1
|
Shen C, Zhu X, Chang H, Li C, Hou M, Chen L, Lu Chen, Zhou Z, Ji M, Xu Z. The rebalancing of the immune system at the maternal-fetal interface ameliorates autism-like behavior in adult offspring. Cell Rep 2024; 43:114787. [PMID: 39321022 DOI: 10.1016/j.celrep.2024.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Maternal immune activation (MIA) is critical for imparting neuropathology and altered behaviors in offspring; however, maternal-fetal immune cell populations have not been thoroughly investigated in MIA-induced autism spectrum disorders (ASDs). Here, we report the single-cell transcriptional landscape of placental cells in both PBS- and poly(I:C)-induced MIA dams. We observed a decrease in regulatory T (Treg) cells but an increase in the M1 macrophage population at the maternal-fetal interface in MIA dams. Based on the Treg-targeting approach, we investigate an immunoregulatory protein, the helminth-derived heat shock protein 90α (Sjp90α), that induces maternal Treg cells and subsequently rescues the autism-like behaviors in adult offspring. Furthermore, in vivo depletion of maternal macrophages attenuates placental inflammatory reaction and reverses behavioral abnormalities in adult offspring. Notably, Sjp90α induces CD4+ T cell differentiation via scavenger receptor A (SR-A) on the macrophage in vitro. Our findings suggest a maternal Treg-targeted approach to alleviate MIA-induced autism-like behavior in adult offspring.
Collapse
Affiliation(s)
- Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hao Chang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Chen Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lin Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lu Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Zikai Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P.R. China.
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| |
Collapse
|
2
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
3
|
Gallaccio G, Wang M, Schlickeiser S, Kunkel D, Böttcher C, Fernández-Zapata C. Protocol to characterize immune cell subpopulations in cerebrospinal fluid of patients with neuroinflammatory diseases using mass cytometry. STAR Protoc 2024; 5:103038. [PMID: 38678568 PMCID: PMC11068925 DOI: 10.1016/j.xpro.2024.103038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Phenotypic and compositional changes of immune cells in cerebrospinal fluid (CSF) can be used as biomarkers to help diagnose and track disease activity for neuroinflammatory and neurodegenerative diseases. Here, we present a workflow to perform high-dimensional immune profiling at single-cell resolution using cytometry by time-of-flight (CyTOF) on cells isolated from the CSF of patients with neuroinflammation. We describe steps for sample collection and preparation, barcoding to allow for multiplexing, and downstream data analysis using R. For complete details on the use and execution of this protocol, please refer to Fernández-Zapata et al.1.
Collapse
Affiliation(s)
- Gerardina Gallaccio
- Experimental and Clinical Research Center, A Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Meng Wang
- Experimental and Clinical Research Center, A Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, BIH-Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health Berlin, Berlin, Germany
| | - Desiree Kunkel
- Berlin Institute of Health at Charité - Universitiätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, A Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| | - Camila Fernández-Zapata
- Experimental and Clinical Research Center, A Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Cortes-Figueiredo F, Asseyer S, Chien C, Zimmermann HG, Ruprecht K, Schmitz-Hübsch T, Bellmann-Strobl J, Paul F, Morais VA. CD4 + T cell mitochondrial genotype in Multiple Sclerosis: a cross-sectional and longitudinal analysis. Sci Rep 2024; 14:7507. [PMID: 38553515 PMCID: PMC10980703 DOI: 10.1038/s41598-024-57592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS), with a largely unknown etiology, where mitochondrial dysfunction likely contributes to neuroaxonal loss and brain atrophy. Mirroring the CNS, peripheral immune cells from patients with MS, particularly CD4+ T cells, show inappropriate mitochondrial phenotypes and/or oxidative phosphorylation (OxPhos) insufficiency, with a still unknown contribution of mitochondrial DNA (mtDNA). We hypothesized that mitochondrial genotype in CD4+ T cells might influence MS disease activity and progression. Thus, we performed a retrospective cross-sectional and longitudinal study on patients with a recent diagnosis of either Clinically Isolated Syndrome (CIS) or Relapsing-Remitting MS (RRMS) at two timepoints: 6 months (VIS1) and 36 months (VIS2) after disease onset. Our primary outcomes were the differences in mtDNA extracted from CD4+ T cells between: (I) patients with CIS/RRMS (PwMS) at VIS1 and age- and sex-matched healthy controls (HC), in the cross-sectional analysis, and (II) different diagnostic evolutions in PwMS from VIS1 to VIS2, in the longitudinal analysis. We successfully performed mtDNA whole genome sequencing (mean coverage: 2055.77 reads/base pair) in 183 samples (61 triplets). Nonetheless, mitochondrial genotype was not associated with a diagnosis of CIS/RRMS, nor with longitudinal diagnostic evolution.
Collapse
Affiliation(s)
- Filipe Cortes-Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanna Asseyer
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Vanessa A Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
5
|
Gross CC, Schulte-Mecklenbeck A, Steinberg OV, Wirth T, Lauks S, Bittner S, Schindler P, Baranzini SE, Groppa S, Bellmann-Strobl J, Bünger N, Chien C, Dawin E, Eveslage M, Fleischer V, Gonzalez-Escamilla G, Gisevius B, Haas J, Kerschensteiner M, Kirstein L, Korsukewitz C, Lohmann L, Lünemann JD, Luessi F, Meyer Zu Hörste G, Motte J, Ruck T, Ruprecht K, Schwab N, Steffen F, Meuth SG, Paul F, Wildemann B, Kümpfel T, Gold R, Hahn T, Zipp F, Klotz L, Wiendl H. Multiple sclerosis endophenotypes identified by high-dimensional blood signatures are associated with distinct disease trajectories. Sci Transl Med 2024; 16:eade8560. [PMID: 38536936 DOI: 10.1126/scitranslmed.ade8560] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/29/2024] [Indexed: 09/05/2024]
Abstract
One of the biggest challenges in managing multiple sclerosis is the heterogeneity of clinical manifestations and progression trajectories. It still remains to be elucidated whether this heterogeneity is reflected by discrete immune signatures in the blood as a surrogate of disease pathophysiology. Accordingly, individualized treatment selection based on immunobiological principles is still not feasible. Using two independent multicentric longitudinal cohorts of patients with early multiple sclerosis (n = 309 discovery and n = 232 validation), we were able to identify three distinct peripheral blood immunological endophenotypes by a combination of high-dimensional flow cytometry and serum proteomics, followed by unsupervised clustering. Longitudinal clinical and paraclinical follow-up data collected for the cohorts revealed that these endophenotypes were associated with disease trajectories of inflammation versus early structural damage. Investigating the capacity of immunotherapies to normalize endophenotype-specific immune signatures revealed discrete effect sizes as illustrated by the limited effect of interferon-β on endophenotype 3-related immune signatures. Accordingly, patients who fell into endophenotype 3 subsequently treated with interferon-β exhibited higher disease progression and MRI activity over a 4-year follow-up compared with treatment with other therapies. We therefore propose that ascertaining a patient's blood immune signature before immunomodulatory treatment initiation may facilitate prediction of clinical disease trajectories and enable personalized treatment decisions based on pathobiological principles.
Collapse
Affiliation(s)
- Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Olga V Steinberg
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Timo Wirth
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Sarah Lauks
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Patrick Schindler
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Sergio E Baranzini
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Nora Bünger
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Univeritäsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Eva Dawin
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University of Münster, 48149 Münster, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Barbara Gisevius
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Jürgen Haas
- Department of Neurology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilians University of Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Lucienne Kirstein
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Catharina Korsukewitz
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Lisa Lohmann
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Jeremias Motte
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Brigitte Wildemann
- Department of Neurology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| |
Collapse
|
6
|
Krumm L, Pozner T, Zagha N, Coras R, Arnold P, Tsaktanis T, Scherpelz K, Davis MY, Kaindl J, Stolzer I, Süß P, Khundadze M, Hübner CA, Riemenschneider MJ, Baets J, Günther C, Jayadev S, Rothhammer V, Krach F, Winkler J, Winner B, Regensburger M. Neuroinflammatory disease signatures in SPG11-related hereditary spastic paraplegia patients. Acta Neuropathol 2024; 147:28. [PMID: 38305941 PMCID: PMC10837238 DOI: 10.1007/s00401-023-02675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate a previously unknown role of innate immunity in SPG11-HSP. Neuropathological analysis of SPG11-HSP patient brain tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11-HSP patients, the ratio of peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyperactivation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an Spg11-/- mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11-HSP patients and constitute the first description of myeloid cell/ microglia activation in human SPG11-HSP. IFNγ/ STAT1-mediated neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may slow down disease progression.
Collapse
Affiliation(s)
- Laura Krumm
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Naime Zagha
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Kathryn Scherpelz
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marie Y Davis
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Süß
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany
| | - Suman Jayadev
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany.
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
7
|
Kongkatitham V, Dehlinger A, Chaotham C, Likhitwitayawuid K, Böttcher C, Sritularak B. Diverse modulatory effects of bibenzyls from Dendrobium species on human immune cell responses under inflammatory conditions. PLoS One 2024; 19:e0292366. [PMID: 38300920 PMCID: PMC10833532 DOI: 10.1371/journal.pone.0292366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/18/2023] [Indexed: 02/03/2024] Open
Abstract
Dendrobium plants are widely used in traditional Chinese medicine. Their secondary metabolites such as bibenzyls and phenanthrenes show various pharmacological benefits such as immunomodulation and inhibitory effects on cancer cell growth. However, our previous study also showed that some of these promising compounds (i.e., gigantol and cypripedin) also induced the expression of inflammatory cytokines including TNF in human monocytes, and thus raising concerns about the use of these compounds in clinical application. Furthermore, the effects of these compounds on other immune cell populations, apart from monocytes, remain to be investigated. In this study, we evaluated immunomodulatory effects of seven known bibenzyl compounds purified from Dendrobium species in human peripheral blood mononuclear cells (PBMCs) that were stimulated with lipopolysaccharide (LPS). Firstly, using flow cytometry, moscatilin (3) and crepidatin (4) showed the most promising dose-dependent immunomodulatory effects among all seven bibenzyls, determined by significant reduction of TNF expression in LPS-stimulated CD14+ monocytes. Only crepidatin at the concentration of 20 μM showed a significant cytotoxicity, i.e., an increased cell death in late apoptotic state. In addition, deep immune profiling using high-dimensional single-cell mass cytometry (CyTOF) revealed broad effects of Dendrobium compounds on diverse immune cell types. Our findings suggest that to precisely evaluate therapeutic as well as adverse effects of active natural compounds, a multi-parameter immune profiling targeting diverse immune cell population is required.
Collapse
Affiliation(s)
- Virunh Kongkatitham
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Adeline Dehlinger
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Wang M, Dehlinger A, Zapata CF, Golan M, Gallaccio G, Sander LE, Schlickeiser S, Kunkel D, Schmitz-Hübsch T, Sawitzki B, Karni A, Braun J, Loyal L, Thiel A, Bellmann-Strobl J, Paul F, Meyer-Arndt L, Böttcher C. Associations of myeloid cells with cellular and humoral responses following vaccinations in patients with neuroimmunological diseases. Nat Commun 2023; 14:7728. [PMID: 38007484 PMCID: PMC10676398 DOI: 10.1038/s41467-023-43553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023] Open
Abstract
Disease-modifying therapies (DMTs) are widely used in neuroimmunological diseases such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Although these treatments are known to predispose patients to infections and affect their responses to vaccination, little is known about the impact of DMTs on the myeloid cell compartment. In this study, we use mass cytometry to examine DMT-associated changes in the innate immune system in untreated and treated patients with MS (n = 39) or NMOSD (n = 23). We also investigated the association between changes in myeloid cell phenotypes and longitudinal responsiveness to homologous primary, secondary, and tertiary SARS-CoV-2 mRNA vaccinations. Multiple DMT-associated myeloid cell clusters, in particular CD64+HLADRlow granulocytes, showed significant correlations with B and T cell responses induced by vaccination. Our findings suggest the potential role of myeloid cells in cellular and humoral responses following vaccination in DMT-treated patients with neuroimmunological diseases.
Collapse
Affiliation(s)
- Meng Wang
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Adeline Dehlinger
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Camila Fernández Zapata
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Maya Golan
- Neuroimmunology and Multiple Sclerosis Unit and Laboratory, Sourasky Medical Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gerardina Gallaccio
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health Berlin, Berlin, Germany
| | - Desiree Kunkel
- Flow&MassCytometry Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Birgit Sawitzki
- Translational Immunology, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arnon Karni
- Neuroimmunology and Multiple Sclerosis Unit and Laboratory, Sourasky Medical Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel
| | - Julian Braun
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Lucie Loyal
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Andreas Thiel
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lil Meyer-Arndt
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
9
|
Belousova O, Lopatina A, Kuzmina U, Melnikov M. The role of biogenic amines in the modulation of monocytes in autoimmune neuroinflammation. Mult Scler Relat Disord 2023; 78:104920. [PMID: 37536214 DOI: 10.1016/j.msard.2023.104920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Multiple sclerosis (MS) is inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) with autoimmune mechanism of development. The study of the neuroimmune interactions is one of the most developing directions in the research of the pathogenesis of MS. The influence of biogenic amines on the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and MS was shown by the modulation of subsets of T-helper cells and B-cells, which plays a crucial role in the autoimmunity of the CNS. However, along with T- and B-cells the critical involvement of mononuclear phagocytes such as dendritic cells, macrophages, and monocytes in the development of neuroinflammation also was shown. It was demonstrated that the activation of microglial cells (resident macrophages of the CNS) could initiate the neuroinflammation in the EAE, suggesting their role at an early stage of the disease. In contrast, monocytes, which migrate from the periphery into the CNS through the blood-brain barrier, mediate the effector phase of the disease and cause neurological disability in EAE. In addition, the clinical efficacy of the therapy with depletion of the monocytes in EAE was shown, suggesting their crucial role in the autoimmunity of the CNS. Biogenic amines, such as epinephrine, norepinephrine, dopamine, and serotonin are direct mediators of the neuroimmune interaction and may affect the pathogenesis of EAE and MS by modulating the immune cell activity and cytokine production. The anti-inflammatory effect of targeting the biogenic amines receptors on the pathogenesis of EAE and MS by suppression of Th17- and Th1-cells, which are critical for the CNS autoimmunity, was shown. However, the latest data showed the potential ability of biogenic amines to affect the functions of the mononuclear phagocytes and their involvement in the modulation of neuroinflammation. This article reviews the literature data on the role of monocytes in the pathogenesis of EAE and MS. The data on the effect of targeting of biogenic amine receptors on the function of monocytes are presented.
Collapse
Affiliation(s)
- Olga Belousova
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna Lopatina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Ulyana Kuzmina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Laboratory of Molecular Pharmacology and Immunology, Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Science, Ufa, Russia
| | - Mikhail Melnikov
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia.
| |
Collapse
|
10
|
Koladiya A, Davis KL. Advances in Clinical Mass Cytometry. Clin Lab Med 2023; 43:507-519. [PMID: 37481326 DOI: 10.1016/j.cll.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The advent of high-dimensional single-cell technologies has enabled detection of cellular heterogeneity and functional diversity of immune cells during health and disease conditions. Because of its multiplexing capabilities and limited compensation requirements, mass cytometry or cytometry by time of flight (CyTOF) has played a superior role in immune monitoring compared with flow cytometry. Further, it has higher throughput and lower cost compared with other single-cell techniques. Several published articles have utilized CyTOF to identify cellular phenotypes and features associated with disease outcomes. This article introduces CyTOF-based assays to profile immune cell-types, cell-states, and their applications in clinical research.
Collapse
Affiliation(s)
- Abhishek Koladiya
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kara L Davis
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Ni Y, Xiong R, Zhu Y, Luan N, Yu C, Yang K, Wang H, Xu X, Yang Y, Sun S, Shi L, Padde JR, Chen L, Chen L, Hou M, Xu Z, Lai R, Ji M. A target-based discovery from a parasitic helminth as a novel therapeutic approach for autoimmune diseases. EBioMedicine 2023; 95:104751. [PMID: 37579625 PMCID: PMC10448429 DOI: 10.1016/j.ebiom.2023.104751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) can alleviate the development of autoimmune and inflammatory diseases, thereby proposing their role as a new therapeutic strategy. Parasitic helminths have co-evolved with hosts to generate immunological privilege and immune tolerance through inducing Tregs. Thus, constructing a "Tregs-induction"-based discovery pipeline from parasitic helminth is a promising strategy to control autoimmune and inflammatory diseases. METHODS The gel filtration chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC) were used to isolate immunomodulatory components from the egg extracts of Schistosoma japonicum. The extracted peptides were evaluated for their effects on Tregs suppressive functions using flow cytometry, ELISA and T cell suppression assay. Finally, we carried out colitis and psoriasis models to evaluate the function of Tregs induced by helminth-derived peptide in vivo. FINDINGS Here, based on target-driven discovery strategy, we successfully identified a small 3 kDa peptide (SjDX5-53) from egg extracts of schistosome, which promoted both human and murine Tregs production. SjDX5-53 presented immunosuppressive function by arresting dendritic cells (DCs) at an immature state and augmenting the proportion and suppressive capacity of Tregs. In mouse models, SjDX5-53 protected mice against autoimmune-related colitis and psoriasis through inducing Tregs and inhibiting inflammatory T-helper (Th) 1 and Th17 responses. INTERPRETATION SjDX5-53 exhibited the promising therapeutic effects in alleviating the phenotype of immune-related colitis and psoriasis. This study displayed a screening and validation pipeline of the inducer of Tregs from helminth eggs, highlighting the discovery of new biologics inspired by co-evolution of hosts and their parasites. FUNDING This study was supported by the Natural Science Foundation of China (82272368) and Natural Science Foundation of Jiangsu Province (BK20211586).
Collapse
Affiliation(s)
- Yangyue Ni
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ruiyan Xiong
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuxiao Zhu
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ning Luan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China
| | - Chuanxin Yu
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Kun Yang
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Huiquan Wang
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xuejun Xu
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuxuan Yang
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Siyu Sun
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, China
| | - Jon Rob Padde
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China.
| | - Minjun Ji
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Tsaktanis T, Linnerbauer M, Lößlein L, Farrenkopf D, Vandrey O, Peter A, Cirac A, Beyer T, Nirschl L, Grummel V, Mühlau M, Bussas M, Hemmer B, Quintana FJ, Rothhammer V. Regulation of the programmed cell death protein 1/programmed cell death ligand 1 axis in relapsing-remitting multiple sclerosis. Brain Commun 2023; 5:fcad206. [PMID: 37564830 PMCID: PMC10411318 DOI: 10.1093/braincomms/fcad206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The programmed cell death protein 1/programmed cell death ligand 1 axis plays an important role in the adaptive immune system and has influence on neoplastic and inflammatory diseases, while its role in multiple sclerosis is unclear. Here, we aimed to analyse expression patterns of programmed cell death protein 1 and programmed cell death ligand 1 on peripheral blood mononuclear cells and their soluble variants in multiple sclerosis patients and controls, to determine their correlation with clinical disability and disease activity. In a cross-sectional study, we performed in-depth flow cytometric immunophenotyping of peripheral blood mononuclear cells and analysed soluble programmed cell death protein 1 and programmed cell death ligand 1 serum levels in patients with relapsing-remitting multiple sclerosis and controls. In comparison to control subjects, relapsing-remitting multiple sclerosis patients displayed distinct cellular programmed cell death protein 1/programmed cell death ligand 1 expression patterns in immune cell subsets and increased soluble programmed cell death ligand 1 levels, which correlated with clinical measures of disability and MRI activity over time. This study extends our knowledge of how programmed cell death protein 1 and programmed cell death ligand 1 are expressed in the membranes of patients with relapsing-remitting multiple sclerosis and describes for the first time the elevation of soluble programmed cell death ligand 1 in the blood of multiple sclerosis patients. The distinct expression pattern of membrane-bound programmed cell death protein 1 and programmed cell death ligand 1 and the correlation between soluble programmed cell death ligand 1, membrane-bound programmed cell death ligand 1, disease and clinical factors may offer therapeutic potential in the setting of multiple sclerosis and might improve future diagnosis and clinical decision-making.
Collapse
Affiliation(s)
- Thanos Tsaktanis
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Mathias Linnerbauer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Daniel Farrenkopf
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Anne Peter
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Ana Cirac
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Verena Grummel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Mark Mühlau
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Matthias Bussas
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Eli and Edythe L Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Veit Rothhammer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| |
Collapse
|
13
|
Patel AJ, Khan N, Richter A, Naidu B, Drayson MT, Middleton GW. Deep immune B and plasma cell repertoire in non-small cell lung cancer. Front Immunol 2023; 14:1198665. [PMID: 37398676 PMCID: PMC10311499 DOI: 10.3389/fimmu.2023.1198665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction B cells, which have long been thought to be minor players in the development of anti-tumor responses, have been implicated as key players in lung cancer pathogenesis and response to checkpoint blockade in patients with lung cancer. Enrichment of late-stage plasma and memory cells in the tumor microenvironment has been shown in lung cancer, with the plasma cell repertoire existing on a functional spectrum with suppressive phenotypes correlating with outcome. B cell dynamics may be influenced by the inflammatory microenvironment observed in smokers and between LUAD and LUSC. Methods Here, we show through high-dimensional deep phenotyping using mass cytometry (CyTOF), next generation RNA sequencing and multispectral immunofluorescence imaging (VECTRA Polaris) that key differences exist in the B cell repertoire between tumor and circulation in paired specimens from lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Results In addition to the current literature, this study provides insight into the in-depth description of the B cell contexture in Non-Small Cell Lung Cancer (NSCLC) with reference to broad clinico-pathological parameters based on our analysis of 56 patients. Our findings reinforce the phenomenon of B-cell trafficking from distant circulatory compartments into the tumour microenvironment (TME). The circulatory repertoire shows a predilection toward plasma and memory phenotypes in LUAD however no major differences exist between LUAD and LUSC at the level of the TME. B cell repertoire, amongst other factors, may be influenced by the inflammatory burden in the TME and circulation, that is, smokers and non-smokers. We have further clearly demonstrated that the plasma cell repertoire exists on a functional spectrum in lung cancer, and that the suppressive regulatory arm of this axis may play a significant role in determining postoperative outcomes as well as following checkpoint blockade. This will require further long-term functional correlation. Conclusion B and Plasma cell repertoire is very diverse and heterogeneous across different tissue compartments in lung cancer. Smoking status associates with key differences in the immune milieu and the consequent inflammatory microenvironment is likely responsible for the functional and phenotypic spectrum we have seen in the plasma cell and B cell repertoire in this condition.
Collapse
Affiliation(s)
- Akshay J. Patel
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Naeem Khan
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Babu Naidu
- Institute of Inflammation and Ageing (IIA), College of Medical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark T. Drayson
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gary W. Middleton
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Kongkatitham V, Dehlinger A, Wang M, Poldorn P, Weidinger C, Letizia M, Chaotham C, Otto C, Ruprecht K, Paul F, Rungrotmongkol T, Likhitwitayawuid K, Böttcher C, Sritularak B. Immunomodulatory Effects of New Phenanthrene Derivatives from Dendrobium crumenatum. JOURNAL OF NATURAL PRODUCTS 2023; 86:1294-1306. [PMID: 37140218 DOI: 10.1021/acs.jnatprod.3c00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Three new phenanthrene derivatives (1, 2, 4), one new fluorenone (3), and four known compounds (5-8) were isolated from the ethyl acetate extract of Dendrobium crumenatum Sw. stems using column chromatography. The chemical structures were elucidated by analysis of spectroscopic data. The absolute configuration of 4 was determined by electronic circular dichroism calculation. We also evaluated the immunomodulatory effects of compounds isolated from D. crumenatum in human peripheral blood mononuclear cells from healthy individuals and those from patients with multiple sclerosis in vitro. Dendrocrumenol B (2) and dendrocrumenol D (4) showed strong immunomodulatory effects on both CD3+ T cells and CD14+ monocytes. Compounds 2 and 4 could reduce IL-2 and TNF production in T cells and monocytes that were treated with phorbol-12-myristate-13-acetate and ionomycin (PMA/Iono). Deep immune profiling using high-dimensional single-cell mass cytometry could confirm immunomodulatory effects of 4, quantified by the reduction of activated T cell population under PMA/Iono stimulation, in comparison to the stimulated T cells without treatment.
Collapse
Affiliation(s)
- Virunh Kongkatitham
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Adeline Dehlinger
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Meng Wang
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Preeyaporn Poldorn
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 12203, Germany
- Clinician Scientist Program, Berlin Institute of Health, Berlin 10117, Germany
| | - Marilena Letizia
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 12203, Germany
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Carolin Otto
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Klemens Ruprecht
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Stabel JR, Wherry TLT. Comparison of methods to isolate peripheral blood mononuclear cells from cattle blood. J Immunol Methods 2023; 512:113407. [PMID: 36528086 DOI: 10.1016/j.jim.2022.113407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/23/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Peripheral blood mononuclear cells (PBMCs) are critical for assessment of host immune responses to infectious disease. The isolation of PBMCs from whole blood is a laborious process involving density gradients and multiple centrifugation steps. In the present study we compared a more traditional method of PBMC isolation used in our laboratory to two novel methods of cell isolation for efficiency, cell viability, and enumeration of cell subsets. Our laboratory method uses Histopaque-1077 density gradient in standard conical tubes and this was compared with isolation of cells using SepMate™ tubes, a novel conical tube containing an insert to separate the density gradient. Multiple experiments were performed to optimize the SepMate™ tubes for use with cattle blood. A final experiment was conducted to compare traditional methodology, the optimized SepMate™ method with a more novel method using cell preparation tubes (CPT-10 vacutainers containing density gradient). Results demonstrated that optimization of the SepMate™ tube methodology was necessary, including dilution of blood and addition of centrifugation steps to reduce platelet contamination. The CPT-10 tubes worked well but cell recovery was lower compared to other methods. Both of the newer methods were comparable to a modified version of our traditional laboratory method of PBMC isolation in terms of numbers of recovered viable cells and the frequency of immune cell subsets. Additionally, efficiency was improved, particularly with the SepMate™ tube method, resulting in reduced time in the laboratory as well as reduced usage of plasticware.
Collapse
Affiliation(s)
- Judith R Stabel
- USDA-ARS, National Animal Disease Center, Ames, IA 50010, USA.
| | - Taylor L T Wherry
- Department of Veterinary Pathology, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
16
|
Vakrakou AG, Paschalidis N, Pavlos E, Giannouli C, Karathanasis D, Tsipota X, Velonakis G, Stadelmann-Nessler C, Evangelopoulos ME, Stefanis L, Kilidireas C. Specific myeloid signatures in peripheral blood differentiate active and rare clinical phenotypes of multiple sclerosis. Front Immunol 2023; 14:1071623. [PMID: 36761741 PMCID: PMC9905713 DOI: 10.3389/fimmu.2023.1071623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Current understanding of Multiple Sclerosis (MS) pathophysiology implicates perturbations in adaptive cellular immune responses, predominantly T cells, in Relapsing-Remitting forms (RRMS). Nevertheless, from a clinical perspective MS is a heterogeneous disease reflecting the heterogeneity of involved biological systems. This complexity requires advanced analysis tools at the single-cell level to discover biomarkers for better patient-group stratification. We designed a novel 44-parameter mass cytometry panel to interrogate predominantly the role of effector and regulatory subpopulations of peripheral blood myeloid subsets along with B and T-cells (excluding granulocytes) in MS, assessing three different patient cohorts: RRMS, PPMS (Primary Progressive) and Tumefactive MS patients (TMS) (n=10, 8, 14 respectively). We further subgrouped our cohort into inactive or active disease stages to capture the early underlying events in disease pathophysiology. Peripheral blood analysis showed that TMS cases belonged to the spectrum of RRMS, whereas PPMS cases displayed different features. In particular, TMS patients during a relapse stage were characterized by a specific subset of CD11c+CD14+ CD33+, CD192+, CD172+-myeloid cells with an alternative phenotype of monocyte-derived macrophages (high arginase-1, CD38, HLA-DR-low and endogenous TNF-a production). Moreover, TMS patients in relapse displayed a selective CD4 T-cell lymphopenia of cells with a Th2-like polarised phenotype. PPMS patients did not display substantial differences from healthy controls, apart from a trend toward higher expansion of NK cell subsets. Importantly, we found that myeloid cell populations are reshaped under effective disease-modifying therapy predominantly with glatiramer acetate and to a lesser extent with anti-CD20, suggesting that the identified cell signature represents a specific therapeutic target in TMS. The expanded myeloid signature in TMS patients was also confirmed by flow cytometry. Serum neurofilament light-chain levels confirmed the correlation of this myeloid cell signature with indices of axonal injury. More in-depth analysis of myeloid subsets revealed an increase of a subset of highly cytolytic and terminally differentiated NK cells in PPMS patients with leptomeningeal enhancement (active-PPMS), compared to those without (inactive-PPMS). We have identified previously uncharacterized subsets of circulating myeloid cells and shown them to correlate with distinct disease forms of MS as well as with specific disease states (relapse/remission).
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany
| | - Nikolaos Paschalidis
- Mass Cytometry-CyTOF Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleftherios Pavlos
- Center for Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece
| | - Christina Giannouli
- Center for Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris Karathanasis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Xristina Tsipota
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
17
|
Rocha-Hasler M, Müller L, Wagner A, Tu A, Stanek V, Campion NJ, Bartosik T, Zghaebi M, Stoshikj S, Gompelmann D, Zech A, Mei H, Kratochwill K, Spittler A, Idzko M, Schneider S, Eckl-Dorna J. Using mass cytometry for the analysis of samples of the human airways. Front Immunol 2022; 13:1004583. [PMID: 36578479 PMCID: PMC9791368 DOI: 10.3389/fimmu.2022.1004583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Mass cytometry (MC) is a powerful method for mapping complex cellular systems at single-cell levels, based on the detection of cellular proteins. Numerous studies have been performed using human blood, but there is a lack of protocols describing the processing and labeling of bronchoalveolar lavage fluid (BALF) and nasal polyps (NP) for acquisition by MC. These specimens are essential in the investigation of immune cell characteristics in airway diseases such as asthma and chronic rhinosinusitis with NP (CRSwNP). Here we optimized a workflow for processing, labeling, and acquisition of BALF and NP cells by MC. Among three methods tested for NP digestion, combined enzymatic/mechanical processing yielded maximum cell recovery, viability and labeling patterns compared to the other methods. Treatment with DNAse improved sample acquisition by MC. In a final step, we performed a comparison of blood, BALF and NP cell composition using a 31-marker MC antibody panel, revealing expected differences between the different tissue but also heterogeneity among the BALF and NP samples. We here introduce an optimized workflow for the MC analysis of human NP and BALF, which enables comparative analysis of different samples in larger cohorts. A deeper understanding of immune cell characteristics in these samples may guide future researchers and clinicians to a better disease management.
Collapse
Affiliation(s)
- Marianne Rocha-Hasler
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Lena Müller
- Core Facility Flow Cytometry & Department of Surgery, Research Lab, Medical University of Vienna, Vienna, Austria
| | - Anja Wagner
- Core Facility Proteomics, Medical University of Vienna, Vienna, Austria,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Aldine Tu
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Victoria Stanek
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Nicholas James Campion
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Tina Bartosik
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Mohammed Zghaebi
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Slagjana Stoshikj
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Daniela Gompelmann
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Andreas Zech
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Henrik Mei
- German Rheumatism Research Center Berlin, Berlin, Germany
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, Vienna, Austria,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Department of Surgery, Research Lab, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Sven Schneider
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria,*Correspondence: Sven Schneider,
| | - Julia Eckl-Dorna
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Differential compartmentalization of myeloid cell phenotypes and responses towards the CNS in Alzheimer's disease. Nat Commun 2022; 13:7210. [PMID: 36418303 PMCID: PMC9684147 DOI: 10.1038/s41467-022-34719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Myeloid cells are suggested as an important player in Alzheimer´s disease (AD). However, its continuum of phenotypic and functional changes across different body compartments and their use as a biomarker in AD remains elusive. Here, we perform multiple state-of-the-art analyses to phenotypically and metabolically characterize immune cells between peripheral blood (n = 117), cerebrospinal fluid (CSF, n = 117), choroid plexus (CP, n = 13) and brain parenchyma (n = 13). We find that CSF cells increase expression of markers involved in inflammation, phagocytosis, and metabolism. Changes in phenotype of myeloid cells from AD patients are more pronounced in CP and brain parenchyma and upon in vitro stimulation, suggesting that AD-myeloid cells are more vulnerable to environmental changes. Our findings underscore the importance of myeloid cells in AD and the detailed characterization across body compartments may serve as a resource for future studies focusing on the assessment of these cells as biomarkers in AD.
Collapse
|
19
|
Rigamonti A, Castagna A, Viatore M, Colombo FS, Terzoli S, Peano C, Marchesi F, Locati M. Distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and COVID-19. Front Immunol 2022; 13:967737. [PMID: 36263038 PMCID: PMC9576306 DOI: 10.3389/fimmu.2022.967737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Monocytes are critical cells of the immune system but their role as effectors is relatively poorly understood, as they have long been considered only as precursors of tissue macrophages or dendritic cells. Moreover, it is known that this cell type is heterogeneous, but our understanding of this aspect is limited to the broad classification in classical/intermediate/non-classical monocytes, commonly based on their expression of only two markers, i.e. CD14 and CD16. We deeply dissected the heterogeneity of human circulating monocytes in healthy donors by transcriptomic analysis at single-cell level and identified 9 distinct monocyte populations characterized each by a profile suggestive of specialized functions. The classical monocyte subset in fact included five distinct populations, each enriched for transcriptomic gene sets related to either inflammatory, neutrophil-like, interferon-related, and platelet-related pathways. Non-classical monocytes included two distinct populations, one of which marked specifically by elevated expression levels of complement components. Intermediate monocytes were not further divided in our analysis and were characterized by high levels of human leukocyte antigen (HLA) genes. Finally, we identified one cluster included in both classical and non-classical monocytes, characterized by a strong cytotoxic signature. These findings provided the rationale to exploit the relevance of newly identified monocyte populations in disease evolution. A machine learning approach was developed and applied to two single-cell transcriptome public datasets, from gastrointestinal cancer and Coronavirus disease 2019 (COVID-19) patients. The dissection of these datasets through our classification revealed that patients with advanced cancers showed a selective increase in monocytes enriched in platelet-related pathways. Of note, the signature associated with this population correlated with worse prognosis in gastric cancer patients. Conversely, after immunotherapy, the most activated population was composed of interferon-related monocytes, consistent with an upregulation in interferon-related genes in responder patients compared to non-responders. In COVID-19 patients we confirmed a global activated phenotype of the entire monocyte compartment, but our classification revealed that only cytotoxic monocytes are expanded during the disease progression. Collectively, this study unravels an unexpected complexity among human circulating monocytes and highlights the existence of specialized populations differently engaged depending on the pathological context.
Collapse
Affiliation(s)
- Alessandra Rigamonti
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandra Castagna
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marika Viatore
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clelia Peano
- Genomic Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Institute of Genetic and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
| | - Federica Marchesi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Massimo Locati
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- *Correspondence: Massimo Locati,
| |
Collapse
|
20
|
Letizia M, Wang YH, Kaufmann U, Gerbeth L, Sand A, Brunkhorst M, Weidner P, Ziegler JF, Böttcher C, Schlickeiser S, Fernández C, Yamashita M, Stauderman K, Sun K, Kunkel D, Prakriya M, Sanders AD, Siegmund B, Feske S, Weidinger C. Store-operated calcium entry controls innate and adaptive immune cell function in inflammatory bowel disease. EMBO Mol Med 2022; 14:e15687. [PMID: 35919953 PMCID: PMC9449601 DOI: 10.15252/emmm.202215687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune responses. Using mass cytometry (CyTOF) to analyze the immune cell composition in the lamina propria (LP) of patients with ulcerative colitis (UC) and Crohn's disease (CD), we observed an enrichment of CD4+ effector T cells producing IL‐17A and TNF, CD8+ T cells producing IFNγ, T regulatory (Treg) cells, and innate lymphoid cells (ILC). The function of these immune cells is regulated by store‐operated Ca2+ entry (SOCE), which results from the opening of Ca2+ release‐activated Ca2+ (CRAC) channels formed by ORAI and STIM proteins. We observed that the pharmacologic inhibition of SOCE attenuated the production of proinflammatory cytokines including IL‐2, IL‐4, IL‐6, IL‐17A, TNF, and IFNγ by human colonic T cells and ILCs, reduced the production of IL‐6 by B cells and the production of IFNγ by myeloid cells, but had no effect on the viability, differentiation, and function of intestinal epithelial cells. T cell‐specific deletion of CRAC channel genes in mice showed that Orai1, Stim1, and Stim2‐deficient T cells have quantitatively distinct defects in SOCE, which correlate with gradually more pronounced impairment of cytokine production by Th1 and Th17 cells and the severity of IBD. Moreover, the pharmacologic inhibition of SOCE with a selective CRAC channel inhibitor attenuated IBD severity and colitogenic T cell function in mice. Our data indicate that SOCE inhibition may be a suitable new approach for the treatment of IBD.
Collapse
Affiliation(s)
- Marilena Letizia
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ulrike Kaufmann
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lorenz Gerbeth
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Annegret Sand
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Max Brunkhorst
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Patrick Weidner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Single Cell Approaches for Personalized Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Felix Ziegler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, Berlin, A Cooperation of Charité and MDC, Berlin, Germany
| | - Stephan Schlickeiser
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Camila Fernández
- Experimental and Clinical Research Center, Berlin, A Cooperation of Charité and MDC, Berlin, Germany
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | | | - Katherine Sun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Désirée Kunkel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | -
- TRR 241 Research Initiative, Berlin-Erlangen, Germany
| | - Ashley D Sanders
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Single Cell Approaches for Personalized Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Carl Weidinger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany.,Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.,Clinician Scientist Program, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
21
|
Single-cell analyses highlight the proinflammatory contribution of C1q-high monocytes to Behçet's disease. Proc Natl Acad Sci U S A 2022; 119:e2204289119. [PMID: 35727985 DOI: 10.1073/pnas.2204289119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Behçet's disease (BD) is a chronic vasculitis characterized by systemic immune aberrations. However, a comprehensive understanding of immune disturbances in BD and how they contribute to BD pathogenesis is lacking. Here, we performed single-cell and bulk RNA sequencing to profile peripheral blood mononuclear cells (PBMCs) and isolated monocytes from BD patients and healthy donors. We observed prominent expansion and transcriptional changes in monocytes in PBMCs from BD patients. Deciphering the monocyte heterogeneity revealed the accumulation of C1q-high (C1qhi) monocytes in BD. Pseudotime inference indicated that BD monocytes markedly shifted their differentiation toward inflammation-accompanied and C1qhi monocyte-ended trajectory. Further experiments showed that C1qhi monocytes enhanced phagocytosis and proinflammatory cytokine secretion, and multiplatform analyses revealed the significant clinical relevance of this subtype. Mechanistically, C1qhi monocytes were induced by activated interferon-γ (IFN-γ) signaling in BD patients and were decreased by tofacitinib treatment. Our study illustrates the BD immune landscape and the unrecognized contribution of C1qhi monocytes to BD hyperinflammation, showing their potential as therapeutic targets and clinical assessment indexes.
Collapse
|
22
|
Gargaro M, Scalisi G, Manni G, Briseño CG, Bagadia P, Durai V, Theisen DJ, Kim S, Castelli M, Xu CA, zu Hörste GM, Servillo G, Della Fazia MA, Mencarelli G, Ricciuti D, Padiglioni E, Giacchè N, Colliva C, Pellicciari R, Calvitti M, Zelante T, Fuchs D, Orabona C, Boon L, Bessede A, Colonna M, Puccetti P, Murphy TL, Murphy KM, Fallarino F. Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity 2022; 55:1032-1050.e14. [PMID: 35704993 PMCID: PMC9220322 DOI: 10.1016/j.immuni.2022.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived l-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite l-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlos G. Briseño
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Derek J. Theisen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Marilena Castelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Chenling A. Xu
- Department of Electrical Engineering & Computer Science, Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Gerd Meyer zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Giuseppe Servillo
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy
| | | | - Giulia Mencarelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Doriana Ricciuti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | | | | | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA,Howard Hughes Medical Institute, Washington University in St. Louis School of Medicine, St. Louis, MO, USA,Corresponding author
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy.
| |
Collapse
|
23
|
Patel AJ, Willsmore ZN, Khan N, Richter A, Naidu B, Drayson MT, Papa S, Cope A, Karagiannis SN, Perucha E, Middleton GW. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat Commun 2022; 13:3148. [PMID: 35672305 PMCID: PMC9174492 DOI: 10.1038/s41467-022-30863-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 05/22/2022] [Indexed: 12/20/2022] Open
Abstract
Checkpoint blockade with Pembrolizumab, has demonstrated durable clinical responses in advanced non-small cell lung cancer, however, treatment is offset by the development of high-grade immune related adverse events (irAEs) in some patients. Here, we show that in these patients a deficient Breg checkpoint fails to limit self-reactive T cell enhanced activity and auto-antibody formation enabled by PD-1/PD-L1 blockade, leading to severe auto-inflammatory sequelae. Principally a failure of IL-10 producing regulatory B cells as demonstrated through functional ex vivo assays and deep phenotyping mass cytometric analysis, is a major and significant finding in patients who develop high-grade irAEs when undergoing treatment with anti-PD1/PD-L1 checkpoint blockade. There is currently a lack of biomarkers to identify a priori those patients at greatest risk of developing severe auto-inflammatory syndrome. Pre-therapy B cell profiling could provide an important tool to identify lung cancer patients at high risk of developing severe irAEs on checkpoint blockade.
Collapse
Affiliation(s)
- Akshay J Patel
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zena N Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Babu Naidu
- Institute of Inflammation and Ageing (IIA), College of Medical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sophie Papa
- Immunoengineering Group, King's College London, London, SE1 9RT, UK
- Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, SE1 9RT, UK
| | - Andrew Cope
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, SE1 9RT, UK
| | - Esperanza Perucha
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Gary W Middleton
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
24
|
Yoo HS, Shanmugalingam U, Smith PD. Potential roles of branched-chain amino acids in neurodegeneration. Nutrition 2022; 103-104:111762. [DOI: 10.1016/j.nut.2022.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/12/2022] [Accepted: 05/31/2022] [Indexed: 10/31/2022]
|
25
|
Theofani E, Semitekolou M, Samitas K, Mais A, Galani IE, Triantafyllia V, Lama J, Morianos I, Stavropoulos A, Jeong S, Andreakos E, Razani B, Rovina N, Xanthou G. TFEB signaling attenuates NLRP3-driven inflammatory responses in severe asthma. Allergy 2022; 77:2131-2146. [PMID: 35038351 DOI: 10.1111/all.15221] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND NLRP3-driven inflammatory responses by circulating and lung-resident monocytes are critical drivers of asthma pathogenesis. Autophagy restrains NLRP3-induced monocyte activation in asthma models. Yet, the effects of autophagy and its master regulator, transcription factor EB (TFEB), on monocyte responses in human asthma remain unexplored. Here, we investigated whether activation of autophagy and TFEB signaling suppress inflammatory monocyte responses in asthmatic individuals. METHODS Peripheral blood CD14+ monocytes from asthmatic patients (n = 83) and healthy controls (n = 46) were stimulated with LPS/ATP to induce NLRP3 activation with or without the autophagy inducer, rapamycin. ASC specks, caspase-1 activation, IL-1β and IL-18 levels, mitochondrial function, ROS release, and mTORC1 signaling were examined. Autophagy was evaluated by LC3 puncta formation, p62/SQSTM1 degradation and TFEB activation. In a severe asthma (SA) model, we investigated the role of NLRP3 signaling using Nlrp3-/- mice and/or MCC950 administration, and the effects of TFEB activation using myeloid-specific TFEB-overexpressing mice or administration of the TFEB activator, trehalose. RESULTS We observed increased NLRP3 inflammasome activation, concomitant with impaired autophagy in circulating monocytes that correlated with asthma severity. SA patients also exhibited mitochondrial dysfunction and ROS accumulation. Autophagy failed to inhibit NLRP3-driven monocyte responses, due to defective TFEB activation and excessive mTORC1 signaling. NLRP3 blockade restrained inflammatory cytokine release and linked airway disease. TFEB activation restored impaired autophagy, attenuated NLRP3-driven pulmonary inflammation, and ameliorated SA phenotype. CONCLUSIONS Our studies uncover a crucial role for TFEB-mediated reprogramming of monocyte inflammatory responses, raising the prospect that this pathway can be therapeutically harnessed for the management of SA.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
- 1st Department of Respiratory Medicine Medical School ‘Sotiria’ Athens Chest Diseases HospitalNational Kapodistrian University of Athens Athens Greece
| | - Maria Semitekolou
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Konstantinos Samitas
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
- 7th Respiratory Clinic and Asthma Center of the ‘Sotiria’ Athens Chest Hospital Athens Greece
| | - Annie Mais
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Ioanna E. Galani
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Joanna Lama
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Athanasios Stavropoulos
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Se‐Jin Jeong
- Department of Medicine Cardiovascular Division, and Department of Pathology & Immunology Washington University School of Medicine St. Louis Missouri USA
| | - Evangelos Andreakos
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Babak Razani
- Department of Medicine Cardiovascular Division, and Department of Pathology & Immunology Washington University School of Medicine St. Louis Missouri USA
- John Cochran VA Medical Center St. Louis Missouri USA
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine Medical School ‘Sotiria’ Athens Chest Diseases HospitalNational Kapodistrian University of Athens Athens Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| |
Collapse
|
26
|
Schoeberl A, Gutmann M, Theiner S, Schaier M, Schweikert A, Berger W, Koellensperger G. Cisplatin Uptake in Macrophage Subtypes at the Single-Cell Level by LA-ICP-TOFMS Imaging. Anal Chem 2021; 93:16456-16465. [PMID: 34846133 PMCID: PMC8674877 DOI: 10.1021/acs.analchem.1c03442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A high-throughput
laser ablation–inductively coupled plasma–time-of-flight
mass spectrometry (LA-ICP-TOFMS) workflow was implemented for quantitative
single-cell analysis following cytospin preparation of cells. For
the first time, in vitro studies on cisplatin exposure addressed human
monocytes and monocyte-derived macrophages (undifferentiated THP-1
monocytic cells, differentiated M0 macrophages, as well as further
polarized M1 and M2 phenotypes) at the single-cell level. The models
are of particular interest as macrophages comprise the biggest part
of immune cells present in the tumor microenvironment and play an
important role in modulating tumor growth and progression. The introduced
bioimaging workflow proved to be universally applicable to adherent
and suspension cell cultures and fit-for-purpose for the quantitative
analysis of several hundreds of cells within minutes. Both, cross-validation
of the method with single-cell analysis in suspension for THP-1 cells
and with LA-ICP-TOFMS analysis of adherent M0 cells grown on chambered
glass coverslips, revealed agreeing platinum concentrations at the
single-cell level. A high incorporation of cisplatin was observed
in M2 macrophages compared to the M0 and M1 macrophage subtypes and
the monocyte model, THP-1. The combination with bright-field images
and monitoring of highly abundant endogenous elements such as phosphorus
and sodium at a high spatial resolution allowed assessing cell size
and important morphological cell parameters and thus straightforward
control over several cell conditions. This way, apoptotic cells and
cell debris as well as doublets or cell clusters could be easily excluded
prior to data evaluation without additional staining.
Collapse
Affiliation(s)
- Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Michael Gutmann
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Martin Schaier
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Andreas Schweikert
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
27
|
Couloume L, Michel L. New concepts on immunology of Multiple Sclerosis. Presse Med 2021; 50:104072. [PMID: 34547375 DOI: 10.1016/j.lpm.2021.104072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/15/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and immune-driven demyelinating disease of the central nervous system (CNS). During the past decade, major advances have been made to understand the development of MS as well as its progressive stage. Here, we discuss some emerging concepts on immunology of MS, including the growing interest in the involvement of gut microbiota and the recent pathological concepts on the progression phase. Finally, we present some immuno-tools recently available that contribute to better understand diversity and function of the immune system.
Collapse
Affiliation(s)
| | - Laure Michel
- Univ Rennes, CHU Rennes, Neurology, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), F-35000 Rennes, France; Unité Mixte de Recherche (UMR) S1236, INSERM, University of Rennes, Etablissement Français du Sang, Rennes, France; Suivi Immunologique des Thérapeutiques Innovantes, Centre Hospitalier Universitaire de Rennes, Etablissement Français du Sang, Rennes, France.
| |
Collapse
|
28
|
McCarthy ME, Anglin CM, Peer HA, Boleman SA, Klaubert SR, Birtwistle MR. Protocol for Creating Antibodies with Complex Fluorescence Spectra. Bioconjug Chem 2021; 32:1156-1166. [PMID: 34009954 DOI: 10.1021/acs.bioconjchem.1c00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluorescent antibodies are a workhorse of biomedical science, but fluorescence multiplexing has been notoriously difficult due to spectral overlap between fluorophores. We recently established proof-of-principal for fluorescence Multiplexing using Spectral Imaging and Combinatorics (MuSIC), which uses combinations of existing fluorophores to create unique spectral signatures for increased multiplexing. However, a method for labeling antibodies with MuSIC probes has not yet been developed. Here, we present a method for labeling antibodies with MuSIC probes. We conjugate a DBCO-Peg5-NHS ester linker to antibodies and a single-stranded DNA "docking strand" to the linker and, finally, hybridize two MuSIC-compatible, fluorescently labeled oligos to the docking strand. We validate the labeling protocol with spin-column purification and absorbance measurements. We demonstrate the approach using (i) Cy3, (ii) Tex615, and (iii) a Cy3-Tex615 combination as three different MuSIC probes attached to three separate batches of antibodies. We created single-, double-, and triple-positive beads that are analogous to single cells by incubating MuSIC probe-labeled antibodies with protein A beads. Spectral flow cytometry experiments demonstrate that each MuSIC probe can be uniquely distinguished, and the fraction of beads in a mixture with different staining patterns are accurately inferred. The approach is general and might be more broadly applied to cell-type profiling or tissue heterogeneity studies in clinical, biomedical, and drug discovery research.
Collapse
Affiliation(s)
- Madeline E McCarthy
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Caitlin M Anglin
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Heather A Peer
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sevanna A Boleman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
29
|
Couloume L, Ferrant J, Le Gallou S, Mandon M, Jean R, Bescher N, Zephir H, Edan G, Thouvenot E, Ruet A, Debouverie M, Tarte K, Amé P, Roussel M, Michel L. Mass Cytometry Identifies Expansion of T-bet + B Cells and CD206 + Monocytes in Early Multiple Sclerosis. Front Immunol 2021; 12:653577. [PMID: 34017332 PMCID: PMC8129576 DOI: 10.3389/fimmu.2021.653577] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/09/2021] [Indexed: 01/11/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-driven demyelinating disease of the central nervous system. Immune cell features are particularly promising as predictive biomarkers due to their central role in the pathogenesis but also as drug targets, even if nowadays, they have no impact in clinical practice. Recently, high-resolution approaches, such as mass cytometry (CyTOF), helped to better understand the diversity and functions of the immune system. In this study, we performed an exploratory analysis of blood immune response profiles in healthy controls and MS patients sampled at their first neurological relapse, using two large CyTOF panels including 62 markers exploring myeloid and lymphoid cells. An increased abundance of both a T-bet-expressing B cell subset and a CD206+ classical monocyte subset was detected in the blood of early MS patients. Moreover, T-bet-expressing B cells tended to be enriched in aggressive MS patients. This study provides new insights into understanding the pathophysiology of MS and the identification of immunological biomarkers. Further studies will be required to validate these results and to determine the exact role of the identified clusters in neuroinflammation.
Collapse
Affiliation(s)
- Laura Couloume
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Juliette Ferrant
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Simon Le Gallou
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Marion Mandon
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Rachel Jean
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Nadège Bescher
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | | | - Gilles Edan
- Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-INSERM, Rennes, France
| | - Eric Thouvenot
- Department of Neurology, Nimes University Hospital, Nimes, France.,Institut de Génomique Fonctionnelle, UMR5203, Inserm 1191, Université de Montpellier, Montpellier, France
| | - Aurelie Ruet
- Université de Bordeaux, Bordeaux, France.,Neurocentre Magendie, INSERM U1215, Bordeaux, France.,CHU de Bordeaux, Department of Neurology, Bordeaux, France
| | - Marc Debouverie
- Nancy University Hospital, Department of Neurology, Nancy, France.,Université de Lorraine, APEMAC, Nancy, France
| | - Karin Tarte
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Patricia Amé
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Mikael Roussel
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Laure Michel
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France.,Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-INSERM, Rennes, France
| |
Collapse
|
30
|
Krishnan S, O’Boyle C, Smith CJ, Hulme S, Allan SM, Grainger JR, Lawrence CB. A hyperacute immune map of ischaemic stroke patients reveals alterations to circulating innate and adaptive cells. Clin Exp Immunol 2021; 203:458-471. [PMID: 33205448 PMCID: PMC7874838 DOI: 10.1111/cei.13551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Systemic immune changes following ischaemic stroke are associated with increased susceptibility to infection and poor patient outcome due to their role in exacerbating the ischaemic injury and long-term disability. Alterations to the abundance or function of almost all components of the immune system post-stroke have been identified, including lymphocytes, monocytes and granulocytes. However, subsequent infections have often confounded the identification of stroke-specific effects. Global understanding of very early changes to systemic immunity is critical to identify immune targets to improve clinical outcome. To this end, we performed a small, prospective, observational study in stroke patients with immunophenotyping at a hyperacute time point (< 3 h) to explore early changes to circulating immune cells. We report, for the first time, decreased frequencies of type 1 conventional dendritic cells (cDC1), haematopoietic stem and progenitor cells (HSPCs), unswitched memory B cells and terminally differentiated effector memory T cells re-expressing CD45RA (TEMRA). We also observed concomitant alterations to human leucocyte antigen D-related (HLA-DR), CD64 and CD14 expression in distinct myeloid subsets and a rapid activation of CD4+ T cells based on CD69 expression. The CD69+ CD4+ T cell phenotype inversely correlated with stroke severity and was associated with naive and central memory T (TCM) cells. Our findings highlight early changes in both the innate and adaptive immune compartments for further investigation as they could have implications the development of post-stroke infection and poorer patient outcomes.
Collapse
Affiliation(s)
- S. Krishnan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. O’Boyle
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. J. Smith
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. Hulme
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. M. Allan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - J. R. Grainger
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. B. Lawrence
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
31
|
Epigenomic and transcriptomic analysis of chronic inflammatory diseases. Genes Genomics 2021; 43:227-236. [PMID: 33638813 DOI: 10.1007/s13258-021-01045-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory diseases (CIDs) have complex pathologies that result from aberrant and persistent immune responses. However, the precise triggers and mechanisms remain elusive. An important aspect of CID research focuses on epigenetics modifications, which regulate gene expression and provide a dynamic transcriptional response to inflammation. In recent years, mounting evidence has demonstrated an association between epigenomic and transcriptomic dysregulation and the phenotypes of CIDs. In particular, epigenetic changes at cis-regulatory elements have provided new insights for immune cell-specific alterations that contribute to disease etiology. Furthermore, the advancements in single-cell genomics provide novel solutions to cell type heterogeneity, which has long posed challenges for CID diagnosis and treatment. In this review, we discuss the current state of epigenomics research of CID and the insights derived from single-cell transcriptomic and epigenomic studies.
Collapse
|
32
|
Cytokines and Transgenic Matrix in Autoimmune Diseases: Similarities and Differences. Biomedicines 2020; 8:biomedicines8120559. [PMID: 33271810 PMCID: PMC7761121 DOI: 10.3390/biomedicines8120559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases are increasingly recognized as disease entities in which dysregulated cytokines contribute to tissue-specific inflammation. In organ-specific and multiorgan autoimmune diseases, the cytokine profiles show some similarities. Despite these similarities, the cytokines have different roles in the pathogenesis of different diseases. Altered levels or action of cytokines can result from changes in cell signaling. This article describes alterations in the JAK-STAT, TGF-β and NF-κB signaling pathways, which are involved in the pathogenesis of multiple sclerosis and systemic lupus erythematosus. There is a special focus on T cells in preclinical models and in patients afflicted with these chronic inflammatory diseases.
Collapse
|
33
|
Rybakowska P, Burbano C, Van Gassen S, Varela N, Aguilar-Quesada R, Saeys Y, Alarcón-Riquelme ME, Marañón C. Stabilization of Human Whole Blood Samples for Multicenter and Retrospective Immunophenotyping Studies. Cytometry A 2020; 99:524-537. [PMID: 33070416 DOI: 10.1002/cyto.a.24241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Whole blood is often collected for large-scale immune monitoring studies to track changes in cell frequencies and responses using flow (FC) or mass cytometry (MC). In order to preserve sample composition and phenotype, blood samples should be analyzed within 24 h after bleeding, restricting the recruitment, analysis protocols, as well as biobanking. Herein, we have evaluated two whole blood preservation protocols that allow rapid sample processing and long-term stability. Two fixation buffers were used, Phosphoflow Fix and Lyse (BD) and Proteomic Stabilizer (PROT) to fix and freeze whole blood samples for up to 6 months. After analysis by an 8-plex panel by FC and a 26-plex panel by MC, manual gating of circulating leukocyte populations and cytokines was performed. Additionally, we tested the stability of a single sample over a 13-months period using 45 consecutive aliquots and a 34-plex panel by MC. We observed high correlation and low bias toward any cell population when comparing fresh and 6 months frozen blood with FC and MC. This correlation was confirmed by hierarchical clustering. Low coefficients of variation (CV) across studied time points indicate good sample preservation for up to 6 months. Cytokine detection stability was confirmed by low CVs, with some differences between fresh and fixed conditions. Thirteen months regular follow-up of PROT samples showed remarkable sample stability. Whole blood can be preserved for phenotyping and cytokine-response studies provided the careful selection of a compatible antibody panel. However, possible changes in cell morphology, differences in antibody affinity, and changes in cytokine-positive cell frequencies when compared to fresh blood should be considered. Our setting constitutes a valuable tool for multicentric and retrospective studies. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Paulina Rybakowska
- Department of Medical Genomics, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain
| | - Catalina Burbano
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Sofie Van Gassen
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - Nieves Varela
- Department of Medical Genomics, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain
| | | | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - Marta E Alarcón-Riquelme
- Department of Medical Genomics, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain.,Unit for Chronic Inflammatory Diseases, Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Concepción Marañón
- Department of Medical Genomics, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain
| |
Collapse
|
34
|
Fernández‐Zapata C, Leman JKH, Priller J, Böttcher C. The use and limitations of single-cell mass cytometry for studying human microglia function. Brain Pathol 2020; 30:1178-1191. [PMID: 33058349 PMCID: PMC8018011 DOI: 10.1111/bpa.12909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia, the resident innate immune cells of the central nervous system (CNS), play an important role in brain development and homoeostasis, as well as in neuroinflammatory, neurodegenerative and psychiatric diseases. Studies in animal models have been used to determine the origin and development of microglia, and how these cells alter their transcriptional and phenotypic signatures during CNS pathology. However, little is known about their human counterparts. Recent studies in human brain samples have harnessed the power of multiplexed single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry (cytometry by time-of-flight [CyTOF]) to provide a comprehensive molecular view of human microglia in healthy and diseased brains. CyTOF is a powerful tool to study high-dimensional protein expression of human microglia (huMG) at the single-cell level. This technology widens the possibilities of high-throughput quantification (of over 60 targeted molecules) at a single-cell resolution. CyTOF can be combined with scRNA-seq for comprehensive analysis, as it allows single-cell analysis of post-translational modifications of proteins, which provides insights into cell signalling dynamics in targeted cells. In addition, imaging mass cytometry (IMC) has recently become commercially available, and will be useful for analysing multiple cell types in human brain sections. IMC leverages mass spectrometry to acquire spatial data of cell-cell interactions on tissue sections, using (theoretically) over 40 markers at the same time. In this review, we summarise recent studies of huMG using CyTOF and IMC analyses. The uses and limitations as well as future directions of these technologies are discussed.
Collapse
Affiliation(s)
- Camila Fernández‐Zapata
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Julia K. H. Leman
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE)BerlinGermany
- UK Dementia Research Institute (DRI)University of EdinburghEdinburghUK
| | - Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
35
|
Zhang T, Warden AR, Li Y, Ding X. Progress and applications of mass cytometry in sketching immune landscapes. Clin Transl Med 2020; 10:e206. [PMID: 33135337 PMCID: PMC7556381 DOI: 10.1002/ctm2.206] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Recently emerged mass cytometry (cytometry by time-of-flight [CyTOF]) technology permits the identification and quantification of inherently diverse cellular systems, and the simultaneous measurement of functional attributes at the single-cell resolution. By virtue of its multiplex ability with limited need for compensation, CyTOF has led a critical role in immunological research fields. Here, we present an overview of CyTOF, including the introduction of CyTOF principle and advantages that make it a standalone tool in deciphering immune mysteries. We then discuss the functional assays, introduce the bioinformatics to interpret the data yield via CyTOF, and depict the emerging clinical and research applications of CyTOF technology in sketching immune landscape in a wide variety of diseases.
Collapse
Affiliation(s)
- Ting Zhang
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Antony R. Warden
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yiyang Li
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Xianting Ding
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
36
|
Single-cell mass cytometry of microglia in major depressive disorder reveals a non-inflammatory phenotype with increased homeostatic marker expression. Transl Psychiatry 2020; 10:310. [PMID: 32917850 PMCID: PMC7486938 DOI: 10.1038/s41398-020-00992-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Stress-induced disturbances of brain homeostasis and neuroinflammation have been implicated in the pathophysiology of mood disorders. In major depressive disorder (MDD), elevated levels of proinflammatory cytokines and chemokines can be found in peripheral blood, but very little is known about the changes that occur directly in the brain. Microglia are the primary immune effector cells of the central nervous system and exquisitely sensitive to changes in the brain microenvironment. Here, we performed the first single-cell analysis of microglia from four different post-mortem brain regions (frontal lobe, temporal lobe, thalamus, and subventricular zone) of medicated individuals with MDD compared to controls. We found no evidence for the induction of inflammation-associated molecules, such as CD11b, CD45, CCL2, IL-1β, IL-6, TNF, MIP-1β (CCL4), IL-10, and even decreased expression of HLA-DR and CD68 in microglia from MDD cases. In contrast, we detected increased levels of the homeostatic proteins P2Y12 receptor, TMEM119 and CCR5 (CD195) in microglia from all brain regions of individuals with MDD. We also identified enrichment of non-inflammatory CD206hi macrophages in the brains of MDD cases. In sum, our results suggest enhanced homeostatic functions of microglia in MDD.
Collapse
|
37
|
Böttcher C, van der Poel M, Fernández-Zapata C, Schlickeiser S, Leman JKH, Hsiao CC, Mizee MR, Adelia, Vincenten MCJ, Kunkel D, Huitinga I, Hamann J, Priller J. Single-cell mass cytometry reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis. Acta Neuropathol Commun 2020; 8:136. [PMID: 32811567 PMCID: PMC7437178 DOI: 10.1186/s40478-020-01010-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/01/2020] [Indexed: 01/15/2023] Open
Abstract
Myeloid cells contribute to inflammation and demyelination in the early stages of multiple sclerosis (MS), but it is still unclear to what extent these cells are involved in active lesion formation in progressive MS (PMS). Here, we have harnessed the power of single-cell mass cytometry (CyTOF) to compare myeloid cell phenotypes in active lesions of PMS donors with those in normal-appearing white matter from the same donors and control white matter from non-MS donors. CyTOF measurements of a total of 74 targeted proteins revealed a decreased abundance of homeostatic and TNFhi microglia, and an increase in highly phagocytic and activated microglia states in active lesions of PMS donors. Interestingly, in contrast to results obtained from studies of the inflammatory early disease stages of MS, infiltrating monocyte-derived macrophages were scarce in active lesions of PMS, suggesting fundamental differences of myeloid cell composition in advanced stages of PMS.
Collapse
Affiliation(s)
- Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Camila Fernández-Zapata
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia K H Leman
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark R Mizee
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Adelia
- Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Maria C J Vincenten
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Desiree Kunkel
- Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
- University of Edinburgh and UK Dementia Research Institute (DRI), Edinburgh, UK.
| |
Collapse
|
38
|
Jäkel S, Williams A. What Have Advances in Transcriptomic Technologies Taught us About Human White Matter Pathologies? Front Cell Neurosci 2020; 14:238. [PMID: 32848627 PMCID: PMC7418269 DOI: 10.3389/fncel.2020.00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
For a long time, post-mortem analysis of human brain pathologies has been purely descriptive, limiting insight into the pathological mechanisms. However, starting in the early 2000s, next-generation sequencing (NGS) and the routine application of bulk RNA-sequencing and microarray technologies have revolutionized the usefulness of post-mortem human brain tissue. This has allowed many studies to provide novel mechanistic insights into certain brain pathologies, albeit at a still unsatisfying resolution, with masking of lowly expressed genes and regulatory elements in different cell types. The recent rapid evolution of single-cell technologies has now allowed researchers to shed light on human pathologies at a previously unreached resolution revealing further insights into pathological mechanisms that will open the way for the development of new strategies for therapies. In this review article, we will give an overview of the incremental information that single-cell technologies have given us for human white matter (WM) pathologies, summarize which single-cell technologies are available, and speculate where these novel approaches may lead us for pathological assessment in the future.
Collapse
Affiliation(s)
- Sarah Jäkel
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
39
|
Burns M, Schulz AR, Kunkel D, Hönig M, Warth S, Bengsch B, Burns T, Reinhardt J, Grützkau A, Yaspo ML, Sodenkamp J, Hoffmann U, Mei HE. Mass Cytometry-A Tool for the Curious: Networking in Berlin. Cytometry A 2020; 97:764-767. [PMID: 32298052 DOI: 10.1002/cyto.a.24015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Désirée Kunkel
- Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Manfred Hönig
- Universität Ulm, Medizinische Fakultät, Ulm, Germany
| | - Sarah Warth
- Universität Ulm, Medizinische Fakultät, Ulm, Germany
| | - Bertram Bengsch
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tyler Burns
- DRFZ Berlin, a Leibniz Institute, Berlin, Germany
| | - Julia Reinhardt
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | | | | | - Jan Sodenkamp
- TranslaTUM, Technische Universität München, Munich, Germany
| | - Ute Hoffmann
- DRFZ Berlin, a Leibniz Institute, Berlin, Germany
| | - Henrik E Mei
- DRFZ Berlin, a Leibniz Institute, Berlin, Germany
| |
Collapse
|