1
|
Grandière Pérez L, Brisse S. Diphtheria antitoxin treatment: from pioneer to neglected. Mem Inst Oswaldo Cruz 2025; 120:e240214. [PMID: 39841756 DOI: 10.1590/0074-02760240214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 01/24/2025] Open
Abstract
Diphtheria, a severe respiratory infection, was a major killer of children until the early years of the 20th century. Although diphtheria is now largely controlled globally thanks to vaccination, it is still endemic in some world regions and large epidemics can occur where vaccination coverage is insufficient. The pathological effects caused by its main virulence factor, diphtheria toxin, can be diminished by passive transfer of antibodies. Equine diphtheria antitoxin (eDAT), the cornerstone of treatment against toxinic complications of diphtheria, was invented more than 130 years ago, in 1890, and is still in use today. A method to concentrate anti-diphtheria antibodies from hyperimmune equine serum was described in the first issue of Memórias do Instituto Oswaldo Cruz in 1909. On this historic occasion, we present recent knowledge on taxonomic, epidemiological and clinical aspects of diphtheria agents that produce diphtheria toxin, and provide a historical perspective on eDAT treatment, adverse effects, threats on its scarce international supply, and current avenues for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Lucia Grandière Pérez
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Le Mans, Le Mans, France
- Université d'Angers, Angers, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Institut Pasteur, French National Reference Centre for Corynebacteria of the Diphtheriae complex, Paris, France
| |
Collapse
|
2
|
Prygiel M, Mosiej E, Wdowiak K, Zasada AA. Passive Immunisation in the Treatment of Infectious Diseases Related to Highly Potent Bacterial Toxins. Biomedicines 2024; 12:2920. [PMID: 39767826 PMCID: PMC11673946 DOI: 10.3390/biomedicines12122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The discovery of microbial toxins as the primary factors responsible for disease manifestations and the discovery that these toxins could be neutralised by antitoxins are linked to the birth of immunology. In the late 19th century, the serum or plasma of animals or patients who had recovered from infectious diseases or who had been immunised with a relevant antigen began to be used to treat or prevent infections. Before the advent of widespread vaccination campaigns, antitoxins played a key role in the treatment and prevention of diseases such as diphtheria and tetanus. A significant reduction in mortality following the introduction of antitoxins confirmed their efficacy. Serum therapy remains an important measure for post-exposure prophylaxis and for the treatment of unvaccinated or incompletely vaccinated patients. For the botulinum toxin, antitoxin therapy continues to be the sole available treatment. The manuscript contains a summary of the most important information on the passive immunoprophylaxis used in the treatment of diphtheria, tetanus, and botulism, all representing diseases in which symptoms are driven by the activity of highly potent bacterial toxins.
Collapse
Affiliation(s)
- Marta Prygiel
- National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (E.M.); (K.W.); (A.A.Z.)
| | | | | | | |
Collapse
|
3
|
Song BPC, Lai JY, Choong YS, Khanbabaei N, Latz A, Lim TS. Isolation of anti-Ancylostoma-secreted protein 5 (ASP5) antibody from a naïve antibody phage library. J Immunol Methods 2024; 535:113776. [PMID: 39551437 DOI: 10.1016/j.jim.2024.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Ancylostoma species are parasitic nematodes that release a multitude of proteins to manipulate host immune responses to facilitate their survival. Among the released proteins, Ancylostoma-secreted protein 5 (ASP5) plays a pivotal role in mediating host-parasite interactions, making it a promising target for interventions against canine hookworm infections caused by Ancylostoma species. Antibody phage display, a widely used method for generating human monoclonal antibodies was employed in this study. A bacterial expression system was used to produce ASP5 for biopanning. A single-chain fragment variable (scFv) monoclonal antibody against ASP5 was generated from the naïve Human AntibodY LibrarY (HAYLY). The resulting scFv antibody was characterized to elucidate its antigen-binding properties. The identified monoclonal antibody showed good specificity and binding characteristics which highlights its potential for diagnostic applications for hookworm infections.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Andreas Latz
- Gold Standard Diagnostics Frankfurt GmbH, Dietzenbach, Germany
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
4
|
White NJ. Monoclonal Antibodies to Treat Diphtheria. J Infect Dis 2024:jiae500. [PMID: 39570033 DOI: 10.1093/infdis/jiae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Affiliation(s)
- N J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Zhang L, Zheng B, Lu J, Wu H, Wu H, Zhang Q, Jiao L, Pan H, Zhou J. Evaluation of human antibodies from vaccinated volunteers for protection against Yersinia pestis infection. Microbiol Spectr 2024; 12:e0105424. [PMID: 39189763 PMCID: PMC11448073 DOI: 10.1128/spectrum.01054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Yersinia pestis has a broad host range and has caused lethal bubonic and pneumonic plague in humans. With the emergence of multiple resistant strains and the potential for biothreat use, there is an urgent need for new therapeutic strategies that can protect populations from natural or deliberate infection. Targeting F1 has been proven to be the main strategy for developing vaccines and therapeutic antibodies, but data on anti-F1 antibodies, especially in humans, are scarce. To date, three human anti-F1 monoclonal antibodies (m252, αF1Ig2, and αF1Ig8) from naive populations have been reported. Here, we constructed an antibody library from vaccinees immunized with the plague subunit vaccine IIa by phage display. The genetic basis, epitopes, and biological functions of the obtained mAbs were assessed and evaluated in plague-challenged mice. Three human mAbs, namely, F3, F19, and F23, were identified. Their biolayer responses were 0.4, 0.6, and 0.6 nm, respectively. The dissociation constants (KD) of the F1 antigen were 1 pM, 0.165 nM, and 1 pM, respectively. Although derived from distinct Ab lineages, that is, VH3-30-D3-10-JH4 (F3&F23) and VH3-43-D6-19-JH4 (F19), these mAbs share similar binding sites in F1 with some overlap with αF1Ig8 but are distinct from αF1Ig2. Each of them provided a significant protective effect for Balb/c mice against a 100 median lethal dose (MLD) challenge of a virulent Y. pestis strain when administered at a dose of 100 µg. No synergistic or antagonistic effects were observed among them. These mAbs are novel and excellent candidates for further drug development and use in clinical practice.IMPORTANCEIn this study, we identified three human monoclonal antibodies with a high affinity to F1 protein of Yersinia pestis. We discovered that they have relatively lower somatic hypermutations compared with antibodies, m252, αF1Ig2, and αF1Ig8, derived from the naive library reported previously. We also observed that these mAbs share similar binding sites in F1 with some overlapping with αF1Ig8 but distinct from that of αF1Ig2. Furthermore, each of them could provide complete protection for mice against a lethal dose of Yersinia pestis challenge. Our data provided new insights into the anti-F1 Ab repertories and their associated epitopes during vaccination in humans. The findings support the additional novel protective human anti-F1Abs for potential therapeutics against plaque.
Collapse
Affiliation(s)
- Li Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Binyang Zheng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Lu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Haisheng Wu
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Hailian Wu
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Qi Zhang
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Lei Jiao
- Lanzhou Institute of Biological Products Co., Ltd., State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Lanzhou, China
| | - Hongxing Pan
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jianfang Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Groff K, Allen D, Casey W, Clippinger AJ. Progress and Remaining Opportunities to Increase the Use of Animal-free Antibodies in the USA. Altern Lab Anim 2024; 52:285-289. [PMID: 39044652 DOI: 10.1177/02611929241266472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The scientific and ethical issues associated with the use of animal-derived antibodies in research can be overcome by the use of animal-free, sequence-defined recombinant antibodies, whose benefits are well documented. Here, we describe progress made following a 2019 expert meeting focused on improving the quality and reproducibility of biomedical research by accelerating the production and use of animal-free recombinant antibodies in the USA. In the five intervening years since the meeting, participants have established multifaceted initiatives to tackle the next steps outlined during the meeting. These initiatives include: prioritising the replacement of ascites-derived and polyclonal antibodies; distributing educational materials describing recombinant antibodies; fostering public-private partnerships to increase access to recombinant antibodies; and increasing the availability of funding for recombinant antibody development. Given the widescale use of antibodies across scientific disciplines, a transition to modern antibody production methods relies on a commitment from government agencies, universities, industry and funding organisations, to initiatives such as those outlined here.
Collapse
Affiliation(s)
- Katherine Groff
- PETA Science Consortium International e.V., Stuttgart, Germany
| | - David Allen
- Integrated Laboratory Systems, an Inotiv Company, Morrisville, NC, USA
| | - Warren Casey
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | |
Collapse
|
7
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
8
|
Hutchings CJ, Sato AK. Phage display technology and its impact in the discovery of novel protein-based drugs. Expert Opin Drug Discov 2024; 19:887-915. [PMID: 39074492 DOI: 10.1080/17460441.2024.2367023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Phage display technology is a well-established versatile in vitro display technology that has been used for over 35 years to identify peptides and antibodies for use as reagents and therapeutics, as well as exploring the diversity of alternative scaffolds as another option to conventional therapeutic antibody discovery. Such successes have been responsible for spawning a range of biotechnology companies, as well as many complementary technologies devised to expedite the drug discovery process and resolve bottlenecks in the discovery workflow. AREAS COVERED In this perspective, the authors summarize the application of phage display for drug discovery and provide examples of protein-based drugs that have either been approved or are being developed in the clinic. The amenability of phage display to generate functional protein molecules to challenging targets and recent developments of strategies and techniques designed to harness the power of sampling diverse repertoires are highlighted. EXPERT OPINION Phage display is now routinely combined with cutting-edge technologies to deep-mine antibody-based repertoires, peptide, or alternative scaffold libraries generating a wealth of data that can be leveraged, e.g. via artificial intelligence, to enable the potential for clinical success in the discovery and development of protein-based therapeutics.
Collapse
|
9
|
Khalili E, Lakzaei M, Aminian M. Neutralizing anti-diphtheria toxin scFv produced by phage display. Biotechnol Lett 2024; 46:385-398. [PMID: 38607601 DOI: 10.1007/s10529-024-03476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/10/2024] [Accepted: 02/10/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Diphtheria can be prevented by vaccination, but some epidemics occur in several places, and diphtheria's threat is considerable. Administration of diphtheria antitoxin (DAT) produced from hyperimmunized animals is the most common treatment. Recombinant human antibody fragments such as single-chain variable fragments (scFv) produced by phage display library may introduce an interesting approach to overcome the limitations of the traditional antibody therapy. In the present study, B cells of immunized volunteers were used to construct a human single-chain fragment (HuscFv) library. MATERIALS AND METHODS The library was constructed with the maximum combination of heavy and light chains. As an antigen, Diphtheria toxoid (DTd) was used in four-round phage bio-panning to select phage clones that display DTd bound HuscFv from the library. After panning, individual scFv clones were selected. Clones that were able to detect DTd in an initial screening assay were transferred to Escherichia coli HB2151 to express the scFvs and purification was followed by Ni metal ion affinity chromatography. Toxin neutralization test was performed on Vero cells. The reactivity of the soluble scFv with diphtheria toxin were done and affinity calculation based on Beatty method was calculated. RESULTS The size of the constructed scFv library was calculated to be 1.3 × 106 members. Following four rounds of selection, 40 antibody clones were isolated which showed positive reactivity with DTd in an ELISA assay. Five clones were able to neutralize DTd in Vero cell assay. These neutralizing clones were used for soluble expression and purification of scFv fragments. Some of these soluble scFv fragments show neutralizing activity ranging from 0.6 to 1.2 µg against twofold cytotoxic dose of diphtheria toxin. The affinity constant of the selected scFv antibody was determined almost 107 M-1. CONCLUSION This study describes the prosperous construction and isolation of scFv from the immune library, which specifically neutralizes diphtheria toxin. The HuscFv produced in this study can be a potential candidate to substitute the animal antibody for treating diphtheria and detecting toxins.
Collapse
Affiliation(s)
- Ehsan Khalili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Lakzaei
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Aminian
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Srivastava V, Godara P, Jena SP, Naik B, Singh S, Prajapati VK, Prusty D. Peptide-ligand conjugate based immunotherapeutic approach for targeted dismissal of non-structural protein 1 of dengue virus: A novel therapeutic solution for mild and severe dengue infections. Int J Biol Macromol 2024; 260:129562. [PMID: 38246445 DOI: 10.1016/j.ijbiomac.2024.129562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Dengue virus infection has significantly increased, with reported cases soaring from 505,430 in 2000 to 2,809,818 in 2022, emphasizing the need for effective treatments. Among the eleven structural and non-structural proteins of DENV, Non-structural protein 1 (NS1) has emerged as a promising target due to its diverse role in modulating the immune response, inducing vascular leakage, and facilitating viral replication and assembly. Monoclonal antibodies are the sole therapeutics to target NS1, but concerns about their cross-reactivity persist. Given these concerns, our study focuses on designing a novel Peptide Ligand Conjugate (PLC) as a potential alternative immunotherapeutic agent against NS1. This PLC aims to mediate the immune elimination of soluble NS1 and NS1-presenting DENV-infected host cells by pre-existing vaccine-induced immunity. By employing the High Throughput Virtual Screening (HTVS) method, QikProp analysis, and Molecular Dynamics studies, we identified three hits from Asinex Biodesigned Ligands out of 220,177 compounds that show strong binding affinity towards the monoclonal binding site of NS1 protein. After a rigorous analysis of physicochemical characteristics, antigenicity, allergenicity, and toxicity using various servers, we selected two peptides: the minimum epitopic region of the Diphtheria and Tetanus toxins as the peptide components of the PLCs. A non-cleavable, non-reactive oxime linker connected the ligand with the peptide through oxime and amide bonds. DPT vaccine is widely used in dengue-endemic countries, and it has been reported that antibodies titer against MER of Diphtheria toxin and Tetanus toxins persist lifelong in DPT-vaccinated people. Therefore, once the rationally designed PLCs bind to NS1 through the ligands, the peptide will induce an immune response against NS1 by triggering pre-existing DPT antibodies and activating memory cells. This orchestrated immune response will destroy soluble NS1 and NS1-expressing DENV-infected cells, thereby reducing the illness of severe dengue hemorrhagic fever and the DENV infection, respectively. Given the increasing demand for new therapeutics for DENV treatment, further investigation into this novel immune-therapeutic strategy may offer a new avenue for treating mild and severe dengue infections.
Collapse
Affiliation(s)
- Varshita Srivastava
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Priya Godara
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Sudip Prasad Jena
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
11
|
Bowman KA, Kaplonek P, McNamara RP. Understanding Fc function for rational vaccine design against pathogens. mBio 2024; 15:e0303623. [PMID: 38112418 PMCID: PMC10790774 DOI: 10.1128/mbio.03036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Eghtedari S, Behdani M, Kazemi-Lomedasht F. Neuropilin-1 Binding Peptide as Fusion to Diphtheria Toxin Induces Apoptosis in Non-small Cell Lung Cancer Cell Line. Curr Pharm Des 2024; 30:1317-1325. [PMID: 38584554 DOI: 10.2174/0113816128292382240325074032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Targeted cancer therapy can be considered as a new strategy to overcome the side effects of current cancer treatments. Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that is expressed in endothelial cells and tumor vessels to stimulate angiogenesis progression. Targeted diphtheria toxin (DT)- based therapeutics are promising tools for cancer treatment. This study aimed to construct a novel NRP-1 binding peptide (as three repeats) (CRGDK) as a fusion to truncated DT (DTA) (DTA-triCRGDK) for targeted delivery of DT into NRP-1 expressing cells. METHODS The concept of DTA-triCRGDK was designed, synthesized and cloned into the bacterial host. Expression of DTA-triCRGDK was induced by Isopropyl ß-D-1-thiogalactopyranoside (IPTG) and purification was performed using Ni-NTA chromatography. Biological activity of DTA-triCRGDK was evaluated using MTT, apoptosis, and wound healing assays. In addition, expression levels of apoptotic Bax, Bcl2, and Casp3 genes were determined by Real-time PCR. RESULTS Cytotoxicity analysis showed the IC50 values of DTA-triCRGDK for A549 and MRC5 were 0.43 nM and 4.12 nM after 24 h, respectively. Bcl2 expression levels decreased 0.4 and 0.72 fold in A549 and MRC5, respectively. However, Bax and Casp3 expression level increased by 6.75 and 8.19 in A549 and 2.51 and 3.6 in MRC5 cells. CONCLUSION Taken together, DTA-triCRGDK is a promising tool for targeted therapy of NRP-1 overexpressing cancer cells.
Collapse
Affiliation(s)
- Sara Eghtedari
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Harmsen MM, Cornelissen JC, van der Wal FJ, Bergervoet JHW, Koene M. Single-Domain Antibody Multimers for Detection of Botulinum Neurotoxin Serotypes C, D, and Their Mosaics in Endopep-MS. Toxins (Basel) 2023; 15:573. [PMID: 37755999 PMCID: PMC10535107 DOI: 10.3390/toxins15090573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly toxic proteins that require high-affinity immunocapture reagents for use in endopeptidase-based assays. Here, 30 novel and 2 earlier published llama single-domain antibodies (VHHs) against the veterinary-relevant BoNT serotypes C and D were yeast-produced. These VHHs recognized 10 independent antigenic sites, and many cross-reacted with the BoNT/DC and CD mosaic variants. As VHHs are highly suitable for genetically linking to increase antigen-binding affinity, 52 VHH multimers were produced and their affinity for BoNT/C, D, DC, and CD was determined. A selection of 15 multimers with high affinity (KD < 0.1 nM) was further shown to be resilient to a high salt wash that is used for samples from complex matrices and bound native BoNTs from culture supernatants as shown by Endopep-MS. High-affinity multimers suitable for further development of a highly sensitive Endopep-MS assay include four multimers that bind both BoNT/D and CD with KD of 14-99 pM, one multimer for BoNT/DC (65 pM) that also binds BoNT/C (75 pM), and seven multimers for BoNT/C (<1-19 pM), six of which also bind BoNT/DC with lower affinity (93-508 pM). In addition to application in diagnostic tests, these VHHs could be used for the development of novel therapeutics for animals or humans.
Collapse
Affiliation(s)
- Michiel M. Harmsen
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Jan C. Cornelissen
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Fimme J. van der Wal
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Jan H. W. Bergervoet
- Wageningen Plant Research, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Miriam Koene
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| |
Collapse
|
14
|
Márquez-López A, Fanarraga ML. AB Toxins as High-Affinity Ligands for Cell Targeting in Cancer Therapy. Int J Mol Sci 2023; 24:11227. [PMID: 37446406 DOI: 10.3390/ijms241311227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Conventional targeted therapies for the treatment of cancer have limitations, including the development of acquired resistance. However, novel alternatives have emerged in the form of targeted therapies based on AB toxins. These biotoxins are a diverse group of highly poisonous molecules that show a nanomolar affinity for their target cell receptors, making them an invaluable source of ligands for biomedical applications. Bacterial AB toxins, in particular, are modular proteins that can be genetically engineered to develop high-affinity therapeutic compounds. These toxins consist of two distinct domains: a catalytically active domain and an innocuous domain that acts as a ligand, directing the catalytic domain to the target cells. Interestingly, many tumor cells show receptors on the surface that are recognized by AB toxins, making these high-affinity proteins promising tools for developing new methods for targeting anticancer therapies. Here we describe the structure and mechanisms of action of Diphtheria (Dtx), Anthrax (Atx), Shiga (Stx), and Cholera (Ctx) toxins, and review the potential uses of AB toxins in cancer therapy. We also discuss the main advances in this field, some successful results, and, finally, the possible development of innovative and precise applications in oncology based on engineered recombinant AB toxins.
Collapse
Affiliation(s)
- Ana Márquez-López
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
15
|
Yu S, Zhang L, Wang A, Jin Y, Zhou D. Nanobodies: the Potential Application in Bacterial Treatment and Diagnosis. Biochem Pharmacol 2023:115640. [PMID: 37315818 DOI: 10.1016/j.bcp.2023.115640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
An infection caused by bacteria is one of the main factors that poses a threat to human health. A recent report from the World Health Organization (WHO) has highlighted that bacteria that cause blood infections have become increasingly drug-resistant. Therefore, it is crucial to research and develop new techniques for detecting and treating these infections. Since their discovery, nanobodies have exhibited numerous outstanding biological properties. They are easy to express, modify, and have high stability, robust permeability and low immunogenicity, all of which indicate their potential as a substitute. Nanobodies have been utilized in a variety of studies on viruses and cancer. This article primarily focuses on nanobodies and introduces their characteristics and application in the diagnosis and treatment of bacterial infections.
Collapse
Affiliation(s)
- Siyuan Yu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China; Department of Animal Engineering, Yangling Vocational&Technical College, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China.
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| |
Collapse
|
16
|
Liu D, Bai X, Helmick HDB, Samaddar M, Amalaradjou MAR, Li X, Tenguria S, Gallina NLF, Xu L, Drolia R, Aryal UK, Moreira GMSG, Hust M, Seleem MN, Kokini JL, Ostafe R, Cox A, Bhunia AK. Cell-surface anchoring of Listeria adhesion protein on L. monocytogenes is fastened by internalin B for pathogenesis. Cell Rep 2023; 42:112515. [PMID: 37171960 DOI: 10.1016/j.celrep.2023.112515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 05/14/2023] Open
Abstract
Listeria adhesion protein (LAP) is a secreted acetaldehyde alcohol dehydrogenase (AdhE) that anchors to an unknown molecule on the Listeria monocytogenes (Lm) surface, which is critical for its intestinal epithelium crossing. In the present work, immunoprecipitation and mass spectrometry identify internalin B (InlB) as the primary ligand of LAP (KD ∼ 42 nM). InlB-deleted and naturally InlB-deficient Lm strains show reduced LAP-InlB interaction and LAP-mediated pathology in the murine intestine and brain invasion. InlB-overexpressing non-pathogenic Listeria innocua also displays LAP-InlB interplay. In silico predictions reveal that a pocket region in the C-terminal domain of tetrameric LAP is the binding site for InlB. LAP variants containing mutations in negatively charged (E523S, E621S) amino acids in the C terminus confirm altered binding conformations and weaker affinity for InlB. InlB transforms the housekeeping enzyme, AdhE (LAP), into a moonlighting pathogenic factor by fastening on the cell surface.
Collapse
Affiliation(s)
- Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | | | - Manalee Samaddar
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA
| | - Mary Anne Roshni Amalaradjou
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Department of Animal Sciences, University of Connecticut, Storrs, CT, USA
| | - Xilin Li
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA
| | - Luping Xu
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA; Department of Biological Science, Eastern Kentucky University, Richmond, KY, USA
| | - Uma K Aryal
- Bindley Bioscience, Purdue University, West Lafayette, IN, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Gustavo Marçal Schmidt Garcia Moreira
- Technische Universität Braunschweig University of Technology, Institute for Biochemistry, Biotechnology, and Bioinformatics, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig University of Technology, Institute for Biochemistry, Biotechnology, and Bioinformatics, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jozef L Kokini
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Raluca Ostafe
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
17
|
Development of an inhibiting antibody against equine interleukin 5 to treat insect bite hypersensitivity of horses. Sci Rep 2023; 13:4029. [PMID: 36899044 PMCID: PMC10000358 DOI: 10.1038/s41598-023-31173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Insect bite hypersensitivity (IBH) is the most common allergic skin disease of horses. It is caused by insect bites of the Culicoides spp. which mediate a type I/IVb allergy with strong involvement of eosinophil cells. No specific treatment option is available so far. One concept could be the use of a therapeutic antibody targeting equine interleukin 5, the main activator and regulator of eosinophils. Therefore, antibodies were selected by phage display using the naïve human antibody gene libraries HAL9/10, tested in a cellular in vitro inhibition assay and subjected to an in vitro affinity maturation. In total, 28 antibodies were selected by phage display out of which eleven have been found to be inhibiting in the final format as chimeric immunoglobulin G with equine constant domains. The two most promising candidates were further improved by in vitro affinity maturation up to factor 2.5 regarding their binding activity and up to factor 2.0 regarding their inhibition effect. The final antibody named NOL226-2-D10 showed a strong inhibition of the interleukin 5 binding to its receptor (IC50 = 4 nM). Furthermore, a nanomolar binding activity (EC50 = 8.8 nM), stable behavior and satisfactory producibility were demonstrated. This antibody is an excellent candidate for in vivo studies for the treatment of equine IBH.
Collapse
|
18
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
19
|
Langreder N, Schäckermann D, Unkauf T, Schubert M, Frenzel A, Bertoglio F, Hust M. Antibody Affinity and Stability Maturation by Error-Prone PCR. Methods Mol Biol 2023; 2702:395-410. [PMID: 37679631 DOI: 10.1007/978-1-0716-3381-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Human antibodies are the most important class of biologicals, and antibodies - human and nonhuman - are indispensable as research agents and for diagnostic assays. When generating antibodies, they sometimes show the desired specificity profile but lack sufficient affinity for the desired application. In this article, a phage display-based method and protocol to increase the affinity of recombinant antibody fragments is given.The given protocol starts with the construction of a mutated antibody gene library by error-prone PCR. Subsequently, the selection of high-affinity variants is performed by panning on immobilized antigen with washing conditions optimized for off-rate-dependent selection. A screening ELISA protocol to identify antibodies with improved affinity and an additional protocol to select antibodies with improved thermal stability is described.
Collapse
Affiliation(s)
- Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dorina Schäckermann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Wirtschaftsgenossenschaft deutscher Tierärzte eG (WDT), Garbsen, Germany
| | - Tobias Unkauf
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Bayer Consumer Care AG, Basel, Switzerland
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - André Frenzel
- YUMAB GmbH, Science Campus Braunschweig-Süd, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
20
|
Nur A, Schubert M, Lai JY, Hust M, Choong YS, Isa WYHW, Lim TS. Antibody Phage Display. Methods Mol Biol 2023; 2702:3-12. [PMID: 37679612 DOI: 10.1007/978-1-0716-3381-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The application of antibodies has transcended across many areas of work but mainly as a research tool, for diagnostic and for therapeutic applications. Antibodies are immunoproteins from vertebrates that have the unique property of specifically binding foreign molecules and distinguish target antigens. This property allows antibodies to effectively protect the host from infections. Apart from the hybridoma technology using transgenic animals, antibody phage display is commonly considered the gold standard technique for the isolation of human monoclonal antibodies. The concept of antibody phage display surrounds the ability to display antibody fragments on the surface of M13 bacteriophage particles with the corresponding gene packaged within the particle. A repetitive in vitro affinity based selection process permits the enrichment of target specific binders. This process of recombinant human monoclonal antibody generation also enables additional engineering for various applications. This makes phage display an indispensable technique for antibody development and engineering activities.
Collapse
Affiliation(s)
- Alia Nur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Wan Yus Haniff Wan Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.
- Analytical Biochemistry Research Center, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
21
|
Heine PA, Ruschig M, Langreder N, Wenzel EV, Schubert M, Bertoglio F, Hust M. Antibody Selection in Solution Using Magnetic Beads. Methods Mol Biol 2023; 2702:261-274. [PMID: 37679624 DOI: 10.1007/978-1-0716-3381-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Antibody phage display is a valuable in vitro technology to generate recombinant, sequence-defined antibodies for research, diagnostics, and therapy. Up to now (autumn 2022), 14 FDA/EMA-approved therapeutic antibodies were developed using phage display, including the world best-selling antibody adalimumab. Additionally, recombinant, sequence-defined antibodies have significant advantages over their polyclonal counterparts.For a successful in vitro antibody generation by phage display, a suitable panning strategy is highly important. We present in this book chapter the panning in solution and its advantages over panning with immobilized antigens and give detailed protocols for the panning and screening procedure.
Collapse
Affiliation(s)
- Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
22
|
Ballmann R, Schneider KT, Roth KDR, Dübel S. Antibody Batch Cloning. Methods Mol Biol 2023; 2702:411-417. [PMID: 37679632 DOI: 10.1007/978-1-0716-3381-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The antigen-binding ability of each antibody clone selected by phage display is usually initially ranked by a screening ELISA using monovalent scFv antibody fragments. Further characterization often requires bivalent antibody molecules such as IgG or scFv-Fc fusions. To produce these, the V region encoding genes of selected hits have to be cloned into a mammalian expression vector and analyzed as a bivalent molecule, requiring a laborious cloning procedure. We established a high-throughput procedure allowing rapid screening of candidates in bivalent formats. This protocol allows for the parallelized cloning of all selected antibody fragments into a mammalian expression vector in the 96-well plate format. The bivalent antibody molecules can then be produced and purified in 96-well plates for further analysis in microtiter plate assays.
Collapse
Affiliation(s)
- Rico Ballmann
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany.
| |
Collapse
|
23
|
Ruschig M, Heine PA, Fühner V, Zilkens KJK, Steinke S, Schubert M, Bertoglio F, Hust M. Construction of Human Immune and Naive scFv Phage Display Libraries. Methods Mol Biol 2023; 2702:15-37. [PMID: 37679613 DOI: 10.1007/978-1-0716-3381-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Antibody phage display is a widely used in vitro selection technology for the generation of human recombinant antibodies and has yielded thousands of useful antibodies for research, diagnostics, and therapy. In order to successfully generate antibodies using phage display, the basis is the construction of high-quality antibody gene libraries. Here, we describe detailed methods for the construction of such high-quality immune and naive scFv gene libraries of human origin. These protocols were used to develop human naive (e.g., HAL9/10) and immune libraries, which resulted in thousands of specific antibodies for all kinds of applications.
Collapse
Affiliation(s)
- Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
24
|
Monoclonal antibody therapeutics for infectious diseases: Beyond normal human immunoglobulin. Pharmacol Ther 2022; 240:108233. [PMID: 35738431 PMCID: PMC9212443 DOI: 10.1016/j.pharmthera.2022.108233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Antibody therapy is effective for treating infectious diseases. Due to the coronavirus disease 2019 (COVID-19) pandemic and the rise of drug-resistant bacteria, rapid development of neutralizing monoclonal antibodies (mAbs) to treat infectious diseases is urgently needed. Using a therapeutic human mAb with the lowest immunogenicity is recommended, because chimera and humanized mAbs are occasionally immunogenic. In order to directly obtain naïve human mAbs, there are three methods: phage display, B cell receptor (BCR) cDNA sequencing of a single cell, and antibody-encoding gene and amino acid sequencing of immortalized cells using memory B cells, which are isolated from human peripheral blood mononuclear cells of healthy, vaccinated, infected, or recovered individuals. After screening against the antigen and performing neutralization assays, a human neutralizing mAb is constructed from the antibody-encoding DNA sequences of these memory B cells. This review describes examples of obtaining human neutralizing mAbs against various infectious diseases using these methods. However, a few of these mAbs have been approved for therapy. Therefore, antigen characterization and evaluation of neutralization activity in vitro and in vivo are indispensable for the development of therapeutic mAbs. These results will accelerate the development of antibody drug as therapeutic agents.
Collapse
|
25
|
Diphtheria in Western Uttar Pradesh: A Re-emerging Threat. Pediatr Infect Dis J 2022; 41:e499-e500. [PMID: 36102731 DOI: 10.1097/inf.0000000000003673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Ch'ng ACW, Schepergerdes L, Choong YS, Hust M, Lim TS. Antimicrobial antibodies by phage display: Identification of antibody-based inhibitor against mycobacterium tuberculosis isocitrate lyase. Mol Immunol 2022; 150:47-57. [PMID: 35987135 DOI: 10.1016/j.molimm.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
The increasing incidence reports of antibiotic resistance highlights the need for alternative approaches to deal with bacterial infections. This brought about the idea of utilizing monoclonal antibodies as an alternative antibacterial treatment. Majority of the studies are focused on developing antibodies to bacterial surface antigens, with little emphasis on antibodies that inhibit the growth mechanisms of a bacteria host. Isocitrate lyase (ICL) is an important enzyme for the growth and survival of Mycobacterium tuberculosis (MTB) during latent infection as a result of its involvement in the mycobacterial glyoxylate and methylisocitrate cycles. It is postulated that the inhibition of ICL can disrupt the life cycle of MTB. To this extent, we utilized antibody phage display to identify a single chain fragment variable (scFv) antibody against the recombinant ICL protein from MTB. The soluble a-ICL-C6 scFv clone exhibited good binding characteristics with high specificity against ICL. More importantly, the clone exhibited in vitro inhibitory effect with an enzymatic assay resulting in a decrease of ICL enzymatic activity. In silico analysis showed that the scFv-ICL interactions are driven by 23 hydrogen bonds and 13 salt bridges that might disrupt the formation of ICL subunits for the tertiary structure or the formation of active site β domain. However, further validation is necessary to confirm if the isolated clone is indeed a good inhibitor against ICL for application against MTB.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Lena Schepergerdes
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, 38106 Braunschweig
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, 38106 Braunschweig
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
27
|
Houy C, Ming M, Ettorre L, Jin R, Thangavadivel N, Chen T, Su J, Gajewska B. Epitope Profiling of Diphtheria Toxoid Provides Enhanced Monitoring for Consistency Testing during Manufacturing Process Changes. Vaccines (Basel) 2022; 10:vaccines10050775. [PMID: 35632531 PMCID: PMC9147534 DOI: 10.3390/vaccines10050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In the vaccine industry, multiple physicochemical, immunological, in vitro and in vivo analytical methods are applied throughout the manufacturing process to characterize and monitor the quality of vaccines. Presented here is the Single Epitope Antigenicity Test (SEAT), an innovative, quantitative epitope profiling method which provides an extended immunochemical analysis for diphtheria toxoid (DTxd) to be used for consistency testing during manufacturing process changes. The method uses BioLayer Interferometry (BLI) and a panel of monoclonal antibodies (mAbs) to independently assess nine individual antigenic sites of DTxd. The panel includes mAbs which are functional, bind distinct sites on DTxd and are able to distinguish intact DTxd from that which has been exposed to heat treatment. The SEAT method was qualified for precision, accuracy, and linearity, and was used to define a preliminary comparability range for DTxd made using the current manufacturing process. DTxd lots manufactured using alternate processes were assessed in the context of this range to determine the impact on DTxd antigenicity. Epitope profiling by SEAT provides quantitative information on the integrity of multiple important antigenic regions of DTxd, and therefore represents a valuable tool in a comprehensive analytical test package which can be used to support manufacturing process changes for vaccines.
Collapse
Affiliation(s)
- Camille Houy
- Correspondence: ; Tel.: +1-476-667-2700 (ext. 7629)
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Production and Conjugation of Truncated Recombinant Diphtheria Toxin to VEGFR-2 Specific Nanobody and Evaluation of its Cytotoxic Effect on PC-3 Cell Line. Mol Biotechnol 2022; 64:1218-1226. [PMID: 35478310 DOI: 10.1007/s12033-022-00485-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
Immunotoxins have represented a great potency in targeted therapeutics to encounter tumors. They consist of a protein toxin conjugated to a targeting moiety, which recognizes a specific antigen on surface of cancer cells and accordingly induces cell death by toxin segment. The targeting part could be a nanobody, which is a group of antibodies composed of an only functional single variable heavy chain (VHH).Therefore, this study was done to produce an immunotoxin (VGRNb-DT) by chemical conjugation of a truncated diphtheria toxin moiety to an anti-vascular endothelial growth factor receptor 2(VEGFR-2) nanobody, and to identify effectiveness of immunotoxin in recognizing the VEGFR-2- positive cancer cells and inhibiting cell growth and survival. Diphtheria toxin was expressed and purified by nickel affinity chromatography, and accordingly, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis confirmed its expression. Function of heterobifunctional crosslinkers, Sulfo-SMCC (sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate), and SATP (N-succinimidyl-S- acetylthiopropionate) for bioconjugation purposes was acknowledged by cation exchange high-performance liquid chromatography (HPLC). Cytotoxicity of immunotoxin was evaluated on the VEGFR-2 positive PC-3 cell line by MTT assay. Overexpression of VEGFR-2 in the PC-3 cell line allowed immunotoxin to recognize them by anti-VEGFR-2 nanobodies. The concentrations above 5 μg/ml represented a significant decrease in cell survival rate in PC-3 cells compared to HEK293 cells (VEGFR-2 negative cells) as controls.VGRNb-DT demonstrated a successful bioconjugation; furthermore, variable concentrations were correlated with cell death in prostate cancer PC-3 cells.
Collapse
|
29
|
Moreira GMSG, Gronow S, Dübel S, Mendonça M, Moreira ÂN, Conceição FR, Hust M. Phage Display-Derived Monoclonal Antibodies Against Internalins A and B Allow Specific Detection of Listeria monocytogenes. Front Public Health 2022; 10:712657. [PMID: 35372200 PMCID: PMC8964528 DOI: 10.3389/fpubh.2022.712657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/14/2022] [Indexed: 01/22/2023] Open
Abstract
Listeria monocytogenes is the causative agent of listeriosis, a highly lethal disease initiated after the ingestion of Listeria-contaminated food. This species comprises different serovars, from which 4b, 1/2a, and 1/2b cause most of the infections. Among the different proteins involved in pathogenesis, the internalins A (InlA) and B (InlB) are the best characterized, since they play a major role in the enterocyte entry of Listeria cells during early infection. Due to their covalent attachment to the cell wall and location on the bacterial surface, along with their exclusive presence in the pathogenic L. monocytogenes, these proteins are also used as detection targets for this species. Even though huge advancements were achieved in the enrichment steps for subsequent Listeria detection, few studies have focused on the improvement of the antibodies for immunodetection. In the present study, recombinant InlA and InlB produced in Escherichia coli were used as targets to generate antibodies via phage display using the human naïve antibody libraries HAL9 and HAL10. A set of five recombinant antibodies (four against InlA, and one against InlB) were produced in scFv-Fc format and tested in indirect ELISA against a panel of 19 Listeria strains (17 species; including the three main serovars of L. monocytogenes) and 16 non-Listeria species. All five antibodies were able to recognize L. monocytogenes with 100% sensitivity (CI 29.24–100.0) and specificity (CI 88.78–100.0) in all three analyzed antibody concentrations. These findings show that phage display-derived antibodies can improve the biological tools to develop better immunodiagnostics for L. monocytogenes.
Collapse
Affiliation(s)
| | - Sabine Gronow
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Marcelo Mendonça
- Universidade Federal do Agreste de Pernambuco, Curso de Medicina Veterinária, Garanhuns, Brazil
| | - Ângela Nunes Moreira
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fabricio Rochedo Conceição
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| |
Collapse
|
30
|
Schubert M, Bertoglio F, Steinke S, Heine PA, Ynga-Durand MA, Maass H, Sammartino JC, Cassaniti I, Zuo F, Du L, Korn J, Milošević M, Wenzel EV, Krstanović F, Polten S, Pribanić-Matešić M, Brizić I, Baldanti F, Hammarström L, Dübel S, Šustić A, Marcotte H, Strengert M, Protić A, Piralla A, Pan-Hammarström Q, Čičin-Šain L, Hust M. Human serum from SARS-CoV-2-vaccinated and COVID-19 patients shows reduced binding to the RBD of SARS-CoV-2 Omicron variant. BMC Med 2022; 20:102. [PMID: 35236358 PMCID: PMC8890955 DOI: 10.1186/s12916-022-02312-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.
Collapse
Affiliation(s)
- Maren Schubert
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Federico Bertoglio
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Stephan Steinke
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Philip Alexander Heine
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Mario Alberto Ynga-Durand
- Helmholtz Centre for Infection Research, Department of Viral Immunology, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Henrike Maass
- Helmholtz Centre for Infection Research, Department of Viral Immunology, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Josè Camilla Sammartino
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Irene Cassaniti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Fanglei Zuo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Janin Korn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
- Abcalis GmbH, Science Campus Braunschweig-Süd, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marko Milošević
- Department of Anesthesiology, Reanimation, Intensive Care and Emergency Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Esther Veronika Wenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
- Abcalis GmbH, Science Campus Braunschweig-Süd, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Fran Krstanović
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Saskia Polten
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | | | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Alan Šustić
- Department of Anesthesiology, Reanimation, Intensive Care and Emergency Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Harold Marcotte
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Monika Strengert
- Department of Epidemiology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Alen Protić
- Department of Anesthesiology, Reanimation, Intensive Care and Emergency Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | | | - Luka Čičin-Šain
- Helmholtz Centre for Infection Research, Department of Viral Immunology, Inhoffenstr. 7, 38124, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CIIM), a joint venture of Helmholtz Centre for Infection Research and Medical School Hannover, Hannover, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
31
|
Assou J, Zhang D, Roth KDR, Steinke S, Hust M, Reinard T, Winkelmann T, Boch J. Removing the major allergen Bra j I from brown mustard (Brassica juncea) by CRISPR/Cas9. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:649-663. [PMID: 34784073 DOI: 10.1111/tpj.15584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 05/21/2023]
Abstract
Food allergies are a major health issue worldwide. Modern breeding techniques such as genome editing via CRISPR/Cas9 have the potential to mitigate this by targeting allergens in plants. This study addressed the major allergen Bra j I, a seed storage protein of the 2S albumin class, in the allotetraploid brown mustard (Brassica juncea). Cotyledon explants of an Indian gene bank accession (CR2664) and the German variety Terratop were transformed using Agrobacterium tumefaciens harboring binary vectors with multiple single guide RNAs to induce either large deletions or frameshift mutations in both Bra j I homoeologs. A total of 49 T0 lines were obtained with up to 3.8% transformation efficiency. Four lines had large deletions of 566 up to 790 bp in the Bra j IB allele. Among 18 Terratop T0 lines, nine carried indels in the targeted regions. From 16 analyzed CR2664 T0 lines, 14 held indels and three had all four Bra j I alleles mutated. The majority of the CRISPR/Cas9-induced mutations were heritable to T1 progenies. In some edited lines, seed formation and viability were reduced and seeds showed a precocious development of the embryo leading to a rupture of the testa already in the siliques. Immunoblotting using newly developed Bra j I-specific antibodies revealed the amount of Bra j I protein to be reduced or absent in seed extracts of selected lines. Removing an allergenic determinant from mustard is an important first step towards the development of safer food crops.
Collapse
Affiliation(s)
- Juvenal Assou
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | - Dingbo Zhang
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Kristian D R Roth
- Department of Biotechnology, Institute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Department of Biotechnology, Institute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Institute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Reinard
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | - Jens Boch
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
32
|
Huang RY, Lee CN, Moochhala S. Circulating Antibodies to Skin Bacteria Detected by Serological Lateral Flow Immunoassays Differentially Correlated With Bacterial Abundance. Front Microbiol 2021; 12:709562. [PMID: 34867837 PMCID: PMC8635989 DOI: 10.3389/fmicb.2021.709562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
The serological lateral flow immunoassay (LFIA) was used to detect circulating antibodies to skin bacteria. Next-generation sequencing analysis of the skin microbiome revealed a high relative abundance of Cutibacterium acnes but low abundance of Staphylococcus aureus and Corynebacterium aurimucosum on human facial samples. Yet, results from both LFIA and antibody titer quantification in 96-well microplates illustrated antibody titers that were not correspondent, and instead negatively correlated, to their respective abundance with human blood containing higher concentrations of antibodies to both S. aureus and C. aurimucosum than C. acnes. Acne vulgaris develops several unique microbial and cellular features, but its correlation with circulating antibodies to bacteria in the pilosebaceous unit remains unknown. Results here revealed that antibodies to C. acnes and S. aureus were approximately 3-fold higher and 1.5-fold lower, respectively, in acne patients than in healthy subjects. Although the results can be further validated by larger sample sizes, the proof-of-concept study demonstrates a newfound discrepancy between the abundance of skin bacteria and amounts of their corresponding antibodies. And in light of acne-correlated amplified titers of specific anticommensal antibodies, we highlight that profiling these antibodies in the pilosebaceous unit by LFIAs may provide a unique signature for monitoring acne vulgaris.
Collapse
Affiliation(s)
| | - Chuen Neng Lee
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - Shabbir Moochhala
- Department of Surgery, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Investigating Alternative Container Formats for Lyophilization of Biological Materials Using Diphtheria Antitoxin Monoclonal Antibody as a Model Molecule. Pharmaceutics 2021; 13:pharmaceutics13111948. [PMID: 34834363 PMCID: PMC8620784 DOI: 10.3390/pharmaceutics13111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
When preparing biological reference materials, the stability of the lyophilized product is critical for long-term storage, particularly in order to meet WHO International Standards, which are not assigned expiry dates but are expected to be in use for several decades. Glass ampoules are typically used by the National Institute for Biological Standards and Control (NIBSC) for the lyophilization of biological materials. More recently, a clear need has arisen for the filling of smaller volumes, for which ampoules may not be optimal. We investigated the use of plastic microtubes as an alternative container for small volume fills. In this study, a recombinant diphtheria antitoxin monoclonal antibody (DATMAB) was used as a model molecule to investigate the suitability of plastic microtubes for filling small volumes. The stability and quality of the dried material was assessed after an accelerated degradation study using a toxin neutralization test and size exclusion HPLC. While microtubes have shown some promise in the past for use in the lyophilization of some biological materials, issues with stability may arise when more labile materials are freeze-dried. We demonstrate here that the microtube format is unsuitable for ensuring the stability of this monoclonal antibody.
Collapse
|
34
|
Schneider KT, Kirmann T, Wenzel EV, Grosch JH, Polten S, Meier D, Becker M, Matejtschuk P, Hust M, Russo G, Dübel S. Shelf-Life Extension of Fc-Fused Single Chain Fragment Variable Antibodies by Lyophilization. Front Cell Infect Microbiol 2021; 11:717689. [PMID: 34869052 PMCID: PMC8634725 DOI: 10.3389/fcimb.2021.717689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Generation of sequence defined antibodies from universal libraries by phage display has been established over the past three decades as a robust method to cope with the increasing market demand in therapy, diagnostics and research. For applications requiring the bivalent antigen binding and an Fc part for detection, phage display generated single chain Fv (scFv) antibody fragments can rapidly be genetically fused to the Fc moiety of an IgG for the production in eukaryotic cells of antibodies with IgG-like properties. In contrast to conversion of scFv into IgG format, the conversion to scFv-Fc requires only a single cloning step, and provides significantly higher yields in transient cell culture production than IgG. ScFv-Fcs can be effective as neutralizing antibodies in vivo against a panel of pathogens and toxins. However, different scFv fragments are more heterologous in respect of stability than Fab fragments. While some scFv fragments can be made extremely stable, this may change due to few mutations, and is not predictable from the sequence of a newly selected antibody. To mitigate the necessity to assess the stability for every scFv-Fc antibody, we developed a generic lyophilization protocol to improve their shelf life. We compared long-term stability and binding activity of phage display-derived antibodies in the scFv-Fc and IgG format, either stored in liquid or lyophilized state. Conversion of scFv-Fcs into the full IgG format reduced protein degradation and aggregation, but in some cases compromised binding activity. Comparably to IgG conversion, lyophilization of scFv-Fc resulted in the preservation of the antibodies' initial properties after storage, without any drop in affinity for any of the tested antibody clones.
Collapse
Affiliation(s)
- Kai-Thomas Schneider
- Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Toni Kirmann
- Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Abcalis GmbH, Braunschweig, Germany
| | - Jan-Hendrik Grosch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Polten
- Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Doris Meier
- Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marlies Becker
- Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Paul Matejtschuk
- Standardisation Science, National Institute for Biological Standards & Control (NIBSC), Hertfordshire, United Kingdom
| | - Michael Hust
- Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Abcalis GmbH, Braunschweig, Germany
| | - Stefan Dübel
- Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
35
|
Catalytic ferromagnetic gold nanoparticle immunoassay for the detection and differentiation of Mycobacterium tuberculosis and Mycobacterium bovis. Anal Chim Acta 2021; 1184:339037. [PMID: 34625241 DOI: 10.1016/j.aca.2021.339037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
A ferromagnetic gold nanoparticle based immune detection assay, exploiting the enhanced signal amplification of inorganic nanozymes, was developed and evaluated for its potential application in the detection of Mycobacterium tuberculosis complex (MTBC) organisms, and simultaneous identification of Mycobacterium bovis. Ferromagnetic gold nanoparticles (Au-Fe3O4 NPs) were prepared and their intrinsic peroxidase-like activity exploited to catalyse 3,3',5',5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). When the Au-Fe3O4 NPs were functionalised by direct coupling with MTBC-selective antibodies, a nanoparticle based immune detection assay (NPIDA) was developed which could detect Mycobacterium tuberculosis (MTB) and differentiate M. bovis. In the assay, the intrinsic magnetic capability of the functionalised Au-Fe3O4 NPs was used in sample preparation to capture target bacterial cells. These were incorporated into a novel immunoassay which used species selective monoclonal antibodies (mAb) to detect bound target. The formation of a blue TMB oxidation product, with a peak absorbance of 370 nm, indicated successful capture and identification of the target. The detection limit of the NPIDA for both MTB and M. bovis was determined to be comparable to conventional ELISA using the same antibodies. Although limited matrix effects were observed in either assay, the NPIDA offers a reduced time to confirmatory identification. This novel NPIDA was capable of simultaneous sample concentration, purification, immunological detection and speciation. To our knowledge, it represents the first immune-based diagnostic test capable of identifying MTBC organisms and simultaneously differentiating M. bovis.
Collapse
|
36
|
Small Molecule Receptor Binding Inhibitors with In Vivo Efficacy against Botulinum Neurotoxin Serotypes A and E. Int J Mol Sci 2021; 22:ijms22168577. [PMID: 34445283 PMCID: PMC8395308 DOI: 10.3390/ijms22168577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most poisonous substances in nature. Currently, the only therapy for botulism is antitoxin. This therapy suffers from several limitations and hence new therapeutic strategies are desired. One of the limitations in discovering BoNT inhibitors is the absence of an in vitro assay that correlates with toxin neutralization in vivo. In this work, a high-throughput screening assay for receptor-binding inhibitors against BoNT/A was developed. The assay is composed of two chimeric proteins: a receptor-simulating protein, consisting of the fourth luminal loop of synaptic vesicle protein 2C fused to glutathione-S-transferase, and a toxin-simulating protein, consisting of the receptor-binding domain of BoNT/A fused to beta-galactosidase. The assay was applied to screen the LOPAC1280 compound library. Seven selected compounds were evaluated in mice exposed to a lethal dose of BoNT/A. The compound aurintricarboxylic acid (ATA) conferred 92% protection, whereas significant delayed time to death (p < 0.005) was observed for three additional compounds. Remarkably, ATA was also fully protective in mice challenged with a lethal dose of BoNT/E, which also uses the SV2 receptor. This study demonstrates that receptor-binding inhibitors have the potential to serve as next generation therapeutics for botulism, and therefore the assay developed may facilitate discovery of new anti-BoNT countermeasures.
Collapse
|
37
|
de Smit H, Ackerschott B, Tierney R, Stickings P, Harmsen MM. A novel single-domain antibody multimer that potently neutralizes tetanus neurotoxin. Vaccine X 2021; 8:100099. [PMID: 34169269 PMCID: PMC8207222 DOI: 10.1016/j.jvacx.2021.100099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/17/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022] Open
Abstract
Tetanus antitoxin, produced in animals, has been used for the prevention and treatment of tetanus for more than 100 years. The availability of antitoxins, ethical issues around production, and risks involved in the use of animal derived serum products are a concern. We therefore developed a llama derived single-domain antibody (VHH) multimer to potentially replace the conventional veterinary product. In total, 28 different tetanus neurotoxin (TeNT) binding VHHs were isolated, 14 of which were expressed in yeast for further characterization. Four VHH monomers (T2, T6, T15 and T16) binding TeNT with high affinity (KD < 1 nM), covering different antigenic domains as revealed by epitope binning, and including 3 monomers (T6, T15 and T16) that inhibited TeNT binding to neuron gangliosides, were chosen as building blocks to generate 11 VHH multimers. These multimers contained either 1 or 2 different TeNT binding VHHs fused to 1 VHH binding to either albumin (A12) or immunoglobulin (G13) to extend serum half-life in animals. Multimers consisting of 2 TeNT binding VHHs showed more than a 10-fold increase in affinity (KD of 4-23 pM) when compared to multimers containing only one TeNT binding VHH. The T6 and T16 VHHs showed synergistic in vivo TeNT neutralization and, when incorporated into a single VHH trimer (T6T16A12), they showed a very high TeNT neutralizing capacity (1,510 IU/mg).
Collapse
Affiliation(s)
- Hans de Smit
- R&D, Smivet B.V., Diemewei 4110, 6605XC Wijchen, the Netherlands
| | - Bart Ackerschott
- R&D, Smivet B.V., Diemewei 4110, 6605XC Wijchen, the Netherlands
| | - Robert Tierney
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), MHRA, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Paul Stickings
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), MHRA, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Michiel M. Harmsen
- Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB Lelystad, the Netherlands
| |
Collapse
|
38
|
Bertoglio F, Fühner V, Ruschig M, Heine PA, Abassi L, Klünemann T, Rand U, Meier D, Langreder N, Steinke S, Ballmann R, Schneider KT, Roth KDR, Kuhn P, Riese P, Schäckermann D, Korn J, Koch A, Chaudhry MZ, Eschke K, Kim Y, Zock-Emmenthal S, Becker M, Scholz M, Moreira GMSG, Wenzel EV, Russo G, Garritsen HSP, Casu S, Gerstner A, Roth G, Adler J, Trimpert J, Hermann A, Schirrmann T, Dübel S, Frenzel A, Van den Heuvel J, Čičin-Šain L, Schubert M, Hust M. A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations. Cell Rep 2021; 36:109433. [PMID: 34273271 PMCID: PMC8260561 DOI: 10.1016/j.celrep.2021.109433] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.
Collapse
Affiliation(s)
- Federico Bertoglio
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Maximilian Ruschig
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Philip Alexander Heine
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Leila Abassi
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Thomas Klünemann
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Ulfert Rand
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Doris Meier
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Nora Langreder
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Stephan Steinke
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Rico Ballmann
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Kai-Thomas Schneider
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Philipp Kuhn
- YUMAB GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Peggy Riese
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany; Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Dorina Schäckermann
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Janin Korn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Allan Koch
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - M Zeeshan Chaudhry
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Kathrin Eschke
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Yeonsu Kim
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Susanne Zock-Emmenthal
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Marlies Becker
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Margitta Scholz
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Gustavo Marçal Schmidt Garcia Moreira
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Esther Veronika Wenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Giulio Russo
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Hendrikus S P Garritsen
- Städtisches Klinikum Braunschweig gGmbH, Celler Str. 38, 38114 Braunschweig, Germany; Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54E, 38108 Braunschweig, Germany
| | - Sebastian Casu
- Helios Klinikum Salzgitter, Kattowitzer Str. 191, 38226 Salzgitter, Germany
| | - Andreas Gerstner
- Städtisches Klinikum Braunschweig gGmbH, Holwedestraße 16, 38118 Braunschweig, Germany
| | - Günter Roth
- BioCopy GmbH, Elzstrasse 27, 79312 Emmendingen, Germany
| | - Julia Adler
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Andreas Hermann
- CORAT Therapeutics GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Thomas Schirrmann
- YUMAB GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany; CORAT Therapeutics GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - André Frenzel
- YUMAB GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany; Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Joop Van den Heuvel
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Luka Čičin-Šain
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine (CIIM), a joint venture of Helmholtz Centre for Infection Research and Medical School, Hannover, Germany
| | - Maren Schubert
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany.
| |
Collapse
|
39
|
Koide H, Yamauchi I, Hoshino Y, Yasuno G, Okamoto T, Akashi S, Saito K, Oku N, Asai T. Design of abiotic polymer ligand-decorated lipid nanoparticles for effective neutralization of target toxins in the blood. Biomater Sci 2021; 9:5588-5598. [PMID: 34241600 DOI: 10.1039/d1bm00515d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Macromolecular toxins often induce inflammatory cytokine production, multiple-organ dysfunction, and cell death. Synthetic polymer ligands (PLs) prepared with several functional monomers have the potential of neutralizing target toxins after binding to them; therefore, they are of significant interest as abiotic antidotes. Although PLs show little toxin neutralization effect in the bloodstream because of immediate elimination from there, the toxin neutralization effect is significantly improved by the direct decoration of PLs onto lipid nanoparticles (PL-LNPs). However, this direct decoration decreases PL mobility, induces LNP aggregation after capturing the target, and decreases LNP blood circulation time. We designed novel PL-LNPs to improve PL mobility, inhibit the aggregation tendency after capturing the target, and increase LNP blood circulation time in order to achieve highly effective toxin neutralization in vivo. Specifically, LNPs were modified with PLs-conjugated polyethylene glycol (PEG), and additional PEG was used to modify the PL-decorated LNPs (PL-PEG-LNPs). Histones were used as target toxins, and N-isopropylacrylamide-based PLs were used for histone capture. PEGylation increased the plasma LNP level 24 h after intravenous injection by ∼90 times and inhibited LNP aggregation after histone capture. The dissociation constant (Kd) of PL-PEG-LNPs against histone was two times smaller compared to that of PL-LNPs. Although PL-LNPs inhibited histone-platelet interaction in the bloodstream, a large amount of histone-PL-LNP complexes accumulated in the lungs because of aggregation. However, PL-PEG-LNPs inhibited both histone-platelet interaction and histone accumulation in the lungs. Importantly, PL-PEG-LNP treatment increased the survival rate of histone-treated mice compared to PL-LNPs. These results provide a platform for the development of abiotic antidote nanoparticles in vivo.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| | - Ikumi Yamauchi
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Go Yasuno
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| | - Takumi Okamoto
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| | - Sotaro Akashi
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kazuhiro Saito
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan. and Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
40
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
41
|
Khrustalev VV. The PentaFOLD 3.0 Algorithm for the Selection of Stable Elements of Secondary Structure to be Included in Vaccine Peptides. Protein Pept Lett 2021; 28:573-588. [PMID: 33172366 DOI: 10.2174/0929866527666201110123851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
AIMS The aim of this study was to create a new version of the PentaFOLD algorithm and to test its performance experimentally in several proteins and peptides. BACKGROUND Synthetic vaccines can cause production of neutralizing antibodies only in case if short peptides form the same secondary structure as fragments of full-length proteins. The Penta- FOLD 3.0 algorithm was designed to check stability of alpha helices, beta strands, and random coils using several propensity scales obtained during analysis of 1730 3D structures of proteins. OBJECTIVE The algorithm has been tested in the three peptides known to keep the secondary structure of the corresponding fragments of full-length proteins: the NY25 peptide from the Influenza H1N1 hemagglutinin, the SF23 peptide from the diphtheria toxin, the NQ21 peptide from the HIV1 gp120; as well as in the CC36 peptide from the human major prion protein. METHODS Affine chromatography for antibodies against peptides accompanied by circular dichroism and fluorescence spectroscopy were used to check the predictions of the algorithm. RESULTS Immunological experiments showed that all abovementioned peptides are more or less immunogenic in rabbits. The fact that antibodies against the NY25, the SF23, and the NQ21 form stable complexes with corresponding full-length proteins has been confirmed by affine chromatography. The surface of SARS CoV-2 spike receptor-binding domain interacting with hACE2 has been shown to be unstable according to the results of the PentaFOLD 3.0. CONCLUSION The PentaFOLD 3.0 algorithm (http://chemres.bsmu.by/PentaFOLD30.htm) can be used with the aim to design vaccine peptides with stable secondary structure elements.
Collapse
|
42
|
Brilhante-da-Silva N, de Oliveira Sousa RM, Arruda A, Dos Santos EL, Marinho ACM, Stabeli RG, Fernandes CFC, Pereira SDS. Camelid Single-Domain Antibodies for the Development of Potent Diagnosis Platforms. Mol Diagn Ther 2021; 25:439-456. [PMID: 34146333 DOI: 10.1007/s40291-021-00533-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.
Collapse
Affiliation(s)
- Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Rosa Maria de Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Andrelisse Arruda
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Eliza Lima Dos Santos
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Anna Carolina Machado Marinho
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional.Fundação Oswaldo Cruz-USP, Ribeirão Preto, São Paulo, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil.
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, Brazil.
| |
Collapse
|
43
|
Novel neutralizing human monoclonal antibodies against tetanus neurotoxin. Sci Rep 2021; 11:12134. [PMID: 34108521 PMCID: PMC8190289 DOI: 10.1038/s41598-021-91597-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022] Open
Abstract
Tetanus is a fatal disease caused by tetanus neurotoxin (TeNT). TeNT is composed of a light chain (Lc) and a heavy chain, the latter of which is classified into two domains, N-terminus Hn and C-terminus Hc. Several TeNT-neutralizing antibodies have been reported, but it remains unclear which TeNT domains are involved in neutralization. To further understand the mechanism of these antibodies, we isolated TeNT-reactive human antibody clones from peripheral blood mononuclear cells. We then analyzed the reactivity of the isolated antibody clones to each protein domain and their inhibition of Hc-ganglioside GT1b binding, which is critical for TeNT toxicity. We also investigated the TeNT-neutralizing ability of isolated antibody clones and showed that an Hn-reactive clone protected strongly against TeNT toxicity in mice. Furthermore, combination treatment of Hn-reactive antibody clones with both Hc-reactive and TeNT mix (the mixture of Hc, Hn, and Lc proteins)–reactive antibody clones enhanced the neutralizing effect. These results indicated that antibody clones targeting Hn effectively neutralized TeNT. In addition, the use of a cocktail composed of Hc-, Hn-, and TeNT mix–reactive antibodies provided enhanced protection compared to the use of each antibody alone.
Collapse
|
44
|
Recommendations for Ensuring Good Welfare of Horses Used for Industrial Blood, Serum, or Urine Production. Animals (Basel) 2021; 11:ani11051466. [PMID: 34065236 PMCID: PMC8161321 DOI: 10.3390/ani11051466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Because of their large size, blood, serum, or other substances are often collected from horses for production of biologics and therapeutics used in humans and other animals. There are few international guidelines that provide recommendations for caring for horses kept for these purposes. In this paper, general guidelines are provided to ensure well-being of horses kept for production of biologics. Abstract Various pharmaceutical products have been derived from horse blood and urine for over a century. Production of biologics and therapeutics from these samples is a niche industry and often occurs in regions with little regulation or veterinary oversight. To ensure good welfare of horses maintained for these purposes, guidance has been developed to support the industry.
Collapse
|
45
|
De-Simone SG, Gomes LR, Napoleão-Pêgo P, Lechuga GC, de Pina JS, da Silva FR. Epitope Mapping of the Diphtheria Toxin and Development of an ELISA-Specific Diagnostic Assay. Vaccines (Basel) 2021; 9:313. [PMID: 33810325 PMCID: PMC8066203 DOI: 10.3390/vaccines9040313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/06/2023] Open
Abstract
Background: The diphtheria toxoid antigen is a major component in pediatric and booster combination vaccines and is known to raise a protective humoral immune response upon vaccination. Although antibodies are considered critical for diphtheria protection, little is known about the antigenic determinants that maintain humoral immunity. Methods: One-hundred and twelve 15 mer peptides covering the entire sequence of diphtheria toxin (DTx) protein were prepared by SPOT synthesis. The immunoreactivity of membrane-bound peptides with sera from mice immunized with a triple DTP vaccine allowed mapping of continuous B-cell epitopes, topological studies, multiantigen peptide (MAP) synthesis, and Enzyme-Linked Immunosorbent Assay (ELISA) development. Results: Twenty epitopes were identified, with two being in the signal peptide, five in the catalytic domain (CD), seven in the HBFT domain, and five in the receptor-binding domain (RBD). Two 17 mer (CB/Tx-2/12 and CB/DTx-4-13) derived biepitope peptides linked by a Gly-Gly spacer were chemically synthesized. The peptides were used as antigens to coat ELISA plates and assayed with human (huVS) and mice vaccinated sera (miVS) for in vitro diagnosis of diphtheria. The assay proved to be highly sensitive (99.96%) and specific (100%) for huVS and miVS and, when compared with a commercial ELISA test, demonstrated a high performance. Conclusions: Our work displayed the complete picture of the linear B cell IgG response epitope of the DTx responsible for the protective effect and demonstrated sufficient specificity and eligibility for phase IIB studies of some epitopes to develop new and fast diagnostic assays.
Collapse
Affiliation(s)
- Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
- Molecular and Cellular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Larissa Rodrigues Gomes
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
| | - Guilherme Curty Lechuga
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
| | - Jorge Soares de Pina
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
| | - Flavio Rocha da Silva
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
| |
Collapse
|
46
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
47
|
Bertoglio F, Meier D, Langreder N, Steinke S, Rand U, Simonelli L, Heine PA, Ballmann R, Schneider KT, Roth KDR, Ruschig M, Riese P, Eschke K, Kim Y, Schäckermann D, Pedotti M, Kuhn P, Zock-Emmenthal S, Wöhrle J, Kilb N, Herz T, Becker M, Grasshoff M, Wenzel EV, Russo G, Kröger A, Brunotte L, Ludwig S, Fühner V, Krämer SD, Dübel S, Varani L, Roth G, Čičin-Šain L, Schubert M, Hust M. SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. Nat Commun 2021; 12:1577. [PMID: 33707427 PMCID: PMC7952403 DOI: 10.1038/s41467-021-21609-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022] Open
Abstract
COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.
Collapse
Affiliation(s)
- Federico Bertoglio
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Doris Meier
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Nora Langreder
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Stephan Steinke
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Ulfert Rand
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luca Simonelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Philip Alexander Heine
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Rico Ballmann
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Maximilian Ruschig
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Peggy Riese
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kathrin Eschke
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yeonsu Kim
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dorina Schäckermann
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Mattia Pedotti
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | | | | | | | | | | | - Marlies Becker
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Martina Grasshoff
- Helmholtz Centre for Infection Research, Research Group Innate Immunity and Infection, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Giulio Russo
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Andrea Kröger
- Helmholtz Centre for Infection Research, Research Group Innate Immunity and Infection, Braunschweig, Germany
| | - Linda Brunotte
- Westfälische Wilhelms-Universität Münster, Institut für Virologie (IVM), Münster, Germany
| | - Stephan Ludwig
- Westfälische Wilhelms-Universität Münster, Institut für Virologie (IVM), Münster, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Luca Varani
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland.
| | | | - Luka Čičin-Šain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Centre for Individualised Infection Medicine (CIIM), a joint venture of Helmholtz Centre for Infection Research and Medical School Hannover, Braunschweig, Germany.
| | - Maren Schubert
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
48
|
Riches-Duit R, Hassall L, Kogelman A, Westdijk J, Dobly A, Francotte A, Stickings P. Characterisation of diphtheria monoclonal antibodies as a first step towards the development of an in vitro vaccine potency immunoassay. Biologicals 2021; 69:38-48. [PMID: 33454193 DOI: 10.1016/j.biologicals.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022] Open
Abstract
Immunoassays are used for routine potency assessment of several vaccines, in some cases having been specifically developed as alternatives to in vivo potency tests. These methods require at least one well characterised monoclonal antibody (mAb) that is specific for the target antigen. In this paper we report the results of the comprehensive characterisation of a panel of mAbs against diphtheria with a view to select antibodies that can be used for development of an in vitro potency immunoassay for diphtheria vaccines. We have assessed binding of the antibodies to native antigen (toxin), detoxified antigen (toxoid), adsorbed antigen and heat-altered antigen. Antibody function was determined by a cell-based toxin neutralisation test and diphtheria toxin-domain recognition was determined by Western blotting. In addition, antibody affinity was measured, and epitope competition analysis was performed to identify pairs of antibodies that could be deployed in a sandwich immunoassay format. Not all characterisation tests provided evidence of "superiority" of one mAb over another, but together the results from all characterisation studies allowed for selection of an antibody pair to be taken forward to assay development.
Collapse
Affiliation(s)
- Rebecca Riches-Duit
- National Institute for Biological Standards and Control, Division of Bacteriology, South Mimms, Potters Bar, EN6 3QG, UK
| | - Laura Hassall
- National Institute for Biological Standards and Control, Division of Bacteriology, South Mimms, Potters Bar, EN6 3QG, UK
| | - Amy Kogelman
- Institute for Translational Vaccinology, P.O. Box 450, 3720, AL, Bilthoven, the Netherlands
| | - Janny Westdijk
- Institute for Translational Vaccinology, P.O. Box 450, 3720, AL, Bilthoven, the Netherlands
| | - Alexandre Dobly
- Sciensano, Quality of Vaccines and Blood Products, Rue Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Antoine Francotte
- Sciensano, Quality of Vaccines and Blood Products, Rue Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Paul Stickings
- National Institute for Biological Standards and Control, Division of Bacteriology, South Mimms, Potters Bar, EN6 3QG, UK.
| |
Collapse
|
49
|
König J, Hust M, van den Heuvel J. Validation of the Production of Antibodies in Different Formats in the HEK 293 Transient Gene Expression System. Methods Mol Biol 2021; 2247:59-76. [PMID: 33301112 DOI: 10.1007/978-1-0716-1126-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian cells are the most commonly used production system for therapeutic antibodies. Protocols for the expression of recombinant antibodies in HEK293-6E cells in different antibody formats are described in detail. As model, antibodies against Kallikrein-related peptidase 7 (KLK7) were used. KLK7 is a key player in skin homeostasis and represents an emerging target for pharmacological interventions. Potent inhibitors can not only help to elucidate physiological and pathophysiological functions but also serve as a new archetype for the treatment of inflammatory skin disorders. Phage display-derived affinity-matured human anti-KLK7 antibodies were converted to scFv-Fc, IgG, and Fab formats and transiently produced in the mammalian HEK293-6E system. For the production of the corresponding antigen-KLK7-the baculovirus expression vector system (BEVS) and virus-free expression in Hi5 insect cells were used in a comparative approach. The target proteins were isolated by various chromatographic methods in a one- or multistep purification strategy. Ultimately, the interaction between anti-KLK7 and KLK7 was characterized using biolayer interferometry. Here, protocols for the expression of recombinant antibodies in different formats are presented and compared for their specific features. Furthermore, biolayer interferometry (BLI), a fast and high-throughput biophysical analytical technique to evaluate the kinetic binding constant and affinity constant of the different anti-KLK7 antibody formats against Kallikrein-related peptidase 7 is presented.
Collapse
Affiliation(s)
- Jens König
- Department of Structure and Function of Proteins, Helmholtz Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Joop van den Heuvel
- Department of Structure and Function of Proteins, Helmholtz Zentrum für Infektionsforschung GmbH, Braunschweig, Germany.
| |
Collapse
|
50
|
Korn J, Schäckermann D, Kirmann T, Bertoglio F, Steinke S, Heisig J, Ruschig M, Rojas G, Langreder N, Wenzel EV, Roth KDR, Becker M, Meier D, van den Heuvel J, Hust M, Dübel S, Schubert M. Baculovirus-free insect cell expression system for high yield antibody and antigen production. Sci Rep 2020; 10:21393. [PMID: 33288836 PMCID: PMC7721901 DOI: 10.1038/s41598-020-78425-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
Antibodies are essential tools for therapy and diagnostics. Yet, production remains expensive as it is mostly done in mammalian expression systems. As most therapeutic IgG require mammalian glycosylation to interact with the human immune system, other expression systems are rarely used for production. However, for neutralizing antibodies that are not required to activate the human immune system as well as antibodies used in diagnostics, a cheaper production system would be advantageous. In our study, we show cost-efficient, easy and high yield production of antibodies as well as various secreted antigens including Interleukins and SARS-CoV-2 related proteins in a baculovirus-free insect cell expression system. To improve yields, we optimized the expression vector, media and feeding strategies. In addition, we showed the feasibility of lyophilization of the insect cell produced antibodies. Furthermore, stability and activity of the antibodies was compared to antibodies produced by Expi293F cells revealing a lower aggregation of antibodies originating from High Five cell production. Finally, the newly established High Five expression system was compared to the Expi293F mammalian expression system in regard of yield and costs. Most interestingly, all tested proteins were producible in our High Five cell expression system what was not the case in the Expi293F system, hinting that the High Five cell system is especially suited to produce difficult-to-express target proteins.
Collapse
Affiliation(s)
- Janin Korn
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Dorina Schäckermann
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Toni Kirmann
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
- Medical Faculty, Carl Ludwig Institute for Physiology, Universität Leipzig, Liebigstraße 27, 04103, Leipzig, Germany
| | - Federico Bertoglio
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Stephan Steinke
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Janyn Heisig
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
- Department Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Maximilian Ruschig
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Gertrudis Rojas
- Center of Molecular Immunology, PO Box 16040, 11300, Havana, Cuba
| | - Nora Langreder
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Marlies Becker
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Doris Meier
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Joop van den Heuvel
- Department Structure and Function of Proteins, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Stefan Dübel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Maren Schubert
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.
| |
Collapse
|