1
|
Munoz M, Solis C, McCann M, Park J, Rafael-Clyke K, Chowdhury SAK, Jiang Y, Rosas PC. P21-activated kinase-1 signaling is required to preserve adipose tissue homeostasis and cardiac function. Mol Cell Biochem 2025; 480:249-263. [PMID: 38430300 PMCID: PMC11371416 DOI: 10.1007/s11010-024-04968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
While P21-activated kinase-1 (PAK1) has been extensively studied in relation to cardiovascular health and glucose metabolism, its roles within adipose tissue and cardiometabolic diseases are less understood. In this study, we explored the effects of PAK1 deletion on energy balance, adipose tissue homeostasis, and cardiac function utilizing a whole-body PAK1 knockout (PAK1-/-) mouse model. Our findings revealed that body weight differences between PAK1-/- and WT mice emerged at 9 weeks of age, with further increases observed at 12 weeks. Furthermore, PAK1-/- mice displayed increased fat mass and decreased lean mass at 12 weeks, indicating a shift towards adiposity. In conjunction with the increased body weight, PAK1-/- mice had increased food intake and reduced energy expenditure. At a mechanistic level, PAK1 deletion boosted the expression of lipogenic markers while diminishing thermogenic markers expression in adipose tissues, contributing to reduced energy expenditure and the overall obesogenic phenotype. Moreover, our findings highlighted a significant impact on cardiac function following PAK1 deletion, including alterations in calcium kinetics and compromised systolic and lusitropy functions. In summary, our study emphasizes the significant role of PAK1 in weight regulation and cardiac function, enriching our comprehension of heart health and metabolism. These findings could potentially facilitate the identification of novel therapeutic targets in cardiometabolic diseases.
Collapse
Affiliation(s)
- Marcos Munoz
- Divison of Endocrinology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher Solis
- Department of Health, Nutrition & Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Maximilian McCann
- Department of Ophthalmology & Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jooman Park
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Koreena Rafael-Clyke
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shamim A K Chowdhury
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuwei Jiang
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paola C Rosas
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Dhritlahre RK, Thakur N, Goel A, Patial V, Padwad Y, Saneja A. Self-Nanoemulsifying Formulation Improves Oral Bioavailability and Insulin Sensitizing Potency of Formononetin-Vitamin E Conjugate in Type 2 Diabetic Mice. Mol Pharm 2024. [PMID: 39699518 DOI: 10.1021/acs.molpharmaceut.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The escalating incidence of obesity, diabetes, and insulin resistance has become a significant global health concern. In this study, we have developed a self-nanoemulsifying delivery system (SNEDS) of formononetin-vitamin E conjugate (VESylated-FMN) for improving its oral bioavailability and improving insulin sensitivity and glycemic control. The developed SNEDS were characterized using dynamic light scattering and transmission electron microscopy. Thereafter, the loading capacity, in vitro release, thermodynamic, and gastrointestinal stability of the developed formulation were evaluated. The safety and oral bioavailability of VESylated-FMN-SNEDS were assessed in Sprague-Dawley rats, whereas insulin-sensitizing potency was assessed in high-fat diet-induced type 2 diabetic mice. The VESylated-FMN-SNEDS quickly emulsified on dilution (droplet size ∼79.17 nm) and showed remarkable thermodynamic and gastrointestinal stability. The developed formulation demonstrated enhanced oral bioavailability (∼1.3-fold higher AUC0-t) of VESylated-FMN without liver and kidney injury. Consequently, VESylated-FMN-SNEDS significantly improves insulin sensitivity and glycemic control in HFD-fed mice compared to VESylated-FMN by upregulating the transcript level of insulin-sensitizing genes. Therefore, the SNEDS formulation could be an effective strategy to augment the oral bioavailability and insulin-sensitizing potency of VESylated-FMN.
Collapse
Affiliation(s)
- Rakesh Kumar Dhritlahre
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Navneet Thakur
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Abhishek Goel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Vikram Patial
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Yogendra Padwad
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
3
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2024:10.1038/s41585-024-00952-1. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
4
|
Ni K, Che B, Gu R, Wang C, Pan Y, Li J, Liu L, Luo M, Deng L. Single-Cell Hypertrophy Promotes Contractile Function of Cultured Human Airway Smooth Muscle Cells via Piezo1 and YAP Auto-Regulation. Cells 2024; 13:1697. [PMID: 39451215 PMCID: PMC11505810 DOI: 10.3390/cells13201697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Severe asthma is characterized by increased cell volume (hypertrophy) and enhanced contractile function (hyperresponsiveness) of the airway smooth muscle cells (ASMCs). The causative relationship and underlying regulatory mechanisms between them, however, have remained unclear. Here, we manipulated the single-cell volume of in vitro cultured human ASMCs to increase from 2.7 to 5.2 and 8.2 × 103 μm3 as a simulated ASMC hypertrophy by culturing the cells on micropatterned rectangular substrates with a width of 25 μm and length from 50 to 100 and 200 μm, respectively. We found that as the cell volume increased, ASMCs exhibited a pro-contractile function with increased mRNA expression of contractile proteins, increased cell stiffness and traction force, and enhanced response to contractile stimulation. We also uncovered a concomitant increase in membrane tension and Piezo1 mRNA expression with increasing cell volume. Perhaps more importantly, we found that the enhanced contractile function due to cell volume increase was largely attenuated when membrane tension and Piezo1 mRNA expression were downregulated, and an auto-regulatory loop between Piezo1 and YAP mRNA expression was also involved in perpetuating the contractile function. These findings, thus, provide convincing evidence of a direct link between hypertrophy and enhanced contractile function of ASMCs that was mediated via Piezo1 mRNA expression, which may be specifically targeted as a novel therapeutic strategy to treat pulmonary diseases associated with ASMC hypertrophy such as severe asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
6
|
DeBari MK, Johnston EK, Scott JV, Ilzuka E, Sun W, Webster-Wood VA, Abbott RD. A Preliminary Study on Factors That Drive Patient Variability in Human Subcutaneous Adipose Tissues. Cells 2024; 13:1240. [PMID: 39120271 PMCID: PMC11311805 DOI: 10.3390/cells13151240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Adipose tissue is a dynamic regulatory organ that has profound effects on the overall health of patients. Unfortunately, inconsistencies in human adipose tissues are extensive and multifactorial, including large variability in cellular sizes, lipid content, inflammation, extracellular matrix components, mechanics, and cytokines secreted. Given the high human variability, and since much of what is known about adipose tissue is from animal models, we sought to establish correlations and patterns between biological, mechanical, and epidemiological properties of human adipose tissues. To do this, twenty-six independent variables were cataloged for twenty patients, which included patient demographics and factors that drive health, obesity, and fibrosis. A factorial analysis for mixed data (FAMD) was used to analyze patterns in the dataset (with BMI > 25), and a correlation matrix was used to identify interactions between quantitative variables. Vascular endothelial growth factor A (VEGFA) and actin alpha 2, smooth muscle (ACTA2) gene expression were the highest loadings in the first two dimensions of the FAMD. The number of adipocytes was also a key driver of patient-related differences, where a decrease in the density of adipocytes was associated with aging. Aging was also correlated with a decrease in overall lipid percentage of subcutaneous tissue, with lipid deposition being favored extracellularly, an increase in transforming growth factor-β1 (TGFβ1), and an increase in M1 macrophage polarization. An important finding was that self-identified race contributed to variance between patients in this study, where Black patients had significantly lower gene expression levels of TGFβ1 and ACTA2. This finding supports the urgent need to account for patient ancestry in biomedical research to develop better therapeutic strategies for all patients. Another important finding was that TGFβ induced factor homeobox 1 (TGIF1), an understudied signaling molecule, which is highly correlated with leptin signaling, was correlated with metabolic inflammation. Furthermore, this study draws attention to what we define as "extracellular lipid droplets", which were consistently found in collagen-rich regions of the obese adipose tissues evaluated here. Reduced levels of TGIF1 were correlated with higher numbers of extracellular lipid droplets and an inability to suppress fibrotic changes in adipose tissue. Finally, this study indicated that M1 and M2 macrophage markers were correlated with each other and leptin in patients with a BMI > 25. This finding supports growing evidence that macrophage polarization in obesity involves a complex, interconnecting network system rather than a full switch in activation patterns from M2 to M1 with increasing body mass. Overall, this study reinforces key findings in animal studies and identifies important areas for future research, where human and animal studies are divergent. Understanding key drivers of human patient variability is required to unravel the complex metabolic health of unique patients.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Elizabeth K. Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Jacqueline V. Scott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Erica Ilzuka
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Wenhuan Sun
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Victoria A. Webster-Wood
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| |
Collapse
|
7
|
Rudolph EL, Chin L. Mechanobiology in Metabolic Dysfunction-Associated Steatotic Liver Disease and Obesity. Curr Issues Mol Biol 2024; 46:7134-7146. [PMID: 39057066 PMCID: PMC11276231 DOI: 10.3390/cimb46070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
With the ongoing obesity epidemic, the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is expected to rise and necessitates a greater understanding of how the disease proceeds from benign excess lipid in hepatocytes to liver fibrosis and eventually to liver cancer. MASLD is caused, at least in part, by hepatocytes' storage of free fatty acids (FAs) that dysfunctional adipocytes are no longer able to store, and therefore, MASLD is a disease that involves both the liver and adipose tissues. The disease progression is not only facilitated by biochemical signals, but also by mechanical cues such as the increase in stiffness often seen with fibrotic fatty livers. The change in stiffness and accumulation of excess lipid droplets impact the ability of a cell to mechanosense and mechanotranduce, which perpetuates the disease. A mechanosensitive protein that is largely unexplored and could serve as a potential therapeutic target is the intermediate filament vimentin. In this review, we briefly summarize the recent research on hepatocyte and adipocyte mechanobiology and provide a synopsis of studies on the varied, and sometimes contradictory, roles of vimentin. This review is intended to benefit and encourage future studies on hepatocyte and adipocyte mechanobiology in the context of MASLD and obesity.
Collapse
Affiliation(s)
| | - LiKang Chin
- Department of Biomedical Engineering, Widener University, Chester, PA 19013, USA;
| |
Collapse
|
8
|
Vujičić M, Broderick I, Salmantabar P, Perian C, Nilsson J, Sihlbom Wallem C, Wernstedt Asterholm I. A macrophage-collagen fragment axis mediates subcutaneous adipose tissue remodeling in mice. Proc Natl Acad Sci U S A 2024; 121:e2313185121. [PMID: 38300872 PMCID: PMC10861897 DOI: 10.1073/pnas.2313185121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Efficient removal of fibrillar collagen is essential for adaptive subcutaneous adipose tissue (SAT) expansion that protects against ectopic lipid deposition during weight gain. Here, we used mice to further define the mechanism for this collagenolytic process. We show that loss of collagen type-1 (CT1) and increased CT1-fragment levels in expanding SAT are associated with proliferation of resident M2-like macrophages that display increased CD206-mediated engagement in collagen endocytosis compared to chow-fed controls. Blockage of CD206 during acute high-fat diet-induced weight gain leads to SAT CT1-fragment accumulation associated with elevated inflammation and fibrosis markers. Moreover, these SAT macrophages' engagement in collagen endocytosis is diminished in obesity associated with elevated levels collagen fragments that are too short to assemble into triple helices. We show that such short fragments provoke M2-macrophage proliferation and fibroinflammatory changes in fibroblasts. In conclusion, our data delineate the importance of a macrophage-collagen fragment axis in physiological SAT expansion. Therapeutic targeting of this process may be a means to prevent pathological adipose tissue remodeling, which in turn may reduce the risk for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Isabella Broderick
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Pegah Salmantabar
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Charlène Perian
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Jonas Nilsson
- Proteomics Core Facility, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Carina Sihlbom Wallem
- Proteomics Core Facility, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| |
Collapse
|
9
|
Ige S, Alaoui K, Al-Dibouni A, Dallas ML, Cagampang FR, Sellayah D, Chantler PD, Boateng SY. Leptin-dependent differential remodeling of visceral and pericardial adipose tissue following chronic exercise and psychosocial stress. FASEB J 2024; 38:e23325. [PMID: 38117486 DOI: 10.1096/fj.202300269rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Obesity is driven by an imbalance between caloric intake and energy expenditure, causing excessive storage of triglycerides in adipose tissue at different sites around the body. Increased visceral adipose tissue (VAT) is associated with diabetes, while pericardial adipose tissue (PAT) is associated with cardiac pathology. Adipose tissue can expand either through cellular hypertrophy or hyperplasia, with the former correlating with decreased metabolic health in obesity. The aim of this study was to determine how VAT and PAT remodel in response to obesity, stress, and exercise. Here we have used the male obese Zucker rats, which carries two recessive fa alleles that result in the development of hyperphagia with reduced energy expenditure, resulting in morbid obesity and leptin resistance. At 9 weeks of age, a group of lean (Fa/Fa or Fa/fa) Zucker rats (LZR) and obese (fa/fa) Zucker rats (OZR) were treated with unpredictable chronic mild stress or exercise for 8 weeks. To determine the phenotype for PAT and VAT, tissue cellularity and gene expression were analyzed. Finally, leptin signaling was investigated further using cultured 3T3-derived adipocytes. Tissue cellularity was determined following hematoxylin and eosin (H&E) staining, while qPCR was used to examine gene expression. PAT adipocytes were significantly smaller than those from VAT and had a more beige-like appearance in both LZR and OZR. In the OZR group, VAT adipocyte cell size increased significantly compared with LZR, while PAT showed no difference. Exercise and stress resulted in a significant reduction in VAT cellularity in OZR, while PAT showed no change. This suggests that PAT cellularity does not remodel significantly compared with VAT. These data indicate that the extracellular matrix of PAT is able to remodel more readily than in VAT. In the LZR group, exercise increased insulin receptor substrate 1 (IRS1) in PAT but was decreased in the OZR group. In VAT, exercise decreased IRS1 in LZR, while increasing it in OZR. This suggests that in obesity, VAT is more responsive to exercise and subsequently becomes less insulin resistant compared with PAT. Stress increased PPAR-γ expression in the VAT but decreased it in the PAT in the OZR group. This suggests that in obesity, stress increases adipogenesis more significantly in the VAT compared with PAT. To understand the role of leptin signaling in adipose tissue remodeling mechanistically, JAK2 autophosphorylation was inhibited using 5 μM 1,2,3,4,5,6-hexabromocyclohexane (Hex) in cultured 3T3-derived adipocytes. Palmitate treatment was used to induce cellular hypertrophy. Hex blocked adipocyte hypertrophy in response to palmitate treatment but not the increase in lipid droplet size. These data suggest that leptin signaling is necessary for adipocyte cell remodeling, and its absence induces whitening. Taken together, our data suggest that leptin signaling is necessary for adipocyte remodeling in response to obesity, exercise, and psychosocial stress.
Collapse
Affiliation(s)
- Susan Ige
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Kaouthar Alaoui
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Alaa Al-Dibouni
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Mark L Dallas
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Felino R Cagampang
- Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Dyan Sellayah
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Paul D Chantler
- School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Samuel Y Boateng
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
10
|
Umbayev B, Saliev T, Safarova (Yantsen) Y, Yermekova A, Olzhayev F, Bulanin D, Tsoy A, Askarova S. The Role of Cdc42 in the Insulin and Leptin Pathways Contributing to the Development of Age-Related Obesity. Nutrients 2023; 15:4964. [PMID: 38068822 PMCID: PMC10707920 DOI: 10.3390/nu15234964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Age-related obesity significantly increases the risk of chronic diseases such as type 2 diabetes, cardiovascular diseases, hypertension, and certain cancers. The insulin-leptin axis is crucial in understanding metabolic disturbances associated with age-related obesity. Rho GTPase Cdc42 is a member of the Rho family of GTPases that participates in many cellular processes including, but not limited to, regulation of actin cytoskeleton, vesicle trafficking, cell polarity, morphology, proliferation, motility, and migration. Cdc42 functions as an integral part of regulating insulin secretion and aging. Some novel roles for Cdc42 have also been recently identified in maintaining glucose metabolism, where Cdc42 is involved in controlling blood glucose levels in metabolically active tissues, including skeletal muscle, adipose tissue, pancreas, etc., which puts this protein in line with other critical regulators of glucose metabolism. Importantly, Cdc42 plays a vital role in cellular processes associated with the insulin and leptin signaling pathways, which are integral elements involved in obesity development if misregulated. Additionally, a change in Cdc42 activity may affect senescence, thus contributing to disorders associated with aging. This review explores the complex relationships among age-associated obesity, the insulin-leptin axis, and the Cdc42 signaling pathway. This article sheds light on the vast molecular web that supports metabolic dysregulation in aging people. In addition, it also discusses the potential therapeutic implications of the Cdc42 pathway to mitigate obesity since some new data suggest that inhibition of Cdc42 using antidiabetic drugs or antioxidants may promote weight loss in overweight or obese patients.
Collapse
Affiliation(s)
- Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | - Yuliya Safarova (Yantsen)
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Aislu Yermekova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Denis Bulanin
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| |
Collapse
|
11
|
Ugrankar-Banerjee R, Tran S, Bowerman J, Kovalenko A, Paul B, Henne WM. The fat body cortical actin network regulates Drosophila inter-organ nutrient trafficking, signaling, and adipose cell size. eLife 2023; 12:e81170. [PMID: 37144872 PMCID: PMC10202455 DOI: 10.7554/elife.81170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Defective nutrient storage and adipocyte enlargement (hypertrophy) are emerging features of metabolic syndrome and type 2 diabetes. Within adipose tissues, how the cytoskeletal network contributes to adipose cell size, nutrient uptake, fat storage, and signaling remain poorly understood. Utilizing the Drosophila larval fat body (FB) as a model adipose tissue, we show that a specific actin isoform-Act5C-forms the cortical actin network necessary to expand adipocyte cell size for biomass storage in development. Additionally, we uncover a non-canonical role for the cortical actin cytoskeleton in inter-organ lipid trafficking. We find Act5C localizes to the FB cell surface and cell-cell boundaries, where it intimately contacts peripheral LDs (pLDs), forming a cortical actin network for cell architectural support. FB-specific loss of Act5C perturbs FB triglyceride (TG) storage and LD morphology, resulting in developmentally delayed larvae that fail to develop into flies. Utilizing temporal RNAi-depletion approaches, we reveal that Act5C is indispensable post-embryogenesis during larval feeding as FB cells expand and store fat. Act5C-deficient FBs fail to grow, leading to lipodystrophic larvae unable to accrue sufficient biomass for complete metamorphosis. In line with this, Act5C-deficient larvae display blunted insulin signaling and reduced feeding. Mechanistically, we also show this diminished signaling correlates with decreased lipophorin (Lpp) lipoprotein-mediated lipid trafficking, and find Act5C is required for Lpp secretion from the FB for lipid transport. Collectively, we propose that the Act5C-dependent cortical actin network of Drosophila adipose tissue is required for adipose tissue size-expansion and organismal energy homeostasis in development, and plays an essential role in inter-organ nutrient transport and signaling.
Collapse
Affiliation(s)
| | - Son Tran
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| | - Jade Bowerman
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| | | | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| |
Collapse
|
12
|
Glunk V, Laber S, Sinnott-Armstrong N, Sobreira DR, Strobel SM, Batista TM, Kubitz P, Moud BN, Ebert H, Huang Y, Brandl B, Garbo G, Honecker J, Stirling DR, Abdennur N, Calabuig-Navarro V, Skurk T, Ocvirk S, Stemmer K, Cimini BA, Carpenter AE, Dankel SN, Lindgren CM, Hauner H, Nobrega MA, Claussnitzer M. A non-coding variant linked to metabolic obesity with normal weight affects actin remodelling in subcutaneous adipocytes. Nat Metab 2023; 5:861-879. [PMID: 37253881 PMCID: PMC11533588 DOI: 10.1038/s42255-023-00807-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Recent large-scale genomic association studies found evidence for a genetic link between increased risk of type 2 diabetes and decreased risk for adiposity-related traits, reminiscent of metabolically obese normal weight (MONW) association signatures. However, the target genes and cellular mechanisms driving such MONW associations remain to be identified. Here, we systematically identify the cellular programmes of one of the top-scoring MONW risk loci, the 2q24.3 risk locus, in subcutaneous adipocytes. We identify a causal genetic variant, rs6712203, an intronic single-nucleotide polymorphism in the COBLL1 gene, which changes the conserved transcription factor motif of POU domain, class 2, transcription factor 2, and leads to differential COBLL1 gene expression by altering the enhancer activity at the locus in subcutaneous adipocytes. We then establish the cellular programme under the genetic control of the 2q24.3 MONW risk locus and the effector gene COBLL1, which is characterized by impaired actin cytoskeleton remodelling in differentiating subcutaneous adipocytes and subsequent failure of these cells to accumulate lipids and develop into metabolically active and insulin-sensitive adipocytes. Finally, we show that perturbations of the effector gene Cobll1 in a mouse model result in organismal phenotypes matching the MONW association signature, including decreased subcutaneous body fat mass and body weight along with impaired glucose tolerance. Taken together, our results provide a mechanistic link between the genetic risk for insulin resistance and low adiposity, providing a potential therapeutic hypothesis and a framework for future identification of causal relationships between genome associations and cellular programmes in other disorders.
Collapse
Affiliation(s)
- Viktoria Glunk
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Samantha Laber
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
| | - Nasa Sinnott-Armstrong
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Herbold Computational Biology Program, Publich Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Debora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Sophie M Strobel
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
| | - Thiago M Batista
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Phil Kubitz
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bahareh Nemati Moud
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hannah Ebert
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Yi Huang
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beate Brandl
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Garrett Garbo
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
| | - Julius Honecker
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - David R Stirling
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nezar Abdennur
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Virtu Calabuig-Navarro
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Thomas Skurk
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Soeren Ocvirk
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Intestinal Microbiology Research Group, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Kerstin Stemmer
- Molecular Cell Biology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Simon N Dankel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Cecilia M Lindgren
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Hans Hauner
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Marcelo A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA.
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Saavedra-Peña RDM, Taylor N, Flannery C, Rodeheffer MS. Estradiol cycling drives female obesogenic adipocyte hyperplasia. Cell Rep 2023; 42:112390. [PMID: 37053070 PMCID: PMC10567995 DOI: 10.1016/j.celrep.2023.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/21/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
White adipose tissue (WAT) distribution is sex dependent. Adipocyte hyperplasia contributes to WAT distribution in mice driven by cues in the tissue microenvironment, with females displaying hyperplasia in subcutaneous and visceral WAT, while males and ovariectomized females have visceral WAT (VWAT)-specific hyperplasia. However, the mechanism underlying sex-specific hyperplasia remains elusive. Here, transcriptome analysis in female mice shows that high-fat diet (HFD) induces estrogen signaling in adipocyte precursor cells (APCs). Analysis of APCs throughout the estrous cycle demonstrates increased proliferation only when proestrus (high estrogen) coincides with the onset of HFD feeding. We further show that estrogen receptor α (ERα) is required for this proliferation and that estradiol treatment at the onset of HFD feeding is sufficient to drive it. This estrous influence on APC proliferation leads to increased obesity driven by adipocyte hyperplasia. These data indicate that estrogen drives ERα-dependent obesogenic adipocyte hyperplasia in females, exacerbating obesity and contributing to the differential fat distribution between the sexes.
Collapse
Affiliation(s)
- Rocío Del M Saavedra-Peña
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Natalia Taylor
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Clare Flannery
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520, USA; Section of Endocrinology and Metabolism, Yale University, New Haven, CT 06520, USA
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Yale Center for Molecular and Systems Metabolism, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
14
|
Johnston EK, Abbott RD. Adipose Tissue Paracrine-, Autocrine-, and Matrix-Dependent Signaling during the Development and Progression of Obesity. Cells 2023; 12:407. [PMID: 36766750 PMCID: PMC9913478 DOI: 10.3390/cells12030407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity is an ever-increasing phenomenon, with 42% of Americans being considered obese (BMI ≥ 30) and 9.2% being considered morbidly obese (BMI ≥ 40) as of 2016. With obesity being characterized by an abundance of adipose tissue expansion, abnormal tissue remodeling is a typical consequence. Importantly, this pathological tissue expansion is associated with many alterations in the cellular populations and phenotypes within the tissue, lending to cellular, paracrine, mechanical, and metabolic alterations that have local and systemic effects, including diabetes and cardiovascular disease. In particular, vascular dynamics shift during the progression of obesity, providing signaling cues that drive metabolic dysfunction. In this review, paracrine-, autocrine-, and matrix-dependent signaling between adipocytes and endothelial cells is discussed in the context of the development and progression of obesity and its consequential diseases, including adipose fibrosis, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Mediation by DNA methylation on the association of BMI and serum uric acid in Chinese monozygotic twins. Gene 2023; 850:146957. [DOI: 10.1016/j.gene.2022.146957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 02/13/2023]
|
16
|
Dickson E, Fryklund C, Soylu-Kucharz R, Sjögren M, Stenkula KG, Björkqvist M. Altered Adipocyte Cell Size Distribution Prior to Weight Loss in the R6/2 Model of Huntington's Disease. J Huntingtons Dis 2023; 12:253-266. [PMID: 37718850 DOI: 10.3233/jhd-230587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Metabolic alterations contribute to disease onset and prognosis of Huntington's disease (HD). Weight loss in the R6/2 mouse model of HD is a consistent feature, with onset in mid-to-late stage of disease. OBJECTIVE In the present study, we aimed to investigate molecular and functional changes in white adipose tissue (WAT) that occur at weight loss in R6/2 mice. We further elaborated on the effect of leptin-deficiency and early obesity in R6/2 mice. METHODS We performed analyses at 12 weeks of age; a time point that coincides with the start of weight loss in our R6/2 mouse colony. Gonadal (visceral) and inguinal (subcutaneous) WAT depot weights were monitored, as well as adipocyte size distribution. Response to isoprenaline-stimulated glycerol release and insulin-stimulated glucose uptake in adipocytes from gonadal WAT was assessed. RESULTS In R6/2 mice, WAT depot weights were comparable to wildtype (WT) mice, and the response to insulin and isoprenaline in gonadal adipocytes was unaltered. Leptin-deficient R6/2 mice exhibited distinct changes compared to leptin-deficient WT mice. At 12 weeks, female leptin-deficient R6/2 mice had reduced body weight accompanied by an increased proportion of smaller adipocytes, while in contrast; male mice displayed a shift towards larger adipocyte sizes without a significant body weight reduction at this timepoint. CONCLUSIONS We here show that there are early sex-specific changes in adipocyte cell size distribution in WAT of R6/2 mice and leptin-deficient R6/2 mice.
Collapse
Affiliation(s)
- Elna Dickson
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Claes Fryklund
- Glucose Transport and Protein Trafficking, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rana Soylu-Kucharz
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marie Sjögren
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karin G Stenkula
- Glucose Transport and Protein Trafficking, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Simonsson C, Lövfors W, Bergqvist N, Nyman E, Gennemark P, Stenkula KG, Cedersund G. A multi-scale in silico mouse model for diet-induced insulin resistance. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
GLUT4 translocation and dispersal operate in multiple cell types and are negatively correlated with cell size in adipocytes. Sci Rep 2022; 12:20535. [PMID: 36446811 PMCID: PMC9708847 DOI: 10.1038/s41598-022-24736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
The regulated translocation of the glucose transporter, GLUT4, to the surface of adipocytes and muscle is a key action of insulin. This is underpinned by the delivery and fusion of GLUT4-containing vesicles with the plasma membrane. Recent studies have revealed that a further action of insulin is to mediate the dispersal of GLUT4 molecules away from the site of GLUT4 vesicle fusion with the plasma membrane. Although shown in adipocytes, whether insulin-stimulated dispersal occurs in other cells and/or is exhibited by other proteins remains a matter of debate. Here we show that insulin stimulates GLUT4 dispersal in the plasma membrane of adipocytes, induced pluripotent stem cell-derived cardiomyocytes and HeLa cells, suggesting that this phenomenon is specific to GLUT4 expressed in all cell types. By contrast, insulin-stimulated dispersal of TfR was not observed in HeLa cells, suggesting that the mechanism may be unique to GLUT4. Consistent with dispersal being an important physiological mechanism, we observed that insulin-stimulated GLUT4 dispersal is reduced under conditions of insulin resistance. Adipocytes of different sizes have been shown to exhibit distinct metabolic properties: larger adipocytes exhibit reduced insulin-stimulated glucose transport compared to smaller cells. Here we show that both GLUT4 delivery to the plasma membrane and GLUT4 dispersal are reduced in larger adipocytes, supporting the hypothesis that larger adipocytes are refractory to insulin challenge compared to their smaller counterparts, even within a supposedly homogeneous population of cells.
Collapse
|
19
|
Li Q, Spalding KL. The regulation of adipocyte growth in white adipose tissue. Front Cell Dev Biol 2022; 10:1003219. [PMID: 36483678 PMCID: PMC9723158 DOI: 10.3389/fcell.2022.1003219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 10/25/2023] Open
Abstract
Adipocytes can increase in volume up to a thousand-fold, storing excess calories as triacylglycerol in large lipid droplets. The dramatic morphological changes required of adipocytes demands extensive cytoskeletal remodeling, including lipid droplet and plasma membrane expansion. Cell growth-related signalling pathways are activated, stimulating the production of sufficient amino acids, functional lipids and nucleotides to meet the increasing cellular needs of lipid storage, metabolic activity and adipokine secretion. Continued expansion gives rise to enlarged (hypertrophic) adipocytes. This can result in a failure to maintain growth-related homeostasis and an inability to cope with excess nutrition or respond to stimuli efficiently, ultimately leading to metabolic dysfunction. We summarize recent studies which investigate the functional and cellular structure remodeling of hypertrophic adipocytes. How adipocytes adapt to an enlarged cell size and how this relates to cellular dysfunction are discussed. Understanding the healthy and pathological processes involved in adipocyte hypertrophy may shed light on new strategies for promoting healthy adipose tissue expansion.
Collapse
Affiliation(s)
- Qian Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kirsty L. Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Fryklund C, Neuhaus M, Morén B, Borreguero-Muñoz A, Lundmark R, Stenkula KG. Expansion of the Inguinal Adipose Tissue Depot Correlates With Systemic Insulin Resistance in C57BL/6J Mice. Front Cell Dev Biol 2022; 10:942374. [PMID: 36158197 PMCID: PMC9489915 DOI: 10.3389/fcell.2022.942374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
To accommodate surplus energy, the adipose tissue expands by increasing adipocyte size (hypertrophy) and number (hyperplasia). The presence of hypertrophic adipocytes is a key characteristic of adipose tissue dysfunction. High-fat diet (HFD) fed C57BL/6J mice are a commonly used model to study obesity and obesity-related complications. In the present study, we have characterized adipose plasticity, at both the cellular and tissue level, by examining the temporal development of systemic insulin resistance and adiposity in response to HFD-feeding for 4, 8, and 12 weeks (4w, 8w, and 12w). Within the same time frame, we examined systemic metabolic flexibility and adipose plasticity when switching from HFD- to chow-diet during the last 2 weeks of diet intervention (referred to as the reverse (REV) group: 4wREV (2w HFD+2w chow), 8wREV (6w HFD+2w chow), 12wREV (10w HFD+2w chow)). In response to HFD-feeding over time, the 12w group had impaired systemic insulin sensitivity compared to both the 4w and 8w groups, accompanied by an increase in hypertrophic inguinal adipocytes and liver triglycerides. After reversing from HFD- to chow-feeding, most parameters were completely restored to chow control levels for 4wREV and 8wREV groups. In contrast, the 12wREV group had a significantly increased number of hypertrophic adipocytes, liver triglycerides accumulation, and impaired systemic insulin sensitivity compared to chow-fed mice. Further, image analysis at the single-cell level revealed a cell-size dependent organization of actin filaments for all feeding conditions. Indeed, the impaired adipocyte size plasticity in the 12wREV group was accompanied by increased actin filamentation and reduced insulin-stimulated glucose uptake compared with chow-fed mice. In summary, these results demonstrate that the C57BL/6J HFD-feeding model has a large capacity to restore adipocyte cell size and systemic insulin sensitivity, and that a metabolic tipping point occurs between 8 and 12w of HFD-feeding where this plasticity deteriorates. We believe these findings provide substantial understanding of C57BL/6J mice as an obesity model, and that an increased pool of hypertrophic ING adipocytes could contribute to aggravated insulin resistance.
Collapse
Affiliation(s)
- Claes Fryklund
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Claes Fryklund,
| | - Mathis Neuhaus
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Björn Morén
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | | | - Karin G. Stenkula
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Zhang Z, Zhang Y, Bao Q, Gu Y, Liang C, Chu M, Guo X, Bao P, Yan P. The Landscape of Accessible Chromatin during Yak Adipocyte Differentiation. Int J Mol Sci 2022; 23:ijms23179960. [PMID: 36077381 PMCID: PMC9456067 DOI: 10.3390/ijms23179960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Although significant advancement has been made in the study of adipogenesis, knowledge about how chromatin accessibility regulates yak adipogenesis is lacking. We here described genome-wide dynamic chromatin accessibility in preadipocytes and adipocytes by using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), and thus revealed the unique characteristics of open chromatin during yak adipocyte differentiation. The chromatin accessibility of preadipocytes and adipocytes exhibited a similar genomic distribution, displaying a preferential location within the intergenic region, intron, and promoter. The pathway enrichment analysis identified that genes with differential chromatin accessibility were involved in adipogenic metabolism regulation pathways, such as the peroxisome proliferator activated receptor-γ (PPAR) signaling pathway, wingless-type MMTV integration site (Wnt) signaling pathway, and extracellular matrix-receptor (ECM–receptor) interaction. Integration of ATAC-seq and mRNA-seq revealed that genes with a high expression were associated with high levels of chromatin accessibility, especially within 1 kb upstream and downstream of the transcription start site. In addition, we identified a series of transcription factors (TFs) related to adipogenesis and created the TF regulatory network, providing the possible interactions between TFs during yak adipogenesis. This study is crucial for advancing the understanding of transcriptional regulatory mechanisms of adipogenesis and provides valuable information for understanding the adaptation of plateau species to high-altitude environments by maintaining whole body homeostasis through fat metabolism.
Collapse
Affiliation(s)
- Zhilong Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongfeng Zhang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Qi Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yarong Gu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-216-4180
| |
Collapse
|
22
|
Colitti M, Ali U, Wabitsch M, Tews D. Transcriptomic analysis of Simpson Golabi Behmel syndrome cells during differentiation exhibit BAT-like function. Tissue Cell 2022; 77:101822. [DOI: 10.1016/j.tice.2022.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
|
23
|
Lecoutre S, Lambert M, Drygalski K, Dugail I, Maqdasy S, Hautefeuille M, Clément K. Importance of the Microenvironment and Mechanosensing in Adipose Tissue Biology. Cells 2022; 11:cells11152310. [PMID: 35954152 PMCID: PMC9367348 DOI: 10.3390/cells11152310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The expansion of adipose tissue is an adaptive mechanism that increases nutrient buffering capacity in response to an overall positive energy balance. Over the course of expansion, the adipose microenvironment undergoes continual remodeling to maintain its structural and functional integrity. However, in the long run, adipose tissue remodeling, typically characterized by adipocyte hypertrophy, immune cells infiltration, fibrosis and changes in vascular architecture, generates mechanical stress on adipose cells. This mechanical stimulus is then transduced into a biochemical signal that alters adipose function through mechanotransduction. In this review, we describe the physical changes occurring during adipose tissue remodeling, and how they regulate adipose cell physiology and promote obesity-associated dysfunction in adipose tissue.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Mélanie Lambert
- Labex Inflamex, Université Sorbonne Paris Nord, INSERM, F-93000 Bobigny, France;
| | - Krzysztof Drygalski
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR 7622), IBPS, Sorbonne Université, F-75005 Paris, France;
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
- Assistance Publique Hôpitaux de Paris, Nutrition Department, CRNH Ile-de-France, Pitié-Salpêtrière Hospital, F-75013 Paris, France
- Correspondence: or
| |
Collapse
|
24
|
Abuhattum S, Kotzbeck P, Schlüßler R, Harger A, Ariza de Schellenberger A, Kim K, Escolano JC, Müller T, Braun J, Wabitsch M, Tschöp M, Sack I, Brankatschk M, Guck J, Stemmer K, Taubenberger AV. Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens. Sci Rep 2022; 12:10325. [PMID: 35725987 PMCID: PMC9209483 DOI: 10.1038/s41598-022-13324-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders.
Collapse
Affiliation(s)
- Shada Abuhattum
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Petra Kotzbeck
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| | - Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Alexandra Harger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Angela Ariza de Schellenberger
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Joan-Carles Escolano
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Torsten Müller
- JPK Instruments/Bruker, Colditzstr. 34-36, 12099, Berlin, Germany
| | - Jürgen Braun
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Wabitsch
- Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marko Brankatschk
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Molecular Cell Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159, Augsburg, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany.
| |
Collapse
|
25
|
Potolitsyna E, Hazell Pickering S, Germier T, Collas P, Briand N. Long non-coding RNA HOTAIR regulates cytoskeleton remodeling and lipid storage capacity during adipogenesis. Sci Rep 2022; 12:10157. [PMID: 35710716 PMCID: PMC9203762 DOI: 10.1038/s41598-022-14296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
The long non-coding RNA HOTAIR is the most differentially expressed gene between upper- and lower-body adipose tissue, yet its functional significance in adipogenesis is unclear. We report that HOTAIR expression is transiently induced during early adipogenic differentiation of gluteofemoral adipose progenitors and repressed in mature adipocytes. Upon adipogenic commitment, HOTAIR regulates protein synthesis pathways and cytoskeleton remodeling with a later impact on mature adipocyte lipid storage capacity. Our results support novel and important functions of HOTAIR in the physiological context of adipogenesis.
Collapse
Affiliation(s)
- Evdokiia Potolitsyna
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
| | - Sarah Hazell Pickering
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Thomas Germier
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway. .,Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424, Oslo, Norway.
| | - Nolwenn Briand
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway. .,Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424, Oslo, Norway.
| |
Collapse
|
26
|
Fraszczyk E, Spijkerman AMW, Zhang Y, Brandmaier S, Day FR, Zhou L, Wackers P, Dollé MET, Bloks VW, Gào X, Gieger C, Kooner J, Kriebel J, Picavet HSJ, Rathmann W, Schöttker B, Loh M, Verschuren WMM, van Vliet-Ostaptchouk JV, Wareham NJ, Chambers JC, Ong KK, Grallert H, Brenner H, Luijten M, Snieder H. Epigenome-wide association study of incident type 2 diabetes: a meta-analysis of five prospective European cohorts. Diabetologia 2022; 65:763-776. [PMID: 35169870 PMCID: PMC8960572 DOI: 10.1007/s00125-022-05652-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 11/15/2021] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is a complex metabolic disease with increasing prevalence worldwide. Improving the prediction of incident type 2 diabetes using epigenetic markers could help tailor prevention efforts to those at the highest risk. The aim of this study was to identify predictive methylation markers for incident type 2 diabetes by combining epigenome-wide association study (EWAS) results from five prospective European cohorts. METHODS We conducted a meta-analysis of EWASs in blood collected 7-10 years prior to type 2 diabetes diagnosis. DNA methylation was measured with Illumina Infinium Methylation arrays. A total of 1250 cases and 1950 controls from five longitudinal cohorts were included: Doetinchem, ESTHER, KORA1, KORA2 and EPIC-Norfolk. Associations between DNA methylation and incident type 2 diabetes were examined using robust linear regression with adjustment for potential confounders. Inverse-variance fixed-effects meta-analysis of cohort-level individual CpG EWAS estimates was performed using METAL. The methylGSA R package was used for gene set enrichment analysis. Confirmation of genome-wide significant CpG sites was performed in a cohort of Indian Asians (LOLIPOP, UK). RESULTS The meta-analysis identified 76 CpG sites that were differentially methylated in individuals with incident type 2 diabetes compared with control individuals (p values <1.1 × 10-7). Sixty-four out of 76 (84.2%) CpG sites were confirmed by directionally consistent effects and p values <0.05 in an independent cohort of Indian Asians. However, on adjustment for baseline BMI only four CpG sites remained genome-wide significant, and addition of the 76 CpG methylation risk score to a prediction model including established predictors of type 2 diabetes (age, sex, BMI and HbA1c) showed no improvement (AUC 0.757 vs 0.753). Gene set enrichment analysis of the full epigenome-wide results clearly showed enrichment of processes linked to insulin signalling, lipid homeostasis and inflammation. CONCLUSIONS/INTERPRETATION By combining results from five European cohorts, and thus significantly increasing study sample size, we identified 76 CpG sites associated with incident type 2 diabetes. Replication of 64 CpGs in an independent cohort of Indian Asians suggests that the association between DNA methylation levels and incident type 2 diabetes is robust and independent of ethnicity. Our data also indicate that BMI partly explains the association between DNA methylation and incident type 2 diabetes. Further studies are required to elucidate the underlying biological mechanisms and to determine potential causal roles of the differentially methylated CpG sites in type 2 diabetes development.
Collapse
Affiliation(s)
- Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Annemieke M W Spijkerman
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Brandmaier
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Felix R Day
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Li Zhou
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Paul Wackers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jaspal Kooner
- Department of Cardiology, Ealing Hospital, Ealing, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jennifer Kriebel
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - H Susan J Picavet
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Auf'm Hennekamp, Duesseldorf, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - W M Monique Verschuren
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Genomics Coordination Center, Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Department of Paediatrics, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
27
|
M’Bana V, Lahree A, Marques S, Slavic K, Mota MM. Plasmodium parasitophorous vacuole membrane-resident protein UIS4 manipulates host cell actin to avoid parasite elimination. iScience 2022; 25:104281. [PMID: 35573190 PMCID: PMC9095750 DOI: 10.1016/j.isci.2022.104281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/09/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
Parasite-derived PVM-resident proteins are critical for complete parasite development inside hepatocytes, although the function of most of these proteins remains unknown. Here, we show that the upregulated in infectious sporozoites 4 (UIS4) protein, resident at the PVM, interacts with the host cell actin. By suppressing filamentous actin formation, UIS4 avoids parasite elimination. Host cell actin dynamics increases around UIS4-deficient parasites, which is associated with subsequent parasite elimination. Notably, parasite elimination is impaired significantly by the inhibition of host myosin-II, possibly through relieving the compression generated by actomyosin complexes at the host-parasite interface. Together, these data reveal that UIS4 has a critical role in the evasion of host defensive mechanisms, enabling hence EEF survival and development. Plasmodium PVM-resident protein UIS4 interacts with host cell actin Host actin dynamics is altered around exoerythocytic forms (EEFs) lacking UIS4 Actin activity around EEFs lacking UIS4 is associated with parasite elimination Parasite elimination depends on actomyosin complexes formed around the PVM
Collapse
|
28
|
Fryklund C, Morén B, Neuhaus M, Periwal V, Stenkula KG. Rosiglitazone treatment enhances intracellular actin dynamics and glucose transport in hypertrophic adipocytes. Life Sci 2022; 299:120537. [PMID: 35398016 DOI: 10.1016/j.lfs.2022.120537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
AIMS To accommodate surplus energy, adipose tissue expands by increasing both adipose cell size (hypertrophy) and cell number (hyperplasia). Enlarged, hypertrophic adipocytes are known to have reduced insulin response and impaired glucose transport, which negatively influence whole-body glucose homeostasis. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, known to stimulate hyperplasia and to efficiently improve insulin sensitivity. Still, a limited amount of research has investigated the effects of rosiglitazone in mature, hypertrophic adipocytes. Therefore, the objective of this study was to examine rosiglitazone's effect on insulin-stimulated glucose uptake in hypertrophic adipocytes. MAIN METHODS C57BL/6J male mice were subjected to 2 weeks of high-fat diet (HFD) followed by 1 week of HFD combined with daily administration of rosiglitazone (10 mg/kg). Adipose cell-size distribution and gene expression were analysed in intact adipose tissue, and glucose uptake, insulin response, and protein expression were examined using primary adipocytes isolated from epididymal and inguinal adipose tissue. KEY FINDINGS HFD-feeding induced an accumulation of hypertrophic adipocytes, which was not affected by rosiglitazone-treatment. Still, rosiglitazone efficiently improved insulin-stimulated glucose transport without restoring insulin signaling or GLUT4 expression in similar-sized adipocytes. This improvement occurred concurrently with extracellular matrix remodelling and restored intracellular levels of targets involved in actin turnover. SIGNIFICANCE These results demonstrate that rosiglitazone improves glucose transport in hypertrophic adipocytes, and highlights the importance of the cytoskeleton and extracellular matrix as potential therapeutic targets.
Collapse
Affiliation(s)
- Claes Fryklund
- Department of Experimental Medical Science, Lund University, Sweden.
| | - Björn Morén
- Department of Experimental Medical Science, Lund University, Sweden
| | | | - Vipul Periwal
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, USA
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
29
|
da Costa JLF, Furino VDO, de Castro CA, Alves JM, Duarte ACGDO. Dietary Intervention Associated With Moderate-Intensity Continuous Training Leads to Changes in the Inflammatory Profile in Visceral Adipose Tissue but Not in Skeletal Muscle in Diet-Induced Obese Rats. Front Physiol 2022; 13:836484. [PMID: 35399283 PMCID: PMC8990936 DOI: 10.3389/fphys.2022.836484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to determine the concentrations of inflammatory markers in visceral adipose tissue (VAT) and skeletal muscle, and changes in body mass and adipocyte size in diet-induced obese rats after moderate-intensity continuous training (MICT) and/or dietary intervention. After 8 weeks of obesity induction through a high-fat diet (HFD) consumption, twenty diet-induced obese male Wistar rats were divided into four groups as follows: (i) control rats fed with HFD (HFD-SED), (ii) obese rats fed with HFD and submitted to MICT (HFD-MICT), (iii) obese rats that were submitted to a nutritional intervention by switching HFD to chow diet (CD-SED), and (iv) obese rats that were submitted to MICT and nutritional intervention (CD-MICT). All the animals in the training groups were submitted to MICT, with an intensity of 50–85% of Vmax, 60 min/day, 3 days/week for 8 weeks. Gastrocnemius muscle (GAST) and mesenteric adipose tissue (mWAT) were collected to quantify tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and IL-10 using ELISA. The body mass was recorded before and after the experimental protocols, and the adipocyte morphology was assessed using histological analysis. The results showed that HFD-SED had higher body mass, higher concentrations of inflammatory markers in mWAT, and higher increase in adipocyte size. The CD-SED and CD-MICT groups presented with reduced body mass, relative weight of mWAT, and adipocyte size. Moreover, the inflammatory markers in mWAT were reduced after dietary intervention (TNF-α), MICT (IL-10 and TNF-α), or both interventions combined (IL-6 and TNF-α). In contrast, there was no reduction in GAST-relative weight or concentrations of inflammatory markers for any treatment. Finally, we concluded that 8 weeks of dietary intervention alone and combined with MICT were effective in reducing some of the deleterious effects caused by obesity.
Collapse
Affiliation(s)
- Jean Lucas Fernandes da Costa
- Department of Physical Education and Human Motricity–DEFMH, Biological and Health Sciences Center–CCBS, Federal University of São Carlos–UFSCar, São Carlos, Brazil
- *Correspondence: Jean Lucas Fernandes da Costa,
| | - Vanessa de Oliveira Furino
- Department of Physical Education and Human Motricity–DEFMH, Biological and Health Sciences Center–CCBS, Federal University of São Carlos–UFSCar, São Carlos, Brazil
| | - Cynthia Aparecida de Castro
- Department of Morphology and Pathology-Biological and Health Sciences Center–CCBS, Federal University of São Carlos–UFSCar, São Carlos, Brazil
| | - João Manoel Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center of Research of Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Cláudia Garcia de Oliveira Duarte
- Department of Physical Education and Human Motricity–DEFMH, Biological and Health Sciences Center–CCBS, Federal University of São Carlos–UFSCar, São Carlos, Brazil
| |
Collapse
|
30
|
Pessoa J, Teixeira J. Cytoskeleton alterations in non-alcoholic fatty liver disease. Metabolism 2022; 128:155115. [PMID: 34974078 DOI: 10.1016/j.metabol.2021.155115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Due to its extremely high prevalence and severity, non-alcoholic fatty liver disease (NALFD) is a serious health and economic concern worldwide. Developing effective methods of diagnosis and therapy demands a deeper understanding of its molecular basis. One of the strategies in such an endeavor is the analysis of alterations in the morphology of liver cells. Such alterations, widely reported in NAFLD patients and disease models, are related to the cytoskeleton. Therefore, the fate of the cytoskeleton components is useful to uncover the molecular basis of NAFLD, to further design innovative approaches for its diagnosis and therapy. MAIN FINDINGS Several cytoskeleton proteins are up-regulated in liver cells of NAFLD patients. Under pathological conditions, keratin 18 is released from hepatocytes and its detection in the blood emerges as a non-invasive diagnosis tool. α-Smooth muscle actin is up-regulated in hepatic stellate cells and its down-regulation has been widely tested as a potential NALFD therapeutic approach. Other cytoskeleton proteins, such as vimentin, are also up-regulated. CONCLUSIONS NAFLD progression involves alterations in expression levels of proteins that build the liver cytoskeleton or associate with it. These findings provide a timely opportunity of developing novel approaches for NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- João Pessoa
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
31
|
de Frutos S, Griera M, Hatem-Vaquero M, Campillo S, Gutiérrez-Calabres E, García-Ayuso D, Pardo M, Calleros L, Rodríguez-Puyol M, Rodríguez-Puyol D. The integrin beta1 modulator Tirofiban prevents adipogenesis and obesity by the overexpression of integrin-linked kinase: a pre-clinical approach in vitro and in vivo. Cell Biosci 2022; 12:10. [PMID: 35090553 PMCID: PMC8796419 DOI: 10.1186/s13578-022-00746-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background Obesity is caused by the enlargement of the white adipose tissue (WAT) depots, characterized by the hypertrophic enlargement of malfunctioning adipocytes within WAT which increases the storage of triglycerides (TG) in the lipid droplets (LD). Adipogenesis pathways as well as the expression and activity of some extracellular matrix receptors integrins are upregulated. Integrinβ1 (INTB1) is the main isoform involved in WAT remodeling during obesity and insulin resistance-related diseases. We recently described Integrin Linked Kinase (ILK), a scaffold protein recruited by INTB1, as an important mediator of WAT remodeling and insulin resistance. As the few approved drugs to fight obesity have brought long-term cardiovascular side effects and given that the consideration of INTB1 and/or ILK modulation as anti-obesogenic strategies remains unexplored, we aimed to evaluate the anti-obesogenic capacity of the clinically approved anticoagulant Tirofiban (TF), stated in preclinical studies as a cardiovascular protector. Methods Fully differentiated adipocytes originating from C3H10T1/2 were exposed to TF and were co-treated with specific INTB1 blockers or with siRNA-based knockdown ILK expression. Lipid-specific dyes were used to determine the TG content in LD. The genetic expression pattern of ILK, pro-inflammatory cytokines (MCP1, IL6), adipogenesis (PPARγ, Leptin), thermogenesis (UCP1), proliferation (PCNA), lipid metabolism (FASN, HSL, ATGL), and metabolite transporters (FABP4, FAT, AQP7) were detected using quantitative PCR. Cytoskeletal actin polymerization was detected by confocal microscopy. Immunoblotting was performed to detect INTB1 phosphorylation at Thr788/9 and ILK activity as phosphorylation levels of protein kinase B (AKT) in Ser473 and glycogen synthase kinase 3β (GSK3β) at Ser9. TF was intraperitoneally administered once per day to wildtype and ILK knockdown mice (cKDILK) challenged with a high-fat diet (HFD) or control diet (STD) for 2 weeks. Body and WAT weight gains were compared. The expression of ILK and other markers was determined in the visceral epididymal (epi) and inguinal subcutaneous (sc) WAT. Results TF reduced TG content and the expression of adipogenesis markers and transporters in adipocytes, while UCP-1 expression was increased and the expression of lipases, cytokines or PCNA was not affected. Mechanistically, TF rapidly increased and faded the intracellular phosphorylation of INTB1 but not AKT or GSK3β. F-actin levels were rapidly decreased, and INTB1 blockade avoided the TF effect. After 24 h, ILK expression and phosphorylation rates of AKT and GSK3β were upregulated, while ILK silencing increased TG content. INTB1 blockade and ILK silencing avoided TF effects on the TG content and the transcriptional expression of PPARγ and UCP1. In HFD-challenged mice, the systemic administration of TF for several days reduced the weight gain on WAT depots. TF reduced adipogenesis and pro-inflammatory biomarkers and increased lipolysis markers HSL and FAT in epiWAT from HFD, while increased UCP1 in scWAT. In both WATs, TF upregulated ILK expression and activity, while no changes were observed in other tissues. In HFD-fed cKDILK, the blunted ILK in epiWAT worsened weight gain and avoided the anti-obesogenic effect of in vivo TF administration. Conclusions ILK downregulation in WAT can be considered a biomarker of obesity establishment. Via an INTB1-ILK axis, TF restores malfunctioning hypertrophied WAT by changing the expression of adipocyte-related genes, increasing ILK expression and activity, and reducing TG storage. TF prevents obesity, a property to be added to its anticoagulant and cardiovascular protective advantages. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00746-1.
Collapse
|
32
|
Van Meijel RLJ, Wang P, Bouwman F, Blaak EE, Mariman ECM, Goossens GH. The Effects of Mild Intermittent Hypoxia Exposure on the Abdominal Subcutaneous Adipose Tissue Proteome in Overweight and Obese Men: A First-in-Human Randomized, Single-Blind, and Cross-Over Study. Front Physiol 2022; 12:791588. [PMID: 35058800 PMCID: PMC8764283 DOI: 10.3389/fphys.2021.791588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue (AT) oxygen tension (pO2) has been implicated in AT dysfunction and metabolic perturbations in both rodents and humans. Compelling evidence suggests that hypoxia exposure alters metabolism, at least partly through effects on AT. However, it remains to be elucidated whether mild intermittent hypoxia (MIH) exposure impacts the AT proteome. We performed a randomized, single-blind, and cross-over study to investigate the effects of seven consecutive days of MIH (FiO2 15%, 3x2h/d) compared to normoxia (FiO2 21%) exposure on the AT proteome in overweight/obese men. In vivo AT insulin sensitivity was determined by the gold standard hyperinsulinemic-euglycemic clamp, and abdominal subcutaneous AT biopsies were collected under normoxic fasting conditions following both exposure regimens (day 8). AT proteins were isolated and quantified using liquid chromatography-mass spectrometry. After correction for blood contamination, 1,022 AT protein IDs were identified, of which 123 were differentially expressed following MIH (p < 0.05). We demonstrate for the first time that MIH exposure, which markedly reduces in vivo AT oxygen tension, impacts the human AT proteome. Although we cannot exclude that a single differentially expressed protein might be a false positive finding, several functional pathways were altered by MIH exposure, also after adjustment for multiple testing. Specifically, differentially expressed proteins were involved in redox systems, cell-adhesion, actin cytoskeleton organization, extracellular matrix composition, and energy metabolism. The MIH-induced change in AT TMOD3 expression was strongly related to altered in vivo AT insulin sensitivity, thus linking MIH-induced effects on the AT proteome to metabolic changes in overweight/obese humans.
Collapse
Affiliation(s)
- Rens L J Van Meijel
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ping Wang
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Freek Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Edwin C M Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
33
|
Wei L, Shi J. Insight Into Rho Kinase Isoforms in Obesity and Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:886534. [PMID: 35769086 PMCID: PMC9234286 DOI: 10.3389/fendo.2022.886534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity and associated complications increasingly jeopardize global health and contribute to the rapidly rising prevalence of type 2 diabetes mellitus and obesity-related diseases. Developing novel methods for the prevention and treatment of excess body adipose tissue expansion can make a significant contribution to public health. Rho kinase is a Rho-associated coiled-coil-containing protein kinase (Rho kinase or ROCK). The ROCK family including ROCK1 and ROCK2 has recently emerged as a potential therapeutic target for the treatment of metabolic disorders. Up-regulated ROCK activity has been involved in the pathogenesis of all aspects of metabolic syndrome including obesity, insulin resistance, dyslipidemia and hypertension. The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in both white and beige adipogenesis. Studies using ROCK pan-inhibitors in animal models of obesity, diabetes, and associated complications have demonstrated beneficial outcomes. Studies via genetically modified animal models further established isoform-specific roles of ROCK in the pathogenesis of metabolic disorders including obesity. However, most reported studies have been focused on ROCK1 activity during the past decade. Due to the progress in developing ROCK2-selective inhibitors in recent years, a growing body of evidence indicates more attention should be devoted towards understanding ROCK2 isoform function in metabolism. Hence, studying individual ROCK isoforms to reveal their specific roles and principal mechanisms in white and beige adipogenesis, insulin sensitivity, energy balancing regulation, and obesity development will facilitate significant breakthroughs for systemic treatment with isoform-selective inhibitors. In this review, we give an overview of ROCK functions in the pathogenesis of obesity and insulin resistance with a particular focus on the current understanding of ROCK isoform signaling in white and beige adipogenesis, obesity and thermogenesis in adipose tissue and other major metabolic organs involved in energy homeostasis regulation.
Collapse
Affiliation(s)
- Lei Wei
- *Correspondence: Lei Wei, ; Jianjian Shi,
| | | |
Collapse
|
34
|
Al-Sayegh M, Ali H, Jamal MH, ElGindi M, Chanyong T, Al-Awadi K, Abu-Farha M. Mouse Embryonic Fibroblast Adipogenic Potential: A Comprehensive Transcriptome Analysis. Adipocyte 2021; 10:1-20. [PMID: 33345692 PMCID: PMC7757854 DOI: 10.1080/21623945.2020.1859789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our understanding of adipose tissue has progressed from an inert tissue for energy storage to be one of the largest endocrine organs regulating metabolic homoeostasis through its ability to synthesize and release various adipokines that regulate a myriad of pathways. The field of adipose tissue biology is growing due to this association with various chronic metabolic diseases. An important process in the regulation of adipose tissue biology is adipogenesis, which is the formation of new adipocytes. Investigating adipogenesis in vitro is currently a focus for identifying factors that might be utilized in clinically. A powerful tool for such work is high-throughput sequencing which can rapidly identify changes at gene expression level. Various cell models exist for studying adipogenesis and has been used in high-throughput studies, yet little is known about transcriptome profile that underlies adipogenesis in mouse embryonic fibroblasts. This study utilizes RNA-sequencing and computational analysis with DESeq2, gene ontology, protein–protein networks, and robust rank analysis to understand adipogenesis in mouse embryonic fibroblasts in-depth. Our analyses confirmed the requirement of mitotic clonal expansion prior to adipogenesis in this cell model and highlight the role of Cebpa and Cebpb in regulating adipogenesis through interactions of large numbers of genes.
Collapse
Affiliation(s)
- Mohamed Al-Sayegh
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| | - Mohammad H Jamal
- Department of Surgery, Faculty of Medicine, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
| | - Mei ElGindi
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Tina Chanyong
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Khulood Al-Awadi
- New York University Abu Dhabi, Design Studio, Abu Dhabi, United Arab Emirates
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| |
Collapse
|
35
|
Hypoxia induces stress fiber formation in adipocytes in the early stage of obesity. Sci Rep 2021; 11:21473. [PMID: 34728615 PMCID: PMC8563745 DOI: 10.1038/s41598-021-00335-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
In obese adipose tissue (AT), hypertrophic expansion of adipocytes is not matched by new vessel formation, leading to AT hypoxia. As a result, hypoxia inducible factor-1⍺ (HIF-1⍺) accumulates in adipocytes inducing a transcriptional program that upregulates profibrotic genes and biosynthetic enzymes such as lysyl oxidase (LOX) synthesis. This excess synthesis and crosslinking of extracellular matrix (ECM) components cause AT fibrosis. Although fibrosis is a hallmark of obese AT, the role of fibroblasts, cells known to regulate fibrosis in other fibrosis-prone tissues, is not well studied. Here we have developed an in vitro model of AT to study adipocyte-fibroblast crosstalk in a hypoxic environment. Further, this in vitro model was used to investigate the effect of hypoxia on adipocyte mechanical properties via ras homolog gene family member A (RhoA)/Rho-associated coiled-coil kinases (ROCK) signaling pathways. We confirmed that hypoxia creates a diseased phenotype by inhibiting adipocyte maturation and inducing actin stress fiber formation facilitated by myocardin-related transcription factor A (MRTF-A/MKL1) nuclear translocation. This work presents new potential therapeutic targets for obesity by improving adipocyte maturation and limiting mechanical stress in obese AT.
Collapse
|
36
|
Audano M, Pedretti S, Ligorio S, Gualdrini F, Polletti S, Russo M, Ghisletti S, Bean C, Crestani M, Caruso D, De Fabiani E, Mitro N. Zc3h10 regulates adipogenesis by controlling translation and F-actin/mitochondria interaction. J Cell Biol 2021; 220:e202003173. [PMID: 33566069 PMCID: PMC7879490 DOI: 10.1083/jcb.202003173] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
The commitment of mesenchymal stem cells to preadipocytes is stimulated by hormonal induction. Preadipocytes induced to differentiate repress protein synthesis, remodel their cytoskeleton, and increase mitochondrial function to support anabolic pathways. These changes enable differentiation into mature adipocytes. Our understanding of the factors that coordinately regulate the early events of adipocyte differentiation remains incomplete. Here, by using multipronged approaches, we have identified zinc finger CCCH-type containing 10 (Zc3h10) as a critical regulator of the early stages of adipogenesis. Zc3h10 depletion in preadipocytes resulted in increased protein translation and impaired filamentous (F)-actin remodeling, with the latter detrimental effect leading to mitochondrial and metabolic dysfunction. These defects negatively affected differentiation to mature adipocytes. In contrast, Zc3h10 overexpression yielded mature adipocytes with remarkably increased lipid droplet size. Overall, our study establishes Zc3h10 as a fundamental proadipogenic transcription factor that represses protein synthesis and promotes F-actin/mitochondria dynamics to ensure proper energy metabolism and favor lipid accumulation.
Collapse
Affiliation(s)
- Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Pedretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Ligorio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Humanitas University (Hunimed), Pieve Emanuele, Milan, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marta Russo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Camilla Bean
- Department of Biology, University of Padova, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
37
|
Kim DY, Moon SH, Han JH, Kim MJ, Oh SJ, Bharti D, Lee SH, Park JK, Rho GJ, Jeon BG. Terminal differentiation into adipocyte and growth inhibition by PPARγ activation in human A549 lung adenocarcinoma cells. Anim Cells Syst (Seoul) 2020; 24:329-340. [PMID: 33456717 PMCID: PMC7781920 DOI: 10.1080/19768354.2020.1847731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the terminal differentiation capacity into adipocytes and subsequent growth inhibition in A549 cancer cells treated with pioglitazone (PGZ), a PPARγ activator. The rate of cell growth in A549 cells was significantly (P < .05) inhibited in concentrations above 10 μM PGZ while maintaining less cytotoxic effects in MRC-5 fibroblasts. Following 50 μM PGZ treatment, population doubling time (PDT) was significantly (P < .05) increased by inhibition of cell growth, as per increasing PGZ exposure time by up to 4 weeks. The adiposome-like vesicles were commonly observed in the PGZ-treated A549 cells, and the vesicles were highly stained with Oil-Red O solution. In addition, the cell size and expression of GLUT4 and PPARγ were significantly (P < .05) increased, as per increasing PGZ exposure time by up to 4 weeks. The significant (P < .05) down-regulation of telomerase activity and up-regulation of senescence-associated β-galactosidase (SA β-GAL) activity was displayed in the PGZ-treated A549 cells, as per increasing PGZ exposure time by up to 4 weeks. The G1 phase of the cell cycle was also significantly (P < .05) increased in the PGZ-treated A549 cells compared with untreated A549 cells. The present results have demonstrated that activation of PPARγ using PGZ induces cellular differentiation into adipocytes and inhibits cell growth in the A549 cancer cells. The terminal differentiation into adipocytes could offer potent chemotherapy in the cancer cells showing high glucose metabolism.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-Ha Moon
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Jang-Ho Han
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Mi-Jeong Kim
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Seong-Ju Oh
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Ho Lee
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong-Kuen Park
- Department of Chemistry Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Byeong-Gyun Jeon
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea.,Institute of Education, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
38
|
Liu F, He J, Wang H, Zhu D, Bi Y. Adipose Morphology: a Critical Factor in Regulation of Human Metabolic Diseases and Adipose Tissue Dysfunction. Obes Surg 2020; 30:5086-5100. [PMID: 33021706 PMCID: PMC7719100 DOI: 10.1007/s11695-020-04983-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
Emerging evidence highlights that dysfunction of adipose tissue contributes to impaired insulin sensitivity and systemic metabolic deterioration in obese state. Of note, adipocyte hypertrophy serves as a critical event which associates closely with adipose dysfunction. An increase in cell size exacerbates hypoxia and inflammation as well as excessive collagen deposition, finally leading to metabolic dysregulation. Specific mechanisms of adipocyte hypertrophy include dysregulated differentiation and maturation of preadipocytes, enlargement of lipid droplets, and abnormal adipocyte osmolarity sensors. Also, weight loss therapies exert profound influence on adipocyte size. Here, we summarize the critical role of adipocyte hypertrophy in the development of metabolic disturbances. Future studies are required to establish a standard criterion of size measurement to better clarify the impact of adipocyte hypertrophy on changes in metabolic homeostasis.
Collapse
Affiliation(s)
- Fangcen Liu
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Jielei He
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
39
|
Morén B, Fryklund C, Stenkula K. Surface-associated lipid droplets: an intermediate site for lipid transport in human adipocytes? Adipocyte 2020; 9:636-648. [PMID: 33108251 PMCID: PMC7595579 DOI: 10.1080/21623945.2020.1838684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Adipose tissue plays a major role in regulating whole-body energy metabolism. While the biochemical processes regulating storage and release of excess energy are well known, the temporal organization of these events is much less defined. In this study, we have characterized the presence of small surface-associated lipid droplets, distinct from the central droplet, in primary human adipocytes. Based on microscopy analyses, we illustrate the distribution of mitochondria, endoplasmic reticulum and lysosomes in the vicinity of these specialized lipid droplets. Ultrastructure analysis confirmed the presence of small droplets in intact adipose tissue. Further, CIDEC, known to bind and regulate lipid droplet expansion, clearly localized at these lipid droplets. Neither acute or prolonged stimulation with insulin or isoprenaline, or pharmacologic intervention to suppress lipid flux, affected the presence of these lipid droplets. Still, phosphorylated perilipin and hormone-sensitive lipase accumulated at these droplets following adrenergic stimuli, which supports metabolic activity at these locations. Altogether, we propose these lipid droplet clusters represent an intermediate site involved in lipid transport in primary adipocytes.
Collapse
Affiliation(s)
- Björn Morén
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Claes Fryklund
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karin Stenkula
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
40
|
A hypothesis for insulin resistance in primary human adipocytes involving MRTF-A and suppression of PPARγ. Biochem Biophys Res Commun 2020; 533:64-69. [PMID: 32921413 DOI: 10.1016/j.bbrc.2020.08.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Obesity is the main risk factor behind insulin resistance and type 2 diabetes. Still, the mechanism behind adipocyte dysfunction is not yet resolved. Recently, we reported that rapid actin remodeling correlates with adipose cell size changes after short-term overfeeding. Therefore, we hypothesized that the actin-driven myocardin-related transcription factor (MRTF-A) contributes to impaired mature adipocyte function. Primary human adipocytes were subjected to adenoviral overexpression of MRTF-A or MRTF-B, followed by Western blot analysis and tracer glucose uptake assay. Further, we assessed cell size distribution, insulin response, MRTF-A localization, actin organization and degree of polymerization in adipocytes isolated from Ob/Ob mice. Overexpression of MRTF-A, but not MRTF-B, markedly suppressed PPARγ expression. Further, MRTF-A expression resulted in decreased IRS-1 level, shifted phosphorylation of Akt (pS473/pT308), IRS-1 (pS302) and AS160 (pT642), and lowered insulin-stimulated glucose uptake. Hypertrophic adipocytes from Ob/Ob mice displayed an increased proportion of polymerized actin, and increased nuclear translocation of MRTF-A compared with control (Ob/+). Similar with human adipocytes overexpressing MRTF-A, adipocytes isolated from Ob/Ob mice had reduced expression of IRS-1 and PPARγ, as well as impaired insulin response. Together, these data demonstrate that MRTF-A negatively influences insulin sensitivity and the expression of key targets in fully mature human adipocytes. This suggests that MRTF-A is poised to exert a transcriptional response in hypertrophic adipocytes, contributing to adipocyte dysfunction and insulin resistance.
Collapse
|
41
|
Roh HC, Kumari M, Taleb S, Tenen D, Jacobs C, Lyubetskaya A, Tsai LTY, Rosen ED. Adipocytes fail to maintain cellular identity during obesity due to reduced PPARγ activity and elevated TGFβ-SMAD signaling. Mol Metab 2020; 42:101086. [PMID: 32992037 PMCID: PMC7559520 DOI: 10.1016/j.molmet.2020.101086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Obesity due to overnutrition causes adipose tissue dysfunction, which is a critical pathological step on the road to type 2 diabetes (T2D) and other metabolic disorders. In this study, we conducted an unbiased investigation into the fundamental molecular mechanisms by which adipocytes transition to an unhealthy state during obesity. Methods We used nuclear tagging and translating ribosome affinity purification (NuTRAP) reporter mice crossed with Adipoq-Cre mice to determine adipocyte-specific 1) transcriptional profiles (RNA-seq), 2) promoter and enhancer activity (H3K27ac ChIP-seq), 3) and PPARγ cistrome (ChIP-seq) profiles in mice fed chow or a high-fat diet (HFD) for 10 weeks. We also assessed the impact of the PPARγ agonist rosiglitazone (Rosi) on gene expression and cellular state of adipocytes from the HFD-fed mice. We integrated these data to determine the transcription factors underlying adipocyte responses to HFD and conducted functional studies using shRNA-mediated loss-of-function approaches in 3T3-L1 adipocytes. Results Adipocytes from the HFD-fed mice exhibited reduced expression of adipocyte markers and metabolic genes and enhanced expression of myofibroblast marker genes involved in cytoskeletal organization, accompanied by the formation of actin filament structures within the cell. PPARγ binding was globally reduced in adipocytes after HFD feeding, and Rosi restored the molecular and cellular phenotypes of adipocytes associated with HFD feeding. We identified the TGFβ1 effector protein SMAD to be enriched at HFD-induced promoters and enhancers and associated with myofibroblast signature genes. TGFβ1 treatment of mature 3T3-L1 adipocytes induced gene expression and cellular changes similar to those seen after HFD in vivo, and knockdown of Smad3 blunted the effects of TGFβ1. Conclusions Our data demonstrate that adipocytes fail to maintain cellular identity after HFD feeding, acquiring characteristics of a myofibroblast-like cell type through reduced PPARγ activity and elevated TGFβ-SMAD signaling. This cellular identity crisis may be a fundamental mechanism that drives functional decline of adipose tissues during obesity. Adipocytes after HFD intake exhibit defects in cellular identity maintenance. Adipocytes develop actin filament networks in obesity. Altered PPARγ activity mediates defective adipocyte identity phenotypes. TGFβ-SMAD pathways promote HFD-induced aberrant phenotype of adipocytes.
Collapse
Affiliation(s)
- Hyun Cheol Roh
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Manju Kumari
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Solaema Taleb
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Danielle Tenen
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Anna Lyubetskaya
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Linus T-Y Tsai
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|