1
|
Pradhan AK, Rupprecht R, Rammes G. Translocator protein and neurodegeneration: insights from Alzheimer's disease. Neural Regen Res 2025; 20:1090-1091. [PMID: 38989945 PMCID: PMC11438353 DOI: 10.4103/nrr.nrr-d-24-00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Arpit Kumar Pradhan
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Gerhard Rammes
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
2
|
Nguyen HD, Vu GH, Kim WK. The molecular mechanisms of steroid hormone effects on cognitive function. Arch Gerontol Geriatr 2025; 129:105684. [PMID: 39549628 DOI: 10.1016/j.archger.2024.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVE There is a lack of information on the molecular mechanisms by which steroid hormones (testosterone, estrogen, and progesterone) regulate cognitive impairment. Thus, we aimed to identify the protective effects of steroid hormones on cognitive function. METHODS We analyzed the literature on the molecular mechanisms, biological activities, physicochemical properties, and pharmacokinetics of steroid hormones. RESULTS Steroid hormones can protect against cognitive impairment by regulating key genes (INS, TNF, STAT3, ESR1). Specific microRNAs, namely hsa-miR-335-5p, hsa-miR-16-5p, and hsa-miR-26b-5p, along with transcription factors NFKB1, PPARG, NR3C1, GATA2, EGR1, ATF3, and CEBPA, play a significant role in this protective mechanism. The involvement in cognitive processes, regulation of phosphorylation, neuronal apoptosis, and signaling pathways related to Alzheimer's disease significantly influence the protein-protein interaction network underlying these effects. Additionally, steroid hormones exhibit anti-hypercholesterolemic properties, anti-inflammatory activity, antitoxic properties, and function as inhibitors of acetylcholine neuromuscular transmission. They also hold promise as therapeutic agents for the treatment of dementia. Promising therapeutic interventions for cognitive impairment include the use of miRNA sponges targeting hsa-miR-16-5p, along with the administration of capsaicin, minocycline, dopamine, sertraline, and minaprine. The gut microbiota species Lactobacillus amylovorus, Paraprevotella clara, Libanicoccus massiliensis, Prevotella oris, Turicibacter sanguinis, and Dubosiella newyorkensis were identified as significant contributors to cognitive impairment and altered levels of steroid hormones. CONCLUSION Steroid hormones are promising compounds for improving cognitive function. Further research is needed to validate these findings through focused investigations into apoptosis, regulation of neuronal cell death, miRNA sponges, interactions with gut microbiota, and the potential efficacy of pharmaceutical agents.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Division of microbiology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA.
| | - Giang Huong Vu
- Department of Public Health, Hong Bang Health Center, Hai Phong, Vietnam
| | - Woong-Ki Kim
- Division of microbiology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| |
Collapse
|
3
|
Bacha R, Alwisi N, Ismail R, Pedersen S, Al-Mansoori L. Unveiling GATA3 Signaling Pathways in Health and Disease: Mechanisms, Implications, and Therapeutic Potential. Cells 2024; 13:2127. [PMID: 39768217 PMCID: PMC11674286 DOI: 10.3390/cells13242127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
GATA binding protein 3 (GATA3), a member of the GATA family transcription factors, is a key player in various physiological and pathological conditions. It is known for its ability to bind to the DNA sequence "GATA", which enables its key role in critical processes in multiple tissues and organs including the immune system, endocrine system, and nervous system. GATA3 also modulates cell differentiation, proliferation, and apoptosis via controlling gene expression. In physiological instances, GATA3 is crucial for maintaining immunological homeostasis by mediating the development of naïve T cells into T helper 2 (Th2). In addition, GATA3 has been demonstrated to play a variety of cellular roles in the growth and maintenance of mammary gland, neuronal, and renal tissues. Conversely, the presence of impaired GATA3 is associated with a variety of diseases, including neurodegenerative diseases, autoimmune diseases, and cancers. Additionally, the altered expression of GATA3 contributes to the worsening of disease progression in hematological malignancies, such as T-cell lymphomas. Therefore, this review explores the multifaceted roles and signaling pathways of GATA3 in health and disease, with a particular emphasis on its potential as a therapeutic and prognostic target for the effective management of diseases.
Collapse
Affiliation(s)
- Rim Bacha
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Nouran Alwisi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Rana Ismail
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Shona Pedersen
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
4
|
Wu Q, Wang W, Huang Z, Lin X, Yao M, Cai C, Weng G, Gu Y, Li H, Liu J, Fang J, Li W. Unveiling the molecular mechanisms of Danggui-Shaoyao-San against Alzheimer's disease in APP/PS1 mice via integrating proteomic and metabolomic approaches. Alzheimers Res Ther 2024; 16:251. [PMID: 39563386 DOI: 10.1186/s13195-024-01618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder for which no effective therapy is currently available. Given that various attempts to target beta-amyloid (Aβ) have been unsuccessful in clinical trials, other potential pathogenic factors such as brain energy metabolism (EM) have attracted increasing attention. Traditional Chinese medicines, including danggui-shaoyao-san (DSS), play a notable role in AD. However, it remains unclear whether DSS exerts therapeutic effects on AD through EM regulation. METHODS In this study, we conducted behavioural tests, Nissl staining, haematoxylin and eosin staining, and thioflavin S staining, in APP/PS1 mice to assess the pharmacodynamic effect of DSS on AD. Subsequently, we integrated the drug target network of herbal ingredients in DSS and evaluated their absorption, distribution, metabolism, excretion, and toxicity properties to identify the core ingredients. We used proteomic and metabolomic approaches to explore the potential mechanisms of action of DSS against AD. Consequently, we verified the mechanism underlying EM using qPCR, western blotting, and ELISA. RESULTS In vivo experimental results revealed that DSS ameliorated cognitive impairment in APP/PS1 mice, attenuated neuronal apoptosis, and reduced Aβ burden. Furthermore, the drug-target network comprised 6,514 drug-target interactions involving 1,118 herbal ingredients and 218 AD genes, of which 253 were identified as the core ingredients in DSS. The proteomic results implied that DSS could act on EM to alleviate AD, and targeted energy metabolomics suggested that DSS regulated 47 metabolites associated with EM. Mechanistically, we found that DSS could regulate the GSK3β/PGC1α signalling pathway to improve brain glucose uptake and mitigate mitochondrial dysfunction and oxidative stress, ultimately promoting EM to treat AD. CONCLUSION Our study is the first to integrate multi-omics approaches to reveal that DSS could regulate the GSK3β/PGC1α signalling pathway to exert therapeutic effects in AD through the promotion of EM, thereby providing new insights into the mechanism of action of DSS against AD.
Collapse
Affiliation(s)
- Qihui Wu
- Clinical Research Center, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, 570100, China.
| | - Wei Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zhuangzi Huang
- Clinical Research Center, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, 570100, China
| | - Xianghao Lin
- School of Clinical Medicine, Hubei University of Science and Technology, Xianning, 437100, China
| | - Maozhong Yao
- Clinical Research Center, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, 570100, China
| | - Chuipu Cai
- Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, 515000, China
| | - Guohu Weng
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Haikou, 571000, China
| | - Yong Gu
- Clinical Research Center, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, 570100, China
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Haikou, 571000, China
| | - Hongying Li
- College of Traditional Chinese Medicine, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571000, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, 529099, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
5
|
Shi Z, Das S, Morabito S, Miyoshi E, Stocksdale J, Emerson N, Srinivasan SS, Shahin A, Rahimzadeh N, Cao Z, Silva J, Castaneda AA, Head E, Thompson L, Swarup V. Single-nucleus multi-omics identifies shared and distinct pathways in Pick's and Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611761. [PMID: 39282421 PMCID: PMC11398495 DOI: 10.1101/2024.09.06.611761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The study of neurodegenerative diseases, particularly tauopathies like Pick's disease (PiD) and Alzheimer's disease (AD), offers insights into the underlying regulatory mechanisms. By investigating epigenomic variations in these conditions, we identified critical regulatory changes driving disease progression, revealing potential therapeutic targets. Our comparative analyses uncovered disease-enriched non-coding regions and genome-wide transcription factor (TF) binding differences, linking them to target genes. Notably, we identified a distal human-gained enhancer (HGE) associated with E3 ubiquitin ligase (UBE3A), highlighting disease-specific regulatory alterations. Additionally, fine-mapping of AD risk genes uncovered loci enriched in microglial enhancers and accessible in other cell types. Shared and distinct TF binding patterns were observed in neurons and glial cells across PiD and AD. We validated our findings using CRISPR to excise a predicted enhancer region in UBE3A and developed an interactive database (http://swaruplab.bio.uci.edu/scROAD) to visualize predicted single-cell TF occupancy and regulatory networks.
Collapse
Affiliation(s)
- Zechuan Shi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Samuel Morabito
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Emily Miyoshi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Jennifer Stocksdale
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Nora Emerson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shushrruth Sai Srinivasan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Arshi Shahin
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Negin Rahimzadeh
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Justine Silva
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andres Alonso Castaneda
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Leslie Thompson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Jabalameli MR, Lin JR, Zhang Q, Wang Z, Mitra J, Nguyen N, Gao T, Khusidman M, Sathyan S, Atzmon G, Milman S, Vijg J, Barzilai N, Zhang ZD. Polygenic prediction of human longevity on the supposition of pervasive pleiotropy. Sci Rep 2024; 14:19981. [PMID: 39198552 PMCID: PMC11358495 DOI: 10.1038/s41598-024-69069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
The highly polygenic nature of human longevity renders pleiotropy an indispensable feature of its genetic architecture. Leveraging the genetic correlation between aging-related traits (ARTs), we aimed to model the additive variance in lifespan as a function of the cumulative liability from pleiotropic segregating variants. We tracked allele frequency changes as a function of viability across different age bins and prioritized 34 variants with an immediate implication on lipid metabolism, body mass index (BMI), and cognitive performance, among other traits, revealed by PheWAS analysis in the UK Biobank. Given the highly complex and non-linear interactions between the genetic determinants of longevity, we reasoned that a composite polygenic score would approximate a substantial portion of the variance in lifespan and developed the integrated longevity genetic scores (iLGSs) for distinguishing exceptional survival. We showed that coefficients derived from our ensemble model could potentially reveal an interesting pattern of genomic pleiotropy specific to lifespan. We assessed the predictive performance of our model for distinguishing the enrichment of exceptional longevity among long-lived individuals in two replication cohorts (the Scripps Wellderly cohort and the Medical Genome Reference Bank (MRGB)) and showed that the median lifespan in the highest decile of our composite prognostic index is up to 4.8 years longer. Finally, using the proteomic correlates of iLGS, we identified protein markers associated with exceptional longevity irrespective of chronological age and prioritized drugs with repurposing potentials for gerotherapeutics. Together, our approach demonstrates a promising framework for polygenic modeling of additive liability conferred by ARTs in defining exceptional longevity and assisting the identification of individuals at a higher risk of mortality for targeted lifestyle modifications earlier in life. Furthermore, the proteomic signature associated with iLGS highlights the functional pathway upstream of the PI3K-Akt that can be effectively targeted to slow down aging and extend lifespan.
Collapse
Affiliation(s)
- M Reza Jabalameli
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Zhen Wang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Joydeep Mitra
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Tina Gao
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Mark Khusidman
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Sanish Sathyan
- Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sofiya Milman
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Ghatak S, Diedrich JK, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork NJ, Yates JR, Lipton SA. Single-Cell Patch-Clamp/Proteomics of Human Alzheimer's Disease iPSC-Derived Excitatory Neurons Versus Isogenic Wild-Type Controls Suggests Novel Causation and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400545. [PMID: 38773714 PMCID: PMC11304297 DOI: 10.1002/advs.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
School of Biological SciencesNational Institute of Science Education and Research (NISER)‐Bhubaneswar, an OCC of Homi Bhabha National InstituteJataniOdisha752050India
| | - Jolene K. Diedrich
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Maria Talantova
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Nivedita Bhadra
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - Henry Scott
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Meetal Sharma
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Matthew Albertolle
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
Drug Metabolism and Pharmacokinetics DepartmentTakeda Development Center AmericasSan DiegoCA92121USA
| | - Nicholas J. Schork
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - John R. Yates
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Stuart A. Lipton
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
8
|
Mitra S, Bp K, C R S, Saikumar NV, Philip P, Narayanan M. Alzheimer's disease rewires gene coexpression networks coupling different brain regions. NPJ Syst Biol Appl 2024; 10:50. [PMID: 38724582 PMCID: PMC11082197 DOI: 10.1038/s41540-024-00376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Connectome studies have shown how Alzheimer's disease (AD) disrupts functional and structural connectivity among brain regions. But the molecular basis of such disruptions is less studied, with most genomic/transcriptomic studies performing within-brain-region analyses. To inspect how AD rewires the correlation structure among genes in different brain regions, we performed an Inter-brain-region Differential Correlation (Inter-DC) analysis of RNA-seq data from Mount Sinai Brain Bank on four brain regions (frontal pole, superior temporal gyrus, parahippocampal gyrus and inferior frontal gyrus, comprising 264 AD and 372 control human post-mortem samples). An Inter-DC network was assembled from all pairs of genes across two brain regions that gained (or lost) correlation strength in the AD group relative to controls at FDR 1%. The differentially correlated (DC) genes in this network complemented known differentially expressed genes in AD, and likely reflects cell-intrinsic changes since we adjusted for cell compositional effects. Each brain region used a distinctive set of DC genes when coupling with other regions, with parahippocampal gyrus showing the most rewiring, consistent with its known vulnerability to AD. The Inter-DC network revealed master dysregulation hubs in AD (at genes ZKSCAN1, SLC5A3, RCC1, IL17RB, PLK4, etc.), inter-region gene modules enriched for known AD pathways (synaptic signaling, endocytosis, etc.), and candidate signaling molecules that could mediate region-region communication. The Inter-DC network generated in this study is a valuable resource of gene pairs, pathways and signaling molecules whose inter-brain-region functional coupling is disrupted in AD, thereby offering a new perspective of AD etiology.
Collapse
Affiliation(s)
- Sanga Mitra
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Kailash Bp
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Srivatsan C R
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Naga Venkata Saikumar
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Philge Philip
- Centre for Integrative Biology and Systems Medicine, IIT Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, IIT Madras, Chennai, India
| | - Manikandan Narayanan
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India.
- Centre for Integrative Biology and Systems Medicine, IIT Madras, Chennai, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence, IIT Madras, Chennai, India.
- Sudha Gopalakrishnan Brain Centre, IIT Madras, Chennai, India.
| |
Collapse
|
9
|
Jabalameli M, Lin JR, Zhang Q, Wang Z, Mitra J, Nguyen N, Gao T, Khusidman M, Atzmon G, Milman S, Vijg J, Barzilai N, Zhang ZD. Polygenic prediction of human longevity on the supposition of pervasive pleiotropy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.10.23299795. [PMID: 38168353 PMCID: PMC10760260 DOI: 10.1101/2023.12.10.23299795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The highly polygenic nature of human longevity renders cross-trait pleiotropy an indispensable feature of its genetic architecture. Leveraging the genetic correlation between the aging-related traits (ARTs), we sought to model the additive variance in lifespan as a function of cumulative liability from pleiotropic segregating variants. We tracked allele frequency changes as a function of viability across different age bins and prioritized 34 variants with an immediate implication on lipid metabolism, body mass index (BMI), and cognitive performance, among other traits, revealed by PheWAS analysis in the UK Biobank. Given the highly complex and non-linear interactions between the genetic determinants of longevity, we reasoned that a composite polygenic score would approximate a substantial portion of the variance in lifespan and developed the integrated longevity genetic scores (iLGSs) for distinguishing exceptional survival. We showed that coefficients derived from our ensemble model could potentially reveal an interesting pattern of genomic pleiotropy specific to lifespan. We assessed the predictive performance of our model for distinguishing the enrichment of exceptional longevity among long-lived individuals in two replication cohorts and showed that the median lifespan in the highest decile of our composite prognostic index is up to 4.8 years longer. Finally, using the proteomic correlates of i L G S , we identified protein markers associated with exceptional longevity irrespective of chronological age and prioritized drugs with repurposing potentials for gerotherapeutics. Together, our approach demonstrates a promising framework for polygenic modeling of additive liability conferred by ARTs in defining exceptional longevity and assisting the identification of individuals at higher risk of mortality for targeted lifestyle modifications earlier in life. Furthermore, the proteomic signature associated with i L G S highlights the functional pathway upstream of the PI3K-Akt that can be effectively targeted to slow down aging and extend lifespan.
Collapse
Affiliation(s)
- M.Reza Jabalameli
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Zhen Wang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Joydeep Mitra
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Tina Gao
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Mark Khusidman
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Sofiya Milman
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Zhengdong D. Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Khajavi L, Nguyen XH, Queriault C, Chabod M, Barateau L, Dauvilliers Y, Zytnicki M, Liblau R. The transcriptomics profiling of blood CD4 and CD8 T-cells in narcolepsy type I. Front Immunol 2023; 14:1249405. [PMID: 38077397 PMCID: PMC10702585 DOI: 10.3389/fimmu.2023.1249405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Background Narcolepsy Type I (NT1) is a rare, life-long sleep disorder arising as a consequence of the extensive destruction of orexin-producing hypothalamic neurons. The mechanisms involved in the destruction of orexin neurons are not yet elucidated but the association of narcolepsy with environmental triggers and genetic susceptibility (strong association with the HLA, TCRs and other immunologically-relevant loci) implicates an immuno-pathological process. Several studies in animal models and on human samples have suggested that T-cells are the main pathogenic culprits. Methods RNA sequencing was performed on four CD4 and CD8 T-cell subsets (naive, effector, effector memory and central memory) sorted by flow cytometry from peripheral blood mononuclear cells (PBMCs) of NT1 patients and HLA-matched healthy donors as well as (age- and sex-) matched individuals suffering from other sleep disorders (OSD). The RNAseq analysis was conducted by comparing the transcriptome of NT1 patients to that of healthy donors and other sleep disorder patients (collectively referred to as the non-narcolepsy controls) in order to identify NT1-specific genes and pathways. Results We determined NT1-specific differentially expressed genes, several of which are involved in tubulin arrangement found in CD4 (TBCB, CCT5, EML4, TPGS1, TPGS2) and CD8 (TTLL7) T cell subsets, which play a role in the immune synapse formation and TCR signaling. Furthermore, we identified genes (GZMB, LTB in CD4 T-cells and NLRP3, TRADD, IL6, CXCR1, FOXO3, FOXP3 in CD8 T-cells) and pathways involved in various aspects of inflammation and inflammatory response. More specifically, the inflammatory profile was identified in the "naive" subset of CD4 and CD8 T-cell. Conclusion We identified NT1-specific differentially expressed genes, providing a cell-type and subset specific catalog describing their functions in T-cells as well as their potential involvement in NT1. Several genes and pathways identified are involved in the formation of the immune synapse and TCR activation as well as inflammation and the inflammatory response. An inflammatory transcriptomic profile was detected in both "naive" CD4 and CD8 T-cell subsets suggesting their possible involvement in the development or progression of the narcoleptic process.
Collapse
Affiliation(s)
- Leila Khajavi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Xuan-Hung Nguyen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Healthcare System and College of Health Sciences, VinUniveristy, Hanoi, Vietnam
| | - Clémence Queriault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Marianne Chabod
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Lucie Barateau
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Matthias Zytnicki
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
11
|
Luckett ES, Zielonka M, Kordjani A, Schaeverbeke J, Adamczuk K, De Meyer S, Van Laere K, Dupont P, Cleynen I, Vandenberghe R. Longitudinal APOE4- and amyloid-dependent changes in the blood transcriptome in cognitively intact older adults. Alzheimers Res Ther 2023; 15:121. [PMID: 37438770 PMCID: PMC10337180 DOI: 10.1186/s13195-023-01242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/06/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Gene expression is dysregulated in Alzheimer's disease (AD) patients, both in peripheral blood and post mortem brain. We investigated peripheral whole-blood gene (co)expression to determine molecular changes prior to symptom onset. METHODS RNA was extracted and sequenced for 65 cognitively healthy F-PACK participants (65 (56-80) years, 34 APOE4 non-carriers, 31 APOE4 carriers), at baseline and follow-up (interval: 5.0 (3.4-8.6) years). Participants received amyloid PET at both time points and amyloid rate of change derived. Accumulators were defined with rate of change ≥ 2.19 Centiloids. We performed differential gene expression and weighted gene co-expression network analysis to identify differentially expressed genes and networks of co-expressed genes, respectively, with respect to traits of interest (APOE4 status, amyloid accumulation (binary/continuous)), and amyloid positivity status, followed by Gene Ontology annotation. RESULTS There were 166 significant differentially expressed genes at follow-up compared to baseline in APOE4 carriers only, whereas 12 significant differentially expressed genes were found only in APOE4 non-carriers, over time. Among the significant genes in APOE4 carriers, several had strong evidence for a pathogenic role in AD based on direct association scores generated from the DISQOVER platform: NGRN, IGF2, GMPR, CLDN5, SMIM24. Top enrichment terms showed upregulated mitochondrial and metabolic pathways, and an exacerbated upregulation of ribosomal pathways in APOE4 carriers compared to non-carriers. Similarly, there were 33 unique significant differentially expressed genes at follow-up compared to baseline in individuals classified as amyloid negative at baseline and positive at follow-up or amyloid positive at both time points and 32 unique significant differentially expressed genes over time in individuals amyloid negative at both time points. Among the significant genes in the first group, the top five with the highest direct association scores were as follows: RPL17-C18orf32, HSP90AA1, MBP, SIRPB1, and GRINA. Top enrichment terms included upregulated metabolism and focal adhesion pathways. Baseline and follow-up gene co-expression networks were separately built. Seventeen baseline co-expression modules were derived, with one significantly negatively associated with amyloid accumulator status (r2 = - 0.25, p = 0.046). This was enriched for proteasomal protein catabolic process and myeloid cell development. Thirty-two follow-up modules were derived, with two significantly associated with APOE4 status: one downregulated (r2 = - 0.27, p = 0.035) and one upregulated (r2 = 0.26, p = 0.039) module. Top enrichment processes for the downregulated module included proteasomal protein catabolic process and myeloid cell homeostasis. Top enrichment processes for the upregulated module included cytoplasmic translation and rRNA processing. CONCLUSIONS We show that there are longitudinal gene expression changes that implicate a disrupted immune system, protein removal, and metabolism in cognitively intact individuals who carry APOE4 or who accumulate in cortical amyloid. This provides insight into the pathophysiology of AD, whilst providing novel targets for drug and therapeutic development.
Collapse
Affiliation(s)
- Emma S Luckett
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium
- Laboratory for Complex Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Magdalena Zielonka
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven, KU Leuven, Leuven, 3000, Belgium
| | - Amine Kordjani
- Laboratory for Complex Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Jolien Schaeverbeke
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium
- Laboratory of Neuropathology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
| | | | - Steffi De Meyer
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium
- Laboratory of Molecular Neurobiomarker Research, KU Leuven, Leuven, 3000, Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine, UZ Leuven, Leuven, 3000, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, 3000, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium
| | - Isabelle Cleynen
- Laboratory for Complex Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium.
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium.
- Neurology Department, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
12
|
Hart G, Huang CW, Rust N, Wu HF. Altered O-GlcNAcylation and mitochondrial dysfunction, a molecular link between brain glucose dysregulation and sporadic Alzheimer’s disease. Neural Regen Res 2023; 18:779-783. [DOI: 10.4103/1673-5374.354515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Farvadi F, Hashemi F, Amini A, Alsadat Vakilinezhad M, Raee MJ. Early Diagnosis of Alzheimer's Disease with Blood Test; Tempting but Challenging. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:172-210. [PMID: 38313372 PMCID: PMC10837916 DOI: 10.22088/ijmcm.bums.12.2.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
The increasing prevalence of Alzheimer's disease (AD) has led to a health crisis. According to official statistics, more than 55 million people globally have AD or other types of dementia, making it the sixth leading cause of death. It is still difficult to diagnose AD and there is no definitive diagnosis yet; post-mortem autopsy is still the only definite method. Moreover, clinical manifestations occur very late in the course of disease progression; therefore, profound irreversible changes have already occurred when the disease manifests. Studies have shown that in the preclinical stage of AD, changes in some biomarkers are measurable prior to any neurological damage or other symptoms. Hence, creating a reliable, fast, and affordable method capable of detecting AD in early stage has attracted the most attention. Seeking clinically applicable, inexpensive, less invasive, and much more easily accessible biomarkers for early diagnosis of AD, blood-based biomarkers (BBBs) seem to be an ideal option. This review is an inclusive report of BBBs that have been shown to be altered in the course of AD progression. The aim of this report is to provide comprehensive insight into the research status of early detection of AD based on BBBs.
Collapse
Affiliation(s)
- Fakhrossadat Farvadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hashemi
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, the University of Newcastle, Newcastle, Australia
| | - Azadeh Amini
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical sciences, Tehran, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Green R, Mayilsamy K, McGill AR, Martinez TE, Chandran B, Blair LJ, Bickford PC, Mohapatra SS, Mohapatra S. SARS-CoV-2 infection increases the gene expression profile for Alzheimer's disease risk. Mol Ther Methods Clin Dev 2022; 27:217-229. [PMID: 36187720 PMCID: PMC9508696 DOI: 10.1016/j.omtm.2022.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 02/02/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused over 600,000,000 infections globally thus far. Up to 30% of individuals with mild to severe disease develop long COVID, exhibiting diverse neurologic symptoms including dementias. However, there is a paucity of knowledge of molecular brain markers and whether these can precipitate the onset of Alzheimer's disease (AD). Herein, we report the brain gene expression profiles of severe COVID-19 patients showing increased expression of innate immune response genes and genes implicated in AD pathogenesis. The use of a mouse-adapted strain of SARS-CoV-2 (MA10) in an aged mouse model shows evidence of viral neurotropism, prolonged viral infection, increased expression of tau aggregator FKBP51, interferon-inducible gene Ifi204, and complement genes C4 and C5AR1. Brain histopathology shows AD signatures including increased tau-phosphorylation, tau-oligomerization, and α-synuclein expression in aged MA10 infected mice. The results of gene expression profiling of SARS-CoV-2-infected and AD brains and studies in the MA10 aged mouse model taken together, for the first time provide evidence suggesting that SARS-CoV-2 infection alters expression of genes in the brain associated with the development of AD. Future studies of common molecular markers in SARS-CoV-2 infection and AD could be useful for developing novel therapies targeting AD.
Collapse
Affiliation(s)
- Ryan Green
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Taylor E. Martinez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Bala Chandran
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Byrd Alzheimer’s Research Institute, University of South Florida, Tampa, FL 33613, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Paula C. Bickford
- Center of Excellence for Aging and Brain Repair, Departments of Neurosurgery and Brain Repair, and Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, FL 33613, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Shyam S. Mohapatra
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| |
Collapse
|
15
|
Shao X, Vishweswaraiah S, Čuperlović-Culf M, Yilmaz A, Greenwood CMT, Surendra A, McGuinness B, Passmore P, Kehoe PG, Maddens ME, Bennett SAL, Green BD, Radhakrishna U, Graham SF. Dementia with Lewy bodies post-mortem brains reveal differentially methylated CpG sites with biomarker potential. Commun Biol 2022; 5:1279. [PMID: 36418427 PMCID: PMC9684551 DOI: 10.1038/s42003-022-03965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is a common form of dementia with known genetic and environmental interactions. However, the underlying epigenetic mechanisms which reflect these gene-environment interactions are poorly studied. Herein, we measure genome-wide DNA methylation profiles of post-mortem brain tissue (Broadmann area 7) from 15 pathologically confirmed DLB brains and compare them with 16 cognitively normal controls using Illumina MethylationEPIC arrays. We identify 17 significantly differentially methylated CpGs (DMCs) and 17 differentially methylated regions (DMRs) between the groups. The DMCs are mainly located at the CpG islands, promoter and first exon regions. Genes associated with the DMCs are linked to "Parkinson's disease" and "metabolic pathway", as well as the diseases of "severe intellectual disability" and "mood disorders". Overall, our study highlights previously unreported DMCs offering insights into DLB pathogenesis with the possibility that some of these could be used as biomarkers of DLB in the future.
Collapse
Affiliation(s)
- Xiaojian Shao
- National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Canada.
| | | | - Miroslava Čuperlović-Culf
- National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, sand Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ali Yilmaz
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48309, USA
- Beaumont Research Institute, Royal Oak, MI, 48073, USA
| | - Celia M T Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Canada
| | - Anuradha Surendra
- National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Canada
| | - Bernadette McGuinness
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Peter Passmore
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Patrick G Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael E Maddens
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48309, USA
- Beaumont Research Institute, Royal Oak, MI, 48073, USA
| | - Steffany A L Bennett
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, sand Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Uppala Radhakrishna
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48309, USA
- Beaumont Research Institute, Royal Oak, MI, 48073, USA
| | - Stewart F Graham
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48309, USA.
- Beaumont Research Institute, Royal Oak, MI, 48073, USA.
| |
Collapse
|
16
|
Krance SH, Wu CY, Chan ACY, Kwong S, Song BX, Xiong LY, Ouk M, Chen MH, Zhang J, Yung A, Stanley M, Herrmann N, Lanctôt KL, Swardfager W. Endosomal-Lysosomal and Autophagy Pathway in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 88:1279-1292. [PMID: 35754279 DOI: 10.3233/jad-220360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The endosomal-lysosomal and autophagy (ELA) pathway may be implicated in the progression of Alzheimer's disease (AD); however, findings thus far have been inconsistent. OBJECTIVE To systematically summarize differences in endosomal-lysosomal and autophagy proteins in the cerebrospinal fluid (CSF) of people with AD and healthy controls (HC). METHODS Studies measuring CSF concentrations of relevant proteins in the ELA pathway in AD and healthy controls were included. Standardized mean differences (SMD) with 95% confidence intervals (CI) between AD and healthy controls in CSF concentrations of relevant proteins were meta-analyzed using random-effects models. RESULTS Of 2,471 unique studies, 43 studies were included in the systematic review and meta-analysis. Differences in ELA protein levels in the CSF between AD and healthy controls were observed, particularly in lysosomal membrane (LAMP-1: NAD/NHC = 348/381, SMD [95% CI] = 0.599 [0.268, 0.930], I2 = 72.8% ; LAMP-2: NAD/NHC = 401/510, SMD [95% CI] = 0.480 [0.134, 0.826], I2 = 78.7%) and intra-lysosomal proteins (GM2A: NAD/NHC = 390/420, SMD [95% CI] = 0.496 [0.039, 0.954], I2 = 87.7% ; CTSB: NAD/NHC = 485/443, SMD [95% CI] = 0.201 [0.029, 0.374], I2 = 28.5% ; CTSZ: NAD/NHC = 535/820, SMD [95% CI] = -0.160 [-0.305, -0.015], I2 = 24.0%) and in proteins involved in endocytosis (AP2B1:NAD/NHC = 171/205, SMD [95% CI] = 0.513 [0.259, 0.768], I2 = 27.4% ; FLOT1: NAD/NHC = 41/45, SMD [95% CI] = -0.489 [-0.919, -0.058], I2 <0.01). LC3B, an autophagy marker, also showed a difference (NAD/NHC = 70/59, SMD [95% CI] = 0.648 [0.180, 1.116], I2 = 38.3%)), but overall there was limited evidence suggesting differences in proteins involved in endosomal function and autophagy. CONCLUSION Dysregulation of proteins in the ELA pathway may play an important role in AD pathogenesis. Some proteins within this pathway may be potential biomarkers for AD.
Collapse
Affiliation(s)
- Saffire H Krance
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Che-Yuan Wu
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Alison C Y Chan
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Kwong
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Bing Xin Song
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Y Xiong
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ouk
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ming Hui Chen
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jane Zhang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Yung
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Meagan Stanley
- Western Libraries, University of Western Ontario, London, Ontario, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,University Health Network KITE Toronto Rehabilitation Institute, Toronto, Ontario, Canada.,Toronto Dementia Research Alliance, Toronto, Ontario, Canada
| | - Walter Swardfager
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.,University Health Network KITE Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Silva TC, Young JI, Martin ER, Chen XS, Wang L. MethReg: estimating the regulatory potential of DNA methylation in gene transcription. Nucleic Acids Res 2022; 50:e51. [PMID: 35100398 PMCID: PMC9122535 DOI: 10.1093/nar/gkac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 01/02/2023] Open
Abstract
Epigenome-wide association studies often detect many differentially methylated sites, and many are located in distal regulatory regions. To further prioritize these significant sites, there is a critical need to better understand the functional impact of CpG methylation. Recent studies demonstrated that CpG methylation-dependent transcriptional regulation is a widespread phenomenon. Here, we present MethReg, an R/Bioconductor package that analyzes matched DNA methylation and gene expression data, along with external transcription factor (TF) binding information, to evaluate, prioritize and annotate CpG sites with high regulatory potential. At these CpG sites, TF-target gene associations are often only present in a subset of samples with high (or low) methylation levels, so they can be missed by analyses that use all samples. Using colorectal cancer and Alzheimer's disease datasets, we show MethReg significantly enhances our understanding of the regulatory roles of DNA methylation in complex diseases.
Collapse
Affiliation(s)
- Tiago C Silva
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I Young
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R Martin
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - X Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
18
|
Cibulka M, Brodnanova M, Grendar M, Necpal J, Benetin J, Han V, Kurca E, Nosal V, Skorvanek M, Vesely B, Stanclova A, Lasabova Z, Pös Z, Szemes T, Stuchlik S, Grofik M, Kolisek M. Alzheimer's Disease-Associated SNP rs708727 in SLC41A1 May Increase Risk for Parkinson's Disease: Report from Enlarged Slovak Study. Int J Mol Sci 2022; 23:ijms23031604. [PMID: 35163527 PMCID: PMC8835868 DOI: 10.3390/ijms23031604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
SLC41A1 (A1) SNPs rs11240569 and rs823156 are associated with altered risk for Parkinson's disease (PD), predominantly in Asian populations, and rs708727 has been linked to Alzheimer's disease (AD). In this study, we have examined a potential association of the three aforementioned SNPs and of rs9438393, rs56152218, and rs61822602 (all three lying in the A1 promoter region) with PD in the Slovak population. Out of the six tested SNPs, we have identified only rs708727 as being associated with an increased risk for PD onset in Slovaks. The minor allele (A) in rs708727 is associated with PD in dominant and completely over-dominant genetic models (ORD = 1.36 (1.05-1.77), p = 0.02, and ORCOD = 1.34 (1.04-1.72), p = 0.02). Furthermore, the genotypic triplet GG(rs708727) + AG(rs823156) + CC(rs61822602) might be clinically relevant despite showing a medium (h ≥ 0.5) size difference (h = 0.522) between the PD and the control populations. RandomForest modeling has identified the power of the tested SNPs for discriminating between PD-patients and the controls to be essentially zero. The identified association of rs708727 with PD in the Slovak population leads us to hypothesize that this A1 polymorphism, which is involved in the epigenetic regulation of the expression of the AD-linked gene PM20D1, is also involved in the pathoetiology of PD (or universally in neurodegeneration) through the same or similar mechanism as in AD.
Collapse
Affiliation(s)
- Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Maria Brodnanova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Marian Grendar
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Jan Necpal
- Clinic of Neurology, AGEL Hospital in Zvolen, 96001 Zvolen, Slovakia;
| | - Jan Benetin
- Clinic of Neurology, University Hospital Bratislava, Slovak Medical University in Bratislava, 83303 Bratislva, Slovakia;
| | - Vladimir Han
- Clinic of Neurology, University Hospital of L. Pasteur in Kosice, University of Pavol Jozef Safarik, 04066 Kosice, Slovakia; (V.H.); (M.S.)
| | - Egon Kurca
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
| | - Vladimir Nosal
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
| | - Matej Skorvanek
- Clinic of Neurology, University Hospital of L. Pasteur in Kosice, University of Pavol Jozef Safarik, 04066 Kosice, Slovakia; (V.H.); (M.S.)
| | - Branislav Vesely
- Clinic of Neurology, Faculty Hospital in Nitra, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia;
| | - Andrea Stanclova
- Institute of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.S.); (Z.L.)
| | - Zora Lasabova
- Institute of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.S.); (Z.L.)
| | - Zuzana Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
- GENETON s.r.o., 84104 Bratislava, Slovakia
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
- GENETON s.r.o., 84104 Bratislava, Slovakia
| | - Stanislav Stuchlik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
| | - Milan Grofik
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
- Correspondence: (M.G.); (M.K.)
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
- Correspondence: (M.G.); (M.K.)
| |
Collapse
|
19
|
Bellou E, Escott-Price V. Are Alzheimer's and coronary artery diseases genetically related to longevity? Front Psychiatry 2022; 13:1102347. [PMID: 36684006 PMCID: PMC9859055 DOI: 10.3389/fpsyt.2022.1102347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION In the last decade researchers have attempted to investigate the shared genetic architecture of longevity and age-related diseases and assess whether the increased longevity in certain people is due to protective alleles in the risk genes for a particular condition or whether there are specific "longevity" genes increasing the lifespan independently of age-related conditions' risk genes. The aim of this study was to investigate the shared genetic component between longevity and two age-related conditions. METHODS We performed a cross-trait meta-analysis of publicly available genome-wide data for Alzheimer's disease, coronary artery disease and longevity using a subset-based approach provided by the R package ASSET. RESULTS Despite the lack of strong genetic correlation between longevity and the two diseases, we identified 38 genome-wide significant lead SNPs across 22 independent genomic loci. Of them 6 were found to be potentially shared among the three traits mapping to genes including DAB2IP, DNM2, FCHO1, CLPTM1, and SNRPD2. We also identified 19 novel genome-wide associations for the individual traits in this study. Functional annotations and biological pathway enrichment analyses suggested that pleiotropic variants are involved in clathrin-mediated endocytosis and plasma lipoprotein and neurotransmitter clearance processes. DISCUSSION In summary, we have been able to advance in the knowledge of the genetic overlap existing among longevity and the two most common age-related disorders.
Collapse
Affiliation(s)
- Eftychia Bellou
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Escott-Price
- Division of Neuroscience and Mental Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
20
|
Zhang X, Zou M, Wu Y, Jiang D, Wu T, Zhao Y, Wu D, Cui J, Li G. Regulation of the Late Onset alzheimer's Disease Associated HLA-DQA1/DRB1 Expression. Am J Alzheimers Dis Other Demen 2022; 37:15333175221085066. [PMID: 35341343 PMCID: PMC10581112 DOI: 10.1177/15333175221085066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
(Genome-wide Association Studies) GWAS have identified ∼42 late-onset Alzheimer's disease (LOAD)-associated loci, each of which contains multiple single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) and most of these SNPs are in the non-coding region of human genome. However, how these SNPs regulate risk gene expression remains unknown. In this work, by using a set of novel techniques, we identified 6 functional SNPs (fSNPs) rs9271198, rs9271200, rs9281945, rs9271243, and rs9271247 on the LOAD-associated HLA-DRB1/DQA1 locus and 42 proteins specifically binding to five of these 6 fSNPs. As a proof of evidence, we verified the allele-specific binding of GATA2 and GATA3, ELAVL1 and HNRNPA0, ILF2 and ILF3, NFIB and NFIC, as well as CUX1 to these five fSNPs, respectively. Moreover, we demonstrate that all these nine proteins regulate the expression of both HLA-DQA1 and HLA-DRB1 in human microglial cells. The contribution of HLA class II to the susceptibility of LOAD is discussed.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meijaun Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yuwei Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Di Wu
- Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Cui
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Rybak-Wolf A, Plass M. RNA Dynamics in Alzheimer's Disease. Molecules 2021; 26:5113. [PMID: 34500547 PMCID: PMC8433936 DOI: 10.3390/molecules26175113] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder that heavily burdens healthcare systems worldwide. There is a significant requirement to understand the still unknown molecular mechanisms underlying AD. Current evidence shows that two of the major features of AD are transcriptome dysregulation and altered function of RNA binding proteins (RBPs), both of which lead to changes in the expression of different RNA species, including microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs). In this review, we will conduct a comprehensive overview of how RNA dynamics are altered in AD and how this leads to the differential expression of both short and long RNA species. We will describe how RBP expression and function are altered in AD and how this impacts the expression of different RNA species. Furthermore, we will also show how changes in the abundance of specific RNA species are linked to the pathology of AD.
Collapse
Affiliation(s)
- Agnieszka Rybak-Wolf
- Max Delbrück Center for Molecular Medicine (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Mireya Plass
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
22
|
Kumar A, Doan VM, Kunkli B, Csősz É. Construction of Unified Human Antimicrobial and Immunomodulatory Peptide Database and Examination of Antimicrobial and Immunomodulatory Peptides in Alzheimer's Disease Using Network Analysis of Proteomics Datasets. Front Genet 2021; 12:633050. [PMID: 33995478 PMCID: PMC8113759 DOI: 10.3389/fgene.2021.633050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
The reanalysis of genomics and proteomics datasets by bioinformatics approaches is an appealing way to examine large amounts of reliable data. This can be especially true in cases such as Alzheimer's disease, where the access to biological samples, along with well-defined patient information can be challenging. Considering the inflammatory part of Alzheimer's disease, our aim was to examine the presence of antimicrobial and immunomodulatory peptides in human proteomic datasets deposited in the publicly available proteomics database ProteomeXchange (http://www.proteomexchange.org/). First, a unified, comprehensive human antimicrobial and immunomodulatory peptide database, containing all known human antimicrobial and immunomodulatory peptides was constructed and used along with the datasets containing high-quality proteomics data originating from the examination of Alzheimer's disease and control groups. A throughout network analysis was carried out, and the enriched GO functions were examined. Less than 1% of all identified proteins in the brain were antimicrobial and immunomodulatory peptides, but the alterations characteristic of Alzheimer's disease could be recapitulated with their analysis. Our data emphasize the key role of the innate immune system and blood clotting in the development of Alzheimer's disease. The central role of antimicrobial and immunomodulatory peptides suggests their utilization as potential targets for mechanistic studies and future therapies.
Collapse
Affiliation(s)
- Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vo Minh Doan
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Kunkli
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
23
|
Dharshini SAP, Jemimah S, Taguchi YH, Gromiha MM. Exploring Common Therapeutic Targets for Neurodegenerative Disorders Using Transcriptome Study. Front Genet 2021; 12:639160. [PMID: 33815473 PMCID: PMC8017312 DOI: 10.3389/fgene.2021.639160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are well-known neuronal degenerative disorders that share common pathological events. Approved medications alleviate symptoms but do not address the root cause of the disease. Energy dysfunction in the neuronal population leads to various pathological events and ultimately results in neuronal death. Identifying common therapeutic targets for these disorders may help in the drug discovery process. The Brodmann area 9 (BA9) region is affected in both the disease conditions and plays an essential role in cognitive, motor, and memory-related functions. Analyzing transcriptome data of BA9 provides deep insights related to common pathological pathways involved in AD and PD. In this work, we map the preprocessed BA9 fastq files generated by RNA-seq for disease and control samples with reference hg38 genomic assembly and identify common variants and differentially expressed genes (DEG). These variants are predominantly located in the 3' UTR (non-promoter) region, affecting the conserved transcription factor (TF) binding motifs involved in the methylation and acetylation process. We have constructed BA9-specific functional interaction networks, which show the relationship between TFs and DEGs. Based on expression signature analysis, we propose that MAPK1, VEGFR1/FLT1, and FGFR1 are promising drug targets to restore blood-brain barrier functionality by reducing neuroinflammation and may save neurons.
Collapse
Affiliation(s)
- S Akila Parvathy Dharshini
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Sherlyn Jemimah
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Y H Taguchi
- Department of Physics, Chuo University, Hachioji, Japan
| | - M Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
24
|
Maiuri T, Hung CL, Suart C, Begeja N, Barba-Bazan C, Peng Y, Savic N, Wong T, Truant R. DNA Repair in Huntington's Disease and Spinocerebellar Ataxias: Somatic Instability and Alternative Hypotheses. J Huntingtons Dis 2021; 10:165-173. [PMID: 33579859 PMCID: PMC7990435 DOI: 10.3233/jhd-200414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of genome wide association studies (GWAS) in Huntington's disease (HD) research, driven by unbiased human data analysis, has transformed the focus of new targets that could affect age at onset. While there is a significant depth of information on DNA damage repair, with many drugs and drug targets, most of this development has taken place in the context of cancer therapy. DNA damage repair in neurons does not rely on DNA replication correction mechanisms. However, there is a strong connection between DNA repair and neuronal metabolism, mediated by nucleotide salvaging and the poly ADP-ribose (PAR) response, and this connection has been implicated in other age-onset neurodegenerative diseases. Validation of leads including the mismatch repair protein MSH3, and interstrand cross-link repair protein FAN1, suggest the mechanism is driven by somatic CAG instability, which is supported by the protective effect of CAA substitutions in the CAG tract. We currently do not understand: how somatic instability is triggered; the state of DNA damage within expanding alleles in the brain; whether this damage induces mismatch repair and interstrand cross-link pathways; whether instability mediates toxicity, and how this relates to human ageing. We discuss DNA damage pathways uncovered by HD GWAS, known roles of other polyglutamine disease proteins in DNA damage repair, and a panel of hypotheses for pathogenic mechanisms.
Collapse
Affiliation(s)
- Tamara Maiuri
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Claudia L.K. Hung
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Celeste Suart
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Nola Begeja
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Carlos Barba-Bazan
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Yi Peng
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Natasha Savic
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Timothy Wong
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Ray Truant
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM. Neurodegenerative Diseases - Is Metabolic Deficiency the Root Cause? Front Neurosci 2020; 14:213. [PMID: 32296300 PMCID: PMC7137637 DOI: 10.3389/fnins.2020.00213] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/26/2020] [Indexed: 01/31/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer, Parkinson, Huntington, and amyotrophic lateral sclerosis, are a prominent class of neurological diseases currently without a cure. They are characterized by an inexorable loss of a specific type of neurons. The selective vulnerability of specific neuronal clusters (typically a subcortical cluster) in the early stages, followed by the spread of the disease to higher cortical areas, is a typical pattern of disease progression. Neurodegenerative diseases share a range of molecular and cellular pathologies, including protein aggregation, mitochondrial dysfunction, glutamate toxicity, calcium load, proteolytic stress, oxidative stress, neuroinflammation, and aging, which contribute to neuronal death. Efforts to treat these diseases are often limited by the fact that they tend to address any one of the above pathological changes while ignoring others. Lack of clarity regarding a possible root cause that underlies all the above pathologies poses a significant challenge. In search of an integrative theory for neurodegenerative pathology, we hypothesize that metabolic deficiency in certain vulnerable neuronal clusters is the common underlying thread that links many dimensions of the disease. The current review aims to present an outline of such an integrative theory. We present a new perspective of neurodegenerative diseases as metabolic disorders at molecular, cellular, and systems levels. This helps to understand a common underlying mechanism of the many facets of the disease and may lead to more promising disease-modifying therapeutic interventions. Here, we briefly discuss the selective metabolic vulnerability of specific neuronal clusters and also the involvement of glia and vascular dysfunctions. Any failure in satisfaction of the metabolic demand by the neurons triggers a chain of events that precipitate various manifestations of neurodegenerative pathology.
Collapse
Affiliation(s)
- Vignayanandam Ravindernath Muddapu
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - S. Akila Parvathy Dharshini
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - V. Srinivasa Chakravarthy
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - M. Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
26
|
Transcriptomic and Network Analysis Identifies Shared and Unique Pathways across Dementia Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21062050. [PMID: 32192109 PMCID: PMC7139711 DOI: 10.3390/ijms21062050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Dementia is a growing public health concern with an estimated prevalence of 50 million people worldwide. Alzheimer’s disease (AD) and vascular and frontotemporal dementias (VaD, FTD), share many clinical, genetical, and pathological features making the diagnosis difficult. Methods: In this study, we compared the transcriptome from the frontal cortex of patients with AD, VaD, and FTD to identify dysregulated pathways. Results: Upregulated genes in AD were enriched in adherens and tight junctions, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase and protein kinase B/Akt signaling pathways, whereas downregulated genes associated with calcium signaling. Upregulated genes in VaD were centered on infectious diseases and nuclear factor kappa beta signaling, whereas downregulated genes are involved in biosynthesis of amino acids and the pentose phosphate pathway. Upregulated genes in FTD were associated with ECM receptor interactions and the lysosome, whereas downregulated genes were involved in glutamatergic synapse and MAPK signaling. The transcription factor KFL4 was shared among the 3 types of dementia. Conclusions: Collectively, we identified similarities and differences in dysregulated pathways and transcription factors among the dementias. The shared pathways and transcription factors may indicate a potential common etiology, whereas the differences may be useful for distinguishing dementias.
Collapse
|