1
|
Cheng CY, Hsu TH, Yang YL, Huang YH. Hemoglobin and Its Z Score Reference Intervals in Febrile Children: A Cohort Study of 98,572 Febrile Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1402. [PMID: 37628401 PMCID: PMC10453815 DOI: 10.3390/children10081402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVES Febrile disease and age of children were associated with a variation in hemoglobin (Hb) level. Both CRP and Hb serve as laboratory markers that offer valuable insights into a patient's health, particularly in relation to inflammation and specific medical conditions. Although a direct correlation between CRP and Hb levels is not established, the relationship between these markers has garnered academic attention and investigation. This study aimed to determine updated reference ranges for Hb levels for age and investigated its correlation with CRP in febrile children under the age of 18. METHODS This is a cohort study of in Chang Gung Memorial Hospitals conducted from January 2010 to December 2019. Blood samples were collected from 98,572 febrile children who were or had been admitted in the pediatric emergency department. The parameters of individuals were presented as the mean ± standard deviation or 2.5th and 97.5th percentiles. We also determined the variation of Hb and Z score of Hb between CRP levels in febrile children. RESULT We observed that the Hb levels were the highest immediately after birth and subsequently underwent a rapid decline, reaching their lowest point at around 1-2 months of age, and followed by a steady increment in Hb levels throughout childhood and adolescence. In addition, there was a significant and wide variation in Hb levels during the infant period. It revealed a significant association between higher CRP levels and lower Hb levels or a more negative Z score of Hb across all age subgroups. Moreover, in patients with bacteremia, CRP levels were higher, Hb concentrations were lower, and Z scores of Hb were also lower compared to the non-bacteremia group. Furthermore, the bacteremia group exhibited a more substantial negative correlation between CRP levels and a Z score of Hb (r = -0.41, p < 0.001) compared to the non-bacteremia group (r = -0.115, p < 0.049). CONCLUSION The study findings revealed that the Hb references varied depending on the age of the children and their CRP levels. In addition, we established new reference values for Hb and its Z scores and explore their relationship with CRP. It provides valuable insights into the Hb status and its potential association with inflammation in febrile pediatric patients.
Collapse
Affiliation(s)
- Chu-Yin Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ting-Hsuan Hsu
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 333, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 333, Taiwan
| |
Collapse
|
2
|
Cross JH, Jarjou O, Mohammed NI, Gomez SR, Touray BJB, Kessler NJ, Prentice AM, Cerami C. Iron homeostasis in full-term, normal birthweight Gambian neonates over the first week of life. Sci Rep 2023; 13:10349. [PMID: 37365154 PMCID: PMC10293170 DOI: 10.1038/s41598-023-34592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/04/2023] [Indexed: 06/28/2023] Open
Abstract
Human neonates elicit a profound hypoferremia which may protect against bacterial sepsis. We examined the transience of this hypoferremia by measuring iron and its chaperone proteins, inflammatory and haematological parameters over the first post-partum week. We prospectively studied term, normal weight Gambian newborns. Umbilical cord vein and artery, and serial venous blood samples up to day 7 were collected. Hepcidin, serum iron, transferrin, transferrin saturation, haptoglobin, c-reactive protein, α1-acid-glycoprotein, soluble transferrin receptor, ferritin, unbound iron-binding capacity and full blood count were assayed. In 278 neonates we confirmed the profound early postnatal decrease in serum iron (22.7 ± 7.0 µmol/L at birth to 7.3 ± 4.6 µmol/L during the first 6-24 h after birth) and transferrin saturation (50.2 ± 16.7% to 14.4 ± 6.1%). Both variables increased steadily to reach 16.5 ± 3.9 µmol/L and 36.6 ± 9.2% at day 7. Hepcidin increased rapidly during the first 24 h of life (19.4 ± 14.4 ng/ml to 38.9 ± 23.9 ng/ml) and then dipped (32.7 ± 18.4 ng/ml) before rising again at one week after birth (45.2 ± 19.1 ng/ml). Inflammatory markers increased during the first week of life. The acute postnatal hypoferremia in human neonates on the first day of life is highly reproducible but transient. The rise in serum iron during the first week of life occurs despite very high hepcidin levels indicating partial hepcidin resistance.Trial Registration: clinicaltrials.gov (NCT03353051). Registration date: November 27, 2017.
Collapse
Affiliation(s)
- James H Cross
- Medical Research Council Unit The Gambia at the London, School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Ousman Jarjou
- Medical Research Council Unit The Gambia at the London, School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Nuredin Ibrahim Mohammed
- Medical Research Council Unit The Gambia at the London, School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | | | - Bubacarr J B Touray
- Medical Research Council Unit The Gambia at the London, School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at the London, School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Carla Cerami
- Medical Research Council Unit The Gambia at the London, School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia.
| |
Collapse
|
3
|
França A. The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics (Basel) 2023; 12:antibiotics12030554. [PMID: 36978421 PMCID: PMC10044083 DOI: 10.3390/antibiotics12030554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Infections are one of the most significant complications of neonates, especially those born preterm, with sepsis as one of the principal causes of mortality. Coagulase-negative staphylococci (CoNS), a group of staphylococcal species that naturally inhabit healthy human skin and mucosa, are the most common cause of late-onset sepsis, especially in preterms. One of the risk factors for the development of CoNS infections is the presence of implanted biomedical devices, which are frequently used for medications and/or nutrient delivery, as they serve as a scaffold for biofilm formation. The major concerns related to CoNS infections have to do with the increasing resistance to multiple antibiotics observed among this bacterial group and biofilm cells’ increased tolerance to antibiotics. As such, the treatment of CoNS biofilm-associated infections with antibiotics is increasingly challenging and considering that antibiotics remain the primary form of treatment, this issue will likely persist in upcoming years. For that reason, the development of innovative and efficient therapeutic measures is of utmost importance. This narrative review assesses the current challenges and emerging diagnostic tools and therapies for the treatment of CoNS biofilm-associated infections, with a special focus on late-onset sepsis.
Collapse
Affiliation(s)
- Angela França
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga and Guimarães, Portugal
| |
Collapse
|
4
|
Hortová-Kohoutková M, Skotáková M, Onyango IG, Slezáková M, Panovský R, Opatřil L, Slanina P, De Zuani M, Mrkva O, Andrejčinová I, Lázničková P, Dvončová M, Mýtniková A, Ostland V, Šitina M, Stokin GB, Šrámek V, Vlková M, Helán M, Frič J. Hepcidin and ferritin levels as markers of immune cell activation during septic shock, severe COVID-19 and sterile inflammation. Front Immunol 2023; 14:1110540. [PMID: 36776891 PMCID: PMC9911830 DOI: 10.3389/fimmu.2023.1110540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Major clinically relevant inflammatory events such as septic shock and severe COVID-19 trigger dynamic changes in the host immune system, presenting promising candidates for new biomarkers to improve precision diagnostics and patient stratification. Hepcidin, a master regulator of iron metabolism, has been intensively studied in many pathologies associated with immune system activation, however these data have never been compared to other clinical settings. Thus, we aimed to reveal the dynamics of iron regulation in various clinical settings and to determine the suitability of hepcidin and/or ferritin levels as biomarkers of inflammatory disease severity. Cohorts To investigate the overall predictive ability of hepcidin and ferritin, we enrolled the patients suffering with three different diagnoses - in detail 40 patients with COVID-19, 29 patients in septic shock and eight orthopedic patients who were compared to nine healthy donors and all cohorts to each other. Results We showed that increased hepcidin levels reflect overall immune cell activation driven by intrinsic stimuli, without requiring direct involvement of infection vectors. Contrary to hepcidin, ferritin levels were more strongly boosted by pathogen-induced inflammation - in septic shock more than four-fold and in COVID-19 six-fold in comparison to sterile inflammation. We also defined the predictive capacity of hepcidin-to-ferritin ratio with AUC=0.79 and P = 0.03. Discussion Our findings confirm that hepcidin is a potent marker of septic shock and other acute inflammation-associated pathologies and demonstrate the utility of the hepcidin-to-ferritin ratio as a predictor of mortality in septic shock, but not in COVID-19.
Collapse
Affiliation(s)
| | - Monika Skotáková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Isaac G. Onyango
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Miriam Slezáková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Roman Panovský
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,1st Department of Internal Medicine/Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lukáš Opatřil
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,1st Department of Internal Medicine/Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Peter Slanina
- Institute of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Ondřej Mrkva
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Ivana Andrejčinová
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Lázničková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Martina Dvončová
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alexandra Mýtniková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Michal Šitina
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Gorazd B. Stokin
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Celica BIOMEDICAL, Ljubljana, Slovenia,Division of Neurology, University Medical Centre, Ljubljana, Slovenia
| | - Vladimír Šrámek
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marcela Vlková
- Institute of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Helán
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jan Frič
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia,*Correspondence: Jan Frič,
| |
Collapse
|
5
|
Mayneris-Perxachs J, Moreno-Navarrete JM, Fernández-Real JM. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol 2022; 18:683-698. [PMID: 35986176 DOI: 10.1038/s41574-022-00721-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Iron is critical for the appearance and maintenance of life on Earth. Almost all organisms compete or cooperate for iron acquisition, demonstrating the importance of this essential element for the biological and physiological processes that are key for the preservation of metabolic homeostasis. In humans and other mammals, the bidirectional interactions between the bacterial component of the gut microbiota and the host for iron acquisition shape both host and microbiota metabolism. Bacterial functions influence host iron absorption, whereas the intake of iron, iron deficiency and iron excess in the host affect bacterial biodiversity, taxonomy and function, resulting in changes in bacterial virulence. These consequences of the host-microbial crosstalk affect systemic levels of iron, its storage in different tissues and host glucose metabolism. At the interface between the host and the microbiota, alterations in the host innate immune system and in circulating soluble factors that regulate iron (that is, hepcidin, lipocalin 2 and lactoferrin) are associated with metabolic disease. In fact, patients with obesity-associated metabolic dysfunction and insulin resistance exhibit dysregulation in iron homeostasis and alterations in their gut microbiota profile. From an evolutionary point of view, the pursuit of two important nutrients - glucose and iron - has probably driven human evolution towards the most efficient pathways and genes for human survival and health.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine, Universitat de Girona, Girona, Spain.
| |
Collapse
|
6
|
Sherbiny HS, Mostafa HAEF, Sherief LM, Kamal NM, El-Shal AS, Abdel-El Halm MM, Khan HY, Ali ASA. Validity of serum and urinary hepcidin as biomarkers for late-onset sepsis in premature infants. Ther Adv Chronic Dis 2022; 13:20406223221122527. [PMID: 36093263 PMCID: PMC9459492 DOI: 10.1177/20406223221122527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Sepsis remains one of the leading causes of neonatal morbidity and mortality,
particularly among premature infants. Blood culture is the ‘gold standard’
for the diagnosis of neonatal sepsis but is associated with several
pitfalls. Aim of the work: We aim to evaluate the validity of measuring serum (S.Hep) and urinary
hepcidin (U.Hep) concentrations as diagnostic biomarkers for late-onset
sepsis (LOS) in preterm infants. Patients and Methods: The current case-control study included 73 cases of clinically and laboratory
confirmed late-onset sepsis as the ‘case group’ and 50 nonseptic premature
infants of comparable age and sex as the ‘control group’. S.Hep and U.Hep
concentrations were evaluated at enrollment (acute sample) and after 1 week
of treatment (convalescent sample). Results: Patients had a statistically significant higher concentration of both S.Hep
and U.Hep as compared with nonseptic controls (p = 0.0001).
Similarly, a significant reduction of both S.Hep and U.Hep was detected
after 1 week of treatment (p = 0.001). A cut-off value
of ⩾ 94.8 ng/ml of S.Hep and ⩾ 264 ng/mg of U.Hep/urinary creatinine showed
high sensitivity, specificity, and positive predictive value in the
diagnosis of neonatal LOS. Conclusions: Both S.Hep and U.Hep can function as promising accurate and rapid surrogate
tests for the diagnosis of LOS. U.Hep measurement has the advantage of being
noninvasive, with no hazards of phlebotomy, and is less variable throughout
the day.
Collapse
Affiliation(s)
- Hanan Sakr Sherbiny
- Pediatric Department, Zagazig University, Zagazig, Egypt, Pediatric Department, College of Medicine, Bisha University, Bisha, Saudi Arabia
| | | | | | - Naglaa M Kamal
- Professor of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amal Saeed El-Shal
- Zagazig University, Zagazig, Egypt, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | | | | | | |
Collapse
|
7
|
Yang YL, Kuo HC, Chen KD, Chu CH, Kuo KC, Guo MMH, Chang LS, Huang YH. Combination of Hemoglobin-for-Age Z-Score and Plasma Hepcidin Identified as a Novel Predictor for Kawasaki Disease. CHILDREN 2022; 9:children9060913. [PMID: 35740850 PMCID: PMC9222120 DOI: 10.3390/children9060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Kawasaki disease (KD) is a febrile coronary vasculitis that affects younger children and includes complications such as coronary artery aneurysm. KD diagnoses are diagnosed based on clinical presentations, a process that still poses a challenge for front-line physicians. In the current study, we developed a novel predictor using the hemoglobin-for-age z-score (HbZ) and plasma hepcidin to differentiate Kawasaki disease (KD) from febrile children (FC). There were 104 FC and 115 KD subjects (89 typical KD; 26 incomplete KD) for this study, and data were collected on the biological parameters of hemoglobin and plasma hepcidin levels. A receiver operating characteristic curve (auROC), multiple logistics regression, and support vector machine analysis were all adopted to develop our prediction condition. We obtained both predictors, HbZ and plasma hepcidin, for distinguishing KD and FC. The auROC of the multivariate logistic regression of both parameters for FC and KD was 0.959 (95% confidence interval = 0.937–0.981), and the sensitivity and specificity were 85.2% and 95.9%, respectively. Furthermore, the auROC for FC and incomplete KD was 0.981, and the sensitivity and specificity were 92.3% and 95.2%, respectively. We further developed a model of support vector machine (SVM) classification with 83.3% sensitivity and 88.0% specificity in the training set, and the blind cohort performed well (78.4% sensitivity and 100% specificity). All data showed that sensitivity and specificity were 81.7% and 91.3%, respectively, by SVM. Overall, our findings demonstrate a novel predictor using a combination of HbZ and plasma hepcidin with a better discriminatory ability for differentiating from WBC and CRP between children with KD and other FC. Using this predictor can assist front-line physicians to recognize and then provide early treatment for KD.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Ho-Chang Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (H.-C.K.); (K.-C.K.); (M.M.-H.G.); (L.-S.C.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Kuang-Den Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chi-Hsiang Chu
- Department of Statistics, Tunghai University, Taichung 407, Taiwan;
| | - Kuang-Che Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (H.-C.K.); (K.-C.K.); (M.M.-H.G.); (L.-S.C.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Mindy Ming-Huey Guo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (H.-C.K.); (K.-C.K.); (M.M.-H.G.); (L.-S.C.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ling-Sai Chang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (H.-C.K.); (K.-C.K.); (M.M.-H.G.); (L.-S.C.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ying-Hsien Huang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (H.-C.K.); (K.-C.K.); (M.M.-H.G.); (L.-S.C.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-(7)731-7123 (ext. 8795); Fax: +886-(7)733-8009
| |
Collapse
|
8
|
Stelle I, Bah M, Silverio SA, Verhoef H, Comma E, Prentice AM, Moore SE, Cerami C. Iron supplementation of breastfed Gambian infants from 6 weeks to 6 months of age: protocol for a randomised controlled trial. Wellcome Open Res 2022; 7:16. [PMID: 36874582 PMCID: PMC9975413 DOI: 10.12688/wellcomeopenres.17507.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background: A recent analysis showed that plasma iron concentrations decline rapidly from birth in Gambian infants, irrespective of sex or birthweight, to concentrations well below normal expected values for iron-replete children older than two months of age (typically >10 μmol/L). The development and function of neural and immune cells may thus be compromised before the minimum age at which children should receive iron supplementation as per World Health Organisation recommendations. Methods: This study is a two-arm, double-blind, placebo-controlled, randomised superiority trial. Infants will be randomised to receive iron drops (7.5mg/day of iron as ferrous sulphate) or placebo daily for 98 days, to test the impact on serum iron concentrations in healthy, breastfed infants (n = 100) aged 6-10 weeks at enrolment. Participants will be visited daily and supplemented by the field team. Daily health and weekly breastfeeding questionnaires will be administered. Anthropometry, and venous blood and faecal samples will be collected at enrolment and after 98 days of supplementation with serum iron as the primary endpoint. Low birthweight (less than 2.5kg at birth) and infants born prematurely (< 37 weeks) will not be excluded. Formula-fed and infants with any illness will be excluded. An additional study exploring maternal stakeholder perspectives of the intervention will be conducted by means of maternal interviews and four focus group discussions with local stakeholders. Discussion: Most breast-fed Gambian infants have very low circulating iron levels by five months of age. This study will introduce iron supplements much earlier in infancy than has previously been attempted in a low-income setting with the primary aim of increasing serum iron concentration. Trial registration: Clincaltrials.gov ( NCT04751994); 12 th February 2021.
Collapse
Affiliation(s)
- Isabella Stelle
- Department of Women and Children's Health, King's College London, 10th Floor North Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Mamadou Bah
- Nutrition and Planetary Health Theme, MRC Unit The Gambia @ the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
- Division of Human Nutrition and Health, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Sergio A. Silverio
- Department of Women and Children's Health, King's College London, 10th Floor North Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Hans Verhoef
- Division of Human Nutrition and Health, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Ebrima Comma
- Nutrition and Planetary Health Theme, MRC Unit The Gambia @ the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Andrew M. Prentice
- Nutrition and Planetary Health Theme, MRC Unit The Gambia @ the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Sophie E. Moore
- Department of Women and Children's Health, King's College London, 10th Floor North Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
- Nutrition and Planetary Health Theme, MRC Unit The Gambia @ the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Carla Cerami
- Nutrition and Planetary Health Theme, MRC Unit The Gambia @ the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| |
Collapse
|
9
|
Abuga KM, Muriuki JM, Uyoga SM, Mwai K, Makale J, Mogire RM, Macharia AW, Mohammed S, Muthumbi E, Mwarumba S, Mturi N, Bejon P, Scott JAG, Nairz M, Williams TN, Atkinson SH. Hepcidin regulation in Kenyan children with severe malaria and non-typhoidal Salmonella bacteremia. Haematologica 2021; 107:1589-1598. [PMID: 34498446 PMCID: PMC9244826 DOI: 10.3324/haematol.2021.279316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/09/2022] Open
Abstract
Malaria and invasive non-typhoidal Salmonella (NTS) are life-threatening infections that often co-exist in African children. The iron-regulatory hormone hepcidin is highly upregulated during malaria and controls the availability of iron, a critical nutrient for bacterial growth. We investigated the relationship between Plasmodium falciparum malaria and NTS bacteremia in all pediatric admissions aged <5 years between August 1998 and October 2019 (n=75,034). We then assayed hepcidin and measures of iron status in five groups: (1) children with concomitant severe malarial anemia (SMA) and NTS (SMA+NTS, n=16); and in matched children with (2) SMA (n=33); (3) NTS (n=33); (4) cerebral malaria (CM, n=34); and (5) community-based children. SMA and severe anemia without malaria were associated with a 2-fold or more increased risk of NTS bacteremia, while other malaria phenotypes were not associated with increased NTS risk. Children with SMA had lower hepcidin/ferritin ratios (0.10; interquartile range [IQR]: 0.03-0.19) than those with CM (0.24; IQR: 0.14-0.69; P=0.006) or asymptomatic malaria (0.19; IQR: 0.09-0.46; P=0.01) indicating suppressed hepcidin levels. Children with SMA+NTS had lower hepcidin levels (9.3 ng/mL; IQR: 4.7-49.8) and hepcidin/ferritin ratios (0.03; IQR: 0.01-0.22) than those with NTS alone (105.8 ng/mL; IQR: 17.3-233.3; P=0.02 and 0.31; IQR: 0.06-0.66; P=0.007, respectively). Since hepcidin degrades ferroportin on the Salmonella-containing vacuole, we hypothesize that reduced hepcidin in children with SMA might contribute to NTS growth by modulating iron availability for bacterial growth. Further studies are needed to understand how the hepcidin-ferroportin axis might mediate susceptibility to NTS in severely anemic children.
Collapse
Affiliation(s)
- Kelvin M. Abuga
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya,Department of Public Health, School of Human and Health Sciences, Pwani University, Kilifi, Kenya,Kelvin M. Abuga
| | - John Muthii Muriuki
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Sophie M. Uyoga
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Kennedy Mwai
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya,Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Johnstone Makale
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Reagan M. Mogire
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya,Open University, KEMRI-Wellcome Trust Research Program – Accredited Research Center, Kilifi, Kenya
| | - Alex W. Macharia
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya,Open University, KEMRI-Wellcome Trust Research Program – Accredited Research Center, Kilifi, Kenya
| | - Shebe Mohammed
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Esther Muthumbi
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Salim Mwarumba
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Neema Mturi
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Philip Bejon
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya,Center for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - J. Anthony G. Scott
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya,Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas N. Williams
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya,Center for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK,Department of Infectious Diseases and Institute of Global Health Innovation, Imperial College, London, UK
| | - Sarah H. Atkinson
- Kenya Medical Research Institute (KEMRI) Center for Geographic Medicine Research, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya,Center for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK,Department of Pediatrics, University of Oxford, Oxford, UK,Sarah H. Atkinson
| |
Collapse
|
10
|
The critical roles of iron during the journey from fetus to adolescent: Developmental aspects of iron homeostasis. Blood Rev 2021; 50:100866. [PMID: 34284901 DOI: 10.1016/j.blre.2021.100866] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Iron is indispensable for human life. However, it is also potentially toxic, since it catalyzes the formation of harmful oxidative radicals in unbound form and may facilitate pathogen growth. Therefore, iron homeostasis needs to be tightly regulated. Rapid growth and development require large amounts of iron, while (especially young) children are vulnerable to infections with iron-dependent pathogens due to an immature immune system. Moreover, unbalanced iron status early in life may have effects on the nervous system, immune system and gut microbiota that persist into adulthood. In this narrative review, we assess the critical roles of iron for growth and development and elaborate how the body adapts to physiologically high iron demands during the journey from fetus to adolescent. As a first step towards the development of clinical guidelines for the management of iron disorders in children, we summarize the unmet needs regarding the developmental aspects of iron homeostasis.
Collapse
|
11
|
How Severe Anaemia Might Influence the Risk of Invasive Bacterial Infections in African Children. Int J Mol Sci 2020; 21:ijms21186976. [PMID: 32972031 PMCID: PMC7555399 DOI: 10.3390/ijms21186976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
Severe anaemia and invasive bacterial infections are common causes of childhood sickness and death in sub-Saharan Africa. Accumulating evidence suggests that severely anaemic African children may have a higher risk of invasive bacterial infections. However, the mechanisms underlying this association remain poorly described. Severe anaemia is characterized by increased haemolysis, erythropoietic drive, gut permeability, and disruption of immune regulatory systems. These pathways are associated with dysregulation of iron homeostasis, including the downregulation of the hepatic hormone hepcidin. Increased haemolysis and low hepcidin levels potentially increase plasma, tissue and intracellular iron levels. Pathogenic bacteria require iron and/or haem to proliferate and have evolved numerous strategies to acquire labile and protein-bound iron/haem. In this review, we discuss how severe anaemia may mediate the risk of invasive bacterial infections through dysregulation of hepcidin and/or iron homeostasis, and potential studies that could be conducted to test this hypothesis.
Collapse
|
12
|
Cross JH, Prentice AM, Cerami C. Hepcidin, Serum Iron, and Transferrin Saturation in Full-Term and Premature Infants during the First Month of Life: A State-of-the-Art Review of Existing Evidence in Humans. Curr Dev Nutr 2020; 4:nzaa104. [PMID: 32793848 PMCID: PMC7413980 DOI: 10.1093/cdn/nzaa104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Neonates regulate iron at birth and in early postnatal life. We reviewed literature from PubMed and Ovid Medline containing data on umbilical cord and venous blood concentrations of hepcidin and iron, and transferrin saturation (TSAT), in human neonates from 0 to 1 mo of age. Data from 59 studies were used to create reference ranges for hepcidin, iron, and TSAT for full-term-birth (FTB) neonates over the first month of life. In FTB neonates, venous hepcidin increases 100% over the first month of life (to reach 61.1 ng/mL; 95% CI: 20.1, 102.0 ng/mL) compared with umbilical cord blood (29.7 ng/mL; 95% CI: 21.1, 38.3 ng/mL). Cord blood has a high concentration of serum iron (28.4 μmol/L; 95% CI: 26.0, 31.1 μmol/L) and levels of TSAT (51.7%; 95% CI: 46.5%, 56.9%). After a short-lived immediate postnatal hypoferremia, iron and TSAT rebounded to approximately half the levels in the cord by the end of the first month. There were insufficient data to formulate reference ranges for preterm neonates.
Collapse
Affiliation(s)
- James H Cross
- Epidemiology and Population Health, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| | - Andrew M Prentice
- Epidemiology and Population Health, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| | - Carla Cerami
- Epidemiology and Population Health, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| |
Collapse
|
13
|
Cross JH, Jarjou O, Mohammed NI, Rayment Gomez S, Touray BJB, Prentice AM, Cerami C. Early postnatal hypoferremia in low birthweight and preterm babies: A prospective cohort study in hospital-delivered Gambian neonates. EBioMedicine 2020; 52:102613. [PMID: 31981986 PMCID: PMC6992934 DOI: 10.1016/j.ebiom.2019.102613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Neonates, particularly those born preterm (PTB) and with low birthweight (LBW), are especially susceptible to bacterial and fungal infections that cause an estimated 225,000 deaths annually. Iron is a vital nutrient for the most common organisms causing septicaemia. Full-term babies elicit an immediate postnatal hypoferremia assumed to have evolved as an innate defence. We tested whether PTB and LBW babies are capable of the same response. METHODS We conducted an observational study of 152 babies who were either PTB (born ≥32 to <37 weeks gestational age) and/or LBW (<2500 g) (PTB/LBW) and 278 term, normal-weight babies (FTB/NBW). Blood was sampled from the umbilical cord vein and artery, and matched venous blood samples were taken from all neonates between 6-24 h after delivery. We measured haematological, iron and inflammatory markers. FINDINGS In both PTB/LBW and FTB/NBW babies, serum iron decreased 3-fold within 12 h of delivery compared to umbilical blood (7·5 ± 4·5 vs 23·3 ± 7·1 ng/ml, P < 0·001, n = 425). Transferrin saturation showed a similar decline with a consequent increase in unsaturated iron-binding capacity. C-reactive protein levels increased over 10-fold (P < 0·001) and hepcidin levels doubled (P < 0·001). There was no difference in any of these responses between PTB/LBW and FTB/NBW babies. INTERPRETATION Premature or low birthweight babies are able to mount a very rapid hypoferremia that is indistinguishable from that in normal term babies. The data suggest that this is a hepcidin-mediated response triggered by acute inflammation at birth, and likely to have evolved as an innate immune response against bacterial and fungal septicaemia. TRIAL REGISTRATION clinicaltrials.gov (NCT03353051). Registration date: November 27, 2017. FUNDING Bill & Melinda Gates Foundation (OPP1152353).
Collapse
Affiliation(s)
- James H Cross
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Ousman Jarjou
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Nuredin Ibrahim Mohammed
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | | | - Bubacarr J B Touray
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Carla Cerami
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia.
| |
Collapse
|