1
|
Mady EA, Osuga H, Toyama H, El-Husseiny HM, Inoue R, Murase H, Yamamoto Y, Nagaoka K. Relationship between the components of mare breast milk and foal gut microbiome: shaping gut microbiome development after birth. Vet Q 2024; 44:1-9. [PMID: 38733121 PMCID: PMC11089936 DOI: 10.1080/01652176.2024.2349948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota (GM) is essential for mammalian health. Although the association between infant GM and breast milk (BM) composition has been well established in humans, such a relationship has not been investigated in horses. Hence, this study was conducted to analyze the GM formation of foals during lactation and determine the presence of low-molecular-weight metabolites in mares' BM and their role in shaping foals' GM. The fecal and BM samples from six pairs of foals and mares were subjected to 16S ribosomal RNA metagenomic and metabolomic analyses, respectively. The composition of foal GM changed during lactation time; hierarchical cluster analysis divided the fetal GM into three groups corresponding to different time points in foal development. The level of most metabolites in milk decreased over time with increasing milk yield, while threonic acid and ascorbic acid increased. Further analyses revealed gut bacteria that correlated with changes in milk metabolites; for instance, there was a positive correlation between Bacteroidaceae in the foal's gut microbiota and serine/glycine in the mother's milk. These findings help improve the rearing environment of lactating horses and establish artificial feeding methods for foals.
Collapse
Affiliation(s)
- Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, Egypt
| | - Haruna Osuga
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haruka Toyama
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Science, Setsunan University, Osaka, Japan
| | - Harutaka Murase
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Loch M, Dorbek-Sundström E, Husso A, Pessa-Morikawa T, Niine T, Kaart T, Mõtus K, Niku M, Orro T. Associations of Neonatal Dairy Calf Faecal Microbiota with Inflammatory Markers and Future Performance. Animals (Basel) 2024; 14:2533. [PMID: 39272317 PMCID: PMC11394540 DOI: 10.3390/ani14172533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
After birth, the immune system is challenged by numerous elements of the extrauterine environment, reflected in fluctuations of inflammatory markers. The concentrations of these markers in the first month of life are associated with the future performance of dairy youngstock. It is thought that bacterial genera colonizing the calf intestinal tract can cause inflammation and thus affect their host's performance via immunomodulation. This study explored how the faecal microbiota of newborn dairy calves were related to inflammatory markers during the first three weeks of life, and if the abundance of specific genera was associated with first-lactation performance. Ninety-five female Holstein calves were studied. Once a week, serum and faecal samples were collected, serum concentrations of serum amyloid A, haptoglobin, tumour necrosis factor-α, and interleukin-6 were measured, and faecal microbiota composition was examined by 16S rRNA gene amplicon sequencing. Faecal Gallibacterium abundance in the first week of age and Collinsella abundance in the second week were negatively associated with inflammatory response as well as with calving-conception interval. Peptostreptococcus abundance in the second week of life was positively associated with inflammatory response and calving-conception interval, and negatively with average daily weight gain. In the third week, Dorea abundance was positively, Bilophila abundance was negatively associated with inflammatory response, and both genera were negatively associated with age at first calving. These bacterial genera may be able to influence the inflammatory response and through this, possibly the future performance of the dairy heifer. Deciphering such microbiota-host interactions can help improve calf management to benefit production and welfare.
Collapse
Affiliation(s)
- Marina Loch
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Elisabeth Dorbek-Sundström
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Aleksi Husso
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66 Helsinki, Finland
| | - Tiina Pessa-Morikawa
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66 Helsinki, Finland
| | - Tarmo Niine
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Kerli Mõtus
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Mikael Niku
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66 Helsinki, Finland
| | - Toomas Orro
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| |
Collapse
|
3
|
Hummel G, Aagaard K. Arthropods to Eutherians: A Historical and Contemporary Comparison of Sparse Prenatal Microbial Communities Among Animalia Species. Am J Reprod Immunol 2024; 92:e13897. [PMID: 39140417 DOI: 10.1111/aji.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Since the advent of next-generation sequencing, investigators worldwide have sought to discern whether a functional and biologically or clinically relevant prenatal microbiome exists. One line of research has led to the hypothesis that microbial DNA detected in utero/in ovo or prior to birth/hatching is a result of contamination and does not belong to viable and functional microbes. Many of these preliminary evaluations have been conducted in humans, mice, and nonhuman primates due to sample and specimen availability. However, a comprehensive review of the literature across animal species suggests organisms that maintain an obligate relationship with microbes may act as better models for interrogating the selective pressures placed on vertical microbial transfer over traditional laboratory species. To date, studies in humans and viviparous laboratory species have failed to illustrate the clear presence and transfer of functional microbes in utero. Until a ground truth regarding the status and relevance of prenatal microbes can be ascertained, it is salient to conduct parallel investigations into the prevalence of a functional prenatal microbiome across the developmental lifespan of multiple organisms in the kingdom Animalia. This comprehensive understanding is necessary not only to determine the role of vertically transmitted microbes and their products in early human health but also to understand their full One Health impact. This review is among the first to compile such comprehensive primary conclusions from the original investigator's conclusions, and hence collectively illustrates that prenatal microbial transfer is supported by experimental evidence arising from over a long and rigorous scientific history encompassing a breadth of species from kingdom Animalia.
Collapse
Affiliation(s)
- Gwendolynn Hummel
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kjersti Aagaard
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
4
|
Silva JA, Castañares M, Mouguelar H, Valenciano JA, Pellegrino MS. Isolation of lactic acid bacteria from the reproductive tract of mares as potentially beneficial strains to prevent equine endometritis. Vet Res Commun 2024; 48:1353-1366. [PMID: 38233700 DOI: 10.1007/s11259-024-10295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Endometritis, the inflammation of the endometrium, is the leading cause of subfertility in mares, and therefore responsible for major economic losses in the horse industry worldwide. It is generally treated with uterine lavages combined with ecbolic agents and local or systemic antibiotics. However, since antibiotic overuse has been associated with antimicrobial resistance in mares with persistent endometritis, new prevention and treatment alternatives are needed. One such alternative could be the use of probiotic lactic acid bacteria (LAB) isolated from the host. Thanks to their species specificity, resident microbiota may restore ecological equilibrium within the host, and therefore, help prevent infections and improve physiological functions. In the present study, 257 bacterial strains were isolated from 77 healthy mares, and 88.76% (n = 228) of them were phenotypically classified as LAB. Within this group, 65.79% were able to inhibit at least one strain from each of the genera that most commonly cause equine endometritis (Streptococcus equi subsp. zooepidemicus, Escherichia coli, and Staphylococcus spp.). Five strains (RCE11, RCE20, RCE91, RCE99, and RCE167) were selected on the basis of their beneficial properties: ability to autoaggregate and adhere to equine epithelial cells, high inhibition of and co-aggregation with all the bacteria isolated from clinical cases of endometritis evaluated, and negative co-inhibition between one another. All five were finally identified as Enterococcus spp., namely E. faecium (two strains), E. hirae (two strains), and E. gallinarum (one strain). Further studies will assess their safety and biotechnological potential for the design of a multi-strain probiotic formula to prevent equine endometritis.
Collapse
Affiliation(s)
- Jessica Alejandra Silva
- Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Castañares
- Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Horacio Mouguelar
- Departament of Anatomy, Faculty of Agronomy and Veterinary, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Javier Aguilar Valenciano
- Departament of Animal Production, Faculty of Agronomy and Veterinary, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Matías Santiago Pellegrino
- Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
König E, Beasley S, Heponiemi P, Kivinen S, Räkköläinen J, Salminen S, Collado MC, Borman T, Lahti L, Piirainen V, Valros A, Heinonen M. Fecal microbiota profiles of growing pigs and their relation to growth performance. PLoS One 2024; 19:e0302724. [PMID: 38709788 PMCID: PMC11073740 DOI: 10.1371/journal.pone.0302724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
The early gut microbiota composition is fundamentally important for piglet health, affecting long-term microbiome development and immunity. In this study, the gut microbiota of postparturient dams was compared with that of their offspring in three Finnish pig farms at three growth phases. The differences in fecal microbiota of three study development groups (Good, Poorly, and PrematureDeath) were analyzed at birth (initial exposure phase), weaning (transitional phase), and before slaughter (stable phase). Dam Lactobacillaceae abundance was lower than in piglets at birth. Limosilactobacillus reuteri and Lactobacillus amylovorus were dominantly expressed in dams and their offspring. Altogether 17 piglets (68%) were identified with Lactobacillaceae at the initial exposure phase, divided unevenly among the development groups: 85% of Good, 37.5% of Poorly, and 75% of PrematureDeath pigs. The development group Good was identified with the highest microbial diversity, whereas the development group PrematureDeath had the lowest diversity. After weaning, the abundance and versatility of Lactobacillaceae in piglets diminished, shifting towards the microbiome of the dam. In conclusion, the fecal microbiota of pigs tends to develop towards a similar alpha and beta diversity despite development group and rearing environment.
Collapse
Affiliation(s)
- Emilia König
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| | | | | | - Sanni Kivinen
- Functional Foods Forum, University of Turku, Turku, Finland
| | | | - Seppo Salminen
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Maria Carmen Collado
- Functional Foods Forum, University of Turku, Turku, Finland
- Department of Biotechnology, Institute of Agrochemistry and Food Technology–National Research Council (IATA-CSIC), Valencia, Spain
| | - Tuomas Borman
- Department of Computing, University of Turku, Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Virpi Piirainen
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| | - Anna Valros
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| | - Mari Heinonen
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Boucher L, Leduc L, Leclère M, Costa MC. Current Understanding of Equine Gut Dysbiosis and Microbiota Manipulation Techniques: Comparison with Current Knowledge in Other Species. Animals (Basel) 2024; 14:758. [PMID: 38473143 DOI: 10.3390/ani14050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the importance of intestinal microbiota in horses and the factors influencing its composition have been the focus of many studies over the past few years. Factors such as age, diet, antibiotic administration, and geographic location can affect the gut microbiota. The intra- and inter-individual variability of fecal microbiota in horses complicates its interpretation and has hindered the establishment of a clear definition for dysbiosis. Although a definitive causal relationship between gut dysbiosis in horses and diseases has not been clearly identified, recent research suggests that dysbiosis may play a role in the pathogenesis of various conditions, such as colitis and asthma. Prebiotics, probiotics, and fecal microbiota transplantation to modulate the horse's gastrointestinal tract may eventually be considered a valuable tool for preventing or treating diseases, such as antibiotic-induced colitis. This article aims to summarize the current knowledge on the importance of intestinal microbiota in horses and factors influencing its composition, and also to review the published literature on methods for detecting dysbiosis while discussing the efficacy of gut microbiota manipulation in horses.
Collapse
Affiliation(s)
- Laurie Boucher
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Laurence Leduc
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mathilde Leclère
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcio Carvalho Costa
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
7
|
Leduc L, Costa M, Leclère M. The Microbiota and Equine Asthma: An Integrative View of the Gut-Lung Axis. Animals (Basel) 2024; 14:253. [PMID: 38254421 PMCID: PMC10812655 DOI: 10.3390/ani14020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Both microbe-microbe and host-microbe interactions can have effects beyond the local environment and influence immunological responses in remote organs such as the lungs. The crosstalk between the gut and the lungs, which is supported by complex connections and intricate pathways, is defined as the gut-lung axis. This review aimed to report on the potential role of the gut-lung gut-lung axis in the development and persistence of equine asthma. We summarized significant determinants in the development of asthma in horses and humans. The article discusses the gut-lung axis and proposes an integrative view of the relationship between gut microbiota and asthma. It also explores therapies for modulating the gut microbiota in horses with asthma. Improving our understanding of the horse gut-lung axis could lead to the development of techniques such as fecal microbiota transplants, probiotics, or prebiotics to manipulate the gut microbiota specifically for improving the management of asthma in horses.
Collapse
Affiliation(s)
- Laurence Leduc
- Clinical Sciences Department, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Marcio Costa
- Veterinary Department of Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Mathilde Leclère
- Clinical Sciences Department, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| |
Collapse
|
8
|
Mienaltowski MJ, Callahan M, De La Torre U, Maga EA. Comparing microbiotas of foals and their mares' milk in the first two weeks after birth. BMC Vet Res 2024; 20:17. [PMID: 38191395 PMCID: PMC10775675 DOI: 10.1186/s12917-023-03864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The mare-foal relationship is essential for the well-being and growth of a foal. Mare's milk provides a foal with nutrients, protective immunity, and microbes. Within the first two weeks of life, there is a risk for a foal to suffer from diarrhea, particularly "foal heat diarrhea" which happens at about the time of a mare's estrus cycle but is more likely due to transitions in the microbiota in the foal's gastrointestinal (GI) tract. We hypothesized that this GI microbiota transition could be caused by changes in lysozyme and microbial populations in the mare's milk. To test this hypothesis, fifteen mare-foal pairs were followed in the first 15 days post-foaling. Every other day milk was collected from mares and rectal swabs were collected from foals. Lysozyme activity in the mare's milk was measured using a fluorescence assay. Microbial DNA was isolated from the milk and swabs and the V4 domain of 16 S rRNA genes were PCR amplified and sequenced using Illumina MiSeq technology. Microbial populations were analyzed using DADA2 and phyloseq within R. RESULTS Mare's milk lysozyme activity peaked for samples at Day 1 and levels dropped to 72.5% of Day 1 activity by Day 15; however, microbial populations in the mare's milk did not vary significantly over the two weeks. Furthermore, levels of microbial diversity found in foal rectal swabs were initially similar to microbial diversity seen in mare's milk; however, over the first fifteen days, diversity increased for the foal rectal swab microbiota and swab microbial populations differed from milk microbes. A transition occurred shifting from microbes from the phylum Proteobacteria early in rectal swabs to those primarily from the phyla Firmicutes and Bacteroidota after the first few days post-foaling. These phyla contained several families and genera of microbes that promote utilization of milk components in healthy gut transition. Microbial abundance levels correlated more with days post-parturition than with lysozyme activity and mare's milk microbial populations. CONCLUSIONS The findings suggest that much of the microbial populations responsible for the transition of the foal's gut comes from sources outside of mare's milk species and levels of lysozyme activity.
Collapse
Affiliation(s)
- Michael J Mienaltowski
- Department of Animal Science, University of California Davis, One Shields Avenue, 2251 Meyer Hall, Davis, CA, 95616, USA.
| | - Mitchell Callahan
- Department of Animal Science, University of California Davis, One Shields Avenue, 2251 Meyer Hall, Davis, CA, 95616, USA
| | - Ubaldo De La Torre
- Department of Animal Science, University of California Davis, One Shields Avenue, 2251 Meyer Hall, Davis, CA, 95616, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA
| | - Elizabeth A Maga
- Department of Animal Science, University of California Davis, One Shields Avenue, 2251 Meyer Hall, Davis, CA, 95616, USA
| |
Collapse
|
9
|
König E, Heponiemi P, Kivinen S, Räkköläinen J, Beasley S, Borman T, Collado MC, Hukkinen V, Junnila J, Lahti L, Norring M, Piirainen V, Salminen S, Heinonen M, Valros A. Fewer culturable Lactobacillaceae species identified in faecal samples of pigs performing manipulative behaviour. Sci Rep 2024; 14:132. [PMID: 38168466 PMCID: PMC10762183 DOI: 10.1038/s41598-023-50791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Manipulative behaviour that consists of touching or close contact with ears or tails of pen mates is common in pigs and can become damaging. Manipulative behaviour was analysed from video recordings of 45-day-old pigs, and 15 manipulator-control pairs (n = 30) were formed. Controls neither received nor performed manipulative behaviour. Rectal faecal samples of manipulators and controls were compared. 16S PCR was used to identify Lactobacillaceae species and 16S amplicon sequencing to determine faecal microbiota composition. Seven culturable Lactobacillaceae species were identified in control pigs and four in manipulator pigs. Manipulators (p = 0.02) and females (p = 0.005) expressed higher Lactobacillus amylovorus, and a significant interaction was seen (sex * status: p = 0.005) with this sex difference being more marked in controls. Females (p = 0.08) and manipulator pigs (p = 0.07) tended to express higher total Lactobacillaceae. A tendency for an interaction was seen in Limosilactobacillus reuteri (sex * status: p = 0.09). Results suggest a link between observed low diversity in Lactobacillaceae and the development of manipulative behaviour.
Collapse
Affiliation(s)
- Emilia König
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland.
| | | | - Sanni Kivinen
- Functional Foods Forum, University of Turku, 20520, Turku, Finland
| | | | - Shea Beasley
- Vetcare Ltd., 04600, Mäntsälä, Finland
- Sheaps Oy, 03250, Ojakkala, Finland
| | - Tuomas Borman
- Department of Computing, University of Turku, 20500, Turku, Finland
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980, Paterna, Valencia, Spain
| | - Vilja Hukkinen
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | | | - Leo Lahti
- Department of Computing, University of Turku, 20500, Turku, Finland
| | - Marianna Norring
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | - Virpi Piirainen
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, 20520, Turku, Finland
| | - Mari Heinonen
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | - Anna Valros
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| |
Collapse
|
10
|
Malaluang P, Åkerholm T, Nyman G, Lindahl J, Hansson I, Morrell JM. Bacteria in the healthy equine vagina during the estrous cycle. Theriogenology 2024; 213:11-18. [PMID: 37793220 DOI: 10.1016/j.theriogenology.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
An understanding of the normal bacterial microbiota of any organ is essential to provide the background to conditions and interventions that might cause the microbiota to change. In the vagina of the mare, a change of bacterial microbiota could be induced by introduction of semen, treatment with antibiotics, discharge from an unhealthy uterus etc. Previous studies on equine vaginal bacteria are not all conducted in the same way and results are not altogether consistent. Therefore, this study was designed to provide a deeper understanding of the bacterial microbiota of the mare vagina, and possible changes throughout the estrous cycle. The cranial portion of the vagina was sampled on day 0 (ovulation), day 3, day 7, and day 14 of the estrous cycle. The vaginal sampling was conducted with double-guarded occluded swabs from the cranial floor of the vagina. Ovulation was determined by rectal palpation and ultrasonic examination, and the day 0 samples were taken within ±24 h of ovulation. Swabs were brought to the laboratory in Amies medium within 2-3 h and were plated out immediately on both selective and non-selective agars. Results were registered as amount of growth (qualitatively), bacterial species and number of isolates. Bacterial growth was highest on day 3 and 7, representing the beginning and middle of diestrus. The dominant bacteria were Escherichia coli and Streptococcus zooepidemicus. Escherichia coli was especially dominant in maiden mares, compared to the mares that had foaled. An increase in bacterial diversity throughout the estrous cycle was observed, being highest on day 14. These results suggest that there are changes in the bacterial microbiota of the mare vagina throughout the normal estrous cycle.
Collapse
Affiliation(s)
- P Malaluang
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - T Åkerholm
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - G Nyman
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Lövsta Stud, Upplands Väsby, Sweden
| | - J Lindahl
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Current Affiliation Department of Animal Health and Antibiotic Strategies, National Veterinary Institute, Uppsala, Sweden
| | - I Hansson
- Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J M Morrell
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
11
|
Dunière L, Ruiz P, Lebbaoui Y, Guillot L, Bernard M, Forano E, Chaucheyras-Durand F. Effects of rearing mode on gastro-intestinal microbiota and development, immunocompetence, sanitary status and growth performance of lambs from birth to two months of age. Anim Microbiome 2023; 5:34. [PMID: 37461095 DOI: 10.1186/s42523-023-00255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Artificial rearing system, commonly used in prolific sheep breeds, is associated to increased mortality and morbidity rates before weaning, which might be linked to perturbations in digestive tract maturation, including microbiota colonization. This study evaluated the effect of rearing mode (mothered or artificially reared) on the establishment of the rumen and intestinal microbiome of lambs from birth to weaning. We also measured immunological and zootechnical parameters to assess lambs' growth and health. GIT anatomy as well as rumen and intestinal epithelium gene expression were also analysed on weaned animals to assess possible long-term effects of the rearing practice. RESULTS Total VFA concentrations were higher in mothered lambs at 2 months of age, while artificially-reared lambs had lower average daily gain, a more degraded sanitary status and lower serum IgG concentration in the early growth phase. Metataxonomic analysis revealed higher richness of bacterial and eukaryote populations in mothered vs. artificially-reared lambs in both Rumen and Feces. Beta diversity analysis indicated an evolution of rumen and fecal bacterial communities in mothered lambs with age, not observed in artificially-reared lambs. Important functional microorganisms such as the cellulolytic bacterium Fibrobacter succinogenes and rumen protozoa did not establish correctly before weaning in artificially-reared lambs. Enterobacteriaceae and Escherichia coli were dominant in the fecal microbiota of mothered lambs, but main E. coli virulence genes were not found differential between the two groups, suggesting they are commensal bacteria which could exert a protective effect against pathogens. The fecal microbiota of artificially-reared lambs had a high proportion of lactic acid bacteria taxa. No difference was observed in mucosa gene expression in the two lamb groups after weaning. CONCLUSIONS The rearing mode influences gastrointestinal microbiota and health-associated parameters in offspring in early life: rumen maturation was impaired in artificially-reared lambs which also presented altered sanitary status and higher risk of gut dysbiosis. The first month of age is thus a critical period where the gastrointestinal tract environment and microbiota are particularly unstable and special care should be taken in the management of artificially fed newborn ruminants.
Collapse
Affiliation(s)
- Lysiane Dunière
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Yacine Lebbaoui
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Laurie Guillot
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Mickael Bernard
- UE 1414 (Unité Expérimentale), INRAE, Herbipôle, Saint-Genès Champanelle, 63122, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France.
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France.
| |
Collapse
|
12
|
Beckers KF, Gomes VCL, Crissman KR, Liu CC, Schulz CJ, Childers GW, Sones JL. Metagenetic Analysis of the Pregnant Microbiome in Horses. Animals (Basel) 2023; 13:1999. [PMID: 37370509 DOI: 10.3390/ani13121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Placentitis is the leading cause of infectious abortion in the horse. Additionally, it can result in weak and/or growth restricted offspring. While the etiology of ascending placentitis is well described in mares, less is known regarding the pathogenesis of other types, such as nocardioform placentitis. This study aims to identify the microbial communities in different body sites of the pregnant mare in early gestation to establish a core microbiome that may be perturbed in pathologic pregnancies such as placentitis. We hypothesize that the equine placenta harbors a distinct resident microbiome in early pregnancy when characterized by metagenetics and that there will be a disparity in bacterial communities from the oral, vaginal, and fecal microbiome. Samples were collected from the oral cavity, vagina, anus, and the allantoic portion of the allantochorion ("placenta") from five pregnant mares between 96 and 120 days of gestation. The V4 region of the 16S rRNA gene was amplified for Illumina MiSeq sequencing to examine core bacterial communities present in the different body sites. Microbial community composition of the pregnant ponies by body site was significantly different (Bray-Curtis dissimilarity). The placenta was significantly different from the feces, oral cavity, and vagina. Alpha diversity measuring the Shannon diversity matrix was significant, with the body sites being a compounding variable, meaning there was a difference in richness and evenness in the different microbial communities. Feces had the greatest alpha diversity, while the oral cavity and placenta similarly had the least. In conclusion, metagenetics did reveal distinct community differences in the oral, fecal, vaginal, and placenta cavities of the horse. The equine placenta does show similarities in its microbial communities to the oral cavity. Further research needs to be completed to investigate how bacteria may be translocated to the placenta from these other body sites and how they contribute to the development of placentitis.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviane C L Gomes
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kassandra R Crissman
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Christopher J Schulz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Gary W Childers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Jenny L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Tyrnenopoulou P, Fthenakis GC. Clinical Aspects of Bacterial Distribution and Antibiotic Resistance in the Reproductive System of Equids. Antibiotics (Basel) 2023; 12:antibiotics12040664. [PMID: 37107026 PMCID: PMC10135018 DOI: 10.3390/antibiotics12040664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Antibiotic administration is a standard therapeutic practice for the treatment of reproductive disorders of equids. This might lead to undesirable microbial imbalance and could favour the acquisition of antibiotic resistance. Therefore, it is imperative for clinicians to understand patterns of antibiotic resistance when considering and developing treatment regimes. Continued engagement of clinicians with novel alternative approaches to treat reproductive infections would be essential in order to address this rising threat within the One Health perspective. The objectives of the present review were to present the bacterial infections in the reproductive system of equids (horses, donkeys), to upraise the literature related to the issue of antibiotic resistance of bacteria causing these infections and to discuss the topic from a clinical perspective. Initially, the review summarised the various infections of the reproductive system of equids (genital system of females, genital system of males, mammary glands) and the causal bacteria, providing relevant information about horses and donkeys. Subsequently, the clinical therapeutics of these infections were presented, taking into account the significance of antibiotic resistance of bacteria as a limiting factor in treating the infections. Finally, approaches to circumvent antibiotic resistance in clinical settings were summarized. It was concluded that awareness regarding antibiotic resistance in equine reproductive medicine would increase, as we would recognise the multifaceted problem of resistance. Actions and initiatives within the One Health approach, minimizing the potential dissemination of resistant strains to humans and to the environment, with specific applications in medicine of equids should be appropriately instituted internationally.
Collapse
|
14
|
Chaucheyras-Durand F, Sacy A, Karges K, Apper E. Gastro-Intestinal Microbiota in Equines and Its Role in Health and Disease: The Black Box Opens. Microorganisms 2022; 10:microorganisms10122517. [PMID: 36557769 PMCID: PMC9783266 DOI: 10.3390/microorganisms10122517] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Horses are large non-ruminant herbivores and rely on microbial fermentation for energy, with more than half of their maintenance energy requirement coming from microbial fermentation occurring in their enlarged caecum and colon. To achieve that, the gastro-intestinal tract (GIT) of horses harbors a broad range of various microorganisms, differing in each GIT segment, which are essential for efficient utilization of feed, especially to use nutrients that are not or little degraded by endogenous enzymes. In addition, like in other animal species, the GIT microbiota is in permanent interplay with the host's cells and is involved in a lot of functions among which inflammation, immune homeostasis, and energy metabolism. As for other animals and humans, the horse gut microbiome is sensitive to diet, especially consumption of starch, fiber, and fat. Age, breeds, stress during competitions, transportation, and exercise may also impact the microbiome. Because of its size and its complexity, the equine GIT microbiota is prone to perturbations caused by external or internal stressors that may result in digestive diseases like gastric ulcer, diarrhea, colic, or colitis, and that are thought to be linked with systemic diseases like laminitis, equine metabolic syndrome or obesity. Thus, in this review we aim at understanding the common core microbiome -in terms of structure and function- in each segment of the GIT, as well as identifying potential microbial biomarkers of health or disease which are crucial to anticipate putative perturbations, optimize global practices and develop adapted nutritional strategies and personalized nutrition.
Collapse
Affiliation(s)
- Frédérique Chaucheyras-Durand
- Lallemand SAS, 31702 Blagnac, France
- UMR MEDIS, INRAE, Université Clermont-Auvergne, 63122 Saint-Genès Champanelle, France
| | | | - Kip Karges
- Lallemand Specialities Inc., Milwaukee, WI 53218, USA
| | | |
Collapse
|
15
|
Gomez DE, Wong D, MacNicol J, Dembek K. The fecal bacterial microbiota of healthy and sick newborn foals. Vet Med (Auckl) 2022; 37:315-322. [PMID: 36519210 PMCID: PMC9889700 DOI: 10.1111/jvim.16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The fecal bacterial microbiota of normal foals and foals with enterocolitis has been characterized using next-generation sequencing technology; however, there are no reports investigating the gut microbiota in foals hospitalized for other perinatal diseases. OBJECTIVE To describe and compare the fecal bacterial microbiota in healthy and sick foals using next-generation sequencing techniques. ANIMALS Hospitalized (17) and healthy foals (21). METHODS Case-control study. Fecal samples were collected from healthy and sick foals on admission. Sick foals were further divided into sick nonseptic (SNS, n = 9) and septic (n = 8) foals. After extraction of DNA, the V4 region of the 16 S rRNA gene was amplified using a PCR assay, and the final product was sequenced with an Illumina MiSeq. RESULTS Diversity was significantly lower in healthy than sick foals (P < .05). The bacterial membership (Jaccard index) and structure (Yue & Clayton index) of the fecal microbiota of healthy, septic, and SNS foals were similar (AMOVA, P > .05). Bacterial membership (AMOVA, P = .06) and structure (AMOVA, P = .33) were not different between healthy and sick foals. Enterobacteriaceae, Enterococcus, and Streptococcus were among the 5 more abundant taxa identified in both groups. CONCLUSION AND CLINICAL IMPORTANCE Higher fecal microbiota diversity in sick than healthy foals might suggest a high exposure to environmental microorganisms or an unstable colonic microbiota. The presence of microorganisms causing bacteremia in foals in a high relative abundance in the feces of foals suggests the intestine might play an essential role in the causation of bacteremia in foals.
Collapse
Affiliation(s)
- Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Jennifer MacNicol
- Department of Animal Biosciences, Ontario Agriculture CollegeUniversity of GuelphGuelphOntarioCanada
| | - Katarzyna Dembek
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
16
|
Perricone V, Sandrini S, Irshad N, Comi M, Lecchi C, Savoini G, Agazzi A. The Role of Yeast Saccharomyces cerevisiae in Supporting Gut Health in Horses: An Updated Review on Its Effects on Digestibility and Intestinal and Fecal Microbiota. Animals (Basel) 2022; 12:ani12243475. [PMID: 36552396 PMCID: PMC9774806 DOI: 10.3390/ani12243475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
To support the overall health of horses, it is essential to maintain an optimal gut health (GH) status, which encompasses several physiological and functional aspects, including the balance and functionality of intestinal microbial populations and, accordingly, the effective digestion and absorption of nutrients. Numerous biotic and abiotic stressors can lead to an imbalance of GH, such as the quality of forages and the composition of diet, e.g., the inclusion of high energy-dense feeds to meet the energy requirements of performance horses. To support the digestive function and the intestinal microbial populations, the diet can be supplemented with feed additives, such as probiotic yeasts, that promote the ability of cellulolytic bacteria in the hindgut to digest the available fiber fractions, finally increasing feed efficiency. Among the different yeasts available, S. cerevisiae is the most used in horses' nutrition; however, results of digestibility trials, as well as data on intestinal and fecal microbial populations, are sometimes contradictory. Therefore, the purpose of this review is to summarize the effects of S. cerevisiae on in vivo and in vitro digestibility, providing an updated overview of its effects on the intestinal and fecal microbial population.
Collapse
Affiliation(s)
- Vera Perricone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Silvia Sandrini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Nida Irshad
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Marcello Comi
- Department of Human Science and Quality of Life Promotion, Università Telematica San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Giovanni Savoini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
- Correspondence: ; Tel.: +39-02-50334506
| |
Collapse
|
17
|
Zakošek Pipan M, Podpečan O, Mrkun J. The fascinating microbes and their impact on neonatal dogs and cats - A review. Acta Vet Hung 2022; 70:175-183. [PMID: 35976733 DOI: 10.1556/004.2022.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
Abstract
Recent literature data indicate that canine and feline neonates are not born in a sterile environment as it was stated previously. The acquisition, colonisation and maintenance of the early life microbiota of healthy fetuses is a rapidly developing research area. In humans, the natural healthy infant microbiome plays an essential role in health and its assembly is determined by the maternal-offspring exchanges of microbes. Even though this topic is becoming more and more important in dogs and cats, the exact role of the neonatal microbiome is not yet fully known in animals. This review summarises the current knowledge of the normal physiological neonatal microbiome in healthy puppies and kittens.
Collapse
Affiliation(s)
- Maja Zakošek Pipan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Ožbalt Podpečan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Janko Mrkun
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Li J, Zhu Y, Mi J, Zhao Y, Holyoak GR, Yi Z, Wu R, Wang Z, Zeng S. Endometrial and vaginal microbiome in donkeys with and without clinical endometritis. Front Microbiol 2022; 13:884574. [PMID: 35979491 PMCID: PMC9376452 DOI: 10.3389/fmicb.2022.884574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Endometrial and vaginal microbiomes are critical in the study of endometritis, which is an important cause of infertility in donkeys. Our objective was to investigate the difference of the endometrial and vaginal microbiomes between healthy donkey jennies (group C) and jennies with endometritis (group E). Endometrial and vaginal swab samples were collected, and the 16 s rRNA gene amplicon high-throughput sequencing technique was applied to identify the microbial composition in the samples. A similar microbial composition pattern was found between endometrial and vaginal samples, which indicated the impact of the vaginal microbiome on the endometrial microbial environment and health. There was a significant difference of endometrial and vaginal swab samples between the two groups. Ruminococcaceae and Lachnospiraceae were significantly more abundant in endometrial and vaginal microbiomes of group E than in group C. Their dominance was consistent with increased anaerobic bacterial taxa in the functional analysis, which might be associated with the pathogenesis of endometritis in donkeys. Sphingomonadaceae, a bacterial family reported in bovine semen, was statistically more abundant in endometrial microbiome of group E than in group C, which might suggest an association between high abundance of Sphingomonadaceae possibly due to uncleared semen and donkey endometritis. Our study revealed the composition of the vaginal and endometrial microbiomes in healthy and endometritis donkeys. These findings will provide more insights into the pathogenesis of donkey endometritis.
Collapse
Affiliation(s)
- Jing Li
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiping Zhu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junpeng Mi
- School of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | - Yufei Zhao
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gilbert Reed Holyoak
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | - Ziwen Yi
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rongzheng Wu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zixuan Wang
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Shenming Zeng,
| |
Collapse
|
19
|
Shang Z, Tan Z, Kong Q, Shang P, Wang H, Zhaxi W, Zhaxi C, Liu S. Characterization of fungal microbial diversity in Tibetan sheep, Tibetan gazelle and Tibetan antelope in the Qiangtang region of Tibet. MYCOSCIENCE 2022; 63:156-164. [PMID: 37090471 PMCID: PMC10042320 DOI: 10.47371/mycosci.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
Due to the high crude fiber content, straw of various crops is difficult to become a high quality forage resource. The degradation of cellulose in nature mainly depends on the cellulase secreted by microbes, which degrade cellulose into small molecular substances through chemical action, and the microbes that secrete cellulase mainly include some bacteria, fungi and actinomycetes, etc. The large and diverse microbial population contained in the mammalian gastrointestinal tract plays an important role in nutrient digestion. At present, many cellulose-degrading strains have been screened and obtained from animal digestive system and feces, such as Bacillus subtilis from the feces of Panda, Bacillus amyloliquefaciens from the cecum of goose. In this study, the fungal diversity was analysed in the fresh faeces of Tibetan sheep, Tibetan gazelle and Tibetan antelope in Qiangtang, Tibet. Results showed that the structure and species of gut fungi are different in three animals, which may be related to the different physiological functions among different animals, e.g., Tibetan antelope and Tibetan gazelle have stronger tolerance to rough feeding than Tibetan sheep. This study will lay a foundation for cellulose-degrading fungal development and provides technical support for improving rough feeding tolerance of Tibetan sheep.
Collapse
Affiliation(s)
- Zhenda Shang
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| | - Zhankun Tan
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| | - Qinghui Kong
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| | - Peng Shang
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| | - Honghui Wang
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| | - Wangjie Zhaxi
- Baingoin County Agricultural Science and Technology Service station
| | - Ciren Zhaxi
- Baingoin County Agricultural Science and Technology Service station
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural & Animal Husbandry University
| |
Collapse
|
20
|
Dorbek-Kolin E, Husso A, Niku M, Loch M, Pessa-Morikawa T, Niine T, Kaart T, Iivanainen A, Orro T. Faecal microbiota in two-week-old female dairy calves during acute cryptosporidiosis outbreak - Association with systemic inflammatory response. Res Vet Sci 2022; 151:116-127. [PMID: 35901524 DOI: 10.1016/j.rvsc.2022.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/15/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
In the present study, relationships between the intestinal microbiota and innate immunity response, acute cryptosporidiosis, and weight gain in female dairy calves were investigated. A total of 112 calves born during a natural outbreak of cryptosporidiosis on one dairy farm was included in the study. Microbiota composition was analysed by means of 16S ribosomal RNA gene amplicon sequencing from faecal samples collected during the second week of life, while the status of Cryptosporidium spp. infection was determined using immunofluorescence. Serum samples from the second week of life were colourimetrically analysed for the following markers of acute inflammation: acute-phase proteins (serum amyloid A and haptoglobin) and pro-inflammatory cytokines (interleukin-1 beta, interleukin-6, and tumour necrosis factor-alpha). Statistical analyses were performed using random forest analysis, variance-partitioning, and negative binomial regression. The faecal microbiota of the two-week old calves was composed of the phyla Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria (in order of decreasing abundance). Microbial diversity, measured in terms of the Shannon index, increased with the age of the calves and decreased if a high count of Cryptosporidium spp. oocysts was found in the faeces. Fusobacterium was positively associated with Cryptosporidium spp. oocyst count and serum amyloid A concentration. Peptostreptococcus was positively associated with haptoglobin and serum amyloid A concentrations, and negatively associated with average daily weight gain at 9 months of age. The markers of innate immunity, in combination with age, explained 6% of the microbial variation. These results suggest that some components of the intestinal microbiota may have a long-lasting negative effect on animal growth through the stimulation of the systemic innate immune response.
Collapse
Affiliation(s)
- Elisabeth Dorbek-Kolin
- Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia.
| | - Aleksi Husso
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Mikael Niku
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Marina Loch
- Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Tiina Pessa-Morikawa
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Tarmo Niine
- Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Tanel Kaart
- Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Antti Iivanainen
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Toomas Orro
- Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| |
Collapse
|
21
|
Weinert-Nelson JR, Biddle AS, Williams CA. Fecal microbiome of horses transitioning between warm-season and cool-season grass pasture within integrated rotational grazing systems. Anim Microbiome 2022; 4:41. [PMID: 35729677 PMCID: PMC9210719 DOI: 10.1186/s42523-022-00192-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/10/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Diet is a key driver of equine hindgut microbial community structure and composition. The aim of this study was to characterize shifts in the fecal microbiota of grazing horses during transitions between forage types within integrated warm- (WSG) and cool-season grass (CSG) rotational grazing systems (IRS). Eight mares were randomly assigned to two IRS containing mixed cool-season grass and one of two warm-season grasses: bermudagrass [Cynodon dactylon (L.) Pers.] or crabgrass [Digitaria sanguinalis (L.) Scop.]. Fecal samples were collected during transitions from CSG to WSG pasture sections (C-W) and WSG to CSG (W-C) on days 0, 2, 4, and 6 following pasture rotation and compared using 16S rRNA gene sequencing. RESULTS Regardless of IRS or transition (C-W vs. W-C), species richness was greater on day 4 and 6 in comparison to day 0 (P < 0.05). Evenness, however, did not differ by day. Weighted UniFrac also did not differ by day, and the most influential factor impacting β-diversity was the individual horse (R2 ≥ 0.24; P = 0.0001). Random forest modeling was unable to accurately predict days within C-W and W-C, but could predict the individual horse based on microbial composition (accuracy: 0.92 ± 0.05). Only three differentially abundant bacterial co-abundance groups (BCG) were identified across days within all C-W and W-C for both IRS (W ≥ 126). The BCG differing by day for all transitions included amplicon sequence variants (ASV) assigned to bacterial groups with known fibrolytic and butyrate-producing functions including members of Lachnospiraceae, Clostridium sensu stricto 1, Anaerovorax the NK4A214 group of Oscillospiraceae, and Sarcina maxima. In comparison, 38 BCG were identified as differentially abundant by horse (W ≥ 704). The ASV in these groups were most commonly assigned to genera associated with degradation of structural carbohydrates included Rikenellaceae RC9 gut group, Treponema, Christensenellaceae R-7 group, and the NK4A214 group of Oscillospiraceae. Fecal pH also did not differ by day. CONCLUSIONS Overall, these results demonstrated a strong influence of individual horse on the fecal microbial community, particularly on the specific composition of fiber-degraders. The equine fecal microbiota were largely stable across transitions between forages within IRS suggesting that the equine gut microbiota adjusted at the individual level to the subtle dietary changes imposed by these transitions. This adaptive capacity indicates that horses can be managed in IRS without inducing gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Jennifer R. Weinert-Nelson
- grid.430387.b0000 0004 1936 8796Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Amy S. Biddle
- grid.33489.350000 0001 0454 4791Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19711 USA
| | - Carey A. Williams
- grid.430387.b0000 0004 1936 8796Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| |
Collapse
|
22
|
Mocé ML, Esteve IC, Pérez-Fuentes S, Gómez EA, Mocé E. Microbiota in Goat Buck Ejaculates Differs Between Breeding and Non-breeding Seasons. Front Vet Sci 2022; 9:867671. [PMID: 35647092 PMCID: PMC9136232 DOI: 10.3389/fvets.2022.867671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Changes in semen microbiota are associated with alterations to sperm quality and fertility. However, the microbiota from most livestock species has not yet been studied. Goats are seasonal breeders, but semen microbiota has never been described in this species, and it is unknown how seasonality affects it. Our study objective is 2-fold: to describe the microbiota in goat buck ejaculates and to determine if it differs between breeding and non-breeding seasons. Semen from six males of the Murciano-Granadina breed was collected during both seasons. Two replicates were performed per male and season on different days. The microbiota was characterized by genomic sequencing technology. Sperm quality was also evaluated. Repetition was not significant for the studied variables. Sperm velocities were higher for the breeding than for the non-breeding season. The ejaculates from both seasons also differed in the proportion of apoptotic spermatozoa. The five dominant phyla were Firmicutes, Proteobacteria, Fusobacteria, Actinobacteria, and Bacteroidetes during the breeding season and Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria during the non-breeding season. The dominant genus during both seasons was Ureaplasma. Differences in microbial community structure (the beta diversity) were found. A decrease in the relative abundance of the genus Faecalibacterium and an increase in the genera Sphingomonas and Halomonas were observed in the ejaculates collected during the breeding season. Sphingomonas and Faecalibacterium abundance favorably and unfavorably correlated with sperm quality, respectively. In conclusion, the semen microbiota from goat bucks varies between breeding and non-breeding seasons, and the microbiota remains stable for 7 days within a season. In addition, the genera Sphingomonas and Faecalibacterium could be possible biomarkers of semen quality in goat bucks. These results contribute to an in-depth understanding of the effects of reproductive seasonality on goat buck ejaculates.
Collapse
Affiliation(s)
- María Lorena Mocé
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
| | - Inés Carolina Esteve
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Sara Pérez-Fuentes
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Ernesto A. Gómez
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Eva Mocé
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- *Correspondence: Eva Mocé
| |
Collapse
|
23
|
The Immune Mechanisms of Severe Equine Asthma-Current Understanding and What Is Missing. Animals (Basel) 2022; 12:ani12060744. [PMID: 35327141 PMCID: PMC8944511 DOI: 10.3390/ani12060744] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Severe equine asthma is a chronic respiratory disease of adult horses, occurring when genetically susceptible individuals are exposed to environmental aeroallergens. This results in airway inflammation, mucus accumulation and bronchial constriction. Although several studies aimed at evaluating the genetic and immune pathways associated with the disease, the results reported are inconsistent. Furthermore, the complexity and heterogeneity of this disease bears great similarity to what is described for human asthma. Currently available studies identified two chromosome regions (ECA13 and ECA15) and several genes associated with the disease. The inflammatory response appears to be mediated by T helper cells (Th1, Th2, Th17) and neutrophilic inflammation significantly contributes to the persistence of airway inflammatory status. This review evaluates the reported findings pertaining to the genetical and immunological background of severe equine asthma and reflects on their implications in the pathophysiology of the disease whilst discussing further areas of research interest aiming at advancing treatment and prognosis of affected individuals.
Collapse
|
24
|
Age-Dependent Intestinal Repair: Implications for Foals with Severe Colic. Animals (Basel) 2021; 11:ani11123337. [PMID: 34944114 PMCID: PMC8697879 DOI: 10.3390/ani11123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
Colic is a leading cause of death in horses, with the most fatal form being strangulating obstruction which directly damages the intestinal barrier. Following surgical intervention, it is imperative that the intestinal barrier rapidly repairs to prevent translocation of gut bacteria and their products and ensure survival of the patient. Age-related disparities in survival have been noted in many species, including horses, humans, and pigs, with younger patients suffering poorer clinical outcomes. Maintenance and repair of the intestinal barrier is regulated by a complex mucosal microenvironment, of which the ENS, and particularly a developing network of subepithelial enteric glial cells, may be of particular importance in neonates with colic. Postnatal development of an immature enteric glial cell network is thought to be driven by the microbial colonization of the gut and therefore modulated by diet-influenced changes in bacterial populations early in life. Here, we review the current understanding of the roles of the gut microbiome, nutrition, stress, and the ENS in maturation of intestinal repair mechanisms after foaling and how this may influence age-dependent outcomes in equine colic cases.
Collapse
|
25
|
Freccero F, Lanci A, Mariella J, Viciani E, Quercia S, Castagnetti A, Castagnetti C. Changes in the Fecal Microbiota Associated with a Broad-Spectrum Antimicrobial Administration in Hospitalized Neonatal Foals with Probiotics Supplementation. Animals (Basel) 2021; 11:ani11082283. [PMID: 34438741 PMCID: PMC8388449 DOI: 10.3390/ani11082283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Post-antibiotic intestinal dysbiosis leads to an overall reduction in bacterial and functional diversity, along with a minor resistance against pathogens. The study aimed to determine the changes on the fecal microbiota in hospitalized neonatal foals administered with broad-spectrum antimicrobials and supplemented probiotics. Fecal samples were collected at hospital admission, at the end of the antimicrobial treatment and at discharge. Seven foals treated with intravenous ampicillin and aminoglycosides for a mean of seven days were included. The results suggest that the fecal microbiota of neonatal foals rapidly returns to a high diversity after treatment. While the findings need to be confirmed in a larger population, the study suggests that in foals, the effect of antimicrobials may be strongly influenced by the changes that occur over time in the developing gut microbiota. Of note, the findings are influenced by the use of probiotics, and whether the changes would be consistent in antimicrobial-administered but not supplemented foals remains to be elucidated. Abstract There is a wide array of evidence across species that exposure to antibiotics is associated with dysbiosis, and due to their widespread use, this also raises concerns also in medicine. The study aimed to determine the changes on the fecal microbiota in hospitalized neonatal foals administered with broad-spectrum antimicrobials and supplemented probiotics. Fecal samples were collected at hospital admission (Ta), at the end of the antimicrobial treatment (Te) and at discharge (Td). Feces were analysed by next-generation sequencing of the 16S rRNA gene on Illumina MiSeq. Seven foals treated with IV ampicillin and amikacin/gentamicin were included. The mean age at Ta was 19 h, the mean treatment length was 7 days and the mean time between Te and Td was 4.3 days. Seven phyla were identified: Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, TM7 and Verrucomicrobia. At Ta, Firmicutes (48.19%) and Proteobacteria (31.56%) were dominant. The alpha diversity decreased from Ta to Te, but it was the highest at Td. The beta diversity was higher at Ta than at Te and higher at Td than at Te. An increase in Akkermansia over time was detected. The results suggest that the intestinal microbiota of neonatal foals rapidly returns to a high diversity after treatment. It is possible that in foals, the effect of antimicrobials is strongly influenced or overshadowed by the time-dependent changes in the developing gut microbiota.
Collapse
Affiliation(s)
- Francesca Freccero
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
| | - Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
- Correspondence:
| | - Jole Mariella
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
| | - Elisa Viciani
- Wellmicro srl, Via Piero Gobetti 101, 40127 Bologna, Italy; (E.V.); (S.Q.); (A.C.)
| | - Sara Quercia
- Wellmicro srl, Via Piero Gobetti 101, 40127 Bologna, Italy; (E.V.); (S.Q.); (A.C.)
| | - Andrea Castagnetti
- Wellmicro srl, Via Piero Gobetti 101, 40127 Bologna, Italy; (E.V.); (S.Q.); (A.C.)
| | - Carolina Castagnetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
26
|
Hesta M, Costa M. How Can Nutrition Help with Gastrointestinal Tract-Based Issues? Vet Clin North Am Equine Pract 2021; 37:63-87. [PMID: 33820610 DOI: 10.1016/j.cveq.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Many horses are fed differently than their wild ancestors. They often have limited access to pasture and are fed conserved forage and concentrates rich in starch and sugars, in only 2 meals per day. Feeding practices in contrast to natural feeding behavior can lead to gastrointestinal issues. Standard nutritional evaluation is warranted because of its important role in prevention and in treatment and management of diseases. When medical and nutritional treatments are combined, success rates are higher. New techniques to characterize equine microbiota have been used, allowing for microbiota manipulation to prevent and treat intestinal diseases.
Collapse
Affiliation(s)
- Myriam Hesta
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke B9820, Belgium.
| | - Marcio Costa
- Department of Veterinary Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Canada
| |
Collapse
|
27
|
Husso A, Lietaer L, Pessa-Morikawa T, Grönthal T, Govaere J, Van Soom A, Iivanainen A, Opsomer G, Niku M. The Composition of the Microbiota in the Full-Term Fetal Gut and Amniotic Fluid: A Bovine Cesarean Section Study. Front Microbiol 2021; 12:626421. [PMID: 33995290 PMCID: PMC8119756 DOI: 10.3389/fmicb.2021.626421] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
The development of a healthy intestinal immune system requires early microbial exposure. However, it remains unclear whether microbial exposure already begins at the prenatal stage. Analysis of such low microbial biomass environments are challenging due to contamination issues. The aims of the current study were to assess the bacterial load and characterize the bacterial composition of the amniotic fluid and meconium of full-term calves, leading to a better knowledge of prenatal bacterial seeding of the fetal intestine. Amniotic fluid and rectal meconium samples were collected during and immediately after elective cesarean section, performed in 25 Belgian Blue cow-calf couples. The samples were analyzed by qPCR, bacterial culture using GAM agar and 16S rRNA gene amplicon sequencing. To minimize the effects of contaminants, we included multiple technical controls and stringently filtered the 16S rRNA gene sequencing data to exclude putative contaminant sequences. The meconium samples contained a significantly higher amount of bacterial DNA than the negative controls and 5 of 24 samples contained culturable bacteria. In the amniotic fluid, the amount of bacterial DNA was not significantly different from the negative controls and all samples were culture negative. Bacterial sequences were identified in both sample types and were primarily of phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, with some individual variation. We conclude that most calves encounter in utero maternal-fetal transmission of bacterial DNA, but the amount of bacterial DNA is low and viable bacteria are rare.
Collapse
Affiliation(s)
- Aleksi Husso
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Leen Lietaer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tiina Pessa-Morikawa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Grönthal
- Central Laboratory, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jan Govaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Antti Iivanainen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Geert Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mikael Niku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Shi Y, Miao ZY, Su JP, Wasser SK. Shift of Maternal Gut Microbiota of Tibetan Antelope (Pantholops hodgsonii) During the Periparturition Period. Curr Microbiol 2021; 78:727-738. [PMID: 33410953 DOI: 10.1007/s00284-020-02339-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The maternal gut microbiota can influence and be affected by the substantial physiological changes taking place during the periparturition period. However, little information is known about the changes in the maternal gut microbiota and hormonal variations during this period in nonmodel organisms. Tibetan antelope (Pantholops hodgsonii) provide a unique system to address this issue because their summer migration cycle is synchronized with the periparturition period. Here, we used fecal microbiota as a proxy of gut microbiota. We characterized fecal microbial community of female migratory Tibetan antelope in the late pregnancy and postpartum periods using 16S rRNA gene sequencing and quantified fecal glucocorticoids (GCs) and triiodothyronine (T3) metabolite concentrations through enzyme immunoassays to identify the associations between maternal gut microbiota and physiological changes related with reproduction. We found that the fecal microbiota of Tibetan antelope was dominated by Firmicutes and Bacteroidetes. The microbial composition was significantly altered during the transition from late pregnancy to the postpartum period. Fecal T3 concentration was significantly higher in the postpartum period compared to late pregnancy, whereas GC metabolite concentration did not significantly differ between two reproductive states. We identified six genera (Anaerofustis, Bacteroides, Coprococcus_2, Ruminiclostridium_5, Ruminococcaceae_UCG-007, and Tyzzerella) that were significantly associated with reproductive states. We also found two genera (Christensenellaceae_R-7_group and Rikenellaceae_RC9_gut_group) significantly associated with GC metabolite concentration and two genera (Agathobacter and Papillibacter) significantly associated with T3 metabolite concentration, though these correlations were weak with coefficient values ranging from - 0.007 to 0.03. Our results indicate that many members of the gut microbiota are associated with the physiological changes in the transition from late pregnancy to the postpartum period, likely reflecting the metabolic and immune system dynamics during the periparturition period. This study highlights the importance of integrating microbiota, hormones and migration pattern to study the reproductive health of wildlife. By establishing a baseline of the physiological changes during the migration/periparturition period, we can have a better understanding of the impacts of increasing human activities on the Tibetan Plateau on the reproductive health of Tibetan antelope.
Collapse
Affiliation(s)
- Yue Shi
- Department of Biology, University of Washington, Box 351800, Seattle, WA, 98195, USA. .,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK, 99801, USA.
| | - Zi-Yan Miao
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.,Museum of Natural Resources of Qinghai Province, Xining, 810008, Qinghai, China
| | - Jian-Ping Su
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Samuel K Wasser
- Department of Biology, University of Washington, Box 351800, Seattle, WA, 98195, USA
| |
Collapse
|
29
|
Herd-Level and Individual Differences in Fecal Lactobacilli Dynamics of Growing Pigs. Animals (Basel) 2021; 11:ani11010113. [PMID: 33430499 PMCID: PMC7827896 DOI: 10.3390/ani11010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Selection for hyper-prolific sows has led to increased litter size, decreased birth weight, and increased within-litter variation. This is accompanied by impaired colostrum intake of piglets and poor performance. We aimed to investigate the total count of fecal lactobacilli and species diversity in growing pigs on two herds. Study pigs were categorized either small or large according to their birth weight. Sow colostrum quality and colostrum supply of piglets were determined. We hypothesized that the birth weight and growth performance of pigs are associated with fecal lactobacilli composition, which is influenced by colostrum. Small pigs had higher lactobacilli counts in both herds, but the difference was significant only for one herd (p = 0.01). Colostrum quality was numerically better in the herd that appeared also better managed in comparison to the other study herd. Colostrum intake tended to be significantly associated with the total lactobacilli count in the better-managed herd. In conclusion, herd-level factors clearly contribute to the microbiota of pigs, but birth weight also plays a potential role in the gastrointestinal tract lactobacilli dynamics. Our results revealed a potential long-term effect of colostrum, and therefore give a reason to investigate more thoroughly the associations between maternal immunity, pig microbiota, and performance. Abstract We studied the fecal lactobacilli count and species diversity of growing pigs along with immune parameters associated with intestinal lactobacilli. Thirty pigs categorized as small (S, n = 12) or large (L, n = 18) at birth were followed from birth to slaughter in two commercial herds, H1 and H2. Herds differed in terms of their general management. We determined sow colostrum quality, colostrum intake, piglet serum immunoglobulins, and pig growth. We took individual fecal samples from pigs in the weaning and finishing units. We studied lactobacilli count and identified their diversity with 16S PCR. Total lactobacilli count increased in H1 and decreased in H2 between samplings. Lactobacilli species diversity was higher in H1 in both fecal sampling points, whereas diversity decreased over time in both herds. We identified altogether seven lactobacilli species with a maximum of five (one to five) species in one herd. However, a relatively large proportion of lactobacilli remained unidentified with the used sequencing technique. Small pigs had higher lactobacilli counts in both herds but the difference was significant only in H2 (p = 0.01). Colostrum quality was numerically better in H1 than in H2, where colostrum intake tended to be associated with total lactobacilli count (p = 0.05).
Collapse
|
30
|
Abstract
Host-associated microbiomes contribute in many ways to the homeostasis of the metaorganism. The microbiome's contributions range from helping to provide nutrition and aiding growth, development, and behavior to protecting against pathogens and toxic compounds. Here we summarize the current knowledge of the diversity and importance of the microbiome to animals, using representative examples of wild and domesticated species. We demonstrate how the beneficial ecological roles of animal-associated microbiomes can be generally grouped into well-defined main categories and how microbe-based alternative treatments can be applied to mitigate problems for both economic and conservation purposes and to provide crucial knowledge about host-microbiota symbiotic interactions. We suggest a Customized Combination of Microbial-Based Therapies to promote animal health and contribute to the practice of sustainable husbandry. We also discuss the ecological connections and threats associated with animal biodiversity loss, microorganism extinction, and emerging diseases, such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Raquel S Peixoto
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; .,Current affiliation: Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudia Arabia;
| | - Derek M Harkins
- J. Craig Venter Institute, Rockville, Maryland 20850, USA; ,
| | - Karen E Nelson
- J. Craig Venter Institute, Rockville, Maryland 20850, USA; ,
| |
Collapse
|
31
|
Vaginal Microbiota Is Stable throughout the Estrous Cycle in Arabian Maress. Animals (Basel) 2020; 10:ani10112020. [PMID: 33153053 PMCID: PMC7692283 DOI: 10.3390/ani10112020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Lactic acid bacteria (LAB) dominate human vaginal microbiota and inhibit pathogen proliferation. In other mammals, LAB do not dominate vaginal microbiota, however shifts of dominant microorganisms occur during ovarian cycle. The study objectives were to characterize equine vaginal microbiota in mares by culture-dependent and independent methods and to describe its variation in estrus and diestrus. Vaginal swabs from 8 healthy adult Arabian mares were obtained in estrus and diestrus. For culture-dependent processing, bacteria were isolated on Columbia blood agar (BA) and Man Rogosa Sharpe (MRS) agar. LAB comprised only 2% of total bacterial isolates and were not related to ovarian phases. For culture-independent processing, V3/V4 variable regions of the 16S ribosomal RNA gene were amplified and sequenced using Illumina Miseq. The diversity and composition of the vaginal microbiota did not change during the estrous cycle. Core equine vaginal microbiome consisted of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria at the phylum level. At the genus level it was defined by Porphyromonas, Campylobacter, Arcanobacterium, Corynebacterium, Streptococcus, Fusobacterium, uncultured Kiritimatiaellae and Akkermansia. Lactobacillus comprised only 0.18% of the taxonomic composition in estrus and 0.37% in diestrus. No differences in the relative abundance of the most abundant phylum or genera were observed between estrus and diestrus samples.
Collapse
|
32
|
Liu Y, Bailey KE, Dyall-Smith M, Marenda MS, Hardefeldt LY, Browning GF, Gilkerson JR, Billman-Jacobe H. Faecal microbiota and antimicrobial resistance gene profiles of healthy foals. Equine Vet J 2020; 53:806-816. [PMID: 33030244 DOI: 10.1111/evj.13366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The human and domestic animal faecal microbiota can carry various antimicrobial resistance genes (ARGs), especially if they have been exposed to antimicrobials. However, little is known about the ARG profile of the faecal microbiota of healthy foals. A high-throughput qPCR array was used to detect ARGs in the faecal microbiota of healthy foals. OBJECTIVES To characterise the faecal microbiota and ARG profiles in healthy Australian foals aged less than 1 month. STUDY DESIGN Observational study. METHODS The faecal microbiota and ARG profiles of 37 Thoroughbred foals with no known gastrointestinal disease or antimicrobial treatment were determined using 16S rRNA gene sequencing and a high-throughput ARG qPCR array. Each foal was sampled on one occasion. RESULTS Firmicutes and Bacteroidetes were dominant in the faecal microbiota. Foals aged 1-2 weeks had significantly lower microbiota richness than older foals. Tetracycline resistance genes were the most common ARGs in the majority of foals, regardless of age. ARGs of high clinical concern were rarely detected in the faeces. The presence of ARGs was associated with the presence of class I integron genes. MAIN LIMITATIONS Samples were collected for a case-control study so foals were not sampled longitudinally, and thus the development of the microbiota as individual foals aged could not be proven. The history of antimicrobial treatment of the dams was not collected and may have affected the microbiota of the foals. CONCLUSION The ARGs in foal faeces varied concomitantly with age-related microbiota shifts. The high abundance of tetracycline resistance genes was likely due to the dominance of Bacteroides spp.
Collapse
Affiliation(s)
- Yuhong Liu
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Kirsten E Bailey
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - Michael Dyall-Smith
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Marc S Marenda
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Laura Y Hardefeldt
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - James R Gilkerson
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Helen Billman-Jacobe
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| |
Collapse
|