1
|
Al-Diab O, Sünkel C, Blanc E, Catar RA, Ashraf MI, Zhao H, Wang P, Rinschen MM, Fritsche-Guenther R, Grahammer F, Bachmann S, Beule D, Kirwan JA, Rajewsky N, Huber TB, Gürgen D, Kusch A. Sex-specific molecular signature of mouse podocytes in homeostasis and in response to pharmacological challenge with rapamycin. Biol Sex Differ 2024; 15:72. [PMID: 39278930 PMCID: PMC11404044 DOI: 10.1186/s13293-024-00647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically challenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may therefore serve as a general stress challenger to get fundamental insights into sex differences in podocytes. METHODS The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were performed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics from kidney cortex tissues. RESULTS Although kidney function and morphology remained normal in all experimental groups, RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regulators of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more prominent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. CONCLUSIONS Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies.
Collapse
Affiliation(s)
- Ola Al-Diab
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christin Sünkel
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rusan Ali Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hongfan Zhao
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pinchao Wang
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Markus M Rinschen
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Raphaela Fritsche-Guenther
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dennis Gürgen
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin-Buch, Germany
| | - Angelika Kusch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- BIH Biomedical Innovation Academy (BIA), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Wang L, Tian H, Wang H, Mao X, Luo J, He Q, Wen P, Cao H, Fang L, Zhou Y, Yang J, Jiang L. Disrupting circadian control of autophagy induces podocyte injury and proteinuria. Kidney Int 2024; 105:1020-1034. [PMID: 38387504 DOI: 10.1016/j.kint.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
The circadian clock influences a wide range of biological process and controls numerous aspects of physiology to adapt to the daily environmental changes caused by Earth's rotation. The kidney clock plays an important role in maintaining tubular function, but its effect on podocytes remains unclear. Here, we found that podocytes expressed CLOCK proteins, and that 2666 glomerular gene transcripts (13.4%), including autophagy related genes, had 24-hour circadian rhythms. Deletion of Clock in podocytes resulted in 1666 gene transcripts with the loss of circadian rhythm including autophagy genes. Podocyte-specific Clock knockout mice at age three and eight months showed deficient autophagy, loss of podocytes and increased albuminuria. Chromatin immunoprecipitation (ChIP) sequence analysis indicated autophagy related genes were targets of CLOCK in podocytes. ChIP-PCR further confirmed Clock binding to the promoter regions of Becn1 and Atg12, two autophagy related genes. Furthermore, the association of CLOCK regulated autophagy with chronic sleep fragmentation and diabetic kidney disease was analyzed. Chronic sleep fragmentation resulted in the loss of glomerular Clock rhythm, inhibition of podocyte autophagy, and proteinuria. Rhythmic oscillations of Clock also disappeared in high glucose treated podocytes and in glomeruli from diabetic mice. Finally, circadian differences in podocyte autophagy were also abolished in diabetic mice. Deletion Clock in podocytes aggravated podocyte injury and proteinuria in diabetic mice. Thus, our findings demonstrate that clock-dependent regulation of autophagy may be essential for podocyte survival. Hence. loss of circadian controlled autophagy may play an important role in podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han Tian
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Wang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Mao
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Luo
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingyun He
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wen
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongdi Cao
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Fang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Yang Zhou
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Junwei Yang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Lei Jiang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Benjamin JI, Pollock DM. Current perspective on circadian function of the kidney. Am J Physiol Renal Physiol 2024; 326:F438-F459. [PMID: 38134232 PMCID: PMC11207578 DOI: 10.1152/ajprenal.00247.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Behavior and function of living systems are synchronized by the 24-h rotation of the Earth that guides physiology according to time of day. However, when behavior becomes misaligned from the light-dark cycle, such as in rotating shift work, jet lag, and even unusual eating patterns, adverse health consequences such as cardiovascular or cardiometabolic disease can arise. The discovery of cell-autonomous molecular clocks expanded interest in regulatory systems that control circadian physiology including within the kidney, where function varies along a 24-h cycle. Our understanding of the mechanisms for circadian control of physiology is in the early stages, and so the present review provides an overview of what is known and the many gaps in our current understanding. We include a particular focus on the impact of eating behaviors, especially meal timing. A better understanding of the mechanisms guiding circadian function of the kidney is expected to reveal new insights into causes and consequences of a wide range of disorders involving the kidney, including hypertension, obesity, and chronic kidney disease.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
4
|
Lee DY, Jung I, Park SY, Yu JH, Seo JA, Kim KJ, Kim NH, Yoo HJ, Kim SG, Choi KM, Baik SH, Kim NH. Attention to Innate Circadian Rhythm and the Impact of Its Disruption on Diabetes. Diabetes Metab J 2024; 48:37-52. [PMID: 38173377 PMCID: PMC10850272 DOI: 10.4093/dmj.2023.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Novel strategies are required to reduce the risk of developing diabetes and/or clinical outcomes and complications of diabetes. In this regard, the role of the circadian system may be a potential candidate for the prevention of diabetes. We reviewed evidence from animal, clinical, and epidemiological studies linking the circadian system to various aspects of the pathophysiology and clinical outcomes of diabetes. The circadian clock governs genetic, metabolic, hormonal, and behavioral signals in anticipation of cyclic 24-hour events through interactions between a "central clock" in the suprachiasmatic nucleus and "peripheral clocks" in the whole body. Currently, circadian rhythmicity in humans can be subjectively or objectively assessed by measuring melatonin and glucocorticoid levels, core body temperature, peripheral blood, oral mucosa, hair follicles, rest-activity cycles, sleep diaries, and circadian chronotypes. In this review, we summarized various circadian misalignments, such as altered light-dark, sleep-wake, rest-activity, fasting-feeding, shift work, evening chronotype, and social jetlag, as well as mutations in clock genes that could contribute to the development of diabetes and poor glycemic status in patients with diabetes. Targeting critical components of the circadian system could deliver potential candidates for the treatment and prevention of type 2 diabetes mellitus in the future.
Collapse
Affiliation(s)
- Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Inha Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - So Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hee Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyeong Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- BK21 FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Korea
| |
Collapse
|
5
|
Semenikhina M, Lysikova DV, Spires DR, Domondon M, Stadler K, Palygin O, Ilatovskaya DV. Transcriptomic changes in glomeruli in response to a high salt challenge in the Dahl SS rat. Physiol Genomics 2024; 56:98-111. [PMID: 37955135 PMCID: PMC11281811 DOI: 10.1152/physiolgenomics.00075.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023] Open
Abstract
Salt sensitivity impacts a significant portion of the population and is an important contributor to the development of chronic kidney disease. One of the significant early predictors of salt-induced damage is albuminuria, which reflects the deterioration of the renal filtration barrier: the glomerulus. Despite significant research efforts, there is still a gap in knowledge regarding the molecular mechanisms and signaling networks contributing to instigating and/or perpetuating salt-induced glomerular injury. To address this gap, we used 8-wk-old male Dahl salt-sensitive rats fed a normal-salt diet (0.4% NaCl) or challenged with a high-salt diet (4% NaCl) for 3 wk. At the end of the protocol, a pure fraction of renal glomeruli obtained by differential sieving was used for next-generation RNA sequencing and comprehensive semi-automatic transcriptomic data analyses, which revealed 149 differentially expressed genes (107 and 42 genes were downregulated and upregulated, respectively). Furthermore, a combination of predictive gene correlation networks and computational bioinformatic analyses revealed pathways impacted by a high salt dietary challenge, including renal metabolism, mitochondrial function, apoptotic signaling and fibrosis, cell cycle, inflammatory and immune responses, circadian clock, cytoskeletal organization, G protein-coupled receptor signaling, and calcium transport. In conclusion, we report here novel transcriptomic interactions and corresponding predicted pathways affecting glomeruli under salt-induced stress.NEW & NOTEWORTHY Our study demonstrated novel pathways affecting glomeruli under stress induced by dietary salt. Predictive gene correlation networks and bioinformatic semi-automatic analysis revealed changes in the pathways relevant to mitochondrial function, inflammatory, apoptotic/fibrotic processes, and cell calcium transport.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Lysikova
- Department of Physiology, Augusta University, Augusta, Georgia, United States
| | - Denisha R Spires
- Department of Physiology, Augusta University, Augusta, Georgia, United States
| | - Mark Domondon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Krisztian Stadler
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
6
|
Shi Y, Guo Z, Liu F, Pan S, Gao D, Zhou S, Liu Z, Wang F, Liu D, Liu Z. Analysis of potential biomarkers for diabetic kidney disease based on single-cell RNA-sequencing integrated with a single-cell sequencing assay for transposase-accessible chromatin. Aging (Albany NY) 2023; 15:10681-10704. [PMID: 37827693 PMCID: PMC10599739 DOI: 10.18632/aging.205107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Diabetic kidney disease (DKD) is a renal microvascular disease caused by hyperglycemia that involves metabolic remodeling, oxidative stress, inflammation, and other factors. The mechanism is complex and not fully unraveled. We performed an integrated single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) and single-cell RNA-sequencing (scRNA-seq) analyses of kidneys from db/db and db/m mice to identify differential open chromatin regions and gene expression, particularly in genes related to proximal tubular reabsorption and secretion. We identified 9,776 differentially expressed genes (DEGs) and 884 cell type-specific transcription factors (TFs) across 15 cell types. Glucose and lipid transporters, and TFs related to the circadian rhythm in the proximal tubules had significantly higher expression in db/db mice than in db/m mice (P<0.01). Crosstalk between podocytes and tubular cells in the proximal tubules was enhanced, and renal inflammation, oxidative stress, and fibrosis pathways were activated in db/db mice. Western blotting and immunohistochemical staining results showed that Wfdc2 expression in the urine and kidneys of DKD patients was higher than that in non-diabetic kidney disease (NDKD) controls. The revealed landscape of chromatin accessibility and transcriptional profiles in db/db mice provide insights into the pathological mechanism of DKD.
Collapse
Affiliation(s)
- Yan Shi
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Zuishuang Guo
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Dan Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Zhenjie Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Feng Wang
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Department of Nephrology, Shanghai Eighth People’s Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, P.R. China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| |
Collapse
|
7
|
Peng Z, Liang Y, Liu X, Shao J, Hu N, Zhang X. New insights into the mechanisms of diabetic kidney disease: Role of circadian rhythm and Bmal1. Biomed Pharmacother 2023; 166:115422. [PMID: 37660646 DOI: 10.1016/j.biopha.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
It is common for diabetic kidney disease (DKD) to be complicated by abnormal blood glucose, blood lipids, and blood pressure rhythms. Thus, it is essential to examine diagnostic and treatment plans from the perspective of circadian disruption. This brief review discusses the clinical relevance of circadian rhythms in DKD and how the core clock gene encoding brain and muscle arnt-like protein 1 (BMAL1) functions owing to the importance of circadian rhythm disruption processes, including the excretion of urinary protein and irregular blood pressure, which occur in DKD. Exploring Bmal1 and its potential mechanisms and signaling pathways in DKD following contact with Sirt1 and NF-κB is novel and important. Finally, potential pharmacological and behavioral intervention strategies for DKD circadian rhythm disturbance are outlined. This review aids in unveiling novel, potential molecular targets for DKD based on circadian rhythms.
Collapse
Affiliation(s)
- Zhimei Peng
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Yanting Liang
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Xueying Liu
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Jie Shao
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Nan Hu
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Xinzhou Zhang
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| |
Collapse
|
8
|
Türk D, Scherer N, Selzer D, Dings C, Hanke N, Dallmann R, Schwab M, Timmins P, Nock V, Lehr T. Significant impact of time-of-day variation on metformin pharmacokinetics. Diabetologia 2023; 66:1024-1034. [PMID: 36930251 PMCID: PMC10163090 DOI: 10.1007/s00125-023-05898-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 03/18/2023]
Abstract
AIMS/HYPOTHESIS The objective was to investigate if metformin pharmacokinetics is modulated by time-of-day in humans using empirical and mechanistic pharmacokinetic modelling techniques on a large clinical dataset. This study also aimed to generate and test hypotheses on the underlying mechanisms, including evidence for chronotype-dependent interindividual differences in metformin plasma and efficacy-related tissue concentrations. METHODS A large clinical dataset consisting of individual metformin plasma and urine measurements was analysed using a newly developed empirical pharmacokinetic model. Causes of daily variation of metformin pharmacokinetics and interindividual variability were further investigated by a literature-informed mechanistic modelling analysis. RESULTS A significant effect of time-of-day on metformin pharmacokinetics was found. Daily rhythms of gastrointestinal, hepatic and renal processes are described in the literature, possibly affecting drug pharmacokinetics. Observed metformin plasma levels were best described by a combination of a rhythm in GFR, renal plasma flow (RPF) and organic cation transporter (OCT) 2 activity. Furthermore, the large interindividual differences in measured metformin concentrations were best explained by individual chronotypes affecting metformin clearance, with impact on plasma and tissue concentrations that may have implications for metformin efficacy. CONCLUSIONS/INTERPRETATION Metformin's pharmacology significantly depends on time-of-day in humans, determined with the help of empirical and mechanistic pharmacokinetic modelling, and rhythmic GFR, RPF and OCT2 were found to govern intraday variation. Interindividual variation was found to be partly dependent on individual chronotype, suggesting diurnal preference as an interesting, but so-far underappreciated, topic with regard to future personalised chronomodulated therapy in people with type 2 diabetes.
Collapse
Affiliation(s)
- Denise Türk
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| | - Nina Scherer
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| | - Dominik Selzer
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| | | | - Nina Hanke
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Peter Timmins
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Valerie Nock
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
9
|
Kourpa A, Schulz A, Mangelsen E, Kaiser-Graf D, Koppers N, Stoll M, Rothe M, Bader M, Purfürst B, Kunz S, Gladytz T, Niendorf T, Bachmann S, Mutig K, Bolbrinker J, Panáková D, Kreutz R. Studies in Zebrafish and Rat Models Support Dual Blockade of EP2 and EP4 (Prostaglandin E 2 Receptors Type 2 and 4) for Renoprotection in Glomerular Hyperfiltration and Albuminuria. Hypertension 2023; 80:771-782. [PMID: 36715011 DOI: 10.1161/hypertensionaha.122.20392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Glomerular hyperfiltration (GH) is an important mechanism in the development of albuminuria in hypertension. Upregulation of COX2 (cyclooxygenase 2) and prostaglandin E2 (PGE2) was linked to podocyte damage in GH. We explored the potential renoprotective effects of either separate or combined pharmacological blockade of EP2 (PGE2 receptor type 2) and EP4 (PGE2 receptor type 4) in GH. METHODS We conducted in vivo studies in a transgenic zebrafish model (Tg[fabp10a:gc-EGFP]) suitable for analysis of glomerular filtration barrier function and a genetic rat model with GH, albuminuria, and upregulation of PGE2. Similar pharmacological interventions and primary outcome analysis on albuminuria phenotype development were conducted in both model systems. RESULTS Stimulation of zebrafish embryos with PGE2 induced an albuminuria-like phenotype, thus mimicking the suggested PGE2 effects on glomerular filtration barrier dysfunction. Both separate and combined blockade of EP2 and EP4 reduced albuminuria phenotypes in zebrafish and rat models. A significant correlation between albuminuria and podocyte damage in electron microscopy imaging was identified in the rat model. Dual blockade of both receptors showed a pronounced synergistic suppression of albuminuria. Importantly, this occurred without changes in arterial blood pressure, glomerular filtration rate, or tissue oxygenation in magnetic resonance imaging, while RNA sequencing analysis implicated a potential role of circadian clock genes. CONCLUSIONS Our findings confirm a role of PGE2 in the development of albuminuria in GH and support the renoprotective potential of combined pharmacological blockade of EP2 and EP4 receptors. These data support further translational research to explore this therapeutic option and a possible role of circadian clock genes.
Collapse
Affiliation(s)
- Aikaterini Kourpa
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Angela Schulz
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany
| | - Eva Mangelsen
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany
| | - Debora Kaiser-Graf
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany
| | - Nils Koppers
- Genetic Epidemiology, Institute for Human Genetics, Westfälische Wilhelms University, Münster, Germany (N.K., M.S.)
| | - Monika Stoll
- Genetic Epidemiology, Institute for Human Genetics, Westfälische Wilhelms University, Münster, Germany (N.K., M.S.)
| | | | - Michael Bader
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.).,German Center for Cardiovascular Research, Partner Site Berlin, Germany (M.B.).,Charité-Universitätsmedizin Berlin, Germany (M.B.).,Institute for Biology, University of Lübeck, Germany (M.B.)
| | - Bettina Purfürst
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Severine Kunz
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Thomas Gladytz
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Thoralf Niendorf
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Sebastian Bachmann
- Institute of Vegetative Anatomy (S.B.), Charité-Universitätsmedizin Berlin, Germany
| | - Kerim Mutig
- Institute of Translational Physiology (K.M.), Charité-Universitätsmedizin Berlin, Germany
| | - Juliane Bolbrinker
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany
| | - Daniela Panáková
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
10
|
Dutta P, Sadria M, Layton AT. Influence of administration time and sex on natriuretic, diuretic, and kaliuretic effects of diuretics. Am J Physiol Renal Physiol 2023; 324:F274-F286. [PMID: 36701479 DOI: 10.1152/ajprenal.00296.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sex differences in renal function and blood pressure have been widely described across many species. Blood pressure dips during sleep and peaks in the early morning. Similarly, glomerular filtration rate, filtered electrolyte loads, urine volume, and urinary excretion all exhibit notable diurnal rhythms, which reflect, in part, the regulation of renal transporter proteins by circadian clock genes. That regulation is sexually dimorphic; as such, sex and time of day are not two independent regulators of kidney function and blood pressure. The objective of the present study was to assess the effect of sex and administration time on the natriuretic and diuretic effects of loop, thiazide, and K+-sparing diuretics, which are common treatments for hypertension. Loop diuretics inhibit Na+-K+-2Cl- cotransporters on the apical membrane of the thick ascending limb, thiazide diuretics inhibit Na+-Cl- cotransporters on the distal convoluted tubule, and K+-sparing diuretics inhibit epithelial Na+ channels on the connecting tubule and collecting duct. We simulated Na+ transporter inhibition using sex- and time-of-day-specific computational models of mouse kidney function. The simulation results highlighted significant sex and time-of-day differences in the drug response. Loop diuretics induced larger natriuretic and diuretic effects during the active phase. The natriuretic and diuretic effects of thiazide diuretics exhibited sex and time-of-day differences, whereas these effects of K+-sparing diuretics exhibited a significant time-of-day difference in females only. The kaliuretic effect depended on the type of diuretics and time of administration. The present computational models can be a useful tool in chronotherapy, to tailor drug administration time to match the body's diurnal rhythms to optimize the drug effect.NEW & NOTEWORTHY Sex influences cardiovascular disease, and the timing of onset of acute cardiovascular events exhibits circadian rhythms. Kidney function also exhibits sex differences and circadian rhythms. How do the natriuretic and diuretic effects of diuretics, a common treatment for hypertension that targets the kidneys, differ between the sexes? And how do these effects vary during the day? To answer these questions, we conducted computer simulations to assess the effects of loop, thiazide, and K+-sparing diuretics.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.,Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.,School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
11
|
Abstract
Driven by autonomous molecular clocks that are synchronized by a master pacemaker in the suprachiasmatic nucleus, cardiac physiology fluctuates in diurnal rhythms that can be partly or entirely circadian. Cardiac contractility, metabolism, and electrophysiology, all have diurnal rhythms, as does the neurohumoral control of cardiac and kidney function. In this review, we discuss the evidence that circadian biology regulates cardiac function, how molecular clocks may relate to the pathogenesis of heart failure, and how chronotherapeutics might be applied in heart failure. Disrupting molecular clocks can lead to heart failure in animal models, and the myocardial response to injury seems to be conditioned by the time of day. Human studies are consistent with these findings, and they implicate the clock and circadian rhythms in the pathogenesis of heart failure. Certain circadian rhythms are maintained in patients with heart failure, a factor that can guide optimal timing of therapy. Pharmacologic and nonpharmacologic manipulation of circadian rhythms and molecular clocks show promise in the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Nadim El Jamal
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah L. Teegarden
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Translational Pharmacology, Bielefeld University, Bielefeld, Germany
| | - Garret FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Preston R, Meng QJ, Lennon R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol 2022; 114:138-155. [PMID: 35569693 DOI: 10.1016/j.matbio.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
The circadian clock network in mammals is responsible for the temporal coordination of numerous physiological processes that are necessary for homeostasis. Peripheral tissues demonstrate circadian rhythmicity and dysfunction of core clock components has been implicated in the pathogenesis of diseases that are characterized by abnormal extracellular matrix, such as fibrosis (too much disorganized matrix) and tissue breakdown (too little matrix). Kidney disease is characterized by proteinuria, which along with the rate of filtration, displays robust circadian oscillation. Clinical observation and mouse studies suggest the presence of 24 h kidney clocks responsible for circadian oscillation in kidney function. Recent experimental evidence has also revealed that cell-matrix interactions and the biomechanical properties of extracellular matrix have key roles in regulating peripheral circadian clocks and this mechanism appears to be cell- and tissue-type specific. Thus, establishing a temporally resolved kidney matrisome may provide a useful tool for studying the two-way interactions between the extracellular matrix and the intracellular time-keeping mechanisms in this critical niche tissue. This review summarizes the latest genetic and biochemical evidence linking kidney physiology and disease to the circadian system with a particular focus on the extracellular matrix. We also review the experimental approaches and methodologies required to dissect the roles of circadian pathways in specific tissues and outline the translational aspects of circadian biology, including how circadian medicine could be used for the treatment of kidney disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| |
Collapse
|
13
|
Raza GS, Sodum N, Kaya Y, Herzig KH. Role of Circadian Transcription Factor Rev-Erb in Metabolism and Tissue Fibrosis. Int J Mol Sci 2022; 23:12954. [PMID: 36361737 PMCID: PMC9655416 DOI: 10.3390/ijms232112954] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 09/12/2023] Open
Abstract
Circadian rhythms significantly affect metabolism, and their disruption leads to cardiometabolic diseases and fibrosis. The clock repressor Rev-Erb is mainly expressed in the liver, heart, lung, adipose tissue, skeletal muscles, and brain, recognized as a master regulator of metabolism, mitochondrial biogenesis, inflammatory response, and fibrosis. Fibrosis is the response of the body to injuries and chronic inflammation with the accumulation of extracellular matrix in tissues. Activation of myofibroblasts is a key factor in the development of organ fibrosis, initiated by hormones, growth factors, inflammatory cytokines, and mechanical stress. This review summarizes the importance of Rev-Erb in ECM remodeling and tissue fibrosis. In the heart, Rev-Erb activation has been shown to alleviate hypertrophy and increase exercise capacity. In the lung, Rev-Erb agonist reduced pulmonary fibrosis by suppressing fibroblast differentiation. In the liver, Rev-Erb inhibited inflammation and fibrosis by diminishing NF-κB activity. In adipose tissue, Rev- Erb agonists reduced fat mass. In summary, the results of multiple studies in preclinical models demonstrate that Rev-Erb is an attractive target for positively influencing dysregulated metabolism, inflammation, and fibrosis, but more specific tools and studies would be needed to increase the information base for the therapeutic potential of these substances interfering with the molecular clock.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Yagmur Kaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, 34854 Istanbul, Turkey
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
- Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
- Pediatric Gastroenterology and Metabolic Diseases, Pediatric Institute, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| |
Collapse
|
14
|
Costello HM, Johnston JG, Juffre A, Crislip GR, Gumz ML. Circadian clocks of the kidney: function, mechanism, and regulation. Physiol Rev 2022; 102:1669-1701. [PMID: 35575250 PMCID: PMC9273266 DOI: 10.1152/physrev.00045.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022] Open
Abstract
An intrinsic cellular circadian clock is located in nearly every cell of the body. The peripheral circadian clocks within the cells of the kidney contribute to the regulation of a variety of renal processes. In this review, we summarize what is currently known regarding the function, mechanism, and regulation of kidney clocks. Additionally, the effect of extrarenal physiological processes, such as endocrine and neuronal signals, on kidney function is also reviewed. Circadian rhythms in renal function are an integral part of kidney physiology, underscoring the importance of considering time of day as a key biological variable. The field of circadian renal physiology is of tremendous relevance, but with limited physiological and mechanistic information on the kidney clocks this is an area in need of extensive investigation.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - G Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
15
|
McMullan CJ, McHill AW, Hull JT, Wang W, Forman JP, Klerman EB. Sleep Restriction and Recurrent Circadian Disruption Differentially Affects Blood Pressure, Sodium Retention, and Aldosterone Secretion. Front Physiol 2022; 13:914497. [PMID: 35874530 PMCID: PMC9305384 DOI: 10.3389/fphys.2022.914497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Prolonged exposure to chronic sleep restriction (CSR) and shiftwork are both associated with incident hypertension and cardiovascular disease. We hypothesized that the combination of CSR and shiftwork's rotating sleep schedule (causing recurrent circadian disruption, RCD) would increase blood pressure, renal sodium retention, potassium excretion, and aldosterone excretion. Seventeen healthy participants were studied during a 32-day inpatient protocol that included 20-h "days" with associated scheduled sleep/wake and eating behaviors. Participants were randomly assigned to restricted (1:3.3 sleep:wake, CSR group) or standard (1:2 sleep:wake, Control group) ratios of sleep:wake duration. Systolic blood pressure during circadian misalignment was ∼6% higher in CSR conditions. Renal sodium and potassium excretion showed robust circadian patterns; potassium excretion also displayed some influence of the scheduled behaviors (sleep/wake, fasting during sleep so made parallel fasting/feeding). In contrast, the timing of renal aldosterone excretion was affected predominately by scheduled behaviors. Per 20-h "day," total sodium excretion increased, and total potassium excretion decreased during RCD without a change in total aldosterone excretion. Lastly, a reduced total renal sodium excretion was found despite constant oral sodium consumption and total aldosterone excretion, suggesting a positive total body sodium balance independent of aldosterone excretion. These findings may provide mechanistic insight into the observed adverse cardiovascular and renal effects of shiftwork.
Collapse
Affiliation(s)
- Ciaran J. McMullan
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Andrew W. McHill
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States,Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Andrew W. McHill,
| | - Joseph T. Hull
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - John P. Forman
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Elizabeth B. Klerman
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States,Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Rhoads MK, Speed JS, Roth KJ, Zhang D, Jin C, Gamble KL, Pollock DM. Short-term daytime restricted feeding in rats with high salt impairs diurnal variation of Na + excretion. Am J Physiol Renal Physiol 2022; 322:F335-F343. [PMID: 35100821 PMCID: PMC8896996 DOI: 10.1152/ajprenal.00287.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Night shift work increases risk of cardiovascular disease associated with an irregular eating schedule. Elevating this risk is the high level of salt intake observed in the typical Western diet. Renal Na+ excretion has a distinct diurnal pattern, independent of time of intake, yet the interactions between the time of intake and the amount of salt ingested are not clear. The hypothesis of the present study was that limiting food intake to the typically inactive period in addition to high-salt (HS) feeding will disrupt the diurnal rhythm of renal Na+ excretion. Male Sprague-Dawley rats were placed on either normal-salt (NS; 0.49% NaCl) or HS (4% NaCl) diets. Rats were housed in metabolic cages and allowed food ad libitum and then subjected to inactive period time-restricted feeding (iTRF) for 5 days. As expected, rats fed NS and allowed food ad libitum had a diurnal pattern of Na+ excretion. The diurnal pattern of Na+ excretion was not significantly different after 5 days of iTRF compared with ad libitum rats. In response to HS, the diurnal pattern of Na+ excretion was similar to NS-fed rats. However, this pattern was attenuated after 5 days of HS iTRF. The diurnal excretion pattern of urinary aldosterone was abolished in both NS iTRF and HS iTRF rats. These data support the hypothesis that HS intake combined with iTRF impairs circadian mechanisms associated with renal Na+ excretion.NEW & NOTEWORTHY Timing of food intake normally has little effect on the diurnal pattern of Na+ and water excretion. However, rats on a high-salt diet were unable to maintain this pattern, yet K+ excretion was more readily adjusted to match timing of intake. These data support the hypothesis that Na+ and water homeostasis are impacted by timing of high-salt diets.
Collapse
Affiliation(s)
- Megan K. Rhoads
- 1Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S. Speed
- 2Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kaehler J. Roth
- 1Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dingguo Zhang
- 1Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- 1Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karen L. Gamble
- 1Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M. Pollock
- 1Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
Pan X. Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:119-143. [PMID: 35503178 PMCID: PMC11106795 DOI: 10.1007/978-981-19-0394-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High plasma levels of lipids and/or lipoproteins are risk factors for atherosclerosis, nonalcoholic fatty liver disease (NAFLD), obesity, and diabetes. These four conditions have also been identified as risk factors leading to the development of chronic kidney disease (CKD). Although many pathways that generate high plasma levels of these factors have been identified, most clinical and physiologic dysfunction results from aberrant assembly and secretion of lipoproteins. The results of several published studies suggest that elevated levels of low-density lipoprotein (LDL)-cholesterol are a risk factor for atherosclerosis, myocardial infarction, coronary artery calcification associated with type 2 diabetes, and NAFLD. Cholesterol metabolism has also been identified as an important pathway contributing to the development of CKD; clinical treatments designed to alter various steps of the cholesterol synthesis and metabolism pathway are currently under study. Cholesterol synthesis and catabolism contribute to a multistep process with pathways that are regulated at the cellular level in renal tissue. Cholesterol metabolism may also be regulated by the balance between the influx and efflux of cholesterol molecules that are capable of crossing the membrane of renal proximal tubular epithelial cells and podocytes. Cellular accumulation of cholesterol can result in lipotoxicity and ultimately kidney dysfunction and failure. Thus, further research focused on cholesterol metabolism pathways will be necessary to improve our understanding of the impact of cholesterol restriction, which is currently a primary intervention recommended for patients with dyslipidemia.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
18
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
19
|
Peng L, Zhang K, Chen K. Period circadian clock 3 inhibits palmitic acid-induced oxidative stress and inflammatory factor secretion in podocytes. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1177-1186. [PMID: 34911851 PMCID: PMC10929857 DOI: 10.11817/j.issn.1672-7347.2021.210019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES High fat-induced podocyte injury is one of the important factors leading to obesity related nephropathy (ORG), but the mechanism is not clear. This study aims to explore the mechanism of period circadian clock 3 (PER3) in the oxidative stress and inflammation induced by palmitic acid (PA) in podocytes. METHODS The C57BL/6J mice were fed with chow and high-fat diet for 16 weeks. The PER3 expression in kidney tissues were detected in the normal body weight group and the obesity group. The PER3 mRNA and protein expression were detected after the podocytes were induced with different concentrations (0, 50, 150 and 300 μmol/L) of PA for 48 h. The PER3 mRNA and protein expression were detected after the podocytes were induced with 150 μmol/L PA for 0, 24, 36, and 48 h. Triglyceride (TG) levels were examined in the PA group, the adenovirus (ad)-PER3+PA group, and the siRNA-PER+PA group after the podocytes were transfected by Ad-PER3 or small interfering RNA (siRNA)-PER3 for 48 h and subsequently were induced with 150 μmol/L PA for 48 h. The differential gene expression was detected using RNA sequencing (RNA-seq) after podocytes were transfected by siRNA-PER3 (siRNA-PER3 group) and siRNA-control (siRNA-control group), respectively. The mRNA levels of nephrin, podocin, podocalyxin, podoplanin, superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), catalase (CAT), and the levels of malondialdehyde (MDA), glutathione (GSH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and interleukin-2 (IL-2) were detected after podocytes were transfected with Ad-PER3 or Ad-control for 48 h and then they were induced by 150 μmol/L PA for 48 h. RESULTS The PER3 was down-regulated in the obesity group compared with the normal body weight group (P<0.05), and the PER3 was significantly down-regulated after the podocytes were treated with 150 μmol/L for 48 h compared with 0, 24, and 36 h (all P<0.01). The TG contents were significantly decreased in the Ad-PER3+PA group compared with the PA group (P<0.05). On the contrary, TG contents were increased in the siRNA-PER3+PA group compared with the PA group (P<0.05). The RNA-seq results showed that: compared with the siRNA-control group, the differential genes in the siRNA-PER3 group were enriched in different pathways including oxidative phosphorylation, TNF signaling pathway, extracellular matrix receptor interaction, fatty acid metabolism, and fatty acid degradation (all P<0.05). The podocyte marker genes (nephrin, podocin, podocalyxin and podoplanin), oxidative stress (SOD1, GPX1, CAT and GSH), and inflammation factors (TNF-α, IL-6, IL-1β and IL-2) were significantly down-regulated in the Ad-PER3+PA group compared with the PA group (all P<0.05). CONCLUSIONS PER3 can decrease the PA-induced oxidative stress and inflammatory factor secretion via inhibiting the lipogenesis in podocytes.
Collapse
Affiliation(s)
- Lin Peng
- Department of Nephrology, First Hospital of Changsha, Changsha 410005.
| | - Keke Zhang
- Department of Endorcrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ke Chen
- Department of Endorcrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
20
|
Ansermet C, Centeno G, Bignon Y, Ortiz D, Pradervand S, Garcia A, Menin L, Gachon F, Yoshihara HA, Firsov D. Dysfunction of the circadian clock in the kidney tubule leads to enhanced kidney gluconeogenesis and exacerbated hyperglycemia in diabetes. Kidney Int 2021; 101:563-573. [PMID: 34838539 DOI: 10.1016/j.kint.2021.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
The circadian clock is a ubiquitous molecular time-keeping mechanism which synchronizes cellular, tissue, and systemic biological functions with 24-hour environmental cycles. Local circadian clocks drive cell type- and tissue-specific rhythms and their dysregulation has been implicated in pathogenesis and/or progression of a broad spectrum of diseases. However, the pathophysiological role of intrinsic circadian clocks in the kidney of diabetics remains unknown. To address this question, we induced type I diabetes with streptozotocin in mice devoid of the circadian transcriptional regulator BMAL1 in podocytes (cKOp mice) or in the kidney tubule (cKOt mice). There was no association between dysfunction of the circadian clock and the development of diabetic nephropathy in cKOp and cKOt mice with diabetes. However, cKOt mice with diabetes exhibited exacerbated hyperglycemia, increased fractional excretion of glucose in the urine, enhanced polyuria, and a more pronounced kidney hypertrophy compared to streptozotocin-treated control mice. mRNA and protein expression analyses revealed substantial enhancement of the gluconeogenic pathway in kidneys of cKOt mice with diabetes as compared to diabetic control mice. Transcriptomic analysis along with functional analysis of cKOt mice with diabetes identified changes in multiple mechanisms directly or indirectly affecting the gluconeogenic pathway. Thus, we demonstrate that dysfunction of the intrinsic kidney tubule circadian clock can aggravate diabetic hyperglycemia via enhancement of gluconeogenesis in the kidney proximal tubule and further highlight the importance of circadian behavior in patients with diabetes.
Collapse
Affiliation(s)
- Camille Ansermet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gabriel Centeno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yohan Bignon
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Daniel Ortiz
- Mass Spectrometry Service, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | - Andy Garcia
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Laure Menin
- Mass Spectrometry Service, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Hikari Ai Yoshihara
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Dmitri Firsov
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
21
|
The Vascular Circadian Clock in Chronic Kidney Disease. Cells 2021; 10:cells10071769. [PMID: 34359937 PMCID: PMC8306728 DOI: 10.3390/cells10071769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease is associated with extremely high cardiovascular mortality. The circadian rhythms (CR) have an impact on vascular function. The disruption of CR causes serious health problems and contributes to the development of cardiovascular diseases. Uremia may affect the master pacemaker of CR in the hypothalamus. A molecular circadian clock is also expressed in peripheral tissues, including the vasculature, where it regulates the different aspects of both vascular physiology and pathophysiology. Here, we address the impact of CKD on the intrinsic circadian clock in the vasculature. The expression of the core circadian clock genes in the aorta is disrupted in CKD. We propose a novel concept of the disruption of the circadian clock system in the vasculature of importance for the pathology of the uremic vasculopathy.
Collapse
|
22
|
Zhang J, Liu C, Liang Q, Zheng F, Guan Y, Yang G, Chen L. Postnatal deletion of Bmal1 in mice protects against obstructive renal fibrosis via suppressing Gli2 transcription. FASEB J 2021; 35:e21530. [PMID: 33813752 DOI: 10.1096/fj.202002452r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Circadian clock is involved in regulating most renal physiological functions, including water and electrolyte balance and blood pressure homeostasis, however, the role of circadian clock in renal pathophysiology remains largely unknown. Here we aimed to investigate the role of Bmal1, a core clock component, in the development of renal fibrosis, the hallmark of pathological features in many renal diseases. The inducible Bmal1 knockout mice (iKO) whose gene deletion occurred in adulthood were used in the study. Analysis of the urinary water, sodium and potassium excretion showed that the iKO mice exhibit abolished diurnal variations. In the model of renal fibrosis induced by unilateral ureteral obstruction, the iKO mice displayed significantly decreased tubulointerstitial fibrosis reflected by attenuated collagen deposition and mitigated expression of fibrotic markers α-SMA and fibronectin. The hedgehog pathway transcriptional effectors Gli1 and Gli2, which have been reported to be involved in the pathogenesis of renal fibrosis, were significantly decreased in the iKO mice. Mechanistically, ChIP assay and luciferase reporter assay revealed that BMAL1 bound to the promoter of and activate the transcription of Gli2, but not Gli1, suggesting that the involvement of Bmal1 in renal fibrosis was possibly mediated via Gli2-dependent mechanisms. Furthermore, treatment with TGF-β increased Bmal1 in cultured murine proximal tubular cells. Knockdown of Bmal1 abolished, while overexpression of Bmal1 increased, Gli2 and the expression of fibrosis-related genes. Collectively, these results revealed a prominent role of the core clock gene Bmal1 in tubulointerstitial fibrosis. Moreover, we identified Gli2 as a novel target of Bmal1, which may mediate the adverse effect of Bmal1 in obstructive nephropathy.
Collapse
Affiliation(s)
- Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Chengcheng Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qing Liang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Circadian rhythms of mineral metabolism in chronic kidney disease-mineral bone disorder. Curr Opin Nephrol Hypertens 2021; 29:367-377. [PMID: 32452917 DOI: 10.1097/mnh.0000000000000611] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The circadian rhythms have a systemic impact on all aspects of physiology. Kidney diseases are associated with extremely high-cardiovascular mortality, related to chronic kidney disease-mineral bone disorder (CKD-MBD), involving bone, parathyroids and vascular calcification. Disruption of circadian rhythms may cause serious health problems, contributing to development of cardiovascular diseases, metabolic syndrome, cancer, organ fibrosis, osteopenia and aging. Evidence of disturbed circadian rhythms in CKD-MBD parameters and organs involved is emerging and will be discussed in this review. RECENT FINDINGS Kidney injury induces unstable behavioral circadian rhythm. Potentially, uremic toxins may affect the master-pacemaker of circadian rhythm in hypothalamus. In CKD disturbances in the circadian rhythms of CKD-MBD plasma-parameters, activin A, fibroblast growth factor 23, parathyroid hormone, phosphate have been demonstrated. A molecular circadian clock is also expressed in peripheral tissues, involved in CKD-MBD; vasculature, parathyroids and bone. Expression of the core circadian clock genes in the different tissues is disrupted in CKD-MBD. SUMMARY Disturbed circadian rhythms is a novel feature of CKD-MBD. There is a need to establish which specific input determines the phase of the local molecular clock and to characterize its regulation and deregulation in tissues involved in CKD-MBD. Finally, it is important to establish what are the implications for treatment including the potential applications for chronotherapy.
Collapse
|
24
|
Ivy JR, Bailey MA. Nondipping Blood Pressure: Predictive or Reactive Failure of Renal Sodium Handling? Physiology (Bethesda) 2021; 36:21-34. [PMID: 33325814 DOI: 10.1152/physiol.00024.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood pressure follows a daily rhythm, dipping during nocturnal sleep in humans. Attenuation of this dip (nondipping) is associated with increased risk of cardiovascular disease. Renal control of sodium homeostasis is essential for long-term blood pressure control. Sodium reabsorption and excretion have rhythms that rely on predictive/circadian as well as reactive adaptations. We explore how these rhythms might contribute to blood pressure rhythm in health and disease.
Collapse
Affiliation(s)
- Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Zhang D, Colson JC, Jin C, Becker BK, Rhoads MK, Pati P, Neder TH, King MA, Valcin JA, Tao B, Kasztan M, Paul JR, Bailey SM, Pollock JS, Gamble KL, Pollock DM. Timing of Food Intake Drives the Circadian Rhythm of Blood Pressure. FUNCTION (OXFORD, ENGLAND) 2020; 2:zqaa034. [PMID: 33415319 PMCID: PMC7772288 DOI: 10.1093/function/zqaa034] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023]
Abstract
Timing of food intake has become a critical factor in determining overall cardiometabolic health. We hypothesized that timing of food intake entrains circadian rhythms of blood pressure (BP) and renal excretion in mice. Male C57BL/6J mice were fed ad libitum or reverse feeding (RF) where food was available at all times of day or only available during the 12-h lights-on period, respectively. Mice eating ad libitum had a significantly higher mean arterial pressure (MAP) during lights-off compared to lights-on (113 ± 2 mmHg vs 100 ± 2 mmHg, respectively; P < 0.0001); however, RF for 6 days inverted the diurnal rhythm of MAP (99 ± 3 vs 110 ± 3 mmHg, respectively; P < 0.0001). In contrast to MAP, diurnal rhythms of urine volume and sodium excretion remained intact after RF. Male Bmal1 knockout mice (Bmal1KO) underwent the same feeding protocol. As previously reported, Bmal1KO mice did not exhibit a diurnal MAP rhythm during ad libitum feeding (95 ± 1 mmHg vs 92 ± 3 mmHg, lights-off vs lights-on; P > 0.05); however, RF induced a diurnal rhythm of MAP (79 ± 3 mmHg vs 95 ± 2 mmHg, lights-off vs lights-on phase; P < 0.01). Transgenic PERIOD2::LUCIFERASE knock-in mice were used to assess the rhythm of the clock protein PERIOD2 in ex vivo tissue cultures. The timing of the PER2::LUC rhythm in the renal cortex and suprachiasmatic nucleus was not affected by RF; however, RF induced significant phase shifts in the liver, renal inner medulla, and adrenal gland. In conclusion, the timing of food intake controls BP rhythms in mice independent of Bmal1, urine volume, or sodium excretion.
Collapse
Affiliation(s)
| | | | - Chunhua Jin
- Division of Nephrology, Department of Medicine
| | | | | | | | | | | | - Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology
| | - Binli Tao
- Division of Nephrology, Department of Medicine
| | | | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology
| | | | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David M Pollock
- Division of Nephrology, Department of Medicine,Address correspondence to D.M.P. (e-mail: )
| |
Collapse
|
26
|
Mace ML, Olgaard K, Lewin E. New Aspects of the Kidney in the Regulation of Fibroblast Growth Factor 23 (FGF23) and Mineral Homeostasis. Int J Mol Sci 2020; 21:E8810. [PMID: 33233840 PMCID: PMC7699902 DOI: 10.3390/ijms21228810] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
The bone-derived hormone fibroblast growth factor 23 (FGF23) acts in concert with parathyroid hormone (PTH) and the active vitamin D metabolite calcitriol in the regulation of calcium (Ca) and phosphate (P) homeostasis. More factors are being identified to regulate FGF23 levels and the endocrine loops between the three hormones. The present review summarizes the complex regulation of FGF23 and the disturbed FGF23/Klotho system in chronic kidney disease (CKD). In addition to the reduced ability of the injured kidney to regulate plasma levels of FGF23, several CKD-related factors have been shown to stimulate FGF23 production. The high circulating FGF23 levels have detrimental effects on erythropoiesis, the cardio-vascular system and the immune system, all contributing to the disturbed system biology in CKD. Moreover, new factors secreted by the injured kidney and the uremic calcified vasculature play a role in the mineral and bone disorder in CKD and create a vicious pathological crosstalk.
Collapse
Affiliation(s)
- Maria L. Mace
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (K.O.); (E.L.)
| | - Klaus Olgaard
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (K.O.); (E.L.)
| | - Ewa Lewin
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (K.O.); (E.L.)
- Department of Nephrology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Blood pressure (BP) exhibits strong diurnal variations that have been shown to be important for normal physiology and health. In this review, we highlight recent advances in both basic and clinic research on how the circadian clock affects these BP rhythms. RECENT FINDINGS Tissue-specific and inducible knockout rodent models have provided novel ways to dissect how circadian clocks regulate BP rhythms and demonstrated that loss of these rhythms is associated with the development of disease. The use of circadian-specific research protocols has translated findings from rodent models to humans, providing insight into circadian control of BP, as well as how sleep, activity, and other factors influence diurnal BP rhythms. Circadian mechanisms play an important role in the regulation of diurnal BP rhythms. Future research needs to extend these findings to clinical populations and determine the extent to which circadian factors may play a role in the development of novel treatment approaches to the management of hypertension.
Collapse
Affiliation(s)
- Megan K Rhoads
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vikhram Balagee
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Justin Thomas
- Department of Psychiatry, University of Alabama at Birmingham, SC1010, 1720 2nd Avenue South, Birmingham, AL, 35294-0017, USA.
| |
Collapse
|