1
|
Zelenka T, Baláž M, Férová M, Diko P, Bednarčík J, Királyová A, Zauška Ľ, Bureš R, Sharda P, Király N, Badač A, Vyhlídalová J, Želinská M, Almáši M. The influence of HKUST-1 and MOF-76 hand grinding/mechanical activation on stability, particle size, textural properties and carbon dioxide sorption. Sci Rep 2024; 14:15386. [PMID: 38965298 PMCID: PMC11224341 DOI: 10.1038/s41598-024-66432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
In this study, we explore the mechanical treatment of two metal-organic frameworks (MOFs), HKUST-1 and MOF-76, applying various milling methods to assess their impact on stability, porosity, and CO2 adsorption capacity. The effects of different mechanical grinding techniques, such as high-energy ball milling and hand grinding, on these MOFs were compared. The impact of milling time, milling speed and ball size during high-energy ball milling was assessed via the Design of Experiments methodology, namely using a 33 Taguchi orthogonal array. The results highlight a marked improvement in CO2 adsorption capacity for HKUST-1 through hand milling, increasing from an initial 25.70 wt.% (5.84 mmol g-1) to 41.37 wt.% (9.40 mmol g-1), marking a significant 38% increase. In contrast, high-energy ball milling seems to worsen this property, diminishing the CO2 adsorption abilities of the materials. Notably, MOF-76 shows resistance to hand grinding, closely resembling the original sample's performance. Hand grinding also proved to be well reproducible. These findings clarify the complex effects of mechanical milling on MOF materials, emphasising the necessity of choosing the proper processing techniques to enhance their stability, texture, and performance in CO2 capture and storage applications.
Collapse
Affiliation(s)
- Tomáš Zelenka
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 702 00, Ostrava, Czech Republic
| | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovak Republic
| | - Marta Férová
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 702 00, Ostrava, Czech Republic
| | - Pavel Diko
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic
| | - Jozef Bednarčík
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic
| | - Alexandra Királyová
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 01, Košice, Slovak Republic
| | - Ľuboš Zauška
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 01, Košice, Slovak Republic
| | - Radovan Bureš
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic
| | - Pooja Sharda
- Department of Physics, School of Applied Science, Suresh Gyan Vihar University, Jaipur, I-302017, India
| | - Nikolas Király
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 01, Košice, Slovak Republic
| | - Aleš Badač
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 702 00, Ostrava, Czech Republic
| | - Jana Vyhlídalová
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 702 00, Ostrava, Czech Republic
| | - Milica Želinská
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 01, Košice, Slovak Republic
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 01, Košice, Slovak Republic.
| |
Collapse
|
2
|
Király N, Capková D, Gyepes R, Vargová N, Kazda T, Bednarčík J, Yudina D, Zelenka T, Čudek P, Zeleňák V, Sharma A, Meynen V, Hornebecq V, Straková Fedorková A, Almáši M. Sr(II) and Ba(II) Alkaline Earth Metal-Organic Frameworks (AE-MOFs) for Selective Gas Adsorption, Energy Storage, and Environmental Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:234. [PMID: 36677987 PMCID: PMC9866501 DOI: 10.3390/nano13020234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Two new alkaline earth metal-organic frameworks (AE-MOFs) containing Sr(II) (UPJS-15) or Ba(II) (UPJS-16) cations and extended tetrahedral linker (MTA) were synthesized and characterized in detail (UPJS stands for University of Pavol Jozef Safarik). Single-crystal X-ray analysis (SC-XRD) revealed that the materials are isostructural and, in their frameworks, one-dimensional channels are present with the size of ~11 × 10 Å2. The activation process of the compounds was studied by the combination of in situ heating infrared spectroscopy (IR), thermal analysis (TA) and in situ high-energy powder X-ray diffraction (HE-PXRD), which confirmed the stability of compounds after desolvation. The prepared compounds were investigated as adsorbents of different gases (Ar, N2, CO2, and H2). Nitrogen and argon adsorption measurements showed that UPJS-15 has SBET area of 1321 m2 g-1 (Ar) / 1250 m2 g-1 (N2), and UPJS-16 does not adsorb mentioned gases. From the environmental application, the materials were studied as CO2 adsorbents, and both compounds adsorb CO2 with a maximum capacity of 22.4 wt.% @ 0 °C; 14.7 wt.% @ 20 °C and 101 kPa for UPJS-15 and 11.5 wt.% @ 0°C; 8.4 wt.% @ 20 °C and 101 kPa for UPJS-16. According to IAST calculations, UPJS-16 shows high selectivity (50 for CO2/N2 10:90 mixture and 455 for CO2/N2 50:50 mixture) and can be applied as CO2 adsorbent from the atmosphere even at low pressures. The increased affinity of materials for CO2 was also studied by DFT modelling, which revealed that the primary adsorption sites are coordinatively unsaturated sites on metal ions, azo bonds, and phenyl rings within the MTA linker. Regarding energy storage, the materials were studied as hydrogen adsorbents, but the materials showed low H2 adsorption properties: 0.19 wt.% for UPJS-15 and 0.04 wt.% for UPJS-16 @ -196 °C and 101 kPa. The enhanced CO2/H2 selectivity could be used to scavenge carbon dioxide from hydrogen in WGS and DSR reactions. The second method of applying samples in the area of energy storage was the use of UPJS-15 as an additive in a lithium-sulfur battery. Cyclic performance at a cycling rate of 0.2 C showed an initial discharge capacity of 337 mAh g-1, which decreased smoothly to 235 mAh g-1 after 100 charge/discharge cycles.
Collapse
Affiliation(s)
- Nikolas Király
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Dominika Capková
- Department of Physical Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Albertov 8, CZ-128 43 Prague, Czech Republic
| | - Nikola Vargová
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Tomáš Kazda
- Department of Electrical and Electronic Technology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, CZ-616 00 Brno, Czech Republic
| | - Jozef Bednarčík
- Department of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, SK-041 01 Košice, Slovakia
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, SK-040 01 Košice, Slovakia
| | - Daria Yudina
- Department of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, SK-041 01 Košice, Slovakia
| | - Tomáš Zelenka
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, CZ-702 00 Ostrava, Czech Republic
| | - Pavel Čudek
- Department of Electrical and Electronic Technology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, CZ-616 00 Brno, Czech Republic
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh 123031, India
| | - Vera Meynen
- Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Virginie Hornebecq
- Centre National de la Recherche Scientifique (CNRS), Matériaux Divisé, Interfaces, Réactivité, Electrochimie (MADIREL), Centre de Saint Jérôme, Aix-Marseille University, Avenue Escadrille-Normandie-Niemen, F-133 97 Marseille, France
| | - Andrea Straková Fedorková
- Department of Physical Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| |
Collapse
|
3
|
Song N, Li W, Luo W, Zhai Z, Wang S, Huai R, Zhang D, Zhou Z, Yang L. Efficient and selective fluorescence sensing of nitro-containing aromatic compounds by a binuclear lanthanide-based metal-organic framework. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Zelenka T, Simanova K, Saini R, Zelenkova G, Nehra SP, Sharma A, Almasi M. Carbon dioxide and hydrogen adsorption study on surface-modified HKUST-1 with diamine/triamine. Sci Rep 2022; 12:17366. [PMID: 36253389 PMCID: PMC9574841 DOI: 10.1038/s41598-022-22273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The present article intended to study the influence of post-synthetic modification with ethylenediamine (en, diamine) and diethylenetriamine (deta, triamine) within the coordinatively unsaturated sites (CUSs) of HKUST-1 on carbon dioxide and hydrogen storage. The as-sythesized adsorbent was solvent-exchanged and subsequently post-synthetically modified with di-/triamines as sources of amine-based sorption sites due to the increased CO2 storage capacity. It is known that carbon dioxide molecules have a high affinity for amine groups, and moreover, the volume of amine molecules itself reduces the free pore volume in HKUST-1, which is the driving force for increasing the hydrogen storage capacity. Different concentrations of amines were used for modification of HKUST-1, through which materials with different molar ratios of HKUST-1 to amine: 1:0.05; 1:0.1; 1:0.25; 1:0.5; 1:0.75; 1:1; 1:1.5 were synthesized. Adsorption measurements of carbon dioxide at 0 °C up to 1 bar have shown that the compounds can adsorb large amounts of carbon dioxide. In general, deta-modified samples showed higher adsorbed amounts of CO2 compared to en-modified materials, which can be explained by the higher number of amine groups within the deta molecule. With an increasing molar ratio of amines, there was a decrease in wt.% CO2. The maximum storage capacity of CO2 was 22.3 wt.% for HKUST-1: en/1:0.1 and 33.1 wt.% for HKUST-1: deta/1:0.05 at 0 °C and 1 bar. Hydrogen adsorption measurements showed the same trend as carbon dioxide, with the maximum H2 adsorbed amounts being 1.82 wt.% for HKUST-1: en/1:0.1 and 2.28 wt.% for HKUST-1: deta/1:0.05 at − 196 °C and 1 bar.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 701 03, Ostrava, Czech Republic
| | - Klaudia Simanova
- Department of Inorganic Chemistry, Faculty of Science, P.J. Safarik University, Moyzesova 11, 040 01, Kosice, Slovak Republic
| | - Robin Saini
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh, 123031, India
| | - Gabriela Zelenkova
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 701 03, Ostrava, Czech Republic
| | - Satya Pal Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh, 123031, India
| | - Miroslav Almasi
- Department of Inorganic Chemistry, Faculty of Science, P.J. Safarik University, Moyzesova 11, 040 01, Kosice, Slovak Republic.
| |
Collapse
|
5
|
Garg A, Almáši M, Bednarčík J, Sharma R, Rao VS, Panchal P, Jain A, Sharma A. Gd(III) metal-organic framework as an effective humidity sensor and its hydrogen adsorption properties. CHEMOSPHERE 2022; 305:135467. [PMID: 35764119 DOI: 10.1016/j.chemosphere.2022.135467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) represent a class of nanoporous materials built up by metal ions and organic linkers with several interesting potential applications. The present study described the synthesis and characterization of Gd(III)-based MOF with the chemical composition [Gd(BTC)(H2O)]·DMF (BTC - trimesate, DMF = N,N'-dimethylformamide), known as MOF-76(Gd) for hydrogen adsorption/desorption capacity and humidity sensing applications. The structure and morphology of as-synthesized material were studied using powder X-ray diffraction, scanning and transmission electron microscopy. The crystal structure of MOF-76(Gd) consists of gadolinium (III) and benzene-1,3,5-tricarboxylate ions, one coordinated aqua ligand and one crystallization DMF molecule. The polymeric framework of MOF-76(Gd) contains 1D sinusoidally shaped channels with sizes of 6.7 × 6.7 Å propagating along c crystallographic axis. The thermogravimetric analysis, heating infrared spectroscopy and in-situ heating powder X-ray diffraction experiments of the prepared framework exhibited thermal stability up to 550 °C. Nitrogen adsorption/desorption measurement at -196 °C showed a BET surface area of 605 m2 g-1 and pore volume of 0.24 cm3 g-1. The maximal hydrogen storage capacity of MOF-76(Gd) was 1.66 wt % and 1.34 wt % -196 °C and -186 °C and pressure up to 1 bar, respectively. Finally, the humidity sensing measurements (water adsorption experiments) were performed, and the results indicate that MOF-76(Gd) is a suitable material for moisture sensing application with a fast response (11 s) and recovery time (2 s) in the relative humidity range of 11-98%.
Collapse
Affiliation(s)
- Akash Garg
- Department of Physics, School of Applied Science, Suresh Gyan Vihar University, Jaipur, 302017, India
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 041 54, Kosice, Slovak Republic.
| | - Jozef Bednarčík
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice, 040 01, Slovak Republic
| | - Rishabh Sharma
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Vikrant Singh Rao
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Priyanka Panchal
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Ankur Jain
- Department of Physics, School of Applied Science, Suresh Gyan Vihar University, Jaipur, 302017, India; Centre for Renewable Energy & Storage, Suresh Gyan Vihar University, Jaipur, 302017, India
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
6
|
Sheta SM, El-Sheikh SM. Nanomaterials and metal-organic frameworks for biosensing applications of mutations of the emerging viruses. Anal Biochem 2022; 648:114680. [PMID: 35429447 PMCID: PMC9007753 DOI: 10.1016/j.ab.2022.114680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
The world today lives in a state of terrible fear due to the mutation of the emerging COVID-19. With the continuation of this pandemic, there is an urgent need for fast, accurate testing devices to detect the emerging SARS-CoV-2 pandemic in terms of biosensors and point-of-care testing. Besides, the urgent development in personal defense tools, anti-viral surfaces and wearables, and smartphones open the door for simplifying the self-diagnosis process everywhere. This review introduces a quick COVID-19 overview: definition, transmission, pathophysiology, the identification and diagnosis, mutation and transformation, and the global situation. It also focuses on an overview of the rapidly advanced technologies based on nanomaterials and MOFs for biosensing, diagnosing, and viral control of the SARS-CoV-2 pandemic. Finally, highlight the latest technologies, applications, existing achievements, and preventive diagnostic strategies to control this epidemic and combat the emerging coronavirus. This humble effort aims to provide a helpful survey that can be used to develop a creative solution and to lay down the future vision of diagnosis against COVID-19.
Collapse
Affiliation(s)
- Sheta M Sheta
- Department of Inorganic Chemistry, National Research Centre, 33 El-Behouth St., Dokki, Giza, 12622, Egypt.
| | - Said M El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute, Cairo, 11421, Egypt.
| |
Collapse
|
7
|
Tuneable magnetic nanocomposites for remote self-healing. Sci Rep 2022; 12:10180. [PMID: 35715503 PMCID: PMC9205898 DOI: 10.1038/s41598-022-14135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022] Open
Abstract
When polymer composites containing magnetic nanoparticles (MNPs) are exposed to an alternating magnetic field, heat is generated to melt the surrounding polymer locally, partially filling voids across any cracks or deformities. Such materials are of interest for structural applications; however, structural polymers with high melting temperatures pose the challenge of generating high localised temperatures enabling self-healing. A method to prepare a multiferroic-Polyamide 6 (PA6) nanocomposite with tuneable magnetocaloric properties is reported. Tunability arises from varying the MNP material (and any coating, its dispersion, and agglomerate sizes in the nanocomposite). The superparamagnetic MNPs (SMNPs) and iron oxide MNPs with and without surface functionalization were dispersed into PA6 through in situ polymerization, and their magnetic properties were compared. Furthermore, computer simulations were used to quantify the dispersion state of MNPs and assess the influence of the interaction radius on the magnetic response of the self-healable magnetic nanoparticle polymer (SHMNP) composite. It was shown that maintaining the low interaction radius through the dispersion of the low coercivity MNPs could allow tuning of the bulk magnetocaloric properties of the resulting mesostructures. An in-situ polymerization method improved the dispersion and reduced the maximum interaction radius value from ca. 806 to 371 nm and increased the magnetic response for the silica-coated SMNP composite. This sample displayed ca. three orders of magnitude enhancement for magnetic saturation compared to the unfunctionalized Fe3O4 MNP composite.
Collapse
|
8
|
Falsaperna M, Saines PJ. Development of magnetocaloric coordination polymers for low temperature cooling. Dalton Trans 2022; 51:3394-3410. [PMID: 35106524 DOI: 10.1039/d1dt04073a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Caloric materials have attracted significant interest as replacements for conventional refrigeration, which is becoming increasingly important in our daily lives, yet poses issues for sustainability due to both energy consumption and loss of refrigerants into the atmosphere. Among caloric materials, which are key to solid state cooling technologies, those exhibiting the magnetocaloric effect (MCE), an entropy-driven phenomenon under cycled applied magnetic fields, are promising candidates for cryogenic cooling. These have potential to replace conventional cryogenics, particularly liquid He - an increasingly scarce and expensive resource. Amongst magnetocalorics, coordination polymers containing polyatomic ligands have been shown to be very promising materials due to their large entropy changes at low temperatures. One of the contributing factors to this peformance is their unique structural flexibility, as they can adopt a wide range of structures usually not accessible for conventional materials, such as close-packed metal oxides. The most researched materials for magnetocaloric applications are those containing Gd as their magnetic centre, as the combination of structure and the weakly interacting 4f orbitals of Gd3+ in these materials enables the fabrication of promising magnetocalorics that contain a high density of cations and thus exhibit a high entropy change as a function of their weight and volume at ultra-low cryogenic temperatures. Alongside this, there is a growing interest in magnetocaloric coordination polymers with their magnetocaloric effect optimised for lower applied fields that can be generated using permanent magnets through incorporating other magnetic cations, including lanthanides with greater magnetic anisotropy. When combined with tailored magnetic interactions this leads to promising entropy changes above 4 K, a typical base temperature for many cryogenic applications. This review discusses the most promising magnetocalorics among coordination polymers and MOFs, highlighting their structural characteristics, and concluding with a brief perspective on the future of this field.
Collapse
Affiliation(s)
- Mario Falsaperna
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, CT2 7NH, UK.
| | - Paul J Saines
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, CT2 7NH, UK.
| |
Collapse
|
9
|
Zeleňáková A, Hrubovčák P, Berkutova A, Šofranko O, Kučerka N, Ivankov O, Kuklin A, Girman V, Zeleňák V. Gadolinium-oxide nanoparticles for cryogenic magnetocaloric applications. Sci Rep 2022; 12:2282. [PMID: 35145133 PMCID: PMC8831503 DOI: 10.1038/s41598-022-06132-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
The series of advanced nanocomposites consisting of Gd2O3 nanoparticles (NPs) embedded into periodic porous SiO2 matrix have been investigated with respect to their structural and magnetocaloric properties. By means of small angle neutron scattering and transmission electron microscopy, regular nanopores organized in the cubic or hexagonal superlattice have been documented. The pores are occupied by the NPs of progressive concentration within the nanocomposite series. All of the examined systems have exhibited extraordinarily high values of magnetic entropy change (up to 70 J kg-1 K-1) at low temperatures with the absence of thermal hysteresis, indicating their perspective utilization in cryogenic refrigeration. Profound analysis of magnetic entropy change data via scaling laws has been applied to the nanocomposite materials for the very first time. With the aid of scaling analysis, conclusions on magnetic properties and phase transition type have been made, even for the conditions unavailable in the laboratory.
Collapse
Affiliation(s)
- A Zeleňáková
- Institute of Physics, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia.
| | - P Hrubovčák
- Institute of Physics, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 141980
| | - A Berkutova
- Institute of Physics, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - O Šofranko
- Institute of Physics, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - N Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 141980
- Department of Physical Chemistry of Drugs, Comenius University in Bratislava, Mlynská dolina, 832 32, Bratislava, Slovakia
| | - O Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 141980
- Institute for Safety Problems of Nuclear Power Plants NAS of Ukraine, Kyiv, Ukraine
| | - A Kuklin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 141980
- Moscow Institute of Physics and Technology, Institutsky per. 9, Dolgoprudny, Moscow Region, Russia, 141700
| | - V Girman
- Institute of Physics, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - V Zeleňák
- Institute of Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54, Košice, Slovakia
| |
Collapse
|
10
|
Kang H, Peng J, Li S, Wang X, Zhou W. A novel lanthanide metal−organic frameworks: Multi-responsive luminescent sensor for detecting organic compounds and pesticides. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Two Novel Rare Earth Coordination Polymers Derived from Zwitterionic 1,3-Bis(1-carboxylatoethyl)imidazolium Bromide: Structures and Magnetic Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Wang X, Wang F, Zhang C, Wang Q. Regulating the proton conductivity of metal organic framework materials through solvent control. NEW J CHEM 2022. [DOI: 10.1039/d2nj00342b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MOFs were used as probes through changes in the proton conductivity caused by changes in solvent molecules.
Collapse
Affiliation(s)
- Xinxin Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fengdong Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenxi Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qinglun Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
13
|
Zhong X, Hu JJ, Yao SL, Zhang RJ, Wang JJ, Cai DG, Luo TK, Peng Y, Liu SJ, Wen HR. Gd(III)-based metal-organic frameworks and coordination polymers for magnetic refrigeration. CrystEngComm 2022. [DOI: 10.1039/d1ce01633d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the alternatives of expensive and increasingly shortage 3He for ultralow-temperaturerefrigeration, molecule-based magnetorefrigerant materials have attracted much attention in the past decades. Among them, Gd(III)-based metal-organic frameworks and coordination polymers...
Collapse
|
14
|
Almáši M, Sharma A, Zelenka T. Anionic zinc(II) metal-organic framework post-synthetically modified by alkali-ion exchange: Synthesis, characterization and hydrogen adsorption properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Almáši M, Király N, Zeleňák V, Vilková M, Bourrelly S. Zinc(ii) and cadmium(ii) amorphous metal-organic frameworks (aMOFs): study of activation process and high-pressure adsorption of greenhouse gases. RSC Adv 2021; 11:20137-20150. [PMID: 35479897 PMCID: PMC9033798 DOI: 10.1039/d1ra02938j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
Two novel amorphous metal-organic frameworks (aMOFs) with chemical composition {[Zn2(MTA)]·4H2O·3DMF} n (UPJS-13) and {[Cd2(MTA)]·5H2O·4DMF} n (UPJS-14) built from Zn(ii) and Cd(ii) ions and extended tetrahedral tetraazo-tetracarboxylic acid (H4MTA) as a linker were prepared and characterised. Nitrogen adsorption measurements were performed on as-synthesized (AS), ethanol exchanged (EX) and freeze-dried (FD) materials at different activation temperatures of 60, 80, 100, 120, 150 and 200 °C to obtain the best textural properties. The largest surface areas of 830 m2 g-1 for UPJS-13 (FD) and 1057 m2 g-1 for UPJS-14 (FD) were calculated from the nitrogen adsorption isotherms for freeze-dried materials activated at mild activation temperature (80 °C). Subsequently, the prepared compounds were tested as adsorbents of greenhouse gases, carbon dioxide and methane, measured at high pressures. The maximal adsorption capacities were 30.01 wt% CO2 and 4.84 wt% CH4 for UPJS-13 (FD) and 24.56 wt% CO2 and 6.38 wt% CH4 for UPJS-14 (FD) at 20 bar and 30 °C.
Collapse
Affiliation(s)
- Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Nikolas Király
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Mária Vilková
- NMR Laboratory, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 01 Košice Slovak Republic
| | - Sandrine Bourrelly
- Aix-Marseille University, CNRS, MADIREL Marseille Cedex 20 F-133 97 France
| |
Collapse
|
16
|
Hay MA, Boskovic C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry 2021; 27:3608-3637. [PMID: 32965741 DOI: 10.1002/chem.202003761] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/05/2022]
Abstract
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
17
|
Metal-organic framework MIL-101(Fe)–NH2 as an efficient host for sulphur storage in long-cycle Li–S batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136640] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Almáši M, Zeleňák V, Gyepes R, Zauška Ľ, Bourrelly S. A series of four novel alkaline earth metal-organic frameworks constructed of Ca(ii), Sr(ii), Ba(ii) ions and tetrahedral MTB linker: structural diversity, stability study and low/high-pressure gas adsorption properties. RSC Adv 2020; 10:32323-32334. [PMID: 35516486 PMCID: PMC9056647 DOI: 10.1039/d0ra05145d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
A series of four novel microporous alkaline earth metal-organic frameworks (AE-MOFs) containing methanetetrabenzoate linker (MTB) with composition {[Ca4(μ8-MTB)2]·2DMF·4H2O} n (UPJS-6), {[Ca4(μ4-O)(μ8-MTB)3/2(H2O)4]·4DMF·4H2O} n (UPJS-7), {[Sr3(μ7-MTB)3/2]·4DMF·7H2O} n (UPJS-8) and {[Ba3(μ7-MTB)3/2(H2O)6]·2DMF·4H2O} n (UPJS-9) (UPJS = University of Pavol Jozef Safarik) have been successfully prepared and characterized. The framework stability and thermal robustness of prepared materials were investigated using thermogravimetric analysis (TGA) and high-energy powder X-ray diffraction (HE-PXRD). MOFs were tested as adsorbents for different gases at various pressures and temperatures. Nitrogen and argon adsorption showed that the activated samples have moderate BET surface areas: 103 m2 g-1 (N2)/126 m2 g-1 (Ar) for UPJS-7'', 320 m2 g-1 (N2)/358 m2 g-1 (Ar) for UPJS-9'' and UPJS-8'' adsorbs only a limited amount of N2 and Ar. It should be noted that all prepared compounds adsorb carbon dioxide with storage capacities ranging from 3.9 to 2.4 wt% at 20 °C and 1 atm, and 16.4-13.5 wt% at 30 °C and 20 bar. Methane adsorption isotherms show no adsorption at low pressures and with increasing pressure the storage capacity increases to 4.0-2.9 wt% of CH4 at 30 °C and 20 bar. Compounds displayed the highest hydrogen uptake of 3.7-1.8 wt% at -196 °C and 800 Torr among MTB containing MOFs.
Collapse
Affiliation(s)
- Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University Hlavova 2030 CZ-128 43 Prague Czech Republic
| | - Ľuboš Zauška
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Sandrine Bourrelly
- Aix-Marseille University, CNRS, MADIREL Marseille Cedex 20 F-133 97 France
| |
Collapse
|
19
|
Li HY, Zhao SN, Zang SQ, Li J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem Soc Rev 2020; 49:6364-6401. [DOI: 10.1039/c9cs00778d] [Citation(s) in RCA: 434] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds.
Collapse
Affiliation(s)
- Hai-Yang Li
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Jing Li
- Department of Chemistry and Chemical Biology
- Rutgers University
- Piscataway
- USA
| |
Collapse
|