportamento de Insetos, Salinas, MG, Brasil
| | | | | | - Vagner de Souza Fonseca
- Organização Pan-Americana da Saúde/Organização Mundial da Saúde, Brasília, DF, Brasil ,Stellenbosch University, School of Data Science and Computational Thinking, Centre for Epidemic Response and Innovation, Stellenbosch, South Africa
| | - Danilo Simonini-Teixeira
- Universidade Estadual de Santa Cruz, Departamento de Agricultura e Ciências Ambientais, Ilhéus, BA, Brasil
| | - Anaiá da Paixão Sevá
- Universidade Estadual de Santa Cruz, Departamento de Agricultura e Ciências Ambientais, Ilhéus, BA, Brasil
| | - Andrea Oliveira Dias Temponi
- Secretaria de Saúde do Estado de Minas Gerais, Coordenação Estadual de Vigilância de Arbovírus, Belo Horizonte, MG, Brasil
| | - Fernando Maria Magalhães
- Secretaria de Saúde do Estado de Minas Gerais, Coordenação Estadual de Vigilância de Arbovírus, Belo Horizonte, MG, Brasil
| | | | - Maira Alves Pereira
- Fundação Ezequiel Dias, Laboratório Central de Saúde Pública, Belo Horizonte, MG, Brasil
| | | | - Givaldo Gomes de Menezes
- Secretaria de Saúde do Estado de Minas Gerais, Coordenação Estadual de Vigilância de Arbovírus, Belo Horizonte, MG, Brasil
| | | | | | - Sofía Bernal-Valle
- Universidade Estadual de Santa Cruz, Departamento de Agricultura e Ciências Ambientais, Ilhéus, BA, Brasil
| | | | - Jader da Cruz Cardoso
- Secretaria Estadual de Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Porto Alegre, RS, Brasil
| | - Edmilson dos Santos
- Secretaria Estadual de Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Porto Alegre, RS, Brasil
| | - Maria Angélica Mares-Guia
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Flavivírus, Rio de Janeiro, RJ, Brasil
| | - George Rêgo Albuquerque
- Universidade Estadual de Santa Cruz, Departamento de Agricultura e Ciências Ambientais, Ilhéus, BA, Brasil
| | | | - Ana Cláudia Franco
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brasil
| | - Bergmann Morais Ribeiro
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Baculovírus, Brasília, DF, Brasil
| | - Paulo Michel Roehe
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brasil
| | - Filipe Vieira Santos de Abreu
- Instituto Federal do Norte de Minas Gerais, Laboratório de Comportamento de Insetos, Salinas, MG, Brasil,+ Corresponding author: /
| |
Collapse
|
9
|
Müller GA, de Mello CF, Bueno AS, de Alcantara Azevedo WT, Alencar J. Little noticed, but very important: The role of breeding sites formed by bamboos in maintaining the diversity of mosquitoes (Diptera: Culicidae) in the Atlantic Forest biome. PLoS One 2022; 17:e0273774. [PMID: 36067179 PMCID: PMC9447929 DOI: 10.1371/journal.pone.0273774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
This study investigated the composition of mosquito species in different kinds of breeding sites in a tropical forest remnant of the Atlantic Forest and identified species of public health concern therein. Collections of immature forms of mosquitoes were carried out monthly at the Poço das Antas Biological Reserve in southeastern Brazil, between June 2014 and June 2015. Samples were collected from four types of breeding sites: bamboos, bromeliads, puddles, and a lake. A total of 1,182 specimens of mosquitoes belonging to 28 species and 13 genera were collected. Three species, Ad. squamipennis, An. neglectus, and Wy. arthrostigma represented 64.8% of the captured specimens. Only three species were found in more than one type of breeding site: Ps. ferox, An. triannulatus, and Tx. trichopygus. Two species of public health concern were found breeding in bamboo (Ae. aegypti and Ae. albopictus) and one in the lake (An. darlingi). Bamboo had the highest species richness, Shannon diversity, abundance of individuals and number of dominant species of all breeding sites. Similar Simpson diversity was obtained for bamboo and bromeliads, with higher values than those obtained for puddles and the lake. The significance of the four breeding sites, especially bamboos, is discussed in the context of controlling populations of sylvatic species of mosquitoes in Atlantic Forest areas.
Collapse
Affiliation(s)
- Gerson Azulim Müller
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Panambi, RS, Brazil
| | - Cecilia Ferreira de Mello
- Laboratório de Diptera, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia (UFRRJ), Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Anderson S. Bueno
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Júlio de Castilhos, RS, Brazil
| | - Wellington Thadeu de Alcantara Azevedo
- Laboratório de Diptera, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia (UFRRJ), Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Jeronimo Alencar
- Laboratório de Diptera, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
10
|
Possamai CB, Rodrigues de Melo F, Mendes SL, Strier KB. Demographic changes in an Atlantic Forest primate community following a yellow fever outbreak. Am J Primatol 2022; 84:e23425. [PMID: 35899394 DOI: 10.1002/ajp.23425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
We investigated demographic changes in three primate species (Alouatta guariba, Sapajus nigritus, and Callithrix flaviceps) at the Reserva Particular do Patrimônio Natural-Feliciano Miguel Abdala, Caratinga, Minas Gerais, Brazil, following a yellow fever outbreak (YFO) by comparing their population sizes before (2015) and after the outbreak (2017-2018), and by monitoring the size, composition, and reproductive status of groups from 2017 to 2021. Comparisons of pre- and post-YFO census data indicate the A. guariba population declined by 86.6%, from an estimated minimum of 522 individuals to 70 individuals. However, by October 2021, the population had grown to at least 86 individuals, with an adult sex ratio (N = 53) that was female-biased (0.61). Eleven of the 13 groups being monitored systematically were reproductively active with high survivorship to 12 months of age. S. nigritus declined by 40%, from 377 to 226 individuals. The sex ratio of 33 adult S. nigritus is also female-biased (0.71), and at least 8 of 15 groups being monitored are reproductively active. C. flaviceps declined by 80%, from 85 individuals to the 15-17 individuals observed from 2017 to 2021. The female-biased adult sex ratio and presence of infants and juveniles in the A. guariba and S. nigritus groups are encouraging signs, but there is still great concern, especially for C. flaviceps. Continued monitoring of the demographics of these primates is needed as their persistence appears to still be at risk.
Collapse
Affiliation(s)
- Carla B Possamai
- Financial Sector, Muriqui Instituto de Biodiversidade-MIB-R: Euclydes Etienne Arreguy Filho, Centro Caratinga, Minas Gerais, Brazil
| | - Fabiano Rodrigues de Melo
- Departamento de Engenharia Florestal, Universidade Federal de Viçosa, MeCFauna Lab, Viçosa, Minas Gerais, Brazil
| | - Sérgio Lucena Mendes
- Departamento de Ciências Biológicas, CCHN/UFES, Vitória, Espírito Santo, Brazil.,Instituto Nacional da Mata Atlântica (INMA), Santa Teresa, Espírito Santo, Brazil
| | - Karen B Strier
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Rodrigues Oliveira A, Oliveira Dos Santos D, Pizzolato de Lucena F, Aquino de Mattos S, Parente de Carvalho T, Barroso Costa F, Giannini Alves Moreira L, Magalhães Arthuso Vasconcelos I, Alves da Paixão T, Lima Santos R. Non-thrombotic pulmonary embolism of brain, liver, or bone marrow tissues associated with traumatic injuries in free-ranging neotropical primates. Vet Pathol 2022; 59:482-488. [PMID: 35130802 DOI: 10.1177/03009858221075595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
From 2016 to 2019, Southeastern Brazil faced an outbreak of yellow fever (YF) affecting both humans and New World primates (NWP). The outbreak was associated with a marked increase in traumatic lesions in NWP in the affected regions. Non-thrombotic pulmonary embolization (NTPE) can be a consequence of massive traumatic events, and it is rarely reported in human and veterinary medicine. Here, we describe NTPE of the brain, liver, and bone marrow in free-ranging NWP, highlighting the epidemiological aspects of these findings and the lesions associated with this condition, including data on traumatic injuries in wild NWP populations during the course of a recent YF outbreak. A total of 1078 NWP were necropsied from January 2017 to July 2019. Gross traumatic injuries were observed in 444 marmosets (44.3%), 10 howler monkeys (23.2%), 9 capuchins (31.0%), 1 titi-monkey (50.0%), and 1 golden lion tamarin (33.3%). NTPE was observed in 10 animals, including 9 marmosets (2.0%) and 1 howler monkey (10.0%). NTPE was identified in the lung and comprised hepatic tissue in 1 case, brain tissue in 1 case, and bone marrow tissue in 8 cases. Although uncommon, it is important to consider NTPE with pulmonary vascular occlusion during the critical care of traumatized NWP. In addition, this study highlights the importance of conservational strategies and environmental education focusing on One Health, not only to protect these free-ranging NWP populations but also to maintain the efficacy of epidemiological surveillance programs.
Collapse
|
12
|
Abreu FVSD, de Andreazzi CS, Neves MSAS, Meneguete PS, Ribeiro MS, Dias CMG, de Albuquerque Motta M, Barcellos C, Romão AR, Magalhães MDAFM, Lourenço-de-Oliveira R. Ecological and environmental factors affecting transmission of sylvatic yellow fever in the 2017-2019 outbreak in the Atlantic Forest, Brazil. Parasit Vectors 2022; 15:23. [PMID: 35012637 PMCID: PMC8750868 DOI: 10.1186/s13071-021-05143-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yellow fever virus (YFV) is an arbovirus that, despite the existence of a safe and effective vaccine, continues to cause outbreaks of varying dimensions in the Americas and Africa. Between 2017 and 2019, Brazil registered un unprecedented sylvatic YFV outbreak whose severity was the result of its spread into zones of the Atlantic Forest with no signals of viral circulation for nearly 80 years. METHODS To investigate the influence of climatic, environmental, and ecological factors governing the dispersion and force of infection of YFV in a naïve area such as the landscape mosaic of Rio de Janeiro (RJ), we combined the analyses of a large set of data including entomological sampling performed before and during the 2017-2019 outbreak, with the geolocation of human and nonhuman primates (NHP) and mosquito infections. RESULTS A greater abundance of Haemagogus mosquitoes combined with lower richness and diversity of mosquito fauna increased the probability of finding a YFV-infected mosquito. Furthermore, the analysis of functional traits showed that certain functional groups, composed mainly of Aedini mosquitoes which includes Aedes and Haemagogus mosquitoes, are also more representative in areas where infected mosquitoes were found. Human and NHP infections were more common in two types of landscapes: large and continuous forest, capable of harboring many YFV hosts, and patches of small forest fragments, where environmental imbalance can lead to a greater density of the primary vectors and high human exposure. In both, we show that most human infections (~ 62%) occurred within an 11-km radius of the finding of an infected NHP, which is in line with the flight range of the primary vectors. CONCLUSIONS Together, our data suggest that entomological data and landscape composition analyses may help to predict areas permissive to yellow fever outbreaks, allowing protective measures to be taken to avoid human cases.
Collapse
Affiliation(s)
- Filipe Vieira Santos de Abreu
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas, MG Brazil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
- Present Address: Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | | | - Patrícia Soares Meneguete
- Secretaria de Estado de Saúde, Subsecretaria de Vigilância e Atenção Primária À Saúde, Rio de Janeiro, RJ Brazil
| | - Mário Sérgio Ribeiro
- Secretaria de Estado de Saúde, Subsecretaria de Vigilância e Atenção Primária À Saúde, Rio de Janeiro, RJ Brazil
| | - Cristina Maria Giordano Dias
- Secretaria de Estado de Saúde, Subsecretaria de Vigilância e Atenção Primária À Saúde, Rio de Janeiro, RJ Brazil
| | - Monique de Albuquerque Motta
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
| | - Christovam Barcellos
- Laboratório de Informação em Saúde, Instituto de Comunicação e Informação Científica e Tecnológica em Saúde, FIOCRUZ, Rio de Janeiro, RJ Brazil
| | - Anselmo Rocha Romão
- Laboratório de Informação em Saúde, Instituto de Comunicação e Informação Científica e Tecnológica em Saúde, FIOCRUZ, Rio de Janeiro, RJ Brazil
| | | | - Ricardo Lourenço-de-Oliveira
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
| |
Collapse
|
13
|
Li SL, Acosta AL, Hill SC, Brady OJ, de Almeida MAB, Cardoso JDC, Hamlet A, Mucci LF, Telles de Deus J, Iani FCM, Alexander NS, Wint GRW, Pybus OG, Kraemer MUG, Faria NR, Messina JP. Mapping environmental suitability of Haemagogus and Sabethes spp. mosquitoes to understand sylvatic transmission risk of yellow fever virus in Brazil. PLoS Negl Trop Dis 2022; 16:e0010019. [PMID: 34995277 PMCID: PMC8797211 DOI: 10.1371/journal.pntd.0010019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/28/2022] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Yellow fever (YF) is an arboviral disease which is endemic to Brazil due to a sylvatic transmission cycle maintained by infected mosquito vectors, non-human primate (NHP) hosts, and humans. Despite the existence of an effective vaccine, recent sporadic YF epidemics have underscored concerns about sylvatic vector surveillance, as very little is known about their spatial distribution. Here, we model and map the environmental suitability of YF's main vectors in Brazil, Haemagogus spp. and Sabethes spp., and use human population and NHP data to identify locations prone to transmission and spillover risk. METHODOLOGY/PRINCIPAL FINDINGS We compiled a comprehensive set of occurrence records on Hg. janthinomys, Hg. leucocelaenus, and Sabethes spp. from 1991-2019 using primary and secondary data sources. Linking these data with selected environmental and land-cover variables, we adopted a stacked regression ensemble modelling approach (elastic-net regularized GLM, extreme gradient boosted regression trees, and random forest) to predict the environmental suitability of these species across Brazil at a 1 km x 1 km resolution. We show that while suitability for each species varies spatially, high suitability for all species was predicted in the Southeastern region where recent outbreaks have occurred. By integrating data on NHP host reservoirs and human populations, our risk maps further highlight municipalities within the region that are prone to transmission and spillover. CONCLUSIONS/SIGNIFICANCE Our maps of sylvatic vector suitability can help elucidate potential locations of sylvatic reservoirs and be used as a tool to help mitigate risk of future YF outbreaks and assist in vector surveillance. Furthermore, at-risk regions identified from our work could help disease control and elucidate gaps in vaccination coverage and NHP host surveillance.
Collapse
Affiliation(s)
- Sabrina L. Li
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
- * E-mail: (SLL); (JPM)
| | - André L. Acosta
- Departamento de Ecologia, Instituto de Biociências, Laboratório de Ecologia de Paisagens e Conservação—LEPAC, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah C. Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College London, London, United Kingdom
| | - Oliver J. Brady
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marco A. B. de Almeida
- State Centre of Health Surveillance, Rio Grande do Sul State Health Secretariat, Rio Grande do Sul, Brazil
| | - Jader da C. Cardoso
- State Centre of Health Surveillance, Rio Grande do Sul State Health Secretariat, Rio Grande do Sul, Brazil
| | - Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Luis F. Mucci
- Superintendence for Endemic Diseases Control, São Paulo State Health Secretariat, São Paulo, Brazil
| | - Juliana Telles de Deus
- Superintendence for Endemic Diseases Control, São Paulo State Health Secretariat, São Paulo, Brazil
| | | | - Neil S. Alexander
- Environmental Research Group Oxford, c/o Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - G. R. William Wint
- Environmental Research Group Oxford, c/o Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Oliver G. Pybus
- Department of Pathobiology and Population Sciences, Royal Veterinary College London, London, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Nuno R. Faria
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Departamento de Molestias Infecciosas e Parasitarias & Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jane P. Messina
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
- Oxford School of Global and Area Studies, University of Oxford, Oxford, United Kingdom
- * E-mail: (SLL); (JPM)
| |
Collapse
|
14
|
Berthet M, Mesbahi G, Duvot G, Zuberbühler K, Cäsar C, Bicca-Marques JC. Dramatic decline in a titi monkey population after the 2016-2018 sylvatic yellow fever outbreak in Brazil. Am J Primatol 2021; 83:e23335. [PMID: 34609763 DOI: 10.1002/ajp.23335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 11/07/2022]
Abstract
Platyrrhini are highly vulnerable to the yellow fever (YF) virus. From 2016 to 2018, the Atlantic Forest of southeast Brazil faced its worst sylvatic YF outbreak in about a century, thought to have killed thousands of primates. It is essential to assess the impact of this epidemic on threatened primate assemblages to design effective conservation strategies. In this study, we assessed the impact of the 2016-2018 YF outbreak on a geographically isolated population of Near Threatened black-fronted titi monkeys (Callicebus nigrifrons) in two Atlantic Forest patches of the Santuário do Caraça, MG, Brazil. Extensive preoutbreak monitoring, conducted between 2008 and 2016, revealed that the home range and group sizes of the population remained stable. In 2016, the population size was estimated at 53-57 individuals in 11-12 groups. We conducted monitoring and playback surveys in 2019 and found that the population had decreased by 68% in one forest patch and completely vanished in the other, resulting in a combined decline of 80%. We discuss this severe loss of a previously stable population and conclude that it was highly likely caused by the YF outbreak. The remaining population is at risk of disappearing completely because of its small size and geographic isolation. A systematic population surveys of C. nigrifrons, along other sensible Platyrrhini species, is needed to re-evaluate their current conservation status.
Collapse
Affiliation(s)
- Mélissa Berthet
- Département d'études cognitives, Institut Jean Nicod, ENS, EHESS, CNRS, PSL Research University, Paris, France
| | - Geoffrey Mesbahi
- Université de Lorraine, INRAE, LAE, Nancy, France.,Parc Naturel Régional des Vosges du Nord, La Petite Pierre, France
| | - Guilhem Duvot
- Département d'études cognitives, Institut Jean Nicod, ENS, EHESS, CNRS, PSL Research University, Paris, France
| | - Klaus Zuberbühler
- School of Psychology & Neurosciences, University of St Andrews, Scotland, UK.,Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | - Júlio Cèsar Bicca-Marques
- Escola de Ciências da Saúde e da Vida, Laboratório de Primatologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
15
|
Re-emergence of yellow fever in the neotropics - quo vadis? Emerg Top Life Sci 2021; 4:399-410. [PMID: 33258924 PMCID: PMC7733675 DOI: 10.1042/etls20200187] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/02/2023]
Abstract
Yellow fever virus (YFV) is the etiological agent of yellow fever (YF), an acute hemorrhagic vector-borne disease with a significant impact on public health, is endemic across tropical regions in Africa and South America. The virus is maintained in two ecologically and evolutionary distinct transmission cycles: an enzootic, sylvatic cycle, where the virus circulates between arboreal Aedes species mosquitoes and non-human primates, and a human or urban cycle, between humans and anthropophilic Aedes aegypti mosquitoes. While the urban transmission cycle has been eradicated by a highly efficacious licensed vaccine, the enzootic transmission cycle is not amenable to control interventions, leading to recurrent epizootics and spillover outbreaks into human populations. The nature of YF transmission dynamics is multifactorial and encompasses a complex system of biotic, abiotic, and anthropogenic factors rendering predictions of emergence highly speculative. The recent outbreaks in Africa and Brazil clearly remind us of the significant impact YF emergence events pose on human and animal health. The magnitude of the Brazilian outbreak and spillover in densely populated areas outside the recommended vaccination coverage areas raised the specter of human — to — human transmission and re-establishment of enzootic cycles outside the Amazon basin. Herein, we review the factors that influence the re-emergence potential of YFV in the neotropics and offer insights for a constellation of coordinated approaches to better predict and control future YF emergence events.
Collapse
|
16
|
|
17
|
de Jesus JR, de Araújo Andrade T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: implications for COVID-19. Metallomics 2020; 12:1912-1930. [PMID: 33295922 PMCID: PMC7928718 DOI: 10.1039/d0mt00220h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Recently, the World Health Organization (WHO) declared a pandemic situation due to a new viral infection (COVID-19) caused by a novel virus (Sars-CoV-2). COVID-19 is today the leading cause of death from viral infections in the world. It is known that many elements play important roles in viral infections, both in virus survival, and in the activation of the host's immune system, which depends on the presence of micronutrients to maintain the integrity of its functions. In this sense, the metallome can be an important object of study for understanding viral infections. Therefore, this work presents an overview of the role of trace elements in the immune system and the state of the art in metallomics, highlighting the challenges found in studies focusing on viral infections.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- University of Campinas, Institute of Chemistry, Dept of Analytical Chemistry, Campinas, São Paulo, Brazil.
| | | |
Collapse
|
18
|
Silva LMR, Voelker I, Geiger C, Schauerte N, Hirzmann J, Bauer C, Taubert A, Hermosilla C. Pterygodermatites nycticebi infections in golden lion tamarins (Leontopithecus rosalia rosalia) and aye-ayes (Daubentonia madagascariensis) from a German zoo. Zoo Biol 2020; 40:59-64. [PMID: 33135172 DOI: 10.1002/zoo.21578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 11/11/2022]
Abstract
In a golden lion tamarin (Leontopithecus rosalia rosalia) colony kept indoors in a German zoo, two animals presented a sudden onset of reduced general condition, lethargy, and diarrhea. At animal capture for clinical examination, adult nematode stages were observed after stress-induced defecation. Despite treatment, two golden lion tamarins died in the following 2 days. At necropsy, spirurid stages were found in the lungs and intestine. Additionally, adult Pterygodermatites spp. were identified in histopathological samples of intestine and pancreas, confirming the previous diagnosis. Upon diagnosis, all animals were treated with ivermectin (0.2 mg/kg; SC). Thereafter, the general condition of the golden lion tamarins improved, whereby some of them excreted spirurid nematodes over 3 days. Four weeks after treatment, 20 fecal samples from the colony were examined and proved negative for parasitic stages. Given that common German cockroaches (Blattella germanica) are suitable intermediate hosts of Pterygodermatites nycticebi, 30 specimens were collected from seven different locations around the golden lion tamarins housing. Third-stage larvae of Pterygodermatites spp. were recovered from those cockroaches. Regular anthelmintic treatments, coprological screenings, and controls for intermediate hosts were recommended. More than 2 years later, P. nycticebi infection was diagnosed again histopathologically in an aye-aye (Daubentonia madagascariensis) which suddenly died. Coprological analysis confirmed the presence of spirurid eggs. Due to prosimian primates' cockroach-eating habits and given that total cockroach eradication proved impossible, continuous cockroach control strategies and regular treatments of primates are currently performed to prevent further P. nycticebi infections.
Collapse
Affiliation(s)
- Liliana M R Silva
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Iris Voelker
- Department of Veterinary Medicine, Pathology and Parasitology Diagnostic, Landesbetrieb Hessisches Landeslabor, Giessen, Germany
| | | | | | - Joerg Hirzmann
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Bauer
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
19
|
Santos DOD, de Oliveira AR, de Lucena FP, de Mattos SA, de Carvalho TP, Costa FB, Moreira LGA, Paixão TAD, Santos RL. Histopathologic Patterns and Susceptibility of Neotropical Primates Naturally Infected With Yellow Fever Virus. Vet Pathol 2020; 57:681-686. [PMID: 32783517 DOI: 10.1177/0300985820941271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Yellow fever is an important zoonotic viral disease that can be fatal for both human and nonhuman primates. We evaluated histopathologic changes in free-ranging neotropical primates naturally infected with yellow fever virus (YFV) compared with uninfected cohorts. The most frequent lesions in primates infected with YFV were hepatic changes characterized by midzonal necrosis with lipidosis and mild inflammation including lymphocytes, macrophages, plasma cells, and infrequently neutrophils. Importantly, severe necrotizing hepatic lesions were often observed in Alouatta sp. (howler monkeys), whereas Callithrix sp. (common marmosets) had nearly no hepatic changes. Moderate to severe hepatic necrosis was present in 21/23 (91%) of the YFV-positive Alouatta sp. compared with 10/29 (34%) of the YFV-positive Callithrix sp. (P < .0001; odds ratio = 20). Similarly, hepatitis was more intense in Alouatta sp. compared with Callithrix sp. Furthermore, the frequency of YFV infection was significantly higher in Alouatta sp. compared with Callithrix sp. or Sapajus sp. (capuchin monkeys). Therefore, these data support the notion that Alouatta sp. is highly susceptible to infection and YFV-induced lesions, whereas Callithrix sp. is susceptible to infection but has a lower frequency of YFV-induced lesions.
Collapse
|
20
|
Gonçalves PR, Di Dario F, Petry AC, Martins RL, da Fonseca RN, Henry MD, de Assis Esteves F, Ruiz-Miranda CR, Monteiro LR, Nascimento MT. Brazil undermines parks by relocating staff. Science 2020; 368:1199. [PMID: 32527824 DOI: 10.1126/science.abc8297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Pablo R Gonçalves
- Instituto de Biodiversidade e Sustentabilidade - NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil.
| | - Fabio Di Dario
- Instituto de Biodiversidade e Sustentabilidade - NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil
| | - Ana C Petry
- Instituto de Biodiversidade e Sustentabilidade - NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil
| | - Rodrigo L Martins
- Instituto de Biodiversidade e Sustentabilidade - NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil
| | - Rodrigo N da Fonseca
- Instituto de Biodiversidade e Sustentabilidade - NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil
| | - Malinda D Henry
- Instituto de Biodiversidade e Sustentabilidade - NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil
| | - Francisco de Assis Esteves
- Instituto de Biodiversidade e Sustentabilidade - NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil
| | - Carlos R Ruiz-Miranda
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013-602, Brazil.,Associação Mico-Leão-Dourado, Silva Jardim, RJ 28820-000, Brazil
| | - Leandro R Monteiro
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Marcelo T Nascimento
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013-602, Brazil
| |
Collapse
|