1
|
Weng X, Gonzalez M, Angelia J, Piroozmand S, Jamehdor S, Behrooz AB, Latifi-Navid H, Ahmadi M, Pecic S. Lipidomics-driven drug discovery and delivery strategies in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167637. [PMID: 39722408 DOI: 10.1016/j.bbadis.2024.167637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
With few viable treatment options, glioblastoma (GBM) is still one of the most aggressive and deadly types of brain cancer. Recent developments in lipidomics have demonstrated the potential of lipid metabolism as a therapeutic target in GBM. The thorough examination of lipids in biological systems, or lipidomics, is essential to comprehending the changed lipid profiles found in GBM, which are linked to the tumor's ability to grow, survive, and resist treatment. The use of lipidomics in drug delivery and discovery is examined in this study, focusing on how it may be used to find new biomarkers, create multi-target directed ligands, and improve drug delivery systems. We also cover the use of FDA-approved medications, clinical trials that use lipid-targeted medicines, and the integration of lipidomics with other omics technologies. This study emphasizes lipidomics as a possible tool in developing more effective treatment methods for GBM by exploring various lipid-centric techniques.
Collapse
Affiliation(s)
- Xiaohui Weng
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Michael Gonzalez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Jeannes Angelia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
2
|
Li W, Wang Z, Chen S, Zuo M, Xiang Y, Yuan Y, He Y, Zhang S, Liu Y. Metabolic checkpoints in glioblastomas: targets for new therapies and non-invasive detection. Front Oncol 2024; 14:1462424. [PMID: 39678512 PMCID: PMC11638224 DOI: 10.3389/fonc.2024.1462424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Glioblastoma (GBM) is a highly malignant tumor of the central nervous system that remains intractable despite advancements in current tumor treatment modalities, including immunotherapy. In recent years, metabolic checkpoints (aberrant metabolic pathways underlying the immunosuppressive tumor microenvironment) have gained attention as promising therapeutic targets and sensitive biomarkers across various cancers. Here, we briefly review the existing understanding of tumor metabolic checkpoints and their implications in the biology and management of GBM. Additionally, we discuss techniques that could evaluate metabolic checkpoints of GBM non-invasively, thereby potentially facilitating neo-adjuvant treatment and dynamic surveillance.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingrong Zuo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Neurosurgery, West China Second University Hospital, Chengdu, China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunbo Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuze He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuxin Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Wen J, Xiong L, Wang S, Qiu X, Cui J, Peng F, Liu X, Lu J, Bian H, Chen D, Chang J, Yao Z, Fan S, Zhou D, Li Z, Liu J, Liu H, Chen X, Chen L. Prediction of intracranial electric field strength and analysis of treatment protocols in tumor electric field therapy targeting gliomas of the brain. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108490. [PMID: 39520874 DOI: 10.1016/j.cmpb.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Tumor Electric Field Therapy (TEFT) is a new treatment for glioblastoma cells with significant effect and few side effects. However, it is difficult to directly measure the intracranial electric field generated by TEFT, and the inability to control the electric field intensity distribution in the tumor target area also limits the clinical therapeutic effect of TEFT. It is a safe and effective way to construct an efficient and accurate prediction model of intracranial electric field intensity of TEFT by numerical simulation. METHODS Different from the traditional methods, in this study, the brain tissue was segmented based on the MRI data of patients with retained spatial location information, and the spatial position of the brain tissue was given the corresponding electrical parameters after segmentation. Then, a single geometric model of the head profile with the transducer array is constructed, which is assembled with an electrical parameter matrix containing tissue position information. After applying boundary conditions on the transducer, the intracranial electric field intensity could be solved in the frequency domain. The effects of transducer array mode, load voltage and voltage frequency on the intracranial electric field strength were further analyzed. Finally, planning system software was developed for optimizing TEFT treatment regimens for patients. RESULTS Experimental validation and comparison with existing results demonstrate the proposed method has a more efficient and pervasive modeling approach with higher computational accuracy while preserving the details of MRI brain tissue structure completely. In the optimization analysis of treatment protocols, it was found that increasing the load voltage could effectively increase the electric field intensity in the target area, while the effect of voltage frequency on the electric field intensity was very limited. CONCLUSIONS The results showed that adjusting the transducer array mode was the key method for making targeted treatment plans. The proposed method is capable prediction of intracranial electric field strength with high accuracy and provide guidance for the design of the TEFT therapy process. This study provides a valuable reference for the application of TEFT in clinical practice.
Collapse
Affiliation(s)
- Jun Wen
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Lingzhi Xiong
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Shulu Wang
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Xiaoguang Qiu
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jianqiao Cui
- Hunan Drug Inspection Center, Changsha, Hunan, China
| | - Fan Peng
- Public Course Teaching Department, Changsha Health Vocational College, Changsha 410100, China
| | - Xiang Liu
- Hunan Drug Inspection Center, Changsha, Hunan, China
| | - Jian Lu
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Haikuo Bian
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Dikang Chen
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Jiusheng Chang
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Zhengxi Yao
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Sheng Fan
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Dan Zhou
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Ze Li
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Jialin Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyu Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Chen
- The First Clinical College, China Medical University, Shenyang, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
4
|
Dai J, Song S, Chen P, Huang Q, Duan H. Analyzing research trends in glioblastoma metabolism: a bibliometric review. Front Immunol 2024; 15:1444305. [PMID: 39493751 PMCID: PMC11527616 DOI: 10.3389/fimmu.2024.1444305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Background A bibliometric and visual analysis of articles related to glioblastoma metabolism was conducted to reveal the dynamics of scientific development and to assist researchers in gaining a global perspective when exploring hotspots and trends. Methods The Web of Science Core Collection (WoSCC) was employed to search, screen, and download articles about glioblastoma metabolism published between 2014 and 2024. The relevant literature was analyzed using CiteSpace, VOSviewer and Microsoft Excel. Results A total of 729 articles were included for bibliometric analysis between 2014 and 2024, and the number of articles published each year showed an overall increasing trend, except for a decrease in the number of articles published in 2018 compared to 2017. Collaboration network analysis showed that the United States, Germany and China are influential countries in this field, with a high number of articles published, citations and collaborations with other countries. The journal with the largest number of published articles is the International Journal of Molecular Sciences. Mischel PS is the most prolific author with 14 articles, and Guo DL received the most citations with 104 citations. Keyword analysis of the literature showed that the "Warburg effect" achieved the highest burst intensity, and "central nervous system", "classification" and "fatty acids" showed stronger citation bursts in 2024, indicating that they are still popular topics so far. Conclusion This article elucidates the research trends and focal points in the field of glioblastoma metabolism, furnishes invaluable insights into the historical and contemporary status of this field, and offers guidance for future research. Further research into glioblastoma metabolism will undoubtedly yield new insights that will inform the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Jiaxin Dai
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Siyun Song
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Pengyu Chen
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qixuan Huang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- Third Clinical Medical College, Harbin Medical University, Harbin, China
| | - Hubin Duan
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
You S, Wang MJ, Hou ZY, Wang WD, Zhang ZH, Du TT, Li SY, Liu YC, Xue NN, Hu XM, Chen XG, Ji M. ACAT1 Induces the Differentiation of Glioblastoma Cells by Rewiring Choline Metabolism. Int J Biol Sci 2024; 20:5576-5593. [PMID: 39494339 PMCID: PMC11528465 DOI: 10.7150/ijbs.96651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Abnormal differentiation of cells is a hallmark of malignancy. Induction of cancer-cell differentiation is emerging as a novel therapeutic strategy with low toxicity in hematological malignances, but whether such treatment can be used in solid tumors is not known. Here, we uncovered a novel function of acetyl coenzyme A acetyltransferase (ACAT1) in regulating the differentiation of glioblastoma (GBM) cells. Inhibition of ACAT1 promoted the differentiation of GBM cells into astrocytes but also delayed tumor growth. Mechanistically, suppression of ACAT1 restored mitochondrial function and led to metabolic "reprogramming" in GBM cells: reduction of fatty-acid oxidation and acetyl-CoA, but an increase in free fatty acids. Importantly, ACAT1 negatively regulated the choline metabolic pathway, which is crucial for the differentiation of GBM cells. Finally, we demonstrated that a naturally available substance, chlorogenic acid (CHA), could inhibit phosphorylation of ACAT1 and so delay GBM progression, CHA is a promising candidate to treat GBM because it could induce the differentiation of cancer cells.
Collapse
Affiliation(s)
- Shen You
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ming-Jin Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Yan Hou
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100080, China
| | - Wei-Da Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhi-Hui Zhang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ting-Ting Du
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shu-Ying Li
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi-Chen Liu
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ni-Na Xue
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Min Hu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xiao-Guang Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
6
|
Cortes Ballen AI, Amosu M, Ravinder S, Chan J, Derin E, Slika H, Tyler B. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets. Cells 2024; 13:1574. [PMID: 39329757 PMCID: PMC11430559 DOI: 10.3390/cells13181574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (A.I.C.B.); (M.A.); (S.R.); (J.C.); (E.D.); (H.S.)
| |
Collapse
|
7
|
Brookes A, Kindon N, Scurr DJ, Alexander MR, Gershkovich P, Bradshaw TD. Cannabidiol and fluorinated derivative anti-cancer properties against glioblastoma multiforme cell lines, and synergy with imidazotetrazine agents. BJC REPORTS 2024; 2:67. [PMID: 39516685 PMCID: PMC11524125 DOI: 10.1038/s44276-024-00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive cancer with poor prognosis, partly due to resistance to the standard chemotherapy treatment, temozolomide (TMZ). Phytocannabinoid cannabidiol (CBD) has exhibited anti-cancer effects against GBM, however, CBD's ability to overcome common resistance mechanisms to TMZ have not yet been investigated. 4'-Fluoro-cannabidiol (4'-F-CBD, or HUF-101/PECS-101) is a derivative of CBD, that exhibits increased activity compared to CBD during in vivo behavioural studies. METHODS This anti-cancer activity of cannabinoids against GBM cells sensitive to and representing major resistance mechanisms to TMZ was investigated. Cannabinoids were also studied in combination with imidazotetrazine agents, and advanced mass spectrometry with the 3D OrbiSIMS was used to investigate the mechanism of action of CBD. RESULTS CBD and 4'-F-CBD were found to overcome two major resistance mechanisms (methylguanine DNA-methyltransferase (MGMT) overexpression and DNA mismatch repair (MMR)-deficiency). Synergistic responses were observed when cells were exposed to cannabinoids and imidazotetrazine agents. Synergy increased with T25 and 4'-F-CBD. 3D OrbiSIMS analysis highlighted the presence of methylated-DNA, a previously unknown anti-cancer mechanism of action of CBD. CONCLUSIONS This work demonstrates the anti-cancer activity of 4'-F-CBD and the synergy of cannabinoids with imidazotetrazine agents for the first time and expands understanding of CBD mechanism of action.
Collapse
Affiliation(s)
- Alice Brookes
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nicholas Kindon
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David J Scurr
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Tracey D Bradshaw
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
8
|
Maraqah HH, Aboubechara JP, Abu-Asab MS, Lee HS, Aboud O. Excessive lipid production shapes glioma tumor microenvironment. Ultrastruct Pathol 2024; 48:367-377. [PMID: 39157967 PMCID: PMC11495230 DOI: 10.1080/01913123.2024.2392728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Disrupted lipid metabolism is a characteristic of gliomas. This study utilizes an ultrastructural approach to characterize the prevalence and distribution of lipids within gliomas. This study made use of tissue from IDH1 wild type (IDH1-wt) glioblastoma (n = 18) and IDH1 mutant (IDH1-mt) astrocytoma (n = 12) tumors. We uncover a prevalent and intriguing surplus of lipids. The bulk of the lipids manifested as sizable cytoplasmic inclusions and extracellular deposits in the tumor microenvironment (TME); in some tumors the lipids were stored in the classical membraneless spheroidal lipid droplets (LDs). Frequently, lipids accumulated inside mitochondria, suggesting possible dysfunction of the beta-oxidation pathway. Additionally, the tumor vasculature have lipid deposits in their lumen and vessel walls; this lipid could have shifted in from the tumor microenvironment or have been produced by the vessel-invading tumor cells. Lipid excess in gliomas stems from disrupted beta-oxidation and dysfunctional oxidative phosphorylation pathways. The implications of this lipid-driven environment include structural support for the tumor cells and protection against immune responses, non-lipophilic drugs, and free radicals.
Collapse
Affiliation(s)
- Haitham H Maraqah
- Medicine & Health Science Faculty, School of Meidicine, An-Najah National University, Nablus, Palestine
| | - John Paul Aboubechara
- Department of Neurology, University of California Davis, Sacramento, CA, USA
- Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA
| | - Mones S Abu-Asab
- Electron Microscopy Lab, Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Han Sung Lee
- Department of Pathology and Laboratory Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Orwa Aboud
- Department of Neurology, University of California Davis, Sacramento, CA, USA
- Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA
- Department of Neurosurgery, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
9
|
Hao YH, Borenstein-Auerbach N, Grichuk A, Li L, Lafita-Navarro MC, Fang S, Nogueira P, Kim J, Xu L, Shay JW, Conacci-Sorrell M. MYC-Mediated Inhibition of ARNT2 Uncovers a Key Tumor Suppressor in Glioblastoma. RESEARCH SQUARE 2024:rs.3.rs-4810280. [PMID: 39184078 PMCID: PMC11343292 DOI: 10.21203/rs.3.rs-4810280/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Tumor initiation and progression rely on intricate cellular pathways that promote proliferation while suppressing differentiation, yet the importance of pathways inhibiting differentiation in cancer remains incompletely understood. Here, we reveal a novel mechanism centered on the repression of the neuronal-specific transcription factor ARNT2 by the MYC oncogene that governs the balance between proliferation and differentiation. We found that MYC coordinates the transcriptional repression of ARNT2 through the activity of polycomb repressive complex 2 (PRC2). Notably, ARNT2, highly and specifically expressed in the central nervous system, is diminished in glioblastoma, inversely correlating with patient survival. Utilizing in vitro and in vivo models, we demonstrate that ARNT2 knockout (KO) exerts no discernible effect on the in vitro proliferation of glioblastoma cells, but significantly enhances the growth of glioblastoma cells in vivo. Conversely, ARNT2 overexpression severely dampens the growth of fully transformed glioblastoma cells subcutaneously or orthotopically xenografted in mice. Mechanistically, ARNT2 depletion diminishes differentiation and enhances stemness of glioblastoma cells. Our findings provide new insights into the complex mechanisms used by oncogenes to limit differentiation in cancer cells and define ARNT2 as a tumor suppressor in glioblastoma.
Collapse
|
10
|
Seyhan AA. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int J Mol Sci 2024; 25:7974. [PMID: 39063215 PMCID: PMC11277426 DOI: 10.3390/ijms25147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
11
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Son SM, Lee HS, Kim J, Kwon RJ. Expression and prognostic significance of microsomal triglyceride transfer protein in brain tumors: a retrospective cohort study. Transl Cancer Res 2024; 13:2282-2294. [PMID: 38881934 PMCID: PMC11170499 DOI: 10.21037/tcr-23-2286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 06/18/2024]
Abstract
Background Glioblastoma (GBM) is the most common malignant brain tumor and has poor survival. An elevated cholesterol level is involved occurrence and progression of brain tumors. Microsomal triglyceride transfer protein (MTTP) is a target for lowering lipids, and its inhibition helps to improve hyperlipidemia. However, whether the altered expression of MTTP affects the development and prognosis of brain tumors is currently unidentified. The purpose of this study is to determine MTTP as a prognostic marker for brain tumors. Methods Data for patients with brain cancers and control brain tissue were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The datasets were analyzed using Mann-Whitney U-test or t-test to compare the expression of MTTP in normal and brain tumor tissues. To examine whether MTTP affected the prognosis of patients with brain tumors, log-rank test and multivariable Cox proportional hazard regression were conducted. Results The expression of MTTP was significantly upregulated in brain tumors and was correlated with age, tumor stage, and isocitrate dehydrogenase (IDH) mutation. Importantly, increased MTTP expression in brain tumors is associated with poor patient survival. Conclusions High MTTP expression is associated with brain tumor development, tumor stage, and prognosis. Therefore, MTTP is an independent prognostic indicator for brain tumors, which can serve as one of the possible targets for adjuvant treatment of GBM.
Collapse
Affiliation(s)
- Soo Min Son
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Department of Family Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Hye Sun Lee
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jeongsu Kim
- Division of Cardiology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- Division of Cardiology, Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Ryuk Jun Kwon
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Department of Family Medicine, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
13
|
Zhao J, Ma X, Gao P, Han X, Zhao P, Xie F, Liu M. Advancing glioblastoma treatment by targeting metabolism. Neoplasia 2024; 51:100985. [PMID: 38479191 PMCID: PMC10950892 DOI: 10.1016/j.neo.2024.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Alterations in cellular metabolism are important hallmarks of glioblastoma(GBM). Metabolic reprogramming is a critical feature as it meets the higher nutritional demand of tumor cells, including proliferation, growth, and survival. Many genes, proteins, and metabolites associated with GBM metabolism reprogramming have been found to be aberrantly expressed, which may provide potential targets for cancer treatment. Therefore, it is becoming increasingly important to explore the role of internal and external factors in metabolic regulation in order to identify more precise therapeutic targets and diagnostic markers for GBM. In this review, we define the metabolic characteristics of GBM, investigate metabolic specificities such as targetable vulnerabilities and therapeutic resistance, as well as present current efforts to target GBM metabolism to improve the standard of care.
Collapse
Affiliation(s)
- Jinyi Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xuemei Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Peixian Gao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xueqi Han
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Pengxiang Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Fei Xie
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Mengyu Liu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China.
| |
Collapse
|
14
|
Jacobs J, Iranpour R, Behrooz AB, da Silva Rosa SC, Ghavami S. The role of BCL2L13 in glioblastoma: turning a need into a target. Biochem Cell Biol 2024; 102:127-134. [PMID: 37988705 DOI: 10.1139/bcb-2023-0221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Glioblastoma (GBM) is the most common aggressive central nervous system cancer. GBM has a high mortality rate, with a median survival time of 12-15 months after diagnosis. A poor prognosis and a shorter life expectancy may result from resistance to standard treatments such as radiation and chemotherapy. Temozolomide has been the mainstay treatment for GBM, but unfortunately, there are high rates of resistance with GBM bypassing apoptosis. A proposed mechanism for bypassing apoptosis is decreased ceramide levels, and previous research has shown that within GBM cells, B cell lymphoma 2-like 13 (BCL2L13) can inhibit ceramide synthase. This review aims to discuss the causes of resistance in GBM cells, followed by a brief description of BCL2L13 and an explanation of its mechanism of action. Further, lipids, specifically ceramide, will be discussed concerning cancer and GBM cells, focusing on ceramide synthase and its role in developing GBM. By gathering all current information on BCL2L13 and ceramide synthase, this review seeks to enable an understanding of these pieces of GBM in the hope of finding an effective treatment for this disease.
Collapse
Affiliation(s)
- Joadi Jacobs
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Rosa Iranpour
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| |
Collapse
|
15
|
Chen H, Zhao S, Jian Q, Yan Y, Wang S, Zhang X, Ji Y. The role of ApoE in fatty acid transport from neurons to astrocytes under ischemia/hypoxia conditions. Mol Biol Rep 2024; 51:320. [PMID: 38393618 DOI: 10.1007/s11033-023-08921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND The aim of this study was to investigate whether ischemia/hypoxia conditions induce fatty acid transport from neurons to astrocytes and whether this mechanism is affected by ApoE isoforms. METHODS AND RESULTS A neonatal rat model of hypoxic-ischemic brain damage was established. Excessive accumulation of lipid droplets and upregulation of ApoE expression occurred in the hippocampus and cerebral cortex after hypoxia-ischemia, which implied the occurrence of abnormal fatty acid metabolism. Lipid peroxidation was induced in an oxygen-glucose deprivation and reperfusion (OGDR) model of ApoE-/- primary neurons. The number of BODIPY 558/568 C12-positive particles (fatty acid markers) transferred from neurons to astrocytes was significantly increased with the addition of human recombinant ApoE compared with that in the OGDR group, which significantly increased the efficiency of fatty acid transport from neurons to astrocytes and neuronal viability. However, ApoE4 was found to be associated with lower efficiency in fatty acid transport and less protective effects in OGDR-induced neuronal cell death than both ApoE2 and ApoE3. COG133, an ApoE-mimetic peptide, partially compensated for the adverse effects of ApoE4. FABP5 and SOD1 gene and protein expression levels were upregulated in astrocytes treated with BODIPY 558/568 C12 particles. CONCLUSIONS In conclusion, ApoE plays an important role in mediating the transport of fatty acids from neurons to astrocytes under ischemia/hypoxia conditions, and this transport mechanism is ApoE isoform dependent. ApoE4 has a low transfer efficiency and may be a potential target for the clinical treatment of neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Hongyan Chen
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Shaozhi Zhao
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Qiang Jian
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Yinfang Yan
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Simin Wang
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Xinwen Zhang
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China.
| | - Yuqiang Ji
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China.
| |
Collapse
|
16
|
Lokumcu T, Iskar M, Schneider M, Helm D, Klinke G, Schlicker L, Bethke F, Müller G, Richter K, Poschet G, Phillips E, Goidts V. Proteomic, Metabolomic, and Fatty Acid Profiling of Small Extracellular Vesicles from Glioblastoma Stem-Like Cells and Their Role in Tumor Heterogeneity. ACS NANO 2024; 18:2500-2519. [PMID: 38207106 PMCID: PMC10811755 DOI: 10.1021/acsnano.3c11427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Glioblastoma is a deadly brain tumor for which there is no cure. The presence of glioblastoma stem-like cells (GSCs) contributes to the heterogeneous nature of the disease and makes developing effective therapies challenging. Glioblastoma cells have been shown to influence their environment by releasing biological nanostructures known as extracellular vesicles (EVs). Here, we investigated the role of GSC-derived nanosized EVs (<200 nm) in glioblastoma heterogeneity, plasticity, and aggressiveness, with a particular focus on their protein, metabolite, and fatty acid content. We showed that conditioned medium and small extracellular vesicles (sEVs) derived from cells of one glioblastoma subtype induced transcriptomic and proteomic changes in cells of another subtype. We found that GSC-derived sEVs are enriched in proteins playing a role in the transmembrane transport of amino acids, carboxylic acids, and organic acids, growth factor binding, and metabolites associated with amino acid, carboxylic acid, and sugar metabolism. This suggests a dual role of GSC-derived sEVs in supplying neighboring GSCs with valuable metabolites and proteins responsible for their transport. Moreover, GSC-derived sEVs were enriched in saturated fatty acids, while their respective cells were high in unsaturated fatty acids, supporting that the loading of biological cargos into sEVs is a highly regulated process and that GSC-derived sEVs could be sources of saturated fatty acids for the maintenance of glioblastoma cell metabolism. Interestingly, sEVs isolated from GSCs of the proneural and mesenchymal subtypes are enriched in specific sets of proteins, metabolites, and fatty acids, suggesting a molecular collaboration between transcriptionally different glioblastoma cells. In summary, this study revealed the complexity of GSC-derived sEVs and unveiled their potential contribution to tumor heterogeneity and critical cellular processes commonly deregulated in glioblastoma.
Collapse
Affiliation(s)
- Tolga Lokumcu
- Brain Tumor Translational Targets, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg 69120, Germany
| | - Murat Iskar
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Glynis Klinke
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Lisa Schlicker
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Frederic Bethke
- Brain Tumor Translational Targets, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Gabriele Müller
- Brain Tumor Translational Targets, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Karsten Richter
- Core Facility Electron Microscopy, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Emma Phillips
- Brain Tumor Translational Targets, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Violaine Goidts
- Brain Tumor Translational Targets, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
17
|
Darwish A, Pammer M, Gallyas F, Vígh L, Balogi Z, Juhász K. Emerging Lipid Targets in Glioblastoma. Cancers (Basel) 2024; 16:397. [PMID: 38254886 PMCID: PMC10814456 DOI: 10.3390/cancers16020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
GBM accounts for most of the fatal brain cancer cases, making it one of the deadliest tumor types. GBM is characterized by severe progression and poor prognosis with a short survival upon conventional chemo- and radiotherapy. In order to improve therapeutic efficiency, considerable efforts have been made to target various features of GBM. One of the targetable features of GBM is the rewired lipid metabolism that contributes to the tumor's aggressive growth and penetration into the surrounding brain tissue. Lipid reprogramming allows GBM to acquire survival, proliferation, and invasion benefits as well as supportive modulation of the tumor microenvironment. Several attempts have been made to find novel therapeutic approaches by exploiting the lipid metabolic reprogramming in GBM. In recent studies, various components of de novo lipogenesis, fatty acid oxidation, lipid uptake, and prostaglandin synthesis have been considered promising targets in GBM. Emerging data also suggest a significant role hence therapeutic potential of the endocannabinoid metabolic pathway in GBM. Here we review the lipid-related GBM characteristics in detail and highlight specific targets with their potential therapeutic use in novel antitumor approaches.
Collapse
Affiliation(s)
- Ammar Darwish
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Milán Pammer
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ferenc Gallyas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - László Vígh
- Institute of Biochemistry, HUN-REN Biological Research Center, 6726 Szeged, Hungary
| | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Kata Juhász
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
18
|
Lin J, Zhang P, Liu W, Liu G, Zhang J, Yan M, Duan Y, Yang N. A positive feedback loop between ZEB2 and ACSL4 regulates lipid metabolism to promote breast cancer metastasis. eLife 2023; 12:RP87510. [PMID: 38078907 PMCID: PMC10712958 DOI: 10.7554/elife.87510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Lipid metabolism plays a critical role in cancer metastasis. However, the mechanisms through which metastatic genes regulate lipid metabolism remain unclear. Here, we describe a new oncogenic-metabolic feedback loop between the epithelial-mesenchymal transition transcription factor ZEB2 and the key lipid enzyme ACSL4 (long-chain acyl-CoA synthetase 4), resulting in enhanced cellular lipid storage and fatty acid oxidation (FAO) to drive breast cancer metastasis. Functionally, depletion of ZEB2 or ACSL4 significantly reduced lipid droplets (LDs) abundance and cell migration. ACSL4 overexpression rescued the invasive capabilities of the ZEB2 knockdown cells, suggesting that ACSL4 is crucial for ZEB2-mediated metastasis. Mechanistically, ZEB2-activated ACSL4 expression by directly binding to the ACSL4 promoter. ACSL4 binds to and stabilizes ZEB2 by reducing ZEB2 ubiquitination. Notably, ACSL4 not only promotes the intracellular lipogenesis and LDs accumulation but also enhances FAO and adenosine triphosphate production by upregulating the FAO rate-limiting enzyme CPT1A (carnitine palmitoyltransferase 1 isoform A). Finally, we demonstrated that ACSL4 knockdown significantly reduced metastatic lung nodes in vivo. In conclusion, we reveal a novel positive regulatory loop between ZEB2 and ACSL4, which promotes LDs storage to meet the energy needs of breast cancer metastasis, and identify the ZEB2-ACSL4 signaling axis as an attractive therapeutic target for overcoming breast cancer metastasis.
Collapse
Affiliation(s)
- Jiamin Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Pingping Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Wei Liu
- Department of Breast Surgery, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan UniversityGuangzhouChina
| | - Guorong Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Juan Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of TechnologyGuangzhouChina
| | - Na Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| |
Collapse
|
19
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
20
|
Premachandran S, Haldavnekar R, Ganesh S, Das S, Venkatakrishnan K, Tan B. Self-Functionalized Superlattice Nanosensor Enables Glioblastoma Diagnosis Using Liquid Biopsy. ACS NANO 2023; 17:19832-19852. [PMID: 37824714 DOI: 10.1021/acsnano.3c04118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Glioblastoma (GBM), the most aggressive and lethal brain cancer, is detected only in the advanced stage, resulting in a median survival rate of 15 months. Therefore, there is an urgent need to establish GBM diagnosis tools to identify the tumor accurately. The clinical relevance of the current liquid biopsy techniques for GBM diagnosis remains mostly undetermined, owing to the challenges posed by the blood-brain barrier (BBB) that restricts biomarkers entering the circulation, resulting in the unavailability of clinically validated circulating GBM markers. GBM-specific liquid biopsy for diagnosis and prognosis of GBM has not yet been developed. Here, we introduce extracellular vesicles of GBM cancer stem cells (GBM CSC-EVs) as a previously unattempted, stand-alone GBM diagnosis modality. As GBM CSCs are fundamental building blocks of tumor initiation and recurrence, it is desirable to investigate these reliable signals of malignancy in circulation for accurate GBM diagnosis. So far, there are no clinically validated circulating biomarkers available for GBM. Therefore, a marker-free approach was essential since conventional liquid biopsy relying on isolation methodology was not viable. Additionally, a mechanism capable of trace-level detection was crucial to detecting the rare GBM CSC-EVs from the complex environment in circulation. To break these barriers, we applied an ultrasensitive superlattice sensor, self-functionalized for surface-enhanced Raman scattering (SERS), to obtain holistic molecular profiling of GBM CSC-EVs with a marker-free approach. The superlattice sensor exhibited substantial SERS enhancement and ultralow limit of detection (LOD of attomolar 10-18 M concentration) essential for trace-level detection of invisible GBM CSC-EVs directly from patient serum (without isolation). We detected as low as 5 EVs in 5 μL of solution, achieving the lowest LOD compared to existing SERS-based studies. We have experimentally demonstrated the crucial role of the signals of GBM CSC-EVs in the precise detection of glioblastoma. This was evident from the unique molecular profiles of GBM CSC-EVs demonstrating significant variation compared to noncancer EVs and EVs of GBM cancer cells, thus adding more clarity to the current understanding of GBM CSC-EVs. Preliminary validation of our approach was undertaken with a small amount of peripheral blood (5 μL) derived from GBM patients with 100% sensitivity and 97% specificity. Identification of the signals of GBM CSC-EV in clinical sera specimens demonstrated that our technology could be used for accurate GBM detection. Our technology has the potential to improve GBM liquid biopsy, including real-time surveillance of GBM evolution in patients upon clinical validation. This demonstration of liquid biopsy with GBM CSC-EV provides an opportunity to introduce a paradigm potentially impacting the current landscape of GBM diagnosis.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Swarna Ganesh
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Sunit Das
- Scientist, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
21
|
McGowan E, Sanjak J, Mathé EA, Zhu Q. Integrative rare disease biomedical profile based network supporting drug repurposing or repositioning, a case study of glioblastoma. Orphanet J Rare Dis 2023; 18:301. [PMID: 37749605 PMCID: PMC10519087 DOI: 10.1186/s13023-023-02876-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive and common malignant primary brain tumor; however, treatment remains a significant challenge. This study aims to identify drug repurposing or repositioning candidates for GBM by developing an integrative rare disease profile network containing heterogeneous types of biomedical data. METHODS We developed a Glioblastoma-based Biomedical Profile Network (GBPN) by extracting and integrating biomedical information pertinent to GBM-related diseases from the NCATS GARD Knowledge Graph (NGKG). We further clustered the GBPN based on modularity classes which resulted in multiple focused subgraphs, named mc_GBPN. We then identified high-influence nodes by performing network analysis over the mc_GBPN and validated those nodes that could be potential drug repurposing or repositioning candidates for GBM. RESULTS We developed the GBPN with 1,466 nodes and 107,423 edges and consequently the mc_GBPN with forty-one modularity classes. A list of the ten most influential nodes were identified from the mc_GBPN. These notably include Riluzole, stem cell therapy, cannabidiol, and VK-0214, with proven evidence for treating GBM. CONCLUSION Our GBM-targeted network analysis allowed us to effectively identify potential candidates for drug repurposing or repositioning. Further validation will be conducted by using other different types of biomedical and clinical data and biological experiments. The findings could lead to less invasive treatments for glioblastoma while significantly reducing research costs by shortening the drug development timeline. Furthermore, this workflow can be extended to other disease areas.
Collapse
Affiliation(s)
- Erin McGowan
- Division of Pre-Clinical Innovation National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Jaleal Sanjak
- Division of Pre-Clinical Innovation National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Ewy A Mathé
- Division of Pre-Clinical Innovation National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Qian Zhu
- Division of Pre-Clinical Innovation National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
22
|
Wittig F, Pannenberg L, Schwarz R, Bekeschus S, Ramer R, Hinz B. Antiangiogenic Action of JZL184 on Endothelial Cells via Inhibition of VEGF Expression in Hypoxic Lung Cancer Cells. Cells 2023; 12:2332. [PMID: 37830546 PMCID: PMC10572003 DOI: 10.3390/cells12192332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
JZL184, an inhibitor of monoacylglycerol lipase (MAGL) and thus of the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG), mediates various anticancer effects in preclinical studies. However, studies on the effect of this or other MAGL inhibitors under hypoxia, an important factor in tumor biology and response to cancer therapy, have not yet been performed in cancer cells. In the present study, the impact of the conditioned media (CM) of A549 and H358 lung cancer cells incubated with JZL184 under hypoxic conditions on the angiogenic properties of human umbilical vein endothelial cells (HUVECs) was investigated. Treatment of HUVECs with CM derived from cancer cells cultured for 48 h under hypoxic conditions was associated with a substantial increase in migration and tube formation compared with unconditioned medium, which was inhibited when cancer cells were incubated with JZL184. In this process, JZL184 led to a significant increase in 2-AG levels in both cell lines. Analysis of a panel of proangiogenic factors revealed inhibition of hypoxia-induced vascular endothelial growth factor (VEGF) expression by JZL184. Antiangiogenic and VEGF-lowering effects were also demonstrated for the MAGL inhibitor MJN110. Receptor antagonist experiments suggest partial involvement of the cannabinoid receptors CB1 and CB2 in the antiangiogenic and VEGF-lowering effects induced by JZL184. The functional importance of VEGF for angiogenesis in the selected system is supported by observations showing inhibition of VEGF receptor 2 (VEGFR2) phosphorylation in HUVECs by CM from hypoxic cancer cells treated with JZL184 or when hypoxic cancer cell-derived CM was spiked with a neutralizing VEGF antibody. On the other hand, JZL184 did not exert a direct effect on VEGFR2 activation induced by recombinant VEGF, so there seems to be no downstream effect on already released VEGF. In conclusion, these results reveal a novel mechanism of antiangiogenic action of JZL184 under conditions of hypoxic tumor-endothelial communication.
Collapse
Affiliation(s)
- Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Liza Pannenberg
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany;
| | - Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| |
Collapse
|
23
|
De Martino M, Daviaud C, Minns HE, Lazarian A, Wacker A, Costa AP, Attarwala N, Chen Q, Choi SW, Rabadàn R, McIntire LBJ, Gartrell RD, Kelly JM, Laiakis EC, Vanpouille-Box C. Radiation therapy promotes unsaturated fatty acids to maintain survival of glioblastoma. Cancer Lett 2023; 570:216329. [PMID: 37499741 DOI: 10.1016/j.canlet.2023.216329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Radiation therapy (RT) is essential for the management of glioblastoma (GBM). However, GBM frequently relapses within the irradiated margins, thus suggesting that RT might stimulate mechanisms of resistance that limits its efficacy. GBM is recognized for its metabolic plasticity, but whether RT-induced resistance relies on metabolic adaptation remains unclear. Here, we show in vitro and in vivo that irradiated GBM tumors switch their metabolic program to accumulate lipids, especially unsaturated fatty acids. This resulted in an increased formation of lipid droplets to prevent endoplasmic reticulum (ER) stress. The reduction of lipid accumulation with genetic suppression and pharmacological inhibition of the fatty acid synthase (FASN), one of the main lipogenic enzymes, leads to mitochondrial dysfunction and increased apoptosis of irradiated GBM cells. Combination of FASN inhibition with focal RT improved the median survival of GBM-bearing mice. Supporting the translational value of these findings, retrospective analysis of the GLASS consortium dataset of matched GBM patients revealed an enrichment in lipid metabolism signature in recurrent GBM compared to primary. Overall, these results demonstrate that RT drives GBM resistance by generating a lipogenic environment permissive to GBM survival. Targeting lipid metabolism might be required to develop more effective anti-GBM strategies.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Hanna E Minns
- Department of Pediatrics, Pediatrics Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, USA
| | - Artur Lazarian
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Anja Wacker
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ana Paula Costa
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Seung-Won Choi
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Raùl Rabadàn
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Robyn D Gartrell
- Department of Pediatrics, Pediatrics Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, USA
| | - James M Kelly
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Evagelia C Laiakis
- Department of Oncology, Georgetown University, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ, Van Aelst L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev 2023; 37:681-702. [PMID: 37648371 PMCID: PMC10546978 DOI: 10.1101/gad.350693.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.
Collapse
Affiliation(s)
- Jed de Ruiter Swain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Evan K Noch
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
25
|
Wittig F, Henkel L, Prüser JL, Merkord J, Ramer R, Hinz B. Inhibition of Monoacylglycerol Lipase Decreases Angiogenic Features of Endothelial Cells via Release of Tissue Inhibitor of Metalloproteinase-1 from Lung Cancer Cells. Cells 2023; 12:1757. [PMID: 37443791 PMCID: PMC10340590 DOI: 10.3390/cells12131757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the well-described anticarcinogenic effects of endocannabinoids, the influence of the endocannabinoid system on tumor angiogenesis is still debated. In the present study, conditioned medium (CM) from A549 and H358 lung cancer cells treated with ascending concentrations of the monoacylglycerol lipase (MAGL) inhibitor JZL184 and 2-arachidonoylglycerol (2-AG), a prominent MAGL substrate, caused a concentration-dependent reduction in human umbilical vein endothelial cell (HUVEC) migration and tube formation compared with CM from vehicle-treated cancer cells. Comparative experiments with MAGL inhibitors JW651 and MJN110 showed the same results. On the other hand, the angiogenic properties of HUVECs were not significantly altered by direct stimulation with JZL184 or 2-AG or by exposure to CM of JZL184- or 2-AG-treated non-cancerous bronchial epithelial cells (BEAS-2B). Inhibition of HUVEC migration and tube formation by CM of JZL184- and 2-AG-treated A549 cells was abolished in the presence of the CB1 antagonist AM-251. Increased release of tissue inhibitor of metalloproteinase-1 (TIMP-1) from JZL184- or 2-AG-stimulated A549 or H358 cells was shown to exert an antiangiogenic effect on HUVECs, as confirmed by siRNA experiments. In addition, JZL184 caused a dose-dependent regression of A549 tumor xenografts in athymic nude mice, which was associated with a decreased number of CD31-positive cells and upregulation of TIMP-1-positive cells in xenograft tissue. In conclusion, our data suggest that elevation of 2-AG by MAGL inhibition leads to increased release of TIMP-1 from lung cancer cells, which mediates an antiangiogenic effect on endothelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.H.); (J.L.P.); (J.M.); (R.R.)
| |
Collapse
|
26
|
Barzegar Behrooz A, Latifi-Navid H, da Silva Rosa SC, Swiat M, Wiechec E, Vitorino C, Vitorino R, Jamalpoor Z, Ghavami S. Integrating Multi-Omics Analysis for Enhanced Diagnosis and Treatment of Glioblastoma: A Comprehensive Data-Driven Approach. Cancers (Basel) 2023; 15:3158. [PMID: 37370767 DOI: 10.3390/cancers15123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The most aggressive primary malignant brain tumor in adults is glioblastoma (GBM), which has poor overall survival (OS). There is a high relapse rate among patients with GBM despite maximally safe surgery, radiation therapy, temozolomide (TMZ), and aggressive treatment. Hence, there is an urgent and unmet clinical need for new approaches to managing GBM. The current study identified modules (MYC, EGFR, PIK3CA, SUZ12, and SPRK2) involved in GBM disease through the NeDRex plugin. Furthermore, hub genes were identified in a comprehensive interaction network containing 7560 proteins related to GBM disease and 3860 proteins associated with signaling pathways involved in GBM. By integrating the results of the analyses mentioned above and again performing centrality analysis, eleven key genes involved in GBM disease were identified. ProteomicsDB and Gliovis databases were used for determining the gene expression in normal and tumor brain tissue. The NetworkAnalyst and the mGWAS-Explorer tools identified miRNAs, SNPs, and metabolites associated with these 11 genes. Moreover, a literature review of recent studies revealed other lists of metabolites related to GBM disease. The enrichment analysis of identified genes, miRNAs, and metabolites associated with GBM disease was performed using ExpressAnalyst, miEAA, and MetaboAnalyst tools. Further investigation of metabolite roles in GBM was performed using pathway, joint pathway, and network analyses. The results of this study allowed us to identify 11 genes (UBC, HDAC1, CTNNB1, TRIM28, CSNK2A1, RBBP4, TP53, APP, DAB1, PINK1, and RELN), five miRNAs (hsa-mir-221-3p, hsa-mir-30a-5p, hsa-mir-15a-5p, hsa-mir-130a-3p, and hsa-let-7b-5p), six metabolites (HDL, N6-acetyl-L-lysine, cholesterol, formate, N, N-dimethylglycine/xylose, and X2. piperidinone) and 15 distinct signaling pathways that play an indispensable role in GBM disease development. The identified top genes, miRNAs, and metabolite signatures can be targeted to establish early diagnostic methods and plan personalized GBM treatment strategies.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Trauma Research Center, Aja University of Medical Sciences, Tehran 14117-18541, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 14977-16316, Iran
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| | - Maciej Swiat
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Carla Vitorino
- Coimbra Chemistry Coimbra, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-456 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran 14117-18541, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
27
|
Philipsen MH, Hansson E, Manaprasertsak A, Lange S, Jennische E, Carén H, Gatzinsky K, Jakola A, Hammarlund EU, Malmberg P. Distinct Cholesterol Localization in Glioblastoma Multiforme Revealed by Mass Spectrometry Imaging. ACS Chem Neurosci 2023; 14:1602-1609. [PMID: 37040529 PMCID: PMC10161228 DOI: 10.1021/acschemneuro.2c00776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor in adults and is highly resistant to chemo- and radiotherapies. GBM has been associated with alterations in lipid contents, but lipid metabolism reprogramming in tumor cells is not fully elucidated. One of the key hurdles is to localize the lipid species that are correlated with tumor growth and invasion. A better understanding of the localization of abnormal lipid metabolism and its vulnerabilities may open up to novel therapeutic approaches. Here, we use time-of-flight secondary ion mass spectrometry (ToF-SIMS) to spatially probe the lipid composition in a GBM biopsy from two regions with different histopathologies: one region with most cells of uniform size and shape, the homogeneous part, and the other with cells showing a great variation in size and shape, the heterogeneous part. Our results reveal elevated levels of cholesterol, diacylglycerols, and some phosphatidylethanolamine in the homogeneous part, while the heterogeneous part was dominated by a variety of fatty acids, phosphatidylcholine, and phosphatidylinositol species. We also observed a high expression of cholesterol in the homogeneous tumor region to be associated with large cells but not with macrophages. Our findings suggest that ToF-SIMS can distinguish in lipid distribution between parts within a human GBM tumor, which can be linked to different molecular mechanisms.
Collapse
Affiliation(s)
- Mai H. Philipsen
- Tissue
Development and Evolution (TiDE) Division, Department of Laboratory
Medicine, Lund University, SE22100 Lund, Sweden
- Lund
Stem Cell Center, Department of Laboratory Medicine, Lund University, SE22100 Lund, Sweden
| | - Ellinor Hansson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE41296 Gothenburg, Sweden
| | - Auraya Manaprasertsak
- Tissue
Development and Evolution (TiDE) Division, Department of Laboratory
Medicine, Lund University, SE22100 Lund, Sweden
- Lund
Stem Cell Center, Department of Laboratory Medicine, Lund University, SE22100 Lund, Sweden
| | - Stefan Lange
- Institute
of Biomedicine, University of Gothenburg, SE41390 Gothenburg, Sweden
| | - Eva Jennische
- Institute
of Biomedicine, University of Gothenburg, SE41390 Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska
Centre for Cancer Research, Department of Medical Biochemistry and
Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE41390 Gothenburg, Sweden
- Institute
of Biomedicine, University of Gothenburg, SE41390 Gothenburg, Sweden
| | - Kliment Gatzinsky
- Department
of Neurosurgery, Sahlgrenska University
Hospital, SE41345 Gothenburg, Sweden
| | - Asgeir Jakola
- Department
of Neurosurgery, Sahlgrenska University
Hospital, SE41345 Gothenburg, Sweden
- Institute
of Neuroscience and physiology, Department of clinical neuroscience, Sahlgrenska Academy, SE41345 Gothenburg, Sweden
| | - Emma U. Hammarlund
- Tissue
Development and Evolution (TiDE) Division, Department of Laboratory
Medicine, Lund University, SE22100 Lund, Sweden
- Lund
Stem Cell Center, Department of Laboratory Medicine, Lund University, SE22100 Lund, Sweden
| | - Per Malmberg
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE41296 Gothenburg, Sweden
| |
Collapse
|
28
|
Duman C, Di Marco B, Nevedomskaya E, Ulug B, Lesche R, Christian S, Alfonso J. Targeting fatty acid oxidation via Acyl-CoA binding protein hinders glioblastoma invasion. Cell Death Dis 2023; 14:296. [PMID: 37120445 PMCID: PMC10148872 DOI: 10.1038/s41419-023-05813-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
The diffuse nature of Glioblastoma (GBM) tumors poses a challenge to current therapeutic options. We have previously shown that Acyl-CoA Binding Protein (ACBP, also known as DBI) regulates lipid metabolism in GBM cells, favoring fatty acid oxidation (FAO). Here we show that ACBP downregulation results in wide transcriptional changes affecting invasion-related genes. In vivo experiments using patient-derived xenografts combined with in vitro models demonstrated that ACBP sustains GBM invasion via binding to fatty acyl-CoAs. Blocking FAO mimics ACBPKD-induced immobility, a cellular phenotype that can be rescued by increasing FAO rates. Further investigation into ACBP-downstream pathways served to identify Integrin beta-1, a gene downregulated upon inhibition of either ACBP expression or FAO rates, as a mediator for ACBP's role in GBM invasion. Altogether, our findings highlight a role for FAO in GBM invasion and reveal ACBP as a therapeutic vulnerability to stall FAO and subsequent cell invasion in GBM tumors.
Collapse
Affiliation(s)
- Ceren Duman
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Di Marco
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Berk Ulug
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Lesche
- Bayer Research & Innovation Center, Cambridge, MA, USA
- NUVISAN ICB GmbH, Berlin, Germany
| | | | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
29
|
McGowan E, Sanjak J, Mathé EA, Zhu Q. Integrative Rare Disease Biomedical Profile based Network Supporting Drug Repurposing, a case study of Glioblastoma. RESEARCH SQUARE 2023:rs.3.rs-2809689. [PMID: 37131675 PMCID: PMC10153381 DOI: 10.21203/rs.3.rs-2809689/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Glioblastoma (GBM) is the most aggressive and common malignant primary brain tumor; however, treatment remains a significant challenge. This study aims to identify drug repurposing candidates for GBM by developing an integrative rare disease profile network containing heterogeneous types of biomedical data. Methods We developed a Glioblastoma-based Biomedical Profile Network (GBPN) by extracting and integrating biomedical information pertinent to GBM-related diseases from the NCATS GARD Knowledge Graph (NGKG). We further clustered the GBPN based on modularity classes which resulted in multiple focused subgraphs, named mc_GBPN. We then identified high-influence nodes by performing network analysis over the mc_GBPN and validated those nodes that could be potential drug repositioning candidates for GBM. Results We developed the GBPN with 1,466 nodes and 107,423 edges and consequently the mc_GBPN with forty-one modularity classes. A list of the ten most influential nodes were identified from the mc_GBPN. These notably include Riluzole, stem cell therapy, cannabidiol, and VK-0214, with proven evidence for treating GBM. Conclusion Our GBM-targeted network analysis allowed us to effectively identify potential candidates for drug repurposing. This could lead to less invasive treatments for glioblastoma while significantly reducing research costs by shortening the drug development timeline. Furthermore, this workflow can be extended to other disease areas.
Collapse
Affiliation(s)
- Erin McGowan
- NCATS: National Center for Advancing Translational Sciences
| | - Jaleal Sanjak
- NCATS: National Center for Advancing Translational Sciences
| | - Ewy A Mathé
- NCATS: National Center for Advancing Translational Sciences
| | | |
Collapse
|
30
|
Korbecki J, Bosiacki M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis. Cancers (Basel) 2023; 15:cancers15072183. [PMID: 37046844 PMCID: PMC10093493 DOI: 10.3390/cancers15072183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) by fatty acid synthase (FASN), elongases, and desaturases. We also describe the significance of individual fatty acids in glioblastoma tumorigenesis, as well as the importance of glycerophospholipid and triacylglycerol synthesis in this process. Specifically, we show the significance and function of various isoforms of glycerol-3-phosphate acyltransferases (GPAT), 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT), lipins, as well as enzymes involved in the synthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). This review also highlights the involvement of diacylglycerol O-acyltransferase (DGAT) in triacylglycerol biosynthesis. Due to significant gaps in knowledge, the GEPIA database was utilized to demonstrate the significance of individual enzymes in glioblastoma tumorigenesis. Finally, we also describe the significance of lipid droplets in glioblastoma and the impact of fatty acid synthesis, particularly docosahexaenoic acid (DHA), on cell membrane fluidity and signal transduction from the epidermal growth factor receptor (EGFR).
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
31
|
Karadag I, Karakaya S, Akkan T, Demir B, Alkurt EG, Dogan M. The Potential Prognostic Marker TyG Index Predicts Time to Brain Metastasis at HER2 Positive Breast Cancer. Cancer Manag Res 2023; 15:311-317. [PMID: 36994110 PMCID: PMC10042251 DOI: 10.2147/cmar.s403445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Background We aimed to investigate the prognostic significance of insulin resistance (IR) markers fasting triglyceride-glucose (TyG) index and triglyceride high-density lipoprotein cholesterol (TG/HDL-C) ratio in HER2-positive breast cancer (BC) patients with brain metastasis (BM). Methods In this single-center study, 120 patients who met the criteria were included. TyG and TG/HDL-C at the time of diagnosis were computed retrospectively. For TyG and TG/HDL-C, the median values of 9.32 and 2.95 were taken as the cut-off, respectively. TyG values <9.32 and <2.95 were considered low, and TG/HDL-C values ≥9.32 and ≥2.95 were considered high. Results The median overall survival (OS) was 47 months (95% CI: 40.54-53.45). Time to BM was 22 months (95% CI: 17.22-26.73). The median time to BM was 35 months (95% CI: 20.90-49.09) in the low TyG group and 15 months (95% CI: 8.92-21.07) in the high TyG group (p < 0.001). The time to BM was 27 months (95% CI: 20.49-33.50) in the low TG/HDL-C group and 20 months (95% CI: 16.76-23.23) in the high TG/HDL-C group (p=0.084). In the multivariate Cox regression analysis, the TyG index (HR: 20.98, 95% CI: 7.14-61.59, p < 0.001) was an independent risk factor for time to BM. Conclusion These findings suggest that the TyG index could be used as a predictive biomarker at the time of diagnosis for risk of time BM in patients with HER2-positive BC. The TyG index can be used as a standard potential marker with prospective studies confirming these data.
Collapse
Affiliation(s)
- Ibrahim Karadag
- Department of Medical Oncology, Hitit University Erol Olcok Training and Research Hospital, Corum, Turkey
| | - Serdar Karakaya
- Department of Medical Oncology, Health Science University, Atatürk Chest Diseases and Chest Surgery Training and Research Hospital, Ankara, Turkey
| | - Tolga Akkan
- Department of Endocrinology, Eskisehir City Hospital, Eskisehir, Turkey
| | - Bilgin Demir
- Department of Medical Oncology, Aydın Atatürk Public Hospital, Aydın, Turkey
| | - Ertugrul Gazi Alkurt
- Department of Surgical Oncology, Hitit University Erol Olcok Training and Research Hospital, Corum, Turkey
| | - Mutlu Dogan
- Department of Medical Oncology, Health Sciences University, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
32
|
Yu K, Kong K, Lozzi B, Luna-Figueroa E, Cervantes A, Curry R, Mohila CA, Rao G, Jalali A, Mills GB, Scott KL, Deneen B. In vivo functional characterization of EGFR variants identifies novel drivers of glioblastoma. Neuro Oncol 2023; 25:471-481. [PMID: 36044040 PMCID: PMC10013639 DOI: 10.1093/neuonc/noac215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Glioblastoma is the most common and aggressive primary brain tumor. Large-scale sequencing initiatives have cataloged its mutational landscape in hopes of elucidating mechanisms driving this deadly disease. However, a major bottleneck in harnessing this data for new therapies is deciphering "driver" and "passenger" events amongst the vast volume of information. METHODS We utilized an autochthonous, in vivo screening approach to identify driver, EGFR variants. RNA-Seq identified unique molecular signatures of mouse gliomas across these variants, which only differ by a single amino acid change. In particular, we identified alterations to lipid metabolism, which we further validated through an unbiased lipidomics screen. RESULTS Our screen identified A289I as the most potent EGFR variant, which has previously not been characterized. One of the mechanisms through which A289I promotes gliomagenesis is to alter cellular triacylglycerides through MTTP. Knockout of Mttp in mouse gliomas, reduces gliomagenesis in multiple models. CONCLUSIONS EGFR variants that differ by a single amino acid residue differentially promote gliomagenesis. Among the identified mechanism that drives glioma growth include lipid metabolism through MTTP. Understanding triacylglyceride accumulation may present a prospective therapeutic pathway for this deadly disease.
Collapse
Affiliation(s)
- Kwanha Yu
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kathleen Kong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brittney Lozzi
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Estefania Luna-Figueroa
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alexis Cervantes
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rachel Curry
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
- The Integrative Molecular and Biomedical Sciences Graduate Program (IMBS), Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carrie A Mohila
- Department of Pathology, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Ganesh Rao
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gordon B Mills
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health Science University, Portland, OR 97239, USA
| | - Kenneth L Scott
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin Deneen
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
33
|
Soylemez B, Bulut Z, Şahin-Bölükbaşı S. Investigating the Potential of Lipids for Use as Biomarkers for Glioblastoma via an Untargeted Lipidomics Approach. J Korean Neurosurg Soc 2023; 66:133-143. [PMID: 36530132 PMCID: PMC10009237 DOI: 10.3340/jkns.2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/28/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The types and functions of lipids involved in glioblastoma (GB) are not well known. Lipidomics is a new field that examines cellular lipids on a large scale and novel aplication of lipidomics in the biomedical sciences have emerged. This study aimed to investigate the potential of blood lipids for use as biomarkers for the diagnosis of GB via untargated lipidomic approach. Gaining a deeper understanding of lipid metabolism in patients with GB can contribute to the early diagnosis with GB patiens and also development of novel and better therapeutic options. METHODS This study was performed using blood samples collected from 14 patients (eight females and six males) and 14 controls (eight females and six males). Lipids were extracted from blood samples and quantified using phosphorus assay. Lipid profiles of between patients with GB and controls were compared via an untargeted lipidomics approach using 6530 Accurate-Mass Q-TOF LC/MS mass spectrometer. RESULTS According to the results obtained using the untargeted lipidomics approach, differentially regulated lipid species, including fatty acid (FA), glycerolipid (GL), glycerophospholipid (PG), saccharolipid (SL), sphingolipid (SP), and sterol lipid (ST) were identified between in patients with GB and controls. CONCLUSION Differentially regulated lipids were identified in patients with GB, and these lipid species were predicted as potential biomarkers for diagnosis of GB.
Collapse
Affiliation(s)
- Burcak Soylemez
- Department of Neurosurgery, Sivas Cumhuriyet University Hospital, Sivas, Turkey
| | - Zekeriya Bulut
- Department of Neurosurgery, Sivas Cumhuriyet University Hospital, Sivas, Turkey
| | - Serap Şahin-Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
34
|
Choudhary N, Osorio RC, Oh JY, Aghi MK. Metabolic Barriers to Glioblastoma Immunotherapy. Cancers (Basel) 2023; 15:1519. [PMID: 36900311 PMCID: PMC10000693 DOI: 10.3390/cancers15051519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor with a poor prognosis with the current standard of care treatment. To address the need for novel therapeutic options in GBM, immunotherapies which target cancer cells through stimulating an anti-tumoral immune response have been investigated in GBM. However, immunotherapies in GBM have not met with anywhere near the level of success they have encountered in other cancers. The immunosuppressive tumor microenvironment in GBM is thought to contribute significantly to resistance to immunotherapy. Metabolic alterations employed by cancer cells to promote their own growth and proliferation have been shown to impact the distribution and function of immune cells in the tumor microenvironment. More recently, the diminished function of anti-tumoral effector immune cells and promotion of immunosuppressive populations resulting from metabolic alterations have been investigated as contributory to therapeutic resistance. The GBM tumor cell metabolism of four nutrients (glucose, glutamine, tryptophan, and lipids) has recently been described as contributory to an immunosuppressive tumor microenvironment and immunotherapy resistance. Understanding metabolic mechanisms of resistance to immunotherapy in GBM can provide insight into future directions targeting the anti-tumor immune response in combination with tumor metabolism.
Collapse
Affiliation(s)
| | | | | | - Manish K. Aghi
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
35
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
36
|
Epigenetics and Metabolism Reprogramming Interplay into Glioblastoma: Novel Insights on Immunosuppressive Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020220. [PMID: 36829778 PMCID: PMC9952003 DOI: 10.3390/antiox12020220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The central nervous system represents a complex environment in which glioblastoma adapts skillfully, unleashing a series of mechanisms suitable for its efficient development and diffusion. In particular, changes in gene expression and mutational events that fall within the domain of epigenetics interact complexly with metabolic reprogramming and stress responses enacted in the tumor microenvironment, which in turn fuel genomic instability by providing substrates for DNA modifications. The aim of this review is to analyze this complex interaction that consolidates several conditions that confer a state of immunosuppression and immunoevasion, making glioblastoma capable of escaping attack and elimination by immune cells and therefore invincible against current therapies. The progressive knowledge of the cellular mechanisms that underlie the resistance of the glioblastoma represents, in fact, the only weapon to unmask its weak points to be exploited to plan successful therapeutic strategies.
Collapse
|
37
|
Antibody Profiling and In Silico Functional Analysis of Differentially Reactive Antibody Signatures of Glioblastomas and Meningiomas. Int J Mol Sci 2023; 24:ijms24021411. [PMID: 36674927 PMCID: PMC9866115 DOI: 10.3390/ijms24021411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Studies on tumor-associated antigens in brain tumors are sparse. There is scope for enhancing our understanding of molecular pathology, in order to improve on existing forms, and discover new forms, of treatment, which could be particularly relevant to immuno-oncological strategies. To elucidate immunological differences, and to provide another level of biological information, we performed antibody profiling, based on a high-density protein array (containing 8173 human transcripts), using IgG isolated from the sera of n = 12 preoperative and n = 16 postoperative glioblastomas, n = 26 preoperative and n = 29 postoperative meningiomas, and n = 27 healthy, cancer-free controls. Differentially reactive antigens were compared to gene expression data from an alternate public GBM data set from OncoDB, and were analyzed using the Reactome pathway browser. Protein array analysis identified approximately 350-800 differentially reactive antigens, and revealed different antigen profiles in the glioblastomas and meningiomas, with approximately 20-30%-similar and 10-15%-similar antigens in preoperative and postoperative sera, respectively. Seroreactivity did not correlate with OncoDB-derived gene expression. Antigens in the preoperative glioblastoma sera were enriched for signaling pathways, such as signaling by Rho-GTPases, COPI-mediated anterograde transport and vesicle-mediated transport, while the infectious disease, SRP-dependent membrane targeting cotranslational proteins were enriched in the meningiomas. The pre-vs. postoperative seroreactivity in the glioblastomas was enriched for antigens, e.g., platelet degranulation and metabolism of lipid pathways; in the meningiomas, the antigens were enriched in infectious diseases, metabolism of amino acids and derivatives, and cell cycle. Antibody profiling in both tumor entities elucidated several hundred antigens and characteristic signaling pathways that may provide new insights into molecular pathology and may be of interest for the development of new treatment strategies.
Collapse
|
38
|
Kong Y, Liu C, Zhang X, Liu X, Li W, Li F, Wang X, Yue X. Characterization of fatty acid compositions in longissimus thoracis muscle and identification of candidate gene and SNPs related to polyunsaturated fatty acid in Hu sheep. J Anim Sci 2023; 101:skac382. [PMID: 36394948 PMCID: PMC9833039 DOI: 10.1093/jas/skac382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Fatty acid (FA) composition contributes greatly to the quality and nutritional value of lamb meat. In the present study, FA was measured in longissimus thoracis (LT) muscles of 1,085 Hu sheep using gas chromatography. Comparative transcriptomic analysis was conducted in LT muscles to identify differentially expressed genes (DEGs) between six individuals with high polyunsaturated fatty acids (H-PUFA, 15.27% ± 0.42%) and six with low PUFA (L-PUFA, 5.22% ± 0.25%). Subsequently, the single nucleotide polymorphisms (SNPs) in a candidate gene PLIN2 were correlated with FA traits. The results showed a total of 29 FA compositions and 8 FA groups were identified, with the highest content of monounsaturated fatty acids (MUFA, 46.54%, mainly C18:1n9c), followed by saturated fatty acids (SFA, 44.32%, mainly C16:0), and PUFA (8.72%, mainly C18:2n6c), and significant correlations were observed among the most of FA traits. Transcriptomic analyses identified 110 upregulated and 302 downregulated DEGs between H-PUFA and L-PUFA groups. The functional enrichment analysis revealed three significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 17 gene ontology (GO) terms, in which regulation of lipolysis in adipocytes, the AMPK signaling pathway, and the PPAR signaling pathway may play important roles in FA metabolism and biosynthesis. In addition, weighted gene co-expression network analysis (WGCNA) identified 37 module genes associated with PUFA-related traits. In general, PLIN1, LIPE, FABP4, LEP, ACACA, ADIPOQ, SCD, PCK2, FASN, PLIN2, LPL, FABP3, THRSP, and ACADVL may have a great impact on PUFA metabolism and lipid deposition. Four SNPs within PLIN2 were significantly associated with FA. Of those, SNP1 (g.287 G>A) was significantly associated with C18:1n9c and MUFA, and SNP4 (g.7807 T>C) was significantly correlated with PUFA (C18:3n3). In addition, the combined genotype of SNP1 (g.287 G>A), SNP3 (g.7664 T>C), and SNP4 (g.7807 T>C) were significantly correlated with C16:1, C17:0, C18:1C6, PUFA (C18:3n3, C22:6n3), and n-6/n-3 PUFA. These results contribute to the knowledge of the biological mechanisms and genetic markers involved in the composition of FA in Hu sheep.
Collapse
Affiliation(s)
- Yuanyuan Kong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chongyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xueying Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xing Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wenqiao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xinji Wang
- Extension Station of Animal Husbandry and Veterinary Medicine in Minqin, Minqin County 733300, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
39
|
De Martino M, Daviaud C, Hajjar E, Vanpouille-Box C. Fatty acid metabolism and radiation-induced anti-tumor immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:121-141. [PMID: 36997267 DOI: 10.1016/bs.ircmb.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fatty acid metabolic reprogramming has emerged as a major regulator of anti-tumor immune responses with large body of evidence that demonstrate its ability to impact the differentiation and function of immune cells. Therefore, depending on the metabolic cues that stem in the tumor microenvironment, the tumor fatty acid metabolism can tilt the balance of inflammatory signals to either promote or impair anti-tumor immune responses. Oxidative stressors such as reactive oxygen species generated from radiation therapy can rewire the tumor energy supply, suggesting that radiation therapy can further perturb the energy metabolism of a tumor by promoting fatty acid production. In this review, we critically discuss the network of fatty acid metabolism and how it regulates immune response especially in the context of radiation therapy.
Collapse
|
40
|
Liang K, Dai JY. Progress of potential drugs targeted in lipid metabolism research. Front Pharmacol 2022; 13:1067652. [PMID: 36588702 PMCID: PMC9800514 DOI: 10.3389/fphar.2022.1067652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Lipids are a class of complex hydrophobic molecules derived from fatty acids that not only form the structural basis of biological membranes but also regulate metabolism and maintain energy balance. The role of lipids in obesity and other metabolic diseases has recently received much attention, making lipid metabolism one of the attractive research areas. Several metabolic diseases are linked to lipid metabolism, including diabetes, obesity, and atherosclerosis. Additionally, lipid metabolism contributes to the rapid growth of cancer cells as abnormal lipid synthesis or uptake enhances the growth of cancer cells. This review introduces the potential drug targets in lipid metabolism and summarizes the important potential drug targets with recent research progress on the corresponding small molecule inhibitor drugs. The significance of this review is to provide a reference for the clinical treatment of metabolic diseases related to lipid metabolism and the treatment of tumors, hoping to deepen the understanding of lipid metabolism and health.
Collapse
Affiliation(s)
- Kai Liang
- School of Life Science, Peking University, Beijing, China,*Correspondence: Kai Liang, ; Jian-Ye Dai,
| | - Jian-Ye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China,Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China,*Correspondence: Kai Liang, ; Jian-Ye Dai,
| |
Collapse
|
41
|
Abdul Rashid K, Ibrahim K, Wong JHD, Mohd Ramli N. Lipid Alterations in Glioma: A Systematic Review. Metabolites 2022; 12:metabo12121280. [PMID: 36557318 PMCID: PMC9783089 DOI: 10.3390/metabo12121280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gliomas are highly lethal tumours characterised by heterogeneous molecular features, producing various metabolic phenotypes leading to therapeutic resistance. Lipid metabolism reprogramming is predominant and has contributed to the metabolic plasticity in glioma. This systematic review aims to discover lipids alteration and their biological roles in glioma and the identification of potential lipids biomarker. This systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Extensive research articles search for the last 10 years, from 2011 to 2021, were conducted using four electronic databases, including PubMed, Web of Science, CINAHL and ScienceDirect. A total of 158 research articles were included in this study. All studies reported significant lipid alteration between glioma and control groups, impacting glioma cell growth, proliferation, drug resistance, patients' survival and metastasis. Different lipids demonstrated different biological roles, either beneficial or detrimental effects on glioma. Notably, prostaglandin (PGE2), triacylglycerol (TG), phosphatidylcholine (PC), and sphingosine-1-phosphate play significant roles in glioma development. Conversely, the most prominent anti-carcinogenic lipids include docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and vitamin D3 have been reported to have detrimental effects on glioma cells. Furthermore, high lipid signals were detected at 0.9 and 1.3 ppm in high-grade glioma relative to low-grade glioma. This evidence shows that lipid metabolisms were significantly dysregulated in glioma. Concurrent with this knowledge, the discovery of specific lipid classes altered in glioma will accelerate the development of potential lipid biomarkers and enhance future glioma therapeutics.
Collapse
Affiliation(s)
- Khairunnisa Abdul Rashid
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Norlisah Mohd Ramli
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-379673238
| |
Collapse
|
42
|
Wang X, Song H, Liang J, Jia Y, Zhang Y. Abnormal expression of HADH, an enzyme of fatty acid oxidation, affects tumor development and prognosis (Review). Mol Med Rep 2022; 26:355. [PMID: 36239258 PMCID: PMC9607826 DOI: 10.3892/mmr.2022.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Tumor occurrence and progression are closely associated with abnormal energy metabolism and energy metabolism associated with glucose, proteins and lipids. The reprogramming of energy metabolism is one of the hallmarks of cancer. As a form of energy metabolism, fatty acid metabolism includes fatty acid uptake, de novo synthesis and β‑oxidation. In recent years, the role of abnormal fatty acid β‑oxidation in tumors has gradually been recognized. Mitochondrial trifunctional protein (MTP) serves an important role in fatty acid β‑oxidation and HADH (two subtypes: α subunit, HADHA and β subunit, HADHB) are important subunits of MTP. HADH participates in the steps of 2, 3 and 4 fatty acid β‑oxidation. However, there is no review summarizing the specific role of HADH in tumors. Therefore, the present study focused on HADH as the main indicator to explore the changes in fatty acid β‑oxidation in several types of tumors. The present review summarized the changes in HADH in 11 organs (cerebrum, oral cavity, esophagus, liver, pancreas, stomach, colorectum, lymph, lung, breast, kidney), the effect of up‑ and downregulation and the relationship of HADH with prognosis. In summary, HADH can be either a suppressor or a promoter depending on where the tumor is located, which is closely associated with prognostic assessment. HADHA and HADHB have similar prognostic roles in known and comparable tumors.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Post-doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Jinan, Shandong 252004, P.R. China
| | - Honghao Song
- Department of Pediatric Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Junyu Liang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yang Jia
- Post-doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Jinan, Shandong 252004, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yongfei Zhang
- Department of Dermatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
43
|
Mahar R, Ragavan M, Chang MC, Hardiman S, Moussatche N, Behar A, Renne R, Merritt ME. Metabolic signatures associated with oncolytic myxoma viral infections. Sci Rep 2022; 12:12599. [PMID: 35871072 PMCID: PMC9308783 DOI: 10.1038/s41598-022-15562-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractOncolytic viral therapy is a recent advance in cancer treatment, demonstrating promise as a primary treatment option. To date, the secondary metabolic effects of viral infection in cancer cells has not been extensively studied. In this work, we have analyzed early-stage metabolic changes in cancer cells associated with oncolytic myxoma virus infection. Using GC–MS based metabolomics, we characterized the myxoma virus infection induced metabolic changes in three cancer cell lines—small cell (H446) and non-small cell (A549) lung cancers, and glioblastoma (SFxL). We show that even at an early stage (6 and 12 h) myxoma infection causes profound changes in cancer cell metabolism spanning several important pathways such as the citric acid cycle, fatty acid metabolism, and amino acid metabolism. In general, the metabolic effects of viral infection across cell lines are not conserved. However, we have identified several candidate metabolites that can potentially serve as biomarkers for monitoring oncolytic viral action in general.
Collapse
|
44
|
Premachandran S, Haldavnekar R, Das S, Venkatakrishnan K, Tan B. DEEP Surveillance of Brain Cancer Using Self-Functionalized 3D Nanoprobes for Noninvasive Liquid Biopsy. ACS NANO 2022; 16:17948-17964. [PMID: 36112671 DOI: 10.1021/acsnano.2c04187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brain cancers, one of the most fatal malignancies, require accurate diagnosis for guided therapeutic intervention. However, conventional methods for brain cancer prognosis (imaging and tissue biopsy) face challenges due to the complex nature and inaccessible anatomy of the brain. Therefore, deep analysis of brain cancer is necessary to (i) detect the presence of a malignant tumor, (ii) identify primary or secondary origin, and (iii) find where the tumor is housed. In order to provide a diagnostic technique with such exhaustive information here, we attempted a liquid biopsy-based deep surveillance of brain cancer using a very minimal amount of blood serum (5 μL) in real time. We hypothesize that holistic analysis of serum can act as a reliable source for deep brain cancer surveillance. To identify minute amounts of tumor-derived material in circulation, we synthesized an ultrasensitive 3D nanosensor, adopted SERS as a diagnostic methodology, and undertook a DEEP neural network-based brain cancer surveillance. Detection of primary and secondary tumor achieved 100% accuracy. Prediction of intracranial tumor location achieved 96% accuracy. This modality of using patient sera for deep surveillance is a promising noninvasive liquid biopsy tool with the potential to complement current brain cancer diagnostic methodologies.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Sunit Das
- Scientist, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
45
|
Lee H, Kim D, Youn B. Targeting Oncogenic Rewiring of Lipid Metabolism for Glioblastoma Treatment. Int J Mol Sci 2022; 23:ijms232213818. [PMID: 36430293 PMCID: PMC9698497 DOI: 10.3390/ijms232213818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor. Despite increasing research on GBM treatment, the overall survival rate has not significantly improved over the last two decades. Although recent studies have focused on aberrant metabolism in GBM, there have been few advances in clinical application. Thus, it is important to understand the systemic metabolism to eradicate GBM. Together with the Warburg effect, lipid metabolism has emerged as necessary for GBM progression. GBM cells utilize lipid metabolism to acquire energy, membrane components, and signaling molecules for proliferation, survival, and response to the tumor microenvironment. In this review, we discuss fundamental cholesterol, fatty acid, and sphingolipid metabolism in the brain and the distinct metabolic alterations in GBM. In addition, we summarize various studies on the regulation of factors involved in lipid metabolism in GBM therapy. Focusing on the rewiring of lipid metabolism will be an alternative and effective therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Dahye Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2264
| |
Collapse
|
46
|
Erbani J, Boon M, Akkari L. Therapy-induced shaping of the glioblastoma microenvironment: Macrophages at play. Semin Cancer Biol 2022; 86:41-56. [PMID: 35569742 DOI: 10.1016/j.semcancer.2022.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023]
Abstract
The intricate cross-talks between tumor cells and their microenvironment play a key role in cancer progression and resistance to treatment. In recent years, targeting pro-tumorigenic components of the tumor microenvironment (TME) has emerged as a tantalizing strategy to improve the efficacy of standard-of-care (SOC) treatments, particularly for hard-to-treat cancers such as glioblastoma. In this review, we explore how the distinct microenvironmental niches characteristic of the glioblastoma TME shape response to therapy. In particular, we delve into the interplay between tumor-associated macrophages (TAM) and glioblastoma cells within angiogenic and hypoxic niches, and interrogate their dynamic co-evolution upon SOC therapies that fuels malignancy. Resolving the complexity of therapy-induced alterations in the glioblastoma TME and their impact on disease relapse is a stepping stone to identify targetable pro-tumorigenic pathways and TAM subsets, and may open the way to efficient combination therapies that will improve clinical outcomes.
Collapse
Affiliation(s)
- Johanna Erbani
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
47
|
Shi H, Zhao J, Li Y, Li J, Li Y, Zhang J, Qiu Z, Wu C, Qin M, Liu C, Zeng Z, Zhang C, Gao L. Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans. J Ginseng Res 2022. [DOI: 10.1016/j.jgr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Metabolomic and Lipidomic Profiling of Gliomas-A New Direction in Personalized Therapies. Cancers (Basel) 2022; 14:cancers14205041. [PMID: 36291824 PMCID: PMC9599495 DOI: 10.3390/cancers14205041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Gliomas comprise an extremely diverse category of brain tumors that are difficult to diagnose and treat. As a result, scientists continue to search for new treatment solutions, with personalized medicine having emerged as a particularly promising therapeutic approach. Metabolomics and its sub-discipline, lipidomics, are two scientific fields well-suited to support this search. Metabolomics focuses on the physicochemical changes in the metabolome, which include all of the small endogenous and exogenous compounds in a biological system. As such, metabolic analysis can help identify important biochemical pathways which could be the targets for new therapeutic approaches. This review examines the new directions of personalized therapies for gliomas and how metabolomic and lipidomic analysis assists in developing these strategies and monitoring their effectiveness. The discussion of new strategies is preceded by a brief overview of the current “gold standard” treatment for gliomas and the obstacles that new treatment approaches must overcome. Abstract In addition to being the most common primary brain tumor, gliomas are also among the most difficult to diagnose and treat. At present, the “gold standard” in glioma treatment entails the surgical resection of the largest possible portion of the tumor, followed by temozolomide therapy and radiation. However, this approach does not always yield the desired results. Additionally, the ability to cross the blood-brain barrier remains a major challenge for new potential drugs. Thus, researchers continue to search for targeted therapies that can be individualized based on the specific characteristics of each case. Metabolic and lipidomic research may represent two of the best ways to achieve this goal, as they enable detailed insights into the changes in the profile of small molecules in a biological system/specimen. This article reviews the new approaches to glioma therapy based on the analysis of alterations to biochemical pathways, and it provides an overview of the clinical results that may support personalized therapies in the future.
Collapse
|
49
|
Dhinakaran AK, Dharmalingam P, Ganesh S, Venkatakrishnan K, Das S, Tan B. Molecular Crosstalk between T Cells and Tumor Uncovers GBM-Specific T Cell Signatures in Blood: Noninvasive GBM Diagnosis Using Immunosensors. ACS NANO 2022; 16:14134-14148. [PMID: 36040842 DOI: 10.1021/acsnano.2c04160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive stage IV brain cancer with a poor prognosis and survival rate. The blood-brain barrier (BBB) in GBM prevents the entry and exit of biomarkers, limiting its treatment options. Hence, GBM diagnosis is pivotal for timely clinical management. Currently, there exists no clinically validated biomarker for GBM diagnosis. T cells exhibit the potential to escape a leaky BBB in GBM patients. These T cells infiltrating the GBM interact with the heterogeneous population of tumor cells, display a symbiotic interaction resulting in intertwined molecular crosstalk, and display a GBM-associated signature while entering the peripheral circulation. Therefore, we hypothesize that studying these distinct molecular changes is critical to enable T cells to be a diagnostic marker for accurate detection of GBM from patient blood. We demonstrated this by utilizing the phenotypic and immunological landscape changes in T cells associated with glioblastoma tumors. GBM exhibits a high level of heterogeneity with diverse subtypes of cells within the tumor, enabling immune infiltration and different degrees of interactions with the tumor. To accurately detect these subtle molecular differences in T cells, we designed an immunosensor with a high detection sensitivity and repeatability. Hence in this study, we investigated the characteristic behavior of T cells to establish two preclinically validated biomarkers: GBM-associated T cells (GBMAT) and GBM stem cell-associated T cells (GSCAT). A comprehensive investigation was conducted by mimicking the tumor microenvironment in vitro by coculturing T cells with cancer cells and cancer stem cells to study the distinct variation in GBMAT and GSCAT. Preclinical investigation of T cells from GBM patient blood shows similar characteristics to our established biomarkers (GBMAT, GSCAT). Further evaluating the relative attributes of T cells in patient blood and tissue biopsy confirms the infiltrating ability of T cells across the BBB. A pilot validation using a SERS-based machine learning algorithm was accomplished by training the model with GBMAT and GSCAT as diagnostic markers. Using GBMAT as a biomarker, we achieved a sensitivity and specificity of 93.3% and 97.4%, respectively, whereas applying GSCAT yielded a sensitivity and specificity of 100% and 98.7%, respectively. We also validated this diagnostic methodology by using conventional biological assays to study the change in expression levels of T cell surface markers (CD4 and CD8) and cytokine levels in T cells (IL6, IL10, TNFα, INFγ) from GBM patients. This study introduces T cells as GBM-specific immune biomarkers to diagnose GBM using patient liquid biopsy. This preclinical validation study presents a better translatability into clinical reality that will enable rapid and noninvasive glioblastoma detection from patient blood.
Collapse
Affiliation(s)
- Ashok Kumar Dhinakaran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Priya Dharmalingam
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Swarna Ganesh
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Sunit Das
- Department of Surgery, Division of Neurosurgery, University of Toronto, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
50
|
Lin G, Lin L, Lin H, Chen W, Chen L, Chen X, Chen S, Lin Q, Xu Y, Zeng Y. KCNK3 inhibits proliferation and glucose metabolism of lung adenocarcinoma via activation of AMPK-TXNIP pathway. Cell Death Dis 2022; 8:360. [PMID: 35963847 PMCID: PMC9376064 DOI: 10.1038/s41420-022-01152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a primary histological subtype of lung cancer with increased morbidity and mortality. K+ channels have been revealed to be involved in carcinogenesis in various malignant tumors. However, TWIK-related acid-sensitive potassium channel 1 (TASK-1, also called KCNK3), a genetic member of K2P channels, remains an enigma in lung adenocarcinoma (LUAD). Herein, we investigated the pathological process of KCNK3 in proliferation and glucose metabolism of LUAD. The expressions of KCNK3 in LUAD tissues and corresponding adjacent tissues were identified by RNA sequencing, quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry. Gain and loss-of-function assays were performed to estimate the role of KCNK3 in proliferation and glucose metabolism of LUAD. Additionally, energy metabolites of LUAD cells were identified by targeted metabolomics analysis. The expressions of metabolic molecules and active biomarkers associated with AMPK-TXNIP signaling pathway were detected via western blot and immunofluorescence. KCNK3 was significantly downregulated in LUAD tissues and correlated with patients' poor prognosis. Overexpression of KCNK3 largely regulated the process of oncogenesis and glycometabolism in LUAD in vitro and in vivo. Mechanistic studies found that KCNK3-mediated differential metabolites were mainly enriched in AMPK signaling pathway. Furthermore, rescue experiments demonstrated that KCNK3 suppressed proliferation and glucose metabolism via activation of the AMPK-TXNIP pathway in LUAD cells. In summary, our research highlighted an emerging role of KCNK3 in the proliferative activity and glycometabolism of LUAD, suggesting that KCNK3 may be an optimal predictor for prognosis and a potential therapeutic target of LUAD.
Collapse
Affiliation(s)
- Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Hai Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Wenhan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Shaohua Chen
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Qinhui Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China. .,Clinical Research Unit, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China. .,Clinical Research Unit, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.
| |
Collapse
|