1
|
Gu S, Huang Q, Sun C, Wen C, Yang N. Transcriptomic and epigenomic insights into pectoral muscle fiber formation at the late embryonic development in pure chicken lines. Poult Sci 2024; 103:103882. [PMID: 38833745 PMCID: PMC11190745 DOI: 10.1016/j.psj.2024.103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Long-term intensive genetic selection has led to significant differences between broiler and layer chickens, which are evident during the embryonic period. Despite this, there is a paucity of research on the genetic regulation of the initial formation of muscle fiber morphology in chick embryos. Embryonic d 17 (E17) is the key time point for myoblast fusion completion and muscle fiber morphology formation in chickens. This study aimed to explore the genetic regulatory mechanisms underlying the early muscle fiber morphology establishment in broiler chickens of Cornish (CC) and White Plymouth Rock (RR) and layer chickens of White Leghorn (WW) at E17 using the transcriptomic and chromatin accessibility sequencing of pectoral major muscles. The results showed that broiler chickens exhibited significant higher embryo weight and pectoral major muscle weight at E17 compared to layer chickens (P = 0.000). A total of 1,278, 1,248, and 892 differentially expressed genes (DEGs) of RNA-seq data were identified between CC vs. WW, RR vs. WW, and CC vs. RR, separately. All DEGs were combined for cluster analysis and they were divided into 6 clusters, including cluster 1 with higher expression in broilers and cluster 6 with higher expression in layers. DEGs in cluster 1 were enriched in terms related to macrophage activation (P = 0.002) and defense response to bacteria (P = 0.002), while DEGs in cluster 6 showed enrichment in protein-DNA complex (P = 0.003) and monooxygenase activity (P = 0.000). ATAC-seq data analysis identified a total of 38,603 peaks, with 13,051 peaks for CC, 18,780 peaks for RR, and 6,772 peaks for WW. Integrative analysis of transcriptomic and chromatin accessibility data revealed GOLM1, ISLR2, and TOPAZ1 were commonly upregulated genes in CC and RR. Furthermore, screening of all upregulated DEGs in cluster 1 from CC and RR identified GOLM1, ISLR2, and HNMT genes associated with neuroimmune functions and MYOM3 linked to muscle morphology development, showing significantly elevated expression in broiler chickens compared to layer chickens. These findings suggest active neural system connectivity during the initial formation of muscle fiber morphology in embryonic period, highlighting the early interaction between muscle fiber formation morphology and the nervous system. This study provides novel insights into late chick embryo development and lays a deeper foundation for further research.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China
| | - Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China.
| |
Collapse
|
2
|
Shao X, Lu X, Sun X, Jiang H, Chen Y. Preliminary studies on the molecular mechanism of intramuscular fat deposition in the longest dorsal muscle of sheep. BMC Genomics 2024; 25:592. [PMID: 38867146 PMCID: PMC11167792 DOI: 10.1186/s12864-024-10486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Intramuscular fat content is an important index reflecting the quality of mutton, which directly affects the flavor and tenderness of mutton. Livestock and poultry intramuscular fat content is influenced by genetics, nutritional level, and environmental factors. Key regulatory factors play a crucial role in intramuscular fat deposition. However, there is a limited amount of research on the identification and function of key genes involved in intramuscular fat content deposition specifically in sheep. RESULTS Histological differences in the longest dorsal muscle of the small-tailed frigid sheep increased in diameter and decreased in several muscle fibers with increasing monthly age; The intramuscular fat content of the longest dorsal muscle of the small-tailed cold sheep varied with age, with a minimum of 1 month of age, a maximum of 6 months of age, and a minimum of 12 months of age. Transcriptomic sequencing and bioinformatics analysis revealed a large number of differential genes in the longest dorsal muscles of little-tailed billy goats of different months of age, which were enriched in multiple GO entries and KEGG pathways. Among them, the pathway associated with intramuscular fat was the AMPK signaling pathway, and the related genes were PPARGC1A and ADIPOQ; Immunohistochemical studies showed that PPARGC1A and ADIPOQ proteins were expressed in connective tissues, cell membranes, and, to a lesser extent, the cytoplasm of the longest dorsal muscle of the little-tailed frigid sheep; Real-time PCR and Western Blot validation showed that PPARGC1A and ADIPOQ were both expressed in the longest dorsal muscle of the little-tailed frigid sheep at different ages, and there were age differences in the amount of expression. The ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle, and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle; As inferred from the above results, the ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle (r = -0.793, P < 0.05); and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle r = 0.923, P < 0.05). CONCLUSIONS Based on the above results, it can be inferred that the ADIPOQ gene is negatively correlated with the intramuscular fat content of the longest back muscle (r = -0.793, P < 0.05); the PPARGC1A gene is positively correlated with the intramuscular fat content of the longest back muscle (r = 0.923, P < 0.05).
Collapse
Affiliation(s)
- Xuwen Shao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Xintan Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Xinming Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Huaizhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China.
| | - Yang Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China.
| |
Collapse
|
3
|
Li J, Lin Y, Li D, He M, Kui H, Bai J, Chen Z, Gou Y, Zhang J, Wang T, Tang Q, Kong F, Jin L, Li M. Building Haplotype-Resolved 3D Genome Maps of Chicken Skeletal Muscle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305706. [PMID: 38582509 PMCID: PMC11200017 DOI: 10.1002/advs.202305706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Haplotype-resolved 3D chromatin architecture related to allelic differences in avian skeletal muscle development has not been addressed so far, although chicken husbandry for meat consumption has been prevalent feature of cultures on every continent for more than thousands of years. Here, high-resolution Hi-C diploid maps (1.2-kb maximum resolution) are generated for skeletal muscle tissues in chicken across three developmental stages (embryonic day 15 to day 30 post-hatching). The sequence features governing spatial arrangement of chromosomes and characterize homolog pairing in the nucleus, are identified. Multi-scale characterization of chromatin reorganization between stages from myogenesis in the fetus to myofiber hypertrophy after hatching show concordant changes in transcriptional regulation by relevant signaling pathways. Further interrogation of parent-of-origin-specific chromatin conformation supported that genomic imprinting is absent in birds. This study also reveals promoter-enhancer interaction (PEI) differences between broiler and layer haplotypes in skeletal muscle development-related genes are related to genetic variation between breeds, however, only a minority of breed-specific variations likely contribute to phenotypic divergence in skeletal muscle potentially via allelic PEI rewiring. Beyond defining the haplotype-specific 3D chromatin architecture in chicken, this study provides a rich resource for investigating allelic regulatory divergence among chicken breeds.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yu Lin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Diyan Li
- School of PharmacyChengdu UniversityChengdu610106China
| | - Mengnan He
- Wildlife Conservation Research DepartmentChengdu Research Base of Giant Panda BreedingChengdu610057China
| | - Hua Kui
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Ziyu Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Tao Wang
- School of PharmacyChengdu UniversityChengdu610106China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Fanli Kong
- College of Life ScienceSichuan Agricultural UniversityYa'an625014China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
4
|
Hong TK, Do JT. Generation of Chicken Contractile Skeletal Muscle Structure Using Decellularized Plant Scaffolds. ACS Biomater Sci Eng 2024; 10:3500-3512. [PMID: 38563398 DOI: 10.1021/acsbiomaterials.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cultured meat is a meat analogue produced by in vitro cell culture, which can replace the conventional animal production system. Tissue engineering using myogenic cells and biomaterials is a core technology for cultured meat production. In this study, we provide an efficient and economical method to produce skeletal muscle tissue-like structures by culturing chicken myoblasts in a fetal bovine serum (FBS)-free medium and plant-derived scaffolds. An FBS-free medium supplemented with 10% horse serum (HS) and 5% chick embryo extract (CEE) was suitable for the proliferation and differentiation of chicken myoblasts. Decellularized celery scaffolds (Decelery), manufactured using 1% sodium dodecyl sulfate (SDS), were nontoxic to cells and supported myoblast proliferation and differentiation. Decelery could support the 3D culture of chicken myoblasts, which could adhere and coagulate to the surface of the Decelery and form MYH1E+ and F-actin+ myotubes. After 2 weeks of culture on Decelery, fully grown myoblasts completely covered the surface of the scaffolds and formed fiber-like myotube structures. They further differentiated to form spontaneously contracting myofiber-like myotubes on the scaffold surface, indicating that the Decelery scaffold system could support the formation of a functional mature myofiber structure. In addition, as the spontaneously contracting myofibers did not detach from the surface of the Decelery, the Decelery system is a suitable biomaterial for the long-term culture and maintenance of the myofiber structures.
Collapse
Affiliation(s)
- Tae Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Umezawa K, Ikeda R, Sakamoto T, Enomoto Y, Nihashi Y, Shinji S, Shimosato T, Kagami H, Takaya T. Development of the 12-Base Short Dimeric Myogenetic Oligodeoxynucleotide That Induces Myogenic Differentiation. BIOTECH 2024; 13:11. [PMID: 38804293 PMCID: PMC11130974 DOI: 10.3390/biotech13020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
A myogenetic oligodeoxynucleotide (myoDN), iSN04 (5'-AGA TTA GGG TGA GGG TGA-3'), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. To improve the drug efficacy and synthesis cost of myoDN, shortening the sequence while maintaining its structure-based function is a major challenge. Here, we report the novel 12-base non-telomeric myoDN, iMyo01 (5'-TTG GGT GGG GAA-3'), which has comparable myogenic activity to iSN04. iMyo01 as well as iSN04 promoted myotube formation of primary-cultured human myoblasts with upregulation of myogenic gene expression. Both iMyo01 and iSN04 interacted with nucleolin, but iMyo01 did not bind to berberine, the isoquinoline alkaloid that stabilizes iSN04. Nuclear magnetic resonance revealed that iMyo01 forms a G-quadruplex structure despite its short sequence. Native polyacrylamide gel electrophoresis and a computational molecular dynamics simulation indicated that iMyo01 forms a homodimer to generate a G-quadruplex. These results provide new insights into the aptamer truncation technology that preserves aptamer conformation and bioactivity for the development of efficient nucleic acid drugs.
Collapse
Affiliation(s)
- Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Rena Ikeda
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi 275-0016, Japan;
| | - Yuya Enomoto
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Centoral 5-41, 1-1-1 Higashi, Tsukuba 305-8565, Japan;
| | - Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
| | - Tomohide Takaya
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| |
Collapse
|
6
|
TAMURA N, HEIDARI N, FARAGHER RG, SMITH RK, DUDHIA J. Effects of resveratrol and its analogues on the cell cycle of equine mesenchymal stem/stromal cells. J Equine Sci 2023; 34:67-72. [PMID: 37781569 PMCID: PMC10534064 DOI: 10.1294/jes.34.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/28/2023] [Indexed: 10/03/2023] Open
Abstract
Resveratrol (RSV; trans-3,5,4'-trihydroxystilbene) strongly activates sirtuin 1, and it and its analogue V29 enhance the proliferation of mesenchymal stem/stromal cells (MSCs).Although culture medium containing 5-azacytydine and RSV inhibits senescence of adipose tissue-derived MSCs isolated from horses with metabolic syndrome, few studies have reported the effects of RSV on equine bone marrow-derived MSCs (eBMMSCs) isolated from horses without metabolic syndrome. The aim of this study was to investigate the effects of RSV and V29 on the cell cycle of eBMMSCs. Following treatment with 5 µM RSV or 10 µM V29, the cell proliferation capacity of eBMMSCs derived from seven horses was evaluated by EdU (5-ethynyl-2'-deoxyuridine) and Ki-67 antibody assays. Brightfield images of cells and immunofluorescent images of EdU, Ki-67, and DAPI staining were recorded by fluorescence microscopy, and the number of cells positive for each was quantified and compared by Friedman's test at P<0.05. The growth fraction of eBMMSCs was significantly increased by RSV and V29 as measured by the EdU assay (control 28.1% ± 13.8%, V29 31.8% ± 14.6%, RSV 32.0% ± 10.8%; mean ± SD; P<0.05) but not as measured by the Ki-67 antibody assay (control 27.0% ± 11.2%, V29 27.4% ± 10.8%, RSV 27.7% ± 6.8%). RSV and V29 promoted progression of the cell cycle of eBMMSCs into the S phase and may be useful for eBMMSC expansion.
Collapse
Affiliation(s)
- Norihisa TAMURA
- Clinical Veterinary Medicine Division, Equine
Research Institute, Japan Racing Association, Tochigi 329-0412,
Japan
- Department of Clinical Sciences and Services,
Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - Neda HEIDARI
- Department of Clinical Sciences and Services,
Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - Richard G.A. FARAGHER
- School of Pharmacy and Biomolecular Sciences,
University of Brighton, Brighton BN2 4GJ, UK
| | - Roger K.W. SMITH
- Department of Clinical Sciences and Services,
Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - Jayesh DUDHIA
- Department of Clinical Sciences and Services,
Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| |
Collapse
|
7
|
Li J, Chen C, Zhao R, Wu J, Li Z. Transcriptome analysis of mRNAs, lncRNAs, and miRNAs in the skeletal muscle of Tibetan chickens at different developmental stages. Front Physiol 2023; 14:1225349. [PMID: 37565148 PMCID: PMC10410567 DOI: 10.3389/fphys.2023.1225349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction: As a valuable genetic resource, native birds can contribute to the sustainable development of animal production. Tibetan chickens, known for their special flavor, are one of the important local poultry breeds in the Qinghai-Tibet Plateau. However, Tibetan chickens have a slow growth rate and poor carcass traits compared with broilers. Although most of the research on Tibetan chickens focused on their hypoxic adaptation, there were fewer studies related to skeletal muscle development. Methods: Here, we performed the transcriptional sequencing of leg muscles from Tibetan chicken embryos at E (embryonic)10, E14, and E18. Results: In total, 1,600, 4,610, and 2,166 DE (differentially expressed) mRNAs, 210, 573, and 234 DE lncRNAs (long non-coding RNAs), and 52, 137, and 33 DE miRNAs (microRNAs) were detected between E10 and E14, E10 and E18, and E14 and E18, respectively. Functional prediction showed several DE mRNAs and the target mRNAs of DE lncRNAs and DE miRNAs were significantly enriched in sarcomere organization, actin cytoskeleton organization, myofibril, muscle fiber development, and other terms and pathways related to muscle growth and development. Finally, a lncRNA-miRNA-mRNA ceRNA (competing endogenous RNA) network associated with muscle growth and development, which contained 6 DE lncRNAs, 13 DE miRNAs, and 50 DE mRNAs, was constructed based on the screened DE RNAs by Gene Ontology (GO) enrichment. These DE RNAs may play a critical regulatory role in the skeletal muscle development of chickens. Discussion: The results provide a genomic resource for mRNAs, lncRNAs, and miRNAs potentially involved in the skeletal muscle development of chickens, which lay the foundation for further studies of the molecular mechanisms underlying skeletal muscle growth and development in Tibetan chickens.
Collapse
Affiliation(s)
- Jie Li
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Chuwen Chen
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ruipeng Zhao
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jinbo Wu
- Institute of Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Aba Sichuan, China
| | - Zhixiong Li
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Iqbal MA, Hadlich F, Reyer H, Oster M, Trakooljul N, Murani E, Perdomo‐Sabogal A, Wimmers K, Ponsuksili S. RNA-Seq-based discovery of genetic variants and allele-specific expression of two layer lines and broiler chicken. Evol Appl 2023; 16:1135-1153. [PMID: 37360029 PMCID: PMC10286233 DOI: 10.1111/eva.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/28/2023] Open
Abstract
Recent advances in the selective breeding of broilers and layers have made poultry production one of the fastest-growing industries. In this study, a transcriptome variant calling approach from RNA-seq data was used to determine population diversity between broilers and layers. In total, 200 individuals were analyzed from three different chicken populations (Lohmann Brown (LB), n = 90), Lohmann Selected Leghorn (LSL, n = 89), and Broiler (BR, n = 21). The raw RNA-sequencing reads were pre-processed, quality control checked, mapped to the reference genome, and made compatible with Genome Analysis ToolKit for variant detection. Subsequently, pairwise fixation index (F ST) analysis was performed between broilers and layers. Numerous candidate genes were identified, that were associated with growth, development, metabolism, immunity, and other economically significant traits. Finally, allele-specific expression (ASE) analysis was performed in the gut mucosa of LB and LSL strains at 10, 16, 24, 30, and 60 weeks of age. At different ages, the two-layer strains showed significantly different allele-specific expressions in the gut mucosa, and changes in allelic imbalance were observed across the entire lifespan. Most ASE genes are involved in energy metabolism, including sirtuin signaling pathways, oxidative phosphorylation, and mitochondrial dysfunction. A high number of ASE genes were found during the peak of laying, which were particularly enriched in cholesterol biosynthesis. These findings indicate that genetic architecture as well as biological processes driving particular demands relate to metabolic and nutritional requirements during the laying period shape allelic heterogeneity. These processes are considerably affected by breeding and management, whereby elucidating allele-specific gene regulation is an essential step towards deciphering the genotype to phenotype map or functional diversity between the chicken populations. Additionally, we observed that several genes showing significant allelic imbalance also colocalized with the top 1% of genes identified by the FST approach, suggesting a fixation of genes in cis-regulatory elements.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Henry Reyer
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Michael Oster
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Nares Trakooljul
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Eduard Murani
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
- Faculty of Agricultural and Environmental SciencesUniversity RostockRostockGermany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| |
Collapse
|
9
|
Identification of Candidate Genes and Functional Pathways Associated with Body Size Traits in Chinese Holstein Cattle Based on GWAS Analysis. Animals (Basel) 2023; 13:ani13060992. [PMID: 36978532 PMCID: PMC10044097 DOI: 10.3390/ani13060992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Body size is one of the most economically important traits of dairy cattle, as it is significantly associated with cow longevity, production, health, fertility, and environmental adaptation. The identification and application of genetic variants using a novel genetic approach, such as genome-wide association studies (GWASs), may give more insights into the genetic architecture of complex traits. The identification of genes, single nucleotide polymorphisms (SNPs), and pathways associated with the body size traits may offer a contribution to genomic selection and long-term planning for selection in dairy cows. In this study, we performed GWAS analysis to identify the genetic markers and genes associated with four body size traits (body height, body depth, chest width, and angularity) in 1000 Chinese Holstein cows. We performed SNPs genotyping in 1000 individuals, based on the GeneSeek Genomic Profiler Bovine 100 K. In total, we identified 11 significant SNPs in association with body size traits at the threshold of Bonferroni correction (5.90 × 10−7) using the fixed and random model circulating probability unification (FarmCPU) model. Several genes within 200 kb distances (upstream or downstream) of the significant SNPs were identified as candidate genes, including MYH15, KHDRBS3, AIP, DCC, SQOR, and UBAP1L. Moreover, genes within 200 kb of the identified SNPs were significantly enriched (p ≤ 0.05) in 25 Gene Ontology terms and five Kyoto Encyclopedia of Genes and Genomes pathways. We anticipate that these results provide a foundation for understanding the genetic architecture of body size traits. They will also contribute to breeding programs and genomic selection work on Chinese Holstein cattle.
Collapse
|
10
|
Hou D, Qin P, Niu X, Li T, Chen B, Wei C, Jing Z, Han R, Li H, Liu X, Tian Y, Li D, Li Z, Cai H, Kang X. Genome-wide identification evolution and expression of vestigial-like gene family in chicken. Anim Biotechnol 2022; 33:1602-1612. [PMID: 34032551 DOI: 10.1080/10495398.2021.1920425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vestigial-like (Vgll) genes are widespread in vertebrates and play an important role in muscle development. In this study, we used bioinformatics methods to systematically identify the chicken VGLL family in the whole genome and investigated its evolutionary history and gene structure features. Tissue expression spectra combined with real-time PCR data were used to analyze the organizational expression pattern of the genes. Based on the maximum likelihood method, a phylogenetic tree of the VGLL family was constructed, and 94 VGLL genes were identified in 24 breeds, among which four VGLL family genes were identified in the chicken genome. Ten motifs were detected in the VGLL genes, and the analysis of introns combined with gene structure revealed that the family was conserved during evolution. Tissue expression analysis suggested that the expression profiles of the VGLL family genes in 16 tissues differed between LU Shi and AA broilers. In addition, a single gene (VGLL2) showed increased expression in chickens at embryonic days 10-16 and was involved in the growth and development of skeletal muscle in chickens in the embryonic stage. In summary, VGLL genes are involved in chicken muscle growth and development, which provides useful information for subsequent functional studies of VGLL genes.
Collapse
Affiliation(s)
- Dan Hou
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Panpan Qin
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinran Niu
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Tong Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Bingjie Chen
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chengjie Wei
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhenzhu Jing
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hong Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaojun Liu
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Donghua Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hanfang Cai
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Sinha S, Elbaz‐Alon Y, Avinoam O. Ca 2+ as a coordinator of skeletal muscle differentiation, fusion and contraction. FEBS J 2022; 289:6531-6542. [PMID: 35689496 PMCID: PMC9795905 DOI: 10.1111/febs.16552] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Muscle regeneration is essential for vertebrate muscle homeostasis and recovery after injury. During regeneration, muscle stem cells differentiate into myocytes, which then fuse with pre-existing muscle fibres. Hence, differentiation, fusion and contraction must be tightly regulated during regeneration to avoid the disastrous consequences of premature fusion of myocytes to actively contracting fibres. Cytosolic calcium (Ca2+ ), which is coupled to both induction of myogenic differentiation and contraction, has more recently been implicated in the regulation of myocyte-to-myotube fusion. In this viewpoint, we propose that Ca2+ -mediated coordination of differentiation, fusion and contraction is a feature selected in the amniotes to facilitate muscle regeneration.
Collapse
Affiliation(s)
- Sansrity Sinha
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Yael Elbaz‐Alon
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ori Avinoam
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
12
|
Nohira N, Shinji S, Nakamura S, Nihashi Y, Shimosato T, Takaya T. Myogenetic Oligodeoxynucleotides as Anti-Nucleolin Aptamers Inhibit the Growth of Embryonal Rhabdomyosarcoma Cells. Biomedicines 2022; 10:2691. [PMID: 36359210 PMCID: PMC9687923 DOI: 10.3390/biomedicines10112691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) is the muscle-derived tumor retaining myogenic ability. iSN04 and AS1411, which are myogenetic oligodeoxynucleotides (myoDNs) serving as anti-nucleolin aptamers, have been reported to inhibit the proliferation and induce the differentiation of myoblasts. The present study investigated the effects of iSN04 and AS1411 in vitro on the growth of multiple patient-derived ERMS cell lines, ERMS1, KYM1, and RD. RT-PCR and immunostaining revealed that nucleolin was abundantly expressed and localized in nucleoplasm and nucleoli in all ERMS cell lines, similar to myoblasts. Both iSN04 and AS1411 at final concentrations of 10-30 μM significantly decreased the number of all ERMS cells; however, their optimal conditions were different among the cell lines. In all ERMS cell lines, iSN04 at a final concentration of 10 μM markedly reduced the ratio of EdU+ cells, indicating the inhibition of cell proliferation. Quantitative RT-PCR or immunostaining of phosphorylated histone H3 and myosin heavy chain demonstrated that iSN04 suppressed the cell cycle and partially promoted myogenesis but did not induce apoptosis in ERMS cells. Finally, both iSN04 and AS1411 at final concentrations of 10-30 μM disrupted the formation and outgrowth of RD tumorspheres in three-dimensional culture mimicking in vivo tumorigenesis. In conclusion, ERMS cells expressed nucleolin, and their growth was inhibited by the anti-nucleolin aptamers, iSN04 and AS1411, which modulates several cell cycle-related and myogenic gene expression. The present study provides evidence that anti-nucleolin aptamers can be used as nucleic acid drugs for chemotherapy against ERMS.
Collapse
Affiliation(s)
- Naoki Nohira
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Shunichi Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5-41, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takeshi Shimosato
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
13
|
Knežić T, Janjušević L, Djisalov M, Yodmuang S, Gadjanski I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022; 12:699. [PMID: 35625626 PMCID: PMC9138761 DOI: 10.3390/biom12050699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
Global food systems are under significant pressure to provide enough food, particularly protein-rich foods whose demand is on the rise in times of crisis and inflation, as presently existing due to post-COVID-19 pandemic effects and ongoing conflict in Ukraine and resulting in looming food insecurity, according to FAO. Cultivated meat (CM) and cultivated seafood (CS) are protein-rich alternatives for traditional meat and fish that are obtained via cellular agriculture (CA) i.e., tissue engineering for food applications. Stem and progenitor cells are the building blocks and starting point for any CA bioprocess. This review presents CA-relevant vertebrate cell types and procedures needed for their myogenic and adipogenic differentiation since muscle and fat tissue are the primary target tissues for CM/CS production. The review also describes existing challenges, such as a need for immortalized cell lines, or physical and biochemical parameters needed for enhanced meat/fat culture efficiency and ways to address them.
Collapse
Affiliation(s)
- Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathumwan, Bangkok 10330, Thailand;
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| |
Collapse
|
14
|
Lee DY, Lee SY, Jung JW, Kim JH, Oh DH, Kim HW, Kang JH, Choi JS, Kim GD, Joo ST, Hur SJ. Review of technology and materials for the development of cultured meat. Crit Rev Food Sci Nutr 2022; 63:8591-8615. [PMID: 35466822 DOI: 10.1080/10408398.2022.2063249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cultured meat production technology suggested that can solve the problems of traditional meat production such as inadequate breeding environment, wastewater, methane gas generation, and animal ethics issues. Complementing cultured meat production methods, sales and safety concerns will make the use of cultured meat technology easier. This review contextualizes the commercialization status of cultured meat and the latest technologies and challenges associated with its production. Investigation was conducted on materials and basic cell culture technique for cultured meat culture is presented. The development of optimal cultured meat technology through these studies will be an innovative leap in food technology. The process of obtaining cells from animal muscle, culturing cells, and growing cells into meat are the basic processes of cultured meat production. The substances needed to production of cultured meat were antibiotics, digestive enzymes, basal media, serum or growth factors. Although muscle cells have been produced closer to meat due to the application of scaffolds materials and 3 D printing technology, still a limit to reducing production costs enough to be used as foods. In addition, developing edible materials is also a challenge because the materials used to produce cultured meat are still not suitable for food sources.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jae Won Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jae Hyun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Dong Hun Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Ji Hyeop Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Kangwong, Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| |
Collapse
|
15
|
Biegler MT, Fedrigo O, Collier P, Mountcastle J, Haase B, Tilgner HU, Jarvis ED. Induction of an immortalized songbird cell line allows for gene characterization and knockout by CRISPR-Cas9. Sci Rep 2022; 12:4369. [PMID: 35288582 PMCID: PMC8921232 DOI: 10.1038/s41598-022-07434-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
The zebra finch is one of the most commonly studied songbirds in biology, particularly in genomics, neuroscience and vocal communication. However, this species lacks a robust cell line for molecular biology research and reagent optimization. We generated a cell line, designated CFS414, from zebra finch embryonic fibroblasts using the SV40 large and small T antigens. This cell line demonstrates an improvement over previous songbird cell lines through continuous and density-independent growth, allowing for indefinite culture and monoclonal line derivation. Cytogenetic, genomic, and transcriptomic profiling established the provenance of this cell line and identified the expression of genes relevant to ongoing songbird research. Using this cell line, we disrupted endogenous gene sequences using S.aureus Cas9 and confirmed a stress-dependent localization response of a song system specialized gene, SAP30L. The utility of CFS414 cells enhances the comprehensive molecular potential of the zebra finch and validates cell immortalization strategies in a songbird species.
Collapse
Affiliation(s)
- Matthew T Biegler
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, 10065, USA
| | - Paul Collier
- Center for Neurogenetics, Graduate School of Medical Sciences, Weil Cornell Medical Center, New York, NY, 10065, USA
| | | | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, 10065, USA
| | - Hagen U Tilgner
- Center for Neurogenetics, Graduate School of Medical Sciences, Weil Cornell Medical Center, New York, NY, 10065, USA
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
16
|
Gudagudi KB, d'Entrèves NP, Ollewagen T, Myburgh KH. Total mRNA and primary human myoblasts' in vitro cell cycle progression distinguishes between clones. Biochimie 2022; 196:161-170. [PMID: 35114349 DOI: 10.1016/j.biochi.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Satellite cells are generally quiescent in vivo. Once activated, progression through the cell cycle begins. Immortalised myoblasts from a single cell line are fairly homogenous in culture, but primary human myoblasts (PHMs) demonstrate heterogeneity. This phenomenon is poorly understood however may impact on PHM expansion. This study aimed to evaluate cell cycle transition from growth to synthesis phases of the cell cycle (G1 to S phase) and total mRNA relevant to this transition in PHM clones derived from 2 donor biopsies. Proportions of cells transitioning from G1 to S phase were evaluated at 2-hourly intervals for 24 h (n = 3 for each) and total mRNA quantified. Both PHM clones revealed an exponential transition from G1 to S phase over time, with a significantly slower rate for PHMs from S9.1 compared to S6.3, which had a higher proportion of PHMs in S phase for most time-points (p < 0.05). After 24 h the proportion of PHMs in S phase was ∼13% (S6.3) compared to ∼22% (S9.1). Gene transcription increased as cells progressed from G1 to S phase. Although total RNA increased with similar linearity in both clones, S6.3 PHMs had consistently (10 out of 12 time points) significantly higher concentrations. Validating the 2-hourly assessment over 24 h, a 4-hourly assessment from 8 to 32 h revealed similar differences but included the beginning of a plateau. This study demonstrates that PHMs from different donors differ in both cell cycle progression and overall transcriptome revealing new aspects in the heterogeneity of isolated satellite cells in vitro.
Collapse
Affiliation(s)
- Kirankumar B Gudagudi
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| | - Niccolò Passerin d'Entrèves
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| | - Tracey Ollewagen
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| | - Kathryn H Myburgh
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
17
|
Lee KY, Loh HX, Wan ACA. Systems for Muscle Cell Differentiation: From Bioengineering to Future Food. MICROMACHINES 2021; 13:71. [PMID: 35056236 PMCID: PMC8777594 DOI: 10.3390/mi13010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
In light of pressing issues, such as sustainability and climate change, future protein sources will increasingly turn from livestock to cell-based production and manufacturing activities. In the case of cell-based or cultured meat a relevant aspect would be the differentiation of muscle cells into mature muscle tissue, as well as how the microsystems that have been developed to date can be developed for larger-scale cultures. To delve into this aspect we review previous research that has been carried out on skeletal muscle tissue engineering and how various biological and physicochemical factors, mechanical and electrical stimuli, affect muscle cell differentiation on an experimental scale. Material aspects such as the different biomaterials used and 3D vs. 2D configurations in the context of muscle cell differentiation will also be discussed. Finally, the ability to translate these systems to more scalable bioreactor configurations and eventually bring them to a commercial scale will be touched upon.
Collapse
Affiliation(s)
| | | | - Andrew C. A. Wan
- Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore; (K.-Y.L.); (H.-X.L.)
| |
Collapse
|
18
|
Petry B, Moreira GCM, Copola AGL, de Souza MM, da Veiga FC, Jorge EC, de Oliveira Peixoto J, Ledur MC, Koltes JE, Coutinho LL. SAP30 Gene Is a Probable Regulator of Muscle Hypertrophy in Chickens. Front Genet 2021; 12:709937. [PMID: 34646299 PMCID: PMC8502938 DOI: 10.3389/fgene.2021.709937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Animals with muscle hypertrophy phenotype are targeted by the broiler industry to increase the meat production and the quality of the final product. Studies characterizing the molecular machinery involved with these processes, such as quantitative trait loci studies, have been carried out identifying several candidate genes related to this trait; however, validation studies of these candidate genes in cell culture is scarce. The aim of this study was to evaluate SAP30 as a candidate gene for muscle development and to validate its function in cell culture in vitro. The SAP30 gene was downregulated in C2C12 muscle cell culture using siRNA technology to evaluate its impact on morphometric traits and gene expression by RNA-seq analysis. Modulation of SAP30 expression increased C2C12 myotube area, indicating a role in muscle hypertrophy. RNA-seq analysis identified several upregulated genes annotated in muscle development in treated cells (SAP30-knockdown), corroborating the role of SAP30 gene in muscle development regulation. Here, we provide experimental evidence of the involvement of SAP30 gene as a regulator of muscle cell hypertrophy.
Collapse
Affiliation(s)
- Bruna Petry
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | | | - Aline Gonçalves Lio Copola
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Fernanda Cristina da Veiga
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | - James E Koltes
- Animal Science Department, Iowa State University, Ames, IA, United States
| | - Luiz Lehmann Coutinho
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
19
|
Miyake T, Kuge M, Matsumoto Y, Shimada M. α-glucosyl-rutin activates immediate early genes in human induced pluripotent stem cells. Stem Cell Res 2021; 56:102511. [PMID: 34455240 DOI: 10.1016/j.scr.2021.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022] Open
Abstract
Rutin is a natural flavonoid glycoside found in several vegetables and fruits such as buckwheat and onion. Rutin has a range of pharmacological effects that include anti-oxidant, anti-inflammation, anti-bacterial, and anti-cancer activities. α-glucosyl-rutin (AGR) is a derivative of rutin with increased water solubility that is used in cosmetics and foods. However, the effects of AGR on cellular responses have not been clarified, especially in stem cells. Induced pluripotent stem cells (iPSCs) show high proliferative activity and pluripotency; however, regulation of molecular machinery such as cell cycle, metabolism, and DNA repair differs between iPSCs and somatic cells. Here, we compared the effects of AGR on iPSCs and differentiated cells (fibroblasts and skin keratinocytes). AGR-treated iPSCs exhibited increased cell viability. RNA sequencing and reverse transcriptase PCR analysis revealed that AGR induced expression of immediate early genes (IEGs) and differentiation-related genes in iPSCs. Our results suggest that AGR may activate differentiation signals mediated by IEG responses in iPSCs, resulting in altered metabolic activity and increased cell viability.
Collapse
Affiliation(s)
- Tomoko Miyake
- Cosmetic R&D Department, Takara Belmont Corp, 7-1-19 Akasaka, Minato-ku, Tokyo 107-0052, Japan.
| | - Munekazu Kuge
- Cosmetic R&D Department, Takara Belmont Corp, 7-1-19 Akasaka, Minato-ku, Tokyo 107-0052, Japan
| | - Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Mikio Shimada
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
20
|
Nihashi Y, Shinji S, Umezawa K, Shimosato T, Ono T, Kagami H, Takaya T. Myogenetic oligodeoxynucleotide complexed with berberine promotes differentiation of chicken myoblasts. Anim Sci J 2021; 92:e13597. [PMID: 34309956 DOI: 10.1111/asj.13597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
Myoblasts are myogenic precursors that develop into myotubes during muscle formation. Improving efficiency of myoblast differentiation is important for advancing meat production by domestic animals. We recently identified novel oligodeoxynucleotides (ODNs) termed myogenetic ODNs (myoDNs) that promote the differentiation of mammalian myoblasts. An isoquinoline alkaloid, berberine, forms a complex with one of the myoDNs, iSN04, and enhances its activities. This study investigated the effects of myoDNs on chicken myoblasts to elucidate their species-specific actions. Seven myoDNs (iSN01-iSN07) were found to facilitate the differentiation of chicken myoblasts into myosin heavy chain (MHC)-positive myotubes. The iSN04-berberine complex exhibited a higher myogenetic activity than iSN04 alone, which was shown to enhance the differentiation of myoblasts into myotubes and the upregulation of myogenic gene expression (MyoD, myogenin, MHC, and myomaker). These data indicate that myoDNs promoting chicken myoblast differentiation may be used as potential feed additives in broiler diets.
Collapse
Affiliation(s)
- Yuma Nihashi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.,Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan.,Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan.,Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.,Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tamao Ono
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Tomohide Takaya
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan.,Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan.,Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.,Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
21
|
Nakamura S, Yonekura S, Shimosato T, Takaya T. Myogenetic Oligodeoxynucleotide (myoDN) Recovers the Differentiation of Skeletal Muscle Myoblasts Deteriorated by Diabetes Mellitus. Front Physiol 2021; 12:679152. [PMID: 34108889 PMCID: PMC8181739 DOI: 10.3389/fphys.2021.679152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle wasting in patients with diabetes mellitus (DM) is a complication of decreased muscle mass and strength, and is a serious risk factor that may result in mortality. Deteriorated differentiation of muscle precursor cells, called myoblasts, in DM patients is considered to be one of the causes of muscle wasting. We recently developed myogenetic oligodeoxynucleotides (myoDNs), which are 18-base single-strand DNAs that promote myoblast differentiation by targeting nucleolin. Herein, we report the applicability of a myoDN, iSN04, to myoblasts isolated from patients with type 1 and type 2 DM. Myogenesis of DM myoblasts was exacerbated concordantly with a delayed shift of myogenic transcription and induction of interleukins. Analogous phenotypes were reproduced in healthy myoblasts cultured with excessive glucose or palmitic acid, mimicking hyperglycemia or hyperlipidemia. iSN04 treatment recovered the deteriorated differentiation of plural DM myoblasts by downregulating myostatin and interleukin-8 (IL-8). iSN04 also ameliorated the impaired myogenic differentiation induced by glucose or palmitic acid. These results demonstrate that myoDNs can directly facilitate myoblast differentiation in DM patients, making them novel candidates for nucleic acid drugs to treat muscle wasting in patients with DM.
Collapse
Affiliation(s)
- Shunichi Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Shinichi Yonekura
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
22
|
Park I, Goo D, Nam H, Wickramasuriya SS, Lee K, Zimmerman NP, Smith AH, Rehberger TG, Lillehoj HS. Effects of Dietary Maltol on Innate Immunity, Gut Health, and Growth Performance of Broiler Chickens Challenged With Eimeria maxima. Front Vet Sci 2021; 8:667425. [PMID: 34095279 PMCID: PMC8173067 DOI: 10.3389/fvets.2021.667425] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Two studies were conducted to evaluate the effects of maltol as a postbiotic on innate immunity, gut health, and enteric infection. In the first study, an in vitro culture system was used to evaluate the effects of maltol on the innate immune response of chicken macrophage cells (CMC), gut integrity of chicken intestinal epithelial cells (IEC), anti-parasitic activity against Eimeria maxima, and differentiation of quail muscle cells (QMC) and primary chicken embryonic muscle cells (PMC). All cells seeded in the 24-well plates were treated with maltol at concentrations of 0.1, 1.0, and 10.0 μg. CMC and IEC were stimulated by lipopolysaccharide to induce an innate immune response, and QMC and PMC were treated with 0.5 and 2% fetal bovine serum, respectively. After 18 h of incubation, pro-inflammatory cytokines, tight junction proteins (TJPs), and muscle cell growth markers were measured. In the second study, the dietary effect of maltol was evaluated on disease parameters in broiler chickens infected with E. maxima. Eighty male 1-day-old broiler chickens were allocated into the following four treatment groups: (1) Control group without infection, (2) Basal diet with E. maxima, (3) High maltol (HI; 10.0 mg /kg feed) with E. maxima, and (4) Low maltol (LO; 1.0 mg/kg feed) with E. maxima. Body weights (BW) were measured on days 0, 7, 14, 20, and 22. All chickens except the CON group were orally infected with 104E. maxima per chicken on day 14. Jejunum samples were collected for gut lesion scoring, and the gene expression of cytokines and TJPs. Data was analyzed using PROC MIXED in SAS. In vitro, maltol not only increased TJPs in IEC and cytokines in the LPS-stimulated CMC but also showed direct cytotoxicity against sporozoites of E. maxima. In vivo, the HI group improved the BW, reduced the gut lesion scores and fecal oocyst shedding, and decreased jejunal TNFSF15 and IL-1β expression in E. maxima-infected chickens. In conclusion, these results demonstrate the beneficial effects of dietary maltol in the enhancement of growth performance, gut health, and coccidiosis resistance and the applicability of maltol as a postbiotic for the replacement of antibiotic growth promoters in commercial poultry production.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Doyun Goo
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Samiru S Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Noah P Zimmerman
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | - Alexandra H Smith
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | | | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
23
|
Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals. Animals (Basel) 2021; 11:ani11030835. [PMID: 33809500 PMCID: PMC7999090 DOI: 10.3390/ani11030835] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Skeletal muscle mass is an important economic trait, and muscle development and growth is a crucial factor to supply enough meat for human consumption. Thus, understanding (candidate) genes regulating skeletal muscle development is crucial for understanding molecular genetic regulation of muscle growth and can be benefit the meat industry toward the goal of increasing meat yields. During the past years, significant progress has been made for understanding these mechanisms, and thus, we decided to write a comprehensive review covering regulators and (candidate) genes crucial for muscle development and growth in farm animals. Detection of these genes and factors increases our understanding of muscle growth and development and is a great help for breeders to satisfy demands for meat production on a global scale. Abstract Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.
Collapse
|
24
|
Park J, Lee J, Song KD, Kim SJ, Kim DC, Lee SC, Son YJ, Choi HW, Shim K. Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes. Anim Biosci 2021; 34:1392-1402. [PMID: 33561926 PMCID: PMC8255883 DOI: 10.5713/ab.20.0585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/12/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The growth rate of pigs is related to differentiation and proliferation of muscle cells, which are regulated by growth factors and expression of growth-related genes. Thus, the objective of this study was to establish optimal culture conditions for Jeju black pig (JBP) muscle cells and determine the relationship of various factors involved in muscle growth with the proliferation of JBP muscle cells. METHODS Muscles were taken from the femur skeletal muscle of JBP embryos. After isolation of the muscle cells, cells were cultured in a 6-well plate under four different culture conditions to optimize culture conditions for JBP muscle cells. To analyze proliferation rate of JBP muscle cells, these muscle cells were seeded into 6-well plates at a density of 1.5×105 cells per well and cultured for 3 days. Western blot and quantitative real-time polymerase chain reaction were applied to verify the myogenic differentiation 1 (MyoD) expression and growth-related gene expression in JBP muscle cells, respectively. RESULTS We established a muscle cell line from JBP embryos and optimized its culture conditions. These muscle cells were positive for MyoD, but not for paired box 7. The proliferation rate of these muscle cells was significantly higher in a culture medium containing bFGF and epidermal growth factor + basic fibroblast growth factor (EGF+bFGF) than that without a growth factor or containing EGF alone. Treatment with EGF and bFGF significantly induced the expression of MyoD protein, an important transcription factor in muscle cells. Moreover, we checked the changes of expression of growth-related genes in JBP muscle cells by presence or absence of growth factors. Expression level of collagen type XXI alpha 1 gene was changed only when EGF and bFGF were added together to culture media for JBP muscle cells. CONCLUSION Concurrent use of EGF and bFGF increased the expression of MyoD protein, thus regulating the proliferation of JBP muscle cells and the expression of growth-related genes.
Collapse
Affiliation(s)
- Jinryong Park
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Jeongeun Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju 54896, Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Sung-Jo Kim
- Division of Cosmetics and Biotechnology, Hoseo University, Asan 31499, Korea
| | - Dae Cheol Kim
- Livestock Promotion Institute, Jeju Special Self-Governing Province, Jeju 63122, Korea
| | | | | | - Hyun Woo Choi
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea.,Department of Animal Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
25
|
Shinji S, Umezawa K, Nihashi Y, Nakamura S, Shimosato T, Takaya T. Identification of the Myogenetic Oligodeoxynucleotides (myoDNs) That Promote Differentiation of Skeletal Muscle Myoblasts by Targeting Nucleolin. Front Cell Dev Biol 2021; 8:616706. [PMID: 33585451 PMCID: PMC7874222 DOI: 10.3389/fcell.2020.616706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Herein we report that the 18-base telomeric oligodeoxynucleotides (ODNs) designed from the Lactobacillus rhamnosus GG genome promote differentiation of skeletal muscle myoblasts which are myogenic precursor cells. We termed these myogenetic ODNs (myoDNs). The activity of one of the myoDNs, iSN04, was independent of Toll-like receptors, but dependent on its conformational state. Molecular simulation and iSN04 mutants revealed stacking of the 13-15th guanines as a core structure for iSN04. The alkaloid berberine bound to the guanine stack and enhanced iSN04 activity, probably by stabilizing and optimizing iSN04 conformation. We further identified nucleolin as an iSN04-binding protein. Results showed that iSN04 antagonizes nucleolin, increases the levels of p53 protein translationally suppressed by nucleolin, and eventually induces myotube formation by modulating the expression of genes involved in myogenic differentiation and cell cycle arrest. This study shows that bacterial-derived myoDNs serve as aptamers and are potential nucleic acid drugs directly targeting myoblasts.
Collapse
Affiliation(s)
- Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Koji Umezawa
- Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Yuma Nihashi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Shunichi Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
26
|
Transcription of Endogenous Retrovirus Group K Members and Their Neighboring Genes in Chicken Skeletal Muscle Myoblasts. J Poult Sci 2021; 58:79-87. [PMID: 33927561 PMCID: PMC8076618 DOI: 10.2141/jpsa.0200021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle myoblasts are myogenic precursor cells that generate myofibers during muscle development and growth. We recently reported that broiler myoblasts, compared to layer myoblasts, proliferate and differentiate more actively and promptly into myocytes, which corresponds well with the muscle phenotype of broilers. Furthermore, RNA sequencing (RNA-seq) revealed that numerous genes are differentially expressed between layer and broiler myoblasts during myogenic differentiation. Based on the RNA-seq data, we herein report that chicken myoblasts transcribe endogenous retrovirus group K member (ERVK) genes. In total, 16 ERVKs were highly expressed in layer myoblasts and two (termed BrK1 and BrK2) were significantly induced in broiler myoblasts. These transcribed ERVKs had a total of 182 neighboring genes within ±100 kb on the chromosomes, of which 40% were concentrated within ±10 kb of the ERVKs. We further investigated whether the transcription of ERVKs affects the expression of their neighboring genes. BrK1 had two neighboring genes; LOC107052719 was overlapping with BrK1 and downregulated in the broiler myoblasts, and FAM19A2 was upregulated in the broiler myoblasts as well as BrK1. BrK2 had 14 neighboring genes, and only one gene, LOC772243, was differentially expressed between layer and broiler myoblasts. LOC772243 was overlapping with BrK2 and suppressed in the broiler myoblasts. These data indicate that the transcription of ERVKs may impact the expression of their neighboring genes in chicken myoblasts.
Collapse
|