1
|
Alsubaie N, Abd-Elhakim YM, Mohamed AAR, Khamis T, Metwally MMM, Helmi N, Alnajeebi AM, Alotaibi BS, Albaqami A, Mawkili W, Samak MA, Eissa SA. Exploring the CD3/CD56/TNF-α/Caspase3 pathway in pyrethroid-induced immune dysregulation: curcumin-loaded chitosan nanoparticle intervention. Front Pharmacol 2025; 16:1505432. [PMID: 39981186 PMCID: PMC11840570 DOI: 10.3389/fphar.2025.1505432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Conflict reports exist on the impact of pyrethroid insecticides on immune function and the probable underlying mechanisms. Methods This study evaluated the effect of an extensively used pyrethroid insecticide, fenpropathrin (FTN) (15 mg/kg b.wt), on the innate and humoral immune components, blood cells, splenic oxidative status, and mRNA expression of CD3, CD20, CD56, CD8, CD4, IL-6, TNF-α, and Caspase3 in a 60-day trial in rats. Besides, the possible defensive effect of curcumin-loaded chitosan nanoparticle (CML-CNP) (50 mg/kg b.wt) was evaluated. Results FTN exposure resulted in hypochromic normocytic anemia, thrombocytosis, leukocytosis, and lymphopenia. Besides, a significant reduction in IgG, not IgM, but increased C3 serum levels was evident in the FTN-exposed rats. Moreover, their splenic tissues displayed a substantial increase in the ROS, MDA, IL-6, and IL-1β content, altered splenic histology, and reduced GPX, GSH, and GSH/GSSG. Furthermore, a substantial upregulation of mRNA expression of splenic CD20, CD56, CD8, CD4, CD3, IL-6, and TNF-α, but downregulation of CD8 was detected in FTN-exposed rats. FTN exposure significantly upregulated splenic Caspase-3 and increased its immunohistochemical expression, along with elevated TNF-α immunoexpression. However, the alterations in immune function, splenic antioxidant status, blood cell populations, and immune-related gene expression were notably restored in the FTN + CML-CNP-treated group. Conclusion The findings of this study highlighted the immunosuppressive effects of FTN and suggested the involvement of many CD cell markers as a potential underlying mechanism. Additionally, the results demonstrated the effectiveness of CML-CNP in mitigating pollutant-induced immune disorders.
Collapse
Affiliation(s)
- Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M. M. Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Afnan M. Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mai A. Samak
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- College of Medicine, University of Ha’il, Ha’il, Saudi Arabia
| | - Samar A. Eissa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Kafrelsheikh University, Kafr ElSheikh, Egypt
| |
Collapse
|
2
|
Jiang Y, He P, Sheng K, Peng Y, Wu H, Qian S, Ji W, Guo X, Shan X. The protective roles of eugenol on type 1 diabetes mellitus through NRF2-mediated oxidative stress pathway. eLife 2025; 13:RP96600. [PMID: 39792010 PMCID: PMC11723580 DOI: 10.7554/elife.96600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the potential effects of EUG on T1DM had not been investigated. In this study, we established the streptozotocin (STZ)-induced T1DM mouse model in vivo and STZ-induced pancreatic β cell MIN6 cell model in vitro to investigate the protective effects of EUG on T1DM, and tried to elucidate its potential mechanism. Our findings demonstrated that the intervention of EUG could effectively induce the activation of nuclear factor E2-related factor 2 (NRF2), leading to an up-regulation in the expressions of downstream proteins NQO1 and HMOX1, which are regulated by NRF2. Moreover, this intervention exhibited a significant amelioration in pancreatic β cell damage associated with T1DM, accompanied by an elevation in insulin secretion and a reduction in the expression levels of apoptosis and oxidative stress-related markers. Furthermore, ML385, an NRF2 inhibitor, reversed these effects of EUG. The present study suggested that EUG exerted protective effects on pancreatic β cells in T1DM by attenuating apoptosis and oxidative stress through the activation of the NRF2 signaling pathway. Consequently, EUG holds great promise as a potential therapeutic candidate for T1DM.
Collapse
Affiliation(s)
- Yalan Jiang
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Pingping He
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ke Sheng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yongmiao Peng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huilan Wu
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Songwei Qian
- Department of Genaral Surgery, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s HospitalQuzhouChina
- Department of General Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Weiping Ji
- Department of Genaral Surgery, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s HospitalQuzhouChina
- Department of General Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoling Guo
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoou Shan
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
3
|
Alhegaili AS, Bafail DA, Bawahab AA, Alsubaie N, Abd-Elhakim YM, Mohamed AAR, Khamis T, Khalifa NE, Elhamouly M, Dahran N, El Shetry ES. The interplay of oxidative stress, apoptotic signaling, and impaired mitochondrial function in the pyrethroid-induced cardiac injury: Alleviative role of curcumin-loaded chitosan nanoparticle. Food Chem Toxicol 2024; 194:115095. [PMID: 39515510 DOI: 10.1016/j.fct.2024.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study assessed the consequence of exposure to a pyrethroid insecticide, fenpropathrin (FPN), on the heart and the probable underlying mechanisms in rats. Moreover, the probable protective effect of curcumin-loaded chitosan nanoparticles (CMN-CNP) was evaluated. Forty male Sprague Dawley rats were distributed into four groups orally given corn oil, CMN-CNP (50 mg/kg b.wt), FPN (15 mg/kg b.wt), or CMN-CNP + FPN for 60 days. The results revealed that FPN exposure increased serum cardiac damage indicators. In addition, a substantial increase in the reactive oxygen species and malondialdehyde content but reduced enzymatic and non-enzymatic antioxidants and altered architecture was recorded in the cardiac tissue of FPN-exposed rats. Additionally, a significant down-regulation of expression of the mitochondrial complexes I-V, mitochondrial dynamics, and antioxidants-related genes but up-regulation of apoptosis-related genes was detected in the FPN-exposed group. Immunofluorescence analyses revealed higher amounts of the harmful protein 4-hydroxynonenal in the heart tissue of FPN-exposed rats. Nevertheless, the earlier disturbances were significantly rescued in the FPN + CMN-CNP treated group. Conclusively, our findings reported the cardiotoxic activity of FPN and the involvement of several mitochondrial imbalances as a probable underlying mechanism. Also, the study findings proved the efficacy of CMN-CNP in combating FPN cardiotoxic effects.
Collapse
Affiliation(s)
- Alaa S Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Moustafa Elhamouly
- Department of Histology and Cytology Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Naief Dahran
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman S El Shetry
- Department of Anatomy, College of Medicine, University of Hail, Hail, Saudi Arabia; Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Dagher D, Elmansi H, Nasr JJ, El-Enany N. Investigation of green synchronous spectrofluorimetric approach for facile sensitive estimation of two co-administered anti-cancer drugs; curcumin and doxorubicin in their laboratory-prepared mixtures, human plasma, and urine. BMC Chem 2024; 18:164. [PMID: 39252071 PMCID: PMC11385172 DOI: 10.1186/s13065-024-01272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Recently, phytochemicals play an important role in cancer management. Curcumin (CUR), a natural phytochemical, has been co-administered with widespread chemotherapeutic agents such as doxorubicin (DOX) due to its excellent antitumor activity and the ability to lower the adverse reactions and drug resistance cells associated with DOX use. The present study aims to determine DOX and CUR utilizing a label-free, selective, sensitive, and precise synchronous spectrofluorimetric method. The obvious overlap between the emission spectra of DOX and CUR prevents simultaneous estimation of both analytes by conventional spectrofluorimetry. To solve such a problem, synchronous spectrofluorimetric measurements were recorded at Δλ = 20 nm, utilizing ethanol as a diluting solvent. Curcumin was recorded at 442.5 nm, whereas DOX was estimated at 571.5 nm, each at the zero-crossing point of the other one. The developed method exhibited linearity over a concentration range of 0.04-0.40 μg/mL for CUR and 0.05-0.50 μg/mL for DOX, respectively. The values of limit of detection (LOD) were 0.009 and 0.012 µg/mL, while the values of limit of quantitation (LOQ) were 0.028 and 0.037 µg/mL for CUR and DOX, respectively. The adopted approach was carefully validated according to the guidelines of ICH Q2R1. The method was utilized to estimate CUR and DOX in laboratory-prepared mixtures and human biological matrices. It showed a high percentage of recoveries with minimal RSD values. Additionally, three different tools were utilized to evaluate the greenness of the proposed approach.
Collapse
Affiliation(s)
- Diaa Dagher
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Jenny Jeehan Nasr
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa, 7723730, Egypt
| | - Nahed El-Enany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Mansoura University, New Mansoura, 7723730, Egypt
| |
Collapse
|
5
|
Yang C, Zhu Q, Chen Y, Ji K, Li S, Wu Q, Pan Q, Li J. Review of the Protective Mechanism of Curcumin on Cardiovascular Disease. Drug Des Devel Ther 2024; 18:165-192. [PMID: 38312990 PMCID: PMC10838105 DOI: 10.2147/dddt.s445555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death worldwide and has been the focus of research in the medical community. Curcumin is a polyphenolic compound extracted from the root of turmeric. Curcumin has been shown to have a variety of pharmacological properties over the past decades. Curcumin can significantly protect cardiomyocyte injury after ischemia and hypoxia, inhibit myocardial hypertrophy and fibrosis, improve ventricular remodeling, reduce drug-induced myocardial injury, improve diabetic cardiomyopathy(DCM), alleviate vascular endothelial dysfunction, inhibit foam cell formation, and reduce vascular smooth muscle cells(VSMCs) proliferation. Clinical studies have shown that curcumin has a protective effect on blood vessels. Toxicological studies have shown that curcumin is safe. But high doses of curcumin also have some side effects, such as liver damage and defects in embryonic heart development. This article reviews the mechanism of curcumin intervention on CVDs in recent years, in order to provide reference for the development of new drugs in the future.
Collapse
Affiliation(s)
- Chunkun Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Yanbo Chen
- Department of Arrhythmia, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Qian Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
6
|
Taheriazam A, Entezari M, Firouz ZM, Hajimazdarany S, Hossein Heydargoy M, Amin Moghadassi AH, Moghadaci A, Sadrani A, Motahhary M, Harif Nashtifani A, Zabolian A, Tabari T, Hashemi M, Raesi R, Jiang M, Zhang X, Salimimoghadam S, Ertas YN, Sun D. Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy: Promising bioplatforms with versatile therapeutic perspectives. ENVIRONMENTAL RESEARCH 2023; 228:115912. [PMID: 37068723 DOI: 10.1016/j.envres.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Hossein Amin Moghadassi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amin Sadrani
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
7
|
Abdel Fattah HS, Omar EM. The protective role of curcumin nanoparticles on the submandibular salivary gland toxicity induced by methotrexate in male rats. Arch Oral Biol 2023; 152:105717. [PMID: 37182319 DOI: 10.1016/j.archoralbio.2023.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To evaluate the protective role of nanocurcumin on the toxicity induced by methotrexate in the submandibular glands of rats. DESIGN Twenty- four healthy male Wistar albino rats were randomly distributed into 3 groups, 8 rats each. Group I-control: rats received a single intraperitoneal injection of saline; Group II-methotrexate (MTX): rats received methotrexate 20 mg/ kg day 1 of the experiment; Group III-methotrexate and nanocurcumin (MTX+NCU): rats received methotrexate 20 mg/ kg on day 1 of the experimental period in addition to nanocurcumin 100 mg/kg/day for 7 days. After euthanasia, the submandibular salivary glands of all rats were collected and prepared for histological, histomorphometric, and immunohistochemical examination (Caspase 3, Bcl2), in addition to transmission electron microscopy. RESULTS Histological and ultrastructural assessment revealed less salivary gland damage in the nanocurcumin group in comparison to the methotrexate group, and the percentage of acinar vacuolization showed significantly lower values in the nanocurcumin group. Group III (MTX+NCU) showed lower immunoexpression of caspase 3 than group II (MTX), while Bcl2 immunoreactivity was higher in the MTX group than in the MTX+NCU group. CONCLUSIONS Our results suggest that simultaneous administration of nanocurcumin reduces apoptosis in salivary glands subjected to methotrexate.
Collapse
Affiliation(s)
- Hagar Sherif Abdel Fattah
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Champollion Street, Alexandria 21526, Egypt.
| | - Enas Magdi Omar
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Alexandria 21526, Egypt
| |
Collapse
|
8
|
Silva PH, Silva PH, Corazza AV, Silva JGD, Silva IS. Experimental model of nephropathy associated with diabetes mellitus in mice. Acta Cir Bras 2023; 38:e381123. [PMID: 37132755 PMCID: PMC10158849 DOI: 10.1590/acb381123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/22/2023] [Indexed: 05/04/2023] Open
Abstract
PURPOSE Nontransmissible chronic diseases, such as diabetes mellitus (DM) and nephropathy, affect a significant portion of the population, often treated due to injuries that require healing and regeneration. To create an experimental model of associated comorbidities, for healing and regeneration studies, protocols for induction of nephropathy by ischemia and reperfusion (I/R) and induction of DM by injection of streptozotocin (STZ) were associated. METHODS Sixty-four mice (Mus musculus), female, adult, Swiss strain, weighing approximately 20 g, were divided into four groups: G1: control (n = 24), G2: nephropathy group (N) (n = 7), G3, DM (n = 9), and G4: N+DM (n = 24). Arteriovenous stenosis (I/R) of the left kidney was performed as the first protocol. The animals received a hyperlipidemic diet for 7 days after the injection of STZ (150 mg/kg, via i.p.) and an aqueous glucose solution (10%) for 24 h. The animals in the G3 and G4 groups were observed for 14 days before receiving the diet and STZ. The evolution of nephropathy was observed using a urine test strip and the DM, through the analysis of blood glucose with a reagent strip on a digital monitor. RESULTS The ischemic induction protocols of nephropathy and DM with STZ, associated, were sustainable, low-cost, and without deaths. There were alterations compatible with initial renal alterations, in the first 14 days, such as increased urinary density, pH alteration, presence of glucose, proteins and leukocytes, when compared to the control group. DM was confirmed by the presence of hyperglycemia 7 days after induction and its evolution after 14 days. The animals in the G4 group showed constant weight loss when compared to the other groups. It was possible to observe morphological alterations in the kidneys submitted to I/R, regarding coloration, during surgery and after the end of the observation period, in the volume and size of the left kidney, when compared to the contralateral kidney. CONCLUSIONS It was possible to induce nephropathy and DM associated in the same animal, in a simple way, confirmed with rapid tests, without losses, providing a basis for future studies.
Collapse
Affiliation(s)
- Pâmela Henrique Silva
- Universidade Federal de Mato Grosso do Sul - Programa de Pós-Graduação em Saúde e Desenvolvimento na Região CentroOeste - Campo Grande (MS), Brazil
| | - Patrícia Henrique Silva
- Universidade Federal de Mato Grosso do Sul - Programa de Pós-Graduação em Saúde e Desenvolvimento na Região CentroOeste - Campo Grande (MS), Brazil
| | | | - Josivaldo Godoy da Silva
- Universidade Federal de Mato Grosso do Sul - Programa de Pós-Graduação em Saúde e Desenvolvimento na Região CentroOeste - Campo Grande (MS), Brazil
| | - Iandara Schettert Silva
- Universidade Federal de Mato Grosso do Sul - Programa de Pós-Graduação em Saúde e Desenvolvimento na Região CentroOeste - Campo Grande (MS), Brazil
| |
Collapse
|
9
|
El Shahawy M, El Deeb M. Assessment of the possible ameliorative effect of curcumin nanoformulation on the submandibular salivary gland of alloxan-induced diabetes in a rat model (Light microscopic and ultrastructural study). Saudi Dent J 2022; 34:375-384. [PMID: 35814842 PMCID: PMC9263756 DOI: 10.1016/j.sdentj.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Nowadays, attention is directed to herbal treatments in an attempt to lessen the adverse effects of diabetes. Nanoformulation of curcumin (NC) was shown to enhance stability and water solubility compared to native curcumin. Objective To examine the effect of different NC concentrations on the histopathological structure of the submandibular salivary gland of diabetic rats. Methods 28 rats were divided equally into 4 groups. Group I: Control group, Group II (diabetic), III (diabetic + nanocurcumin low dose), and IV (diabetic + nanocurcumin high dose): Rats of groups II, III and IV were injected with a single dose of alloxan (140 mg/kg) to induce diabetes. After 7 days, groups III and IV were treated for 6 weeks with NC (100 mg/kg/day) for group III, and (200 mg/kg/day) for group IV. Submandibular salivary glands were assessed histologically, immunohistochemically using α smooth muscle actin (α SMA) and ultrastructurally. Results Diabetic samples showed destruction of parenchymal elements of the gland, with thick fiber bundles encircling the excretory ducts and minimal reaction for α SMA. Amelioration of the gland's architecture was detected in groups III and IV with reduction of collagen deposition and elevation of positive immunoreactivity to α SMA. Conclusion NC profoundly repaired the induced diabetic histopathological and ultrastructural alterations of the gland in a dose dependent manner.
Collapse
Key Words
- DM, diabetes mellitus
- Diabetes
- H&E, Hematoxylin and Eosin
- Masson trichrome
- NC, nanocurcumin
- NHD, nanocurcumin high dose
- NLD, nanocurcumin low dose
- Nanocurcumin
- RER, rough endoplasmic reticulum
- ROS, reactive oxygen species
- SD, standard deviation
- Submandibular salivary glands
- TEM, transmission electron microscope
- α SMA
- α SMA, α Smooth Muscle Actin
Collapse
Affiliation(s)
- Maha El Shahawy
- Associate Professor, Oral Biology Department, Faculty of Dentistry, Minia University, Egypt
| | - Mona El Deeb
- Professor, Oral Biology Department, Faculty of Oral & Dental Medicine, Future University in Egypt (FUE), Egypt
| |
Collapse
|
10
|
Rashwan AK, Karim N, Xu Y, Hanafy NAN, Li B, Mehanni AHE, Taha EM, Chen W. An updated and comprehensive review on the potential health effects of curcumin-encapsulated micro/nanoparticles. Crit Rev Food Sci Nutr 2022; 63:9731-9751. [PMID: 35522080 DOI: 10.1080/10408398.2022.2070906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Curcumin (CUR) is a natural hydrophobic compound, which is available in turmeric rhizome. It has several bioactivities including antioxidant, anti-obesity, anti-diabetic, cardioprotective, anti-inflammatory, antimicrobial, anticancer, and other activities. Despite its medical and biological benefits, it is using in limitations because of its hydrophobicity and sensitivity. These unfavorable conditions further reduced the bioavailability (BA) and biological efficacy of CUR. This review summarizes the stability and BA of free- and encapsulated-CUR, as well as comprehensively discusses the potential biological activity of CUR-loaded various micro-/nano-encapsulation systems. The stability and BA of CUR can be improved via loading in different encapsulation systems, including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nano-hydrogel, and others. Biopolymer-based nanoparticles (especially poly lactic-co-glycolic acid (PLGA), zein, and chitosan) and nano-gels are the best carriers for encapsulating and delivering CUR. Both delivery systems are suitable because of their excellent functional properties such as high encapsulation efficiency, well-stability against unfavorable conditions, and can be coated using other encapsulation systems. Based on available evidences, encapsulated-CUR exerted greater biological activities especially anticancer (breast cancer), antioxidant, antidiabetic, and neuroprotective effects.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Nemany A N Hanafy
- Nanomedicine Group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Abul-Hamd E Mehanni
- Department of Food Science and Nutrition, Faculty of Agriculture, Sohag University, Sohag, Egypt
| | - Eman M Taha
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
11
|
Curcumin ameliorates HO-induced injury through SIRT1-PERK-CHOP pathway in pancreatic beta cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:370-377. [PMID: 35538036 PMCID: PMC9827983 DOI: 10.3724/abbs.2022004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress and endoplasmic reticulum (ER) stress play crucial roles in pancreatic β cell destruction, leading to the development and progression of type 1 diabetes mellitus (T1DM). Curcumin, extracted from plant turmeric, possesses multiple bioactivities such as antioxidant, anti-inflammatory and anti-apoptosis properties and . However, it remains unknown whether curcumin improves ER stress to prevent β cells from apoptosis. In this study, we aim to investigate the role and mechanism of curcumin in ameliorating HO-induced injury in MIN6 (a mouse insulinoma cell line) cells. Cell viability is examined by CCK8 assay. Hoechst 33258 staining, TUNEL and flow cytometric assay are performed to detect cell apoptosis. The relative amounts of reactive oxygen species (ROS) are measured by DCFH-DA. WST-8 is used to determine the total superoxide dismutase (SOD) activity. Protein expressions are determined by western blot analysis and immunofluorescence staining. Pretreatment with curcumin prevents MIN6 cells from HO-induced cell apoptosis. Curcumin decreases ROS generation and inhibits protein kinase like ER kinase (PERK)-C/EBP homologous protein (CHOP) signaling axis, one of the critical branches of ER stress pathway. Moreover, incubation with curcumin activates silent information regulator 1 (SIRT1) expression and subsequently decreases the expression of CHOP. Additionally, EX527, a specific inhibitor of SIRT1, blocks the protective effect of curcumin on MIN6 cells exposed to HO. In sum, curcumin inhibits the PERK-CHOP pathway of ER stress mediated by SIRT1 and thus ameliorates HO-induced MIN6 cell apoptosis, suggesting that curcumin and SIRT1 may provide a potential therapeutic approach for T1DM.
Collapse
|
12
|
Noor NA, Hosny EN, Khadrawy YA, Mourad IM, Othman AI, Aboul Ezz HS, Mohammed HS. Effect of curcumin nanoparticles on streptozotocin-induced male Wistar rat model of Alzheimer's disease. Metab Brain Dis 2022; 37:343-357. [PMID: 35048324 DOI: 10.1007/s11011-021-00897-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that afflicts millions of people all over the world. Intracerebroventricular (ICV) injection of a sub-diabetogenic dose of streptozotocin (STZ) was established as an experimental animal model of AD. The present study was conducted to evaluate the efficacy of curcumin nanoparticles (CNs) against the behavioral, neurochemical and histopathological alterations induced by ICV-STZ. The animals were divided into: control animals, the animal model of AD that received a single bilateral ICV microinjection of STZ, and the animals protected by a daily oral administration of CNs for 6 days before the ICV-STZ injection. The animals of all groups were subjected to surgical operation on the 7th day of administration. Then the administration of distilled water or CNs was continued for 8 days. The ICV-STZ microinjection produced cognitive impairment as evident from the behavioral Morris water maze (MWM) test and induced oxidative stress in the cortex and hippocampus as indicated by the significant increases in lipid peroxidation and nitric oxide (NO) levels and the significant decrease in reduced glutathione (GSH) levels. It also produced a significant increase in acetylcholinesterase (AChE) and tumor necrosis-alpha (TNF-ɑ) and a significant decrease in Na+,K + -ATPase. In addition, a significant increase in amino acid neurotransmitters occurred in the hippocampus, whereas a significant decrease was obtained in the cortex of STZ-induced AD rats. CNs ameliorated the behavioral, immunohistochemical and most of the neurochemical alterations induced by STZ in the hippocampus and cortex. It may be concluded that CNs might be considered as a promising therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Neveen A Noor
- Zoology department, Faculty of Science, Cairo University, Giza, Egypt
| | - Eman N Hosny
- Department of Medical Physiology, Medical Division, National Research Center, El-Behouth St., Giza, Egypt
| | - Yasser A Khadrawy
- Department of Medical Physiology, Medical Division, National Research Center, El-Behouth St., Giza, Egypt.
| | - Iman M Mourad
- Zoology department, Faculty of Science, Cairo University, Giza, Egypt
| | - Amel I Othman
- Zoology department, Faculty of Science, Cairo University, Giza, Egypt
| | - Heba S Aboul Ezz
- Zoology department, Faculty of Science, Cairo University, Giza, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Lu W, Cui Y, Zhang L. Isofraxidin exerts anti-diabetic, antilipidemic, and antioxidant effects and protects renal tissues via inhibition of NF-ĸB in Streptozotocin-induced diabetic rats. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00204-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Abd El-Hameed NM, Abd El-Aleem SA, Khattab MA, Ali AH, Mohammed HH. Curcumin activation of nuclear factor E2-related factor 2 gene (Nrf2): Prophylactic and therapeutic effect in nonalcoholic steatohepatitis (NASH). Life Sci 2021; 285:119983. [PMID: 34599938 DOI: 10.1016/j.lfs.2021.119983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS Modern dietary habits have been associated with Nonalcoholic Steatohepatitis (NASH). Curcumin is a natural herbal found to suppress cellular oxidative states and could be beneficial in NASH. This study investigates the effect of curcumin in an animal model of NASH. MATERIALS AND METHODS Fifty rats were allocated into five groups. Control, High Fat Diet (HFD), curcumin prophylactic (CP) and therapeutic (CT) groups. HFD regimen was given for 16 weeks. Curcumin was given along with HFD (prophylactic) or after establishment of the model for two weeks (therapeutic). Livers and blood samples were harvested for histological, biochemical, and molecular studies. KEY FINDINGS Livers from HFD groups showed vascular, inflammatory, cellular degenerative and fibrotic changes. The hepatic damage was reflected by the increased serum liver enzymes. HFD groups showed excessive fibrotic change. Interestingly, curcumin administration as prophylactic or therapeutic significantly preserved and/or restored liver structure. This was evidenced by the normalization of the liver enzymes, preservation and/or reversibility of cellular changes and the decrease of the stage of fibrosis. Nuclear factor E2-related factor 2 gene (Nrf2) expression showed no changes in the HFD groups, however it showed upregulation in curcumin treated groups. Thus, the protective and therapeutic effect of curcumin could be induced through upregulation of the Nrf2 gene. Curcumin has a beneficial prophylactic and therapeutic effect that could hinder the development and/or treat NASH in susceptible livers. SIGNIFICANCE Curcumin has a beneficial prophylactic and therapeutic effect that could hinder the development and/or treat NASH in susceptible livers.
Collapse
|
15
|
Khezri K, Saeedi M, Mohammadamini H, Zakaryaei AS. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res 2021; 35:5527-5563. [PMID: 34131980 DOI: 10.1002/ptr.7190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Today, due to the prevalence of various diseases such as the novel coronavirus (SARS-CoV-2), diabetes, central nervous system diseases, cancer, cardiovascular disorders, and so on, extensive studies have been conducted on therapeutic properties of natural and synthetic agents. A literature review on herbal medicine and commercial products in the global market showed that curcumin (Cur) has many therapeutic benefits compared to other natural ingredients. Despite the unique properties of Cur, its use in clinical trials is very limited. The poor biopharmaceutical properties of Cur such as short half-life in plasma, low bioavailability, poor absorption, rapid metabolism, very low solubility (at acidic and physiological pH), and the chemical instability in body fluids are major concerns associated with the clinical applications of Cur. Recently, nanoformulations are emerging as approaches to develop and improve the therapeutic efficacy of various drugs. Many studies have shown that Cur nanoformulations have tremendous therapeutic potential against various diseases such as SARS-CoV-2, cancer, inflammatory, osteoporosis, and so on. These nanoformulations can inhibit many diseases through several cellular and molecular mechanisms. However, successful long-term clinical results are required to confirm their safety and clinical efficacy. The present review aims to update and explain the therapeutic potential of Cur nanoformulations.
Collapse
Affiliation(s)
- Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|
16
|
Aydin A, Cebi G, Demirtas ZE, Erkus H, Kucukay A, Ok M, Sakalli L, Alpdagtas S, Gunduz O, Ustundag CB. Combating COVID-19 with tissue engineering: a review. EMERGENT MATERIALS 2020; 4:329-349. [PMID: 33235976 PMCID: PMC7677604 DOI: 10.1007/s42247-020-00138-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 05/04/2023]
Abstract
The ongoing COVID-19 pandemic triggered by SARS-CoV-2 emerged from Wuhan, China, firstly in December 2019, as well spread to almost all around the world rapidly. The main reason why this disease spreads so many people in a short time is that the virus could be transmitted from an infected person to another by infected droplets. The new emergence of diseases usually may affect multiple organs; moreover, this disease is such an example. Numerous reported studies focus on acute or chronic organ damage caused by the virus. At this point, tissue engineering (TE) strategies can be used to treat the damages with its interdisciplinary approaches. Tissue engineers could design drug delivery systems, scaffolds, and especially biomaterials for the damaged tissue and organs. In this review, brief information about SARS-CoV-2, COVID-19, and epidemiology of the disease will be given at first. After that, the symptoms, the tissue damages in specific organs, and cytokine effect caused by COVID-19 will be described in detail. Finally, it will be attempted to summarize and suggest the appropriate treatments with suitable biomaterials for the damages via TE approaches. The aim of this review is to serve as a summary of currently available tissue damage treatments after COVID-19.
Collapse
Affiliation(s)
- Ayca Aydin
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Gizem Cebi
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Zeynep Ezgi Demirtas
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Huseyin Erkus
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Aleyna Kucukay
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Merve Ok
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Latife Sakalli
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Saadet Alpdagtas
- Department of Biology, Van Yuzuncu Yil University, 65080 Van, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| |
Collapse
|
17
|
Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics 2020; 12:pharmaceutics12111084. [PMID: 33187385 PMCID: PMC7697177 DOI: 10.3390/pharmaceutics12111084] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is a well-known chemotherapeutic agent extensively applied in the field of cancer therapy. However, similar to other chemotherapeutic agents such as cisplatin, paclitaxel, docetaxel, etoposide and oxaliplatin, cancer cells are able to obtain chemoresistance that limits DOX efficacy. In respect to dose-dependent side effect of DOX, enhancing its dosage is not recommended for effective cancer chemotherapy. Therefore, different strategies have been considered for reversing DOX resistance and diminishing its side effects. Phytochemical are potential candidates in this case due to their great pharmacological activities. Curcumin is a potential antitumor phytochemical isolated from Curcuma longa with capacity of suppressing cancer metastasis and proliferation and affecting molecular pathways. Experiments have demonstrated the potential of curcumin for inhibiting chemoresistance by downregulating oncogene pathways such as MMP-2, TGF-β, EMT, PI3K/Akt, NF-κB and AP-1. Furthermore, coadministration of curcumin and DOX potentiates apoptosis induction in cancer cells. In light of this, nanoplatforms have been employed for codelivery of curcumin and DOX. This results in promoting the bioavailability and internalization of the aforementioned active compounds in cancer cells and, consequently, enhancing their antitumor activity. Noteworthy, curcumin has been applied for reducing adverse effects of DOX on normal cells and tissues via reducing inflammation, oxidative stress and apoptosis. The current review highlights the anticancer mechanism, side effects and codelivery of curcumin and DOX via nanovehicles.
Collapse
|
18
|
Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, Hushmandi K, Khan H, Mirzaei H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160:105199. [DOI: 10.1016/j.phrs.2020.105199] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
19
|
Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nat Rev Nephrol 2020; 17:153-171. [PMID: 32963366 DOI: 10.1038/s41581-020-00345-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The observation that unhealthy diets (those that are low in whole grains, fruits and vegetables, and high in sugar, salt, saturated fat and ultra-processed foods) are a major risk factor for poor health outcomes has boosted interest in the concept of 'food as medicine'. This concept is especially relevant to metabolic diseases, such as chronic kidney disease (CKD), in which dietary approaches are already used to ameliorate metabolic and nutritional complications. Increased awareness that toxic uraemic metabolites originate not only from intermediary metabolism but also from gut microbial metabolism, which is directly influenced by diet, has fuelled interest in the potential of 'food as medicine' approaches in CKD beyond the current strategies of protein, sodium and phosphate restriction. Bioactive nutrients can alter the composition and metabolism of the microbiota, act as modulators of transcription factors involved in inflammation and oxidative stress, mitigate mitochondrial dysfunction, act as senolytics and impact the epigenome by altering one-carbon metabolism. As gut dysbiosis, inflammation, oxidative stress, mitochondrial dysfunction, premature ageing and epigenetic changes are common features of CKD, these findings suggest that tailored, healthy diets that include bioactive nutrients as part of the foodome could potentially be used to prevent and treat CKD and its complications.
Collapse
|
20
|
Demir E, Aslan A. Protective effect of pristine C60 fullerene nanoparticle in combination with curcumin against hyperglycemia-induced kidney damage in diabetes caused by streptozotocin. J Food Biochem 2020; 44:e13470. [PMID: 32914898 DOI: 10.1111/jfbc.13470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
The present study aims to examine the protective effects of C60 fullerene (C60), Curcumin (CUR; Curcuma longa), C60 + CUR combination against oxidative stress, apoptosis, and changes in cellular level in kidney tissue of diabetic rats. Treatment practices were administered separately to groups for 8 weeks following the approval of diabetes induction. It was observed that the treatment groups had increased antioxidant potential, decreased oxidative stress levels, decreased cholesterol, alpha tocopherol, retinol levels along with improved important changes in fatty acid metabolism compared with the diabetic group. C60, CUR, and C60 + CUR were also determined to act in the direction of reducing kidney damage by activating apoptotic pathways. It can be concluded based on these findings that C60, CUR, and especially C60 + CUR combination has beneficial properties in maintaining kidney tissue and function by effectively preventing oxidative stress, apoptotic changes, and changes at the cellular level in kidney tissue under hyperglycemia conditions. PRACTICAL APPLICATIONS: C60 and CUR have various biological activities which can be indicated as antioxidant, anti-inflammatory, anticancer, neuroprotective, and hepatoprotective. It has been reported that C60 and CUR protect the cells against oxidative injury brought about by reactive oxygen species (ROS). Data acquired from the present study puts forth that C60 and C60 + CUR may be promising agents to prevent damage induced by hyperglycemic conditions in kidney tissue.
Collapse
Affiliation(s)
- Ersin Demir
- Department of Agricultural Biotechnology, Faculty of Agriculture and Natural Sciences, Duzce University, Duzce, Turkey
| | - Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics Program, Faculty of Science, Firat University, Elazig, Turkey
| |
Collapse
|
21
|
Soares AM, Gonçalves LM, Ferreira RD, de Souza JM, Fangueiro R, Alves MM, Carvalho FA, Mendes AN, Cantanhêde W. Immobilization of papain enzyme on a hybrid support containing zinc oxide nanoparticles and chitosan for clinical applications. Carbohydr Polym 2020; 243:116498. [DOI: 10.1016/j.carbpol.2020.116498] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/20/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
|
22
|
Afifi M, Alkaladi A, Abomughaid MM, Abdelazim AM. Nanocurcumin improved glucose metabolism in streptozotocin-induced diabetic rats: a comparison study with Gliclazide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25271-25277. [PMID: 32347481 DOI: 10.1007/s11356-020-08941-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
In the present study, the biochemical effect of nanocurcumin (nanoCUR) compared with Gliclazide (GLZ) on the diabetic rats was studied. Forty male albino rats (Sprague Dawley) weighted 110 ± 20 g were used. Rats were randomly separated into two groups. Control, received no treatment. Streptozotocin (STZ)-induced diabetic groups take 5 ml/kg of STZ in normal saline daily for 30 days, further divided into diabetic non-treated group, did not receive any treatment: diabetic group treated by nanoCUR, received 15 mg/kg/day of nanoCUR orally for 30 days; diabetic group treated by GLZ, received 2 mg/kg/day of GLZ for 30 days. The mean body weights of all rats were registered and serum samples were collected for determination of fasting blood glucose (FBG), insulin concentration, liver glucokinase (GK), and glycogen synthase (GS) activities. Liver tissues were collected for determination of mRNA expression of insulin (INS), insulin receptor A (IRA), glucokinase (GK), and glucose transporter 2 (GLUT2). The results revealed a significant reduction of body weight in diabetic rats, with no significant differences in nanoCUR and GLZ groups. There was a decline in FBG levels and significant elevation of INS levels, GK, and GS activities in diabetic rats received nanoCUR and GLZ. mRNA expression of INS, IRA, GK, and GLUT2 significantly upregulated in diabetic rats received nanoCUR and GLZ. The amazing observation was a non-significant difference in all measured parameters between nanoCUR and GLZ groups. In conclusion, nanoCUR is able to improve cellular uptake of glucose, the hepatic insulin signaling, and insulin sensitivity in diabetic rats. Its effect was similar to standard hypoglycemic drug (GLZ).
Collapse
Affiliation(s)
- Mohamed Afifi
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia.
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Ali Alkaladi
- College of Science, Department of Biological Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Aaser M Abdelazim
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
23
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Afshar EG, Farkhondeh T, Samarghandian S. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: A review. Phytother Res 2020; 34:1745-1760. [PMID: 32157749 DOI: 10.1002/ptr.6642] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Curcumin is a naturally occurring nutraceutical compound with a number of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic, antitumor, and cardioprotective. This plant-derived chemical has demonstrated great potential in targeting various signaling pathways to exert its protective effects. Signal transducers and activator of transcription (STAT) is one of the molecular pathways involved in a variety of biological processes such as cell proliferation and cell apoptosis. Accumulating data demonstrates that the STAT pathway is an important target in treatment of a number of disorders, particularly cancer. Curcumin is capable of affecting STAT signaling pathway in induction of its therapeutic impacts. Curcumin is able to enhance the level of anti-inflammatory cytokines and improve inflammatory disorders such as colitis by targeting STAT signaling pathway. Furthermore, studies show that inhibition of JAK/STAT pathway by curcumin is involved in reduced migration and invasion of cancer cells. Curcumin normalizes the expression of JAK/STAT signaling pathway to exert anti-diabetic, renoprotective, and neuroprotective impacts. At the present review, we provide a comprehensive discussion about the effect of curcumin on JAK/STAT signaling pathway to direct further studies in this field.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham G Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|