1
|
Sun P, Wang X, Wang S, Jia X, Feng S, Chen J, Fang Y. Bipolar disorder: Construction and analysis of a joint diagnostic model using random forest and feedforward neural networks. IBRO Neurosci Rep 2024; 17:145-153. [PMID: 39206162 PMCID: PMC11350441 DOI: 10.1016/j.ibneur.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background To construct a diagnostic model for Bipolar Disorder (BD) depressive phase using peripheral tissue RNA data from patients and combining Random Forest with Feedforward Neural Network methods. Methods Datasets GSE23848, GSE39653, and GSE69486 were selected, and differential gene expression analysis was conducted using the limma package in R. Key genes from the differentially expressed genes were identified using the Random Forest method. These key genes' expression levels in each sample were used to train a Feedforward Neural Network model. Techniques like L1 regularization, early stopping, and dropout layers were employed to prevent model overfitting. Model performance was then validated, followed by GO, KEGG, and protein-protein interaction network analyses. Results The final model was a Feedforward Neural Network with two hidden layers and two dropout layers, comprising 2345 trainable parameters. Model performance on the validation set, assessed through 1000 bootstrap resampling iterations, demonstrated a specificity of 0.769 (95 % CI 0.571-1.000), sensitivity of 0.818 (95 % CI 0.533-1.000), AUC value of 0.832 (95 % CI 0.642-0.979), and accuracy of 0.792 (95 % CI 0.625-0.958). Enrichment analysis of key genes indicated no significant enrichment in any known pathways. Conclusion Key genes with biological significance were identified based on the decrease in Gini coefficient within the Random Forest model. The combined use of Random Forest and Feedforward Neural Network to establish a diagnostic model showed good classification performance in Bipolar Disorder.
Collapse
Affiliation(s)
- Ping Sun
- Qingdao Mental Health Center, Shandong 266034, China
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiangwen Wang
- Qingdao Mental Health Center, Shandong 266034, China
- School of Mental Health, Research Institute of Mental Health,Jining Medical University, Shandong 272002, China
| | - Shenghai Wang
- Qingdao Mental Health Center, Shandong 266034, China
| | - Xueyu Jia
- Department of Medicine,Qingdao University, Shandong 266000, China
| | - Shunkang Feng
- Qingdao Mental Health Center, Shandong 266034, China
| | - Jun Chen
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Yiru Fang
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
- State Key Laboratory of Neuroscience, Shanghai Institue for Biological Sciences, CAS, Shanghai 200031, China
| |
Collapse
|
2
|
Hosseini M, Mokhtari MJ. Up-regulation of HOXA-AS2 and MEG3 long non-coding RNAs acts as a potential peripheral biomarker for bipolar disorder. J Cell Mol Med 2024; 28:e70150. [PMID: 39482996 PMCID: PMC11528130 DOI: 10.1111/jcmm.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Bipolar disorder (BD) is a psychiatric condition that is frequently misdiagnosed and linked to inadequate treatment. Long non-coding RNAs (lncRNAs) have lately gained recognition as crucial genetic elements and are now regarded as regulatory mechanisms in the neurological system. Our objective was to measure the quantities of HOXA-AS2 and MEG3 ncRNA transcripts. HOXA-AS2 and MEG3 ncRNA levels were checked in the peripheral blood of 50 type I BD and 50 control samples by real-time PCR. Furthermore, we conducted ROC curve analysis and correlation analysis to examine the association between gene expression and specific clinical characteristics in instances with BD. Additionally, a computational study was performed to investigate the binding sites of miRNAs on the HOXA-AS2 and MEG3 lncRNAs. BD subjects showed a significant increase in the expression of HOXA-AS2 and MEG3 compared to controls. The lncRNAs HOXA-AS2 and MEG3 have an area under the ROC curve (AUC) values of 0.70 and 0.71, respectively. There was a significant correlation between the expression levels of ncRNAs HOXA-AS2 and MEG3 in the peripheral blood of patients with BD and occupation scores. The data presented indicate a potential correlation between the expression of HOXA-AS2 and MEG3 lncRNAs with an elevated risk of BD. Furthermore, these lncRNAs may be linked to several molecular pathways. Our findings indicate that the amounts of lncRNAs HOXA-AS2 and MEG3 in transcripts might be a promising potential biomarker for patients with BD.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Biology, Zarghan BranchIslamic Azad UniversityZarghanIran
| | | |
Collapse
|
3
|
Wang Y, Huang Y, Luo X, Lai X, Yu L, Zhao Z, Zhang A, Li H, Huang G, Li Y, Wang J, Wu Q. Deciphering the role of miRNA-134 in the pathophysiology of depression: A comprehensive review. Heliyon 2024; 10:e39026. [PMID: 39435111 PMCID: PMC11492588 DOI: 10.1016/j.heliyon.2024.e39026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/27/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
This study summarizes the significance of microRNA-134 (miRNA-134) in the pathophysiology, diagnosis, and treatment of depression, a disease still under investigation due to its complexity. miRNA-134 is an endogenous short non-coding RNA that can bind to the 3' untranslated region (3'UTR) of miRNA-134, inhibiting gene translation and showing great potential in the regulation of mood, synaptic plasticity, and neuronal function. This study included 15 articles retrieved from four English-language databases: PubMed, Embase, The Cochrane Library, and Web of Science, and three Chinese literature databases: CNKI, Wanfang, and Chinese Science and Technology Periodical Database (VIP).We evaluated each of the 15 articles using the Critical Appraisal Skills Program (CASP) tool.The standard integrates analyzes of genomic, transcriptomic, neuroimaging, and behavioral data analyses related to miRNA-134 and depression. A multidimensional framework based on standardized criteria was used for quality assessment. The main findings indicate that miRNA-134 significantly affects synaptic plasticity and neurotransmitter regulation, in particular the synthesis and release of serotonin and dopamine. miRNA-134 shows high sensitivity and specificity as a biomarker for the diagnosis of depression and has therapeutic potential for the targeted treatment of depression. miRNA-134 plays a crucial role in the pathogenesis of depression, providing valuable insights for early diagnosis and the development of targeted therapeutic strategies. This work highlights the potential of miRNA-134 as a focal point for advancing personalized medicine approaches for depression.
Collapse
Affiliation(s)
- Yunkai Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Yali Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Xuexing Luo
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Xin Lai
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, Guangzhou, 510655, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Aijia Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Hong Li
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Guanghui Huang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Yu Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Khavari B, Barnett MM, Mahmoudi E, Geaghan MP, Graham A, Cairns MJ. microRNA and the Post-Transcriptional Response to Oxidative Stress during Neuronal Differentiation: Implications for Neurodevelopmental and Psychiatric Disorders. Life (Basel) 2024; 14:562. [PMID: 38792584 PMCID: PMC11121913 DOI: 10.3390/life14050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress is one of the most important environmental exposures associated with psychiatric disorders, but the underlying molecular mechanisms remain to be elucidated. In a previous study, we observed a substantial alteration of the gene expression landscape in neuron-like cells that were differentiated from SH-SY5Y cells after or during exposure to oxidative stress, with a subset of dysregulated genes being enriched for neurodevelopmental processes. To further explore the regulatory mechanisms that might account for such profound perturbations, we have now applied small RNA-sequencing to investigate changes in the expression of miRNAs. These molecules are known to play crucial roles in brain development and response to stress through their capacity to suppress gene expression and influence complex biological networks. Through these analyses, we observed more than a hundred differentially expressed miRNAs, including 80 previously reported to be dysregulated in psychiatric disorders. The seven most influential miRNAs associated with pre-treatment exposure, including miR-138-5p, miR-96-5p, miR-34c-5p, miR-1287-5p, miR-497-5p, miR-195-5p, and miR-16-5p, supported by at least 10 negatively correlated mRNA connections, formed hubs in the interaction network with 134 genes enriched with neurobiological function, whereas in the co-treatment condition, miRNA-mRNA interaction pairs were enriched in cardiovascular and immunity-related disease ontologies. Interestingly, 12 differentially expressed miRNAs originated from the DLK1-DIO3 location, which encodes a schizophrenia-associated miRNA signature. Collectively, our findings suggest that early exposure to oxidative stress, before and during prenatal neuronal differentiation, might increase the risk of mental illnesses in adulthood by disturbing the expression of miRNAs that regulate neurodevelopmentally significant genes and networks.
Collapse
Affiliation(s)
- Behnaz Khavari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michelle M. Barnett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michael P. Geaghan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Adam Graham
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
5
|
Tsai KW, Yang YF, Wang LJ, Pan CC, Chang CH, Chiang YC, Wang TY, Lu RB, Lee SY. Correlation of potential diagnostic biomarkers (circulating miRNA and protein) of bipolar II disorder. J Psychiatr Res 2024; 172:254-260. [PMID: 38412788 DOI: 10.1016/j.jpsychires.2024.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/06/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES We previously identified certain peripheral biomarkers of bipolar II disorder (BD-II) including circulating miRNAs (miR-7-5p, miR-142-3p, miR-221-5p, and miR-370-3p) and proteins (Matrix metallopeptidase 9 (MMP9), phenylalanyl-tRNA synthetase subunit beta (FARSB), peroxiredoxin 2 (PRDX2), carbonic anhydrase 1 (CA-1), and proprotein convertase subtilisin/kexin type 9 (PCSK9)). We try to explore the connection between these biomarkers. METHODS We explored correlations between the peripheral levels of above circulating miRNAs and proteins in our previously collected BD-II (N = 96) patients and control (N = 115) groups. We further searched TargetScan and BioGrid websites to identify direct and indirect interactions between these protein-coding genes and circulating miRNAs. RESULTS In the BD-II group, we identified significant correlations between the miR-221-5p and CA-1 (rho = -0.323, P = 0.001), FARSB (rho = 0.251, P = 0.014), MMP-9 (rho = 0.313, P = 0.002) and PCSK9 (rho = 0.252, P = 0.014). The miR-370-3p also significantly correlated with FARSB expression (rho = 0.330, P = 0.001) and PCSK9 expression (rho = 0.221, P = 0.031) in the BD-II group. Our findings were in line with the modulating axis identified from TargetScan and BioGrid, miR-221-5p/CA-1/MMP9 and miR-370-3p/FARSB/PCSK9, suggesting their association with BD-II. CONCLUSION Our result supported that peripheral candidate miRNA and protein biomarkers may interact in BD-II. We concluded that miR-221-5p/CA-1/MMP9 and miR-370-3p/FARSB/PCSK9 axes might act a critical role in the pathomechanism of BD-II.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Chuan Pan
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yung-Chih Chiang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Yanjiao Furen Hospital, Hebei, China
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Kurtulmuş A, Koçana CÇ, Toprak SF, Sözer S. The role of Extracellular Genomic Materials (EGMs) in psychiatric disorders. Transl Psychiatry 2023; 13:262. [PMID: 37464177 PMCID: PMC10354097 DOI: 10.1038/s41398-023-02549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Extracellular Genomic Materials (EGMs) are the nucleic acids secreted or released from all types of cells by endogenous or exogenous stimuli through varying mechanisms into the extracellular region and inevitably to all biological fluids. EGMs could be found as free, protein-bound, and/ or with vesicles. EGMs can potentially have immunophenotypic and/or genotypic characteristics of a cell of origin, travel to distant organs, and interact with the new microenvironment. To achieve all, EGMs might bi-directionally transit through varying membranes, including the blood-brain barrier. Such ability provides the transfer of any information related to the pathophysiological changes in psychiatric disorders in the brain to the other distant organ systems or vice versa. In this article, many aspects of EGMs have been elegantly reviewed, including their potential in diagnosis as biomarkers, application in treatment modalities, and functional effects in the pathophysiology of psychiatric disorders. The psychiatric disorders were studied under subgroups of Schizophrenia spectrum disorders, bipolar disorder, depressive disorders, and an autism spectrum disorders. EGMs provide a robust and promising tool in clinics for prognosis and diagnosis. The successful application of EGMs into treatment modalities might further provide encouraging outcomes for researchers and clinicians in psychiatric disorders.
Collapse
Affiliation(s)
- Ayşe Kurtulmuş
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
- Istanbul Göztepe Prof.Dr.Süleyman Yalçın City Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Cemal Çağıl Koçana
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
7
|
Pisanu C, Squassina A. RNA Biomarkers in Bipolar Disorder and Response to Mood Stabilizers. Int J Mol Sci 2023; 24:10067. [PMID: 37373213 DOI: 10.3390/ijms241210067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Bipolar disorder (BD) is a severe chronic disorder that represents one of the main causes of disability among young people. To date, no reliable biomarkers are available to inform the diagnosis of BD or clinical response to pharmacological treatment. Studies focused on coding and noncoding transcripts may provide information complementary to genome-wide association studies, allowing to correlate the dynamic evolution of different types of RNAs based on specific cell types and developmental stage with disease development or clinical course. In this narrative review, we summarize findings from human studies that evaluated the potential utility of messenger RNAs and noncoding transcripts, such as microRNAs, circular RNAs and long noncoding RNAs, as peripheral markers of BD and/or response to lithium and other mood stabilizers. The majority of available studies investigated specific targets or pathways, with large heterogeneity in the included type of cells or biofluids. However, a growing number of studies are using hypothesis-free designs, with some studies also integrating data on coding and noncoding RNAs measured in the same participants. Finally, studies conducted in neurons derived from induced-pluripotent stem cells or in brain organoids provide promising preliminary findings supporting the power and utility of these cellular models to investigate the molecular determinants of BD and clinical response.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2E2, Canada
| |
Collapse
|
8
|
Leem KH, Kim S, Kim HW, Park HJ. Downregulation of microRNA-330-5p induces manic-like behaviors in REM sleep-deprived rats by enhancing tyrosine hydroxylase expression. CNS Neurosci Ther 2023; 29:1525-1536. [PMID: 36794530 PMCID: PMC10173715 DOI: 10.1111/cns.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/13/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
AIM In our pilot study, we found an increase in tyrosine hydroxylase (Th) mRNA expression in the prefrontal cortex of 72-h REM sleep-deprived (SD) rats, a mania model. Additionally, the expression levels of miR-325-3p, miR-326-3p, and miR-330-5p, the predicted target miRNAs on TH, were significantly decreased. Based on these results, in this study, we investigated whether miRNA-325-3p, miR-326-3p, and miR-330-5p modulate TH and manic-like behaviors in SD rats. METHODS Manic-like behaviors were assessed using the open field test (OFT) and elevated plus-maze (EPM) test. The direct binding activity of miRNAs to the 3'-untranslated region (3'-UTR) of the Th gene was measured in HEK-293 cells using a luciferase reporter system. We also examined mRNA and protein expression of TH after intracerebroventricular (ICV) injection of miR-330-5p agomir to SD rats, along with manic-like behaviors. RESULTS We observed an upregulation in mRNA and protein expression of TH and downregulation in miRNA-325-3p, miR-326-3p, and miR-330-5p expressions in the prefrontal cortex of SD rats, together with increased manic-like behaviors. The luciferase reporter assay showed that miR-330-5p could repress TH expression through direct binding to its target site in the 3'-UTR of Th, whereas miR-326-3p and miR-330-5p could not. In addition, ICV injection of miR-330-5p agomir alleviated the increase in TH expression in the prefrontal cortex of SD rats and manic-like behaviors. CONCLUSIONS TH expression regulation through miR-330-5p may be implicated in the pathophysiology of mania in SD rats.
Collapse
Affiliation(s)
- Kang Hyun Leem
- Department of Herbology, College of Korean MedicineSemyung UniversityJecheonKorea
| | - Sanga Kim
- Department of Pharmacology, School of MedicineKyung Hee UniversitySeoulKorea
| | - Hee Won Kim
- Department of Medical Engineering, Graduate SchoolKyung Hee UniversitySeoulKorea
| | - Hae Jeong Park
- Department of Pharmacology, School of MedicineKyung Hee UniversitySeoulKorea
| |
Collapse
|
9
|
Jin M, Liu Y, Hu G, Li X, Jia N, Cui X, Li Z, Ai L, Xie M, Xue F, Yang Y, Li W, Zhang M, Yu Q. Establishment of a schizophrenia classifier based on peripheral blood signatures and investigation of pathogenic miRNA-mRNA regulation. J Psychiatr Res 2023; 159:172-184. [PMID: 36738648 DOI: 10.1016/j.jpsychires.2023.01.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
To date, the diagnosis of schizophrenia (SCZ) mainly relies on patients' or guardians' self-reports and clinical observation, and the pathogenesis of SCZ remains elusive. In this study, we sought to develop a reliable classifier for diagnosing SCZ patients and provide clues to the etiology and pathogenesis of SCZ. Based on the high throughput sequencing analysis of peripheral blood miRNA expression profile and weighted gene co-expression network analysis (WGCNA) in our previous study, we selected eleven hub miRNAs for validation by qRT-PCR in 51 SCZ patients and 51 controls. miR-939-5p, miR-4732-3p let-7d-3p, and miR-142-3p were confirmed to be significantly up-regulated, and miR-30e-3p and miR-23a-3p were down-regulated in SCZ patients. miR-30e-3p with the most considerable fold change and statistically significance was selected for targeting validation. We first performed bioinformatics prediction followed by qRT-PCR and verified the up-regulation of potential target mRNAs (ABI1, NMT1, HMGB1) expression. Next, we found that the expression level of ABI1 was significantly up-regulated in SH-SY5Y cells transfected with miR-30e-3p mimics. Lastly, we conducted a luciferase assay in 293T cells confirming that miR-30e-3p could directly bind with the 3'untranslated region (3'-UTR) of ABI1, revealing that miR-30e-3p might play a role in the polymerization of neuronal actin and the reconstruction of the cytoskeleton via the downstream regulation of ABI1. In addition, we constructed a classifier by a series of bioinformatics algorithms and evaluated its diagnostic performance. It appears that the classifier consists of miRNAs and mRNAs possess a better discrimination performance than individual miRNA or mRNA in SCZ.
Collapse
Affiliation(s)
- Mengdi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yane Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Guoyan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xinwei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xingyao Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Zhijun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lizhe Ai
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Mengtong Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Fengyu Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuqing Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Weizhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Min Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Potential of Circulating miRNAs as Molecular Markers in Mood Disorders and Associated Suicidal Behavior. Int J Mol Sci 2023; 24:ijms24054664. [PMID: 36902096 PMCID: PMC10003208 DOI: 10.3390/ijms24054664] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
Mood disorders are the most prevalent psychiatric disorders associated with significant disability, morbidity, and mortality. The risk of suicide is associated with severe or mixed depressive episodes in patients with mood disorders. However, the risk of suicide increases with the severity of depressive episodes and is often presented with higher incidences in bipolar disorder (BD) patients than in patients with major depression (MDD). Biomarker study in neuropsychiatric disorders is critical for developing better treatment plans by facilitating more accurate diagnosis. At the same time, biomarker discovery also provides more objectivity to develop state-of-the-art personalized medicine with increased accuracy through clinical interventions. Recently, colinear changes in miRNA expression between brain and systemic circulation have added great interest in examining their potential as molecular markers in mental disorders, including MDD, BD, and suicidality. A present understanding of circulating miRNAs in body fluids implicates their role in managing neuropsychiatric conditions. Most notably, their use as prognostic and diagnostic markers and their potential role in treatment response have significantly advanced our knowledge base. The present review discusses circulatory miRNAs and their underlying possibilities to be used as a screening tool for assessing major psychiatric conditions, including MDD, BD, and suicidal behavior.
Collapse
|
11
|
Kong L, Zhang D, Huang S, Lai J, Lu L, Zhang J, Hu S. Extracellular Vesicles in Mental Disorders: A State-of-art Review. Int J Biol Sci 2023; 19:1094-1109. [PMID: 36923936 PMCID: PMC10008693 DOI: 10.7150/ijbs.79666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/26/2023] [Indexed: 03/13/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale particles with various physiological functions including mediating cellular communication in the central nervous system (CNS), which indicates a linkage between these particles and mental disorders such as schizophrenia, bipolar disorder, major depressive disorder, etc. To date, known characteristics of mental disorders are mainly neuroinflammation and dysfunctions of homeostasis in the CNS, and EVs are proven to be able to regulate these pathological processes. In addition, studies have found that some cargo of EVs, especially miRNAs, were significantly up- or down-regulated in patients with mental disorders. For many years, interest has been generated in exploring new diagnostic and therapeutic methods for mental disorders, but scale assessment and routine drug intervention are still the first-line applications so far. Therefore, underlying the downstream functions of EVs and their cargo may help uncover the pathogenetic mechanisms of mental disorders as well as provide novel biomarkers and therapeutic candidates. This review aims to address the connection between EVs and mental disorders, and discuss the current strategies that focus on EVs-related psychiatric detection and therapy.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shu Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
12
|
Wisłowska-Stanek A, Lehner M, Tomczuk F, Gawryluk A, Kołosowska K, Sułek A, Krząśnik P, Sobolewska A, Wawer A, Płaźnik A, Skórzewska A. The effects of the recurrent social isolation stress on fear extinction and dopamine D 2 receptors in the amygdala and the hippocampus. Pharmacol Rep 2023; 75:119-127. [PMID: 36385611 PMCID: PMC9889440 DOI: 10.1007/s43440-022-00430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The present study assessed the influence of recurrent social isolation stress on the aversive memory extinction and dopamine D2 receptors (D2R) expression in the amygdala and the hippocampus subnuclei. We also analyzed the expression of epigenetic factors potentially associated with fear extinction: miRNA-128 and miRNA-142 in the amygdala. METHODS Male adult fear-conditioned rats had three episodes of 48 h social isolation stress before each fear extinction session in weeks intervals. Ninety minutes after the last extinction session, the D2R expression in the nuclei of the amygdala and the hippocampus (immunocytochemical technique), and mRNA levels for D2R in the amygdala were assessed (PCR). Moreover, we evaluated the levels of miRNA-128 and miRNA-142 in the amygdala. RESULTS It was found that recurrent social isolation stress decreased the fear extinction rate. The extinguished isolated rats were characterized by higher expression of D2R in the CA1 area of the hippocampus compared to the extinguished and the control rats. In turn, the isolated group presented higher D2R immunoreactivity in the CA1 area compared to the extinguished, the control, and the extinguished isolated animals. Moreover, the extinguished animals had higher expression of D2R in the central amygdala than the control and the extinguished isolated rats. These changes were accompanied by the increase in miRNA-128 level in the amygdala in the extinguished isolated rats compared to the control, the extinguished, and the isolated rats. Moreover, the extinguished rats had lower expression of miRNA-128 compared to the control and the isolated animals. CONCLUSIONS Our results suggest that social isolation stress impairs aversive memory extinction and coexists with changes in the D2R expression in the amygdala and hippocampus and increased expression of miRNA-128 in the amygdala.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Małgorzata Lehner
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Filip Tomczuk
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Gawryluk
- grid.419305.a0000 0001 1943 2944Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Karolina Kołosowska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Sułek
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Paweł Krząśnik
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Alicja Sobolewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Adriana Wawer
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Adam Płaźnik
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|
13
|
Tsermpini EE, Kalogirou CI, Kyriakopoulos GC, Patrinos GP, Stathopoulos C. miRNAs as potential diagnostic biomarkers and pharmacogenomic indicators in psychiatric disorders. THE PHARMACOGENOMICS JOURNAL 2022; 22:211-222. [PMID: 35725816 DOI: 10.1038/s41397-022-00283-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
The heterogeneity of psychiatric disorders and the lack of reliable biomarkers for prediction and treatments follow-up pose difficulties towards recognition and understanding of the molecular basis of psychiatric diseases. However, several studies based on NGS approaches have shown that miRNAs could regulate gene expression during onset and disease progression and could serve as potential diagnostic and pharmacogenomics biomarkers during treatment. We provide herein a detailed overview of circulating miRNAs and their expression profiles as biomarkers in schizophrenia, bipolar disorder and major depressive disorder and their role in response to specific treatments. Bioinformatics analysis of miR-34a, miR-106, miR-134 and miR-132, which are common among SZ, BD and MDD patients, showed brain enrichment and involvement in the modulation of critical signaling pathways, which are often deregulated in psychiatric disorders. We propose that specific miRNAs support accurate diagnosis and effective precision treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Christina I Kalogirou
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| | | | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
| | | |
Collapse
|
14
|
Clausen AR, Durand S, Petersen RL, Staunstrup NH, Qvist P. Circulating miRNAs as Potential Biomarkers for Patient Stratification in Bipolar Disorder: A Combined Review and Data Mining Approach. Genes (Basel) 2022; 13:1038. [PMID: 35741801 PMCID: PMC9222282 DOI: 10.3390/genes13061038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Bipolar disorder is a debilitating psychiatric condition that is shaped in a concerted interplay between hereditary and triggering risk factors. Profound depression and mania define the disorder, but high clinical heterogeneity among patients complicates diagnosis as well as pharmacological intervention. Identification of peripheral biomarkers that capture the genomic response to the exposome may thus progress the development of personalized treatment. MicroRNAs (miRNAs) play a prominent role in of post-transcriptional gene regulation in the context of brain development and mental health. They are coordinately modulated by multifarious effectors, and alteration in their expression profile has been reported in a variety of psychiatric conditions. Intriguingly, miRNAs can be released from CNS cells and enter circulatory bio-fluids where they remain remarkably stable. Hence, peripheral circulatory miRNAs may act as bio-indicators for the combination of genetic risk, environmental exposure, and/or treatment response. Here we provide a comprehensive literature search and data mining approach that summarize current experimental evidence supporting the applicability of miRNAs for patient stratification in bipolar disorder.
Collapse
Affiliation(s)
- Alexandra R. Clausen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Simon Durand
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Rasmus L. Petersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Nicklas H. Staunstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
- Blood Bank and Immunology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg, Denmark
| |
Collapse
|
15
|
Salvetat N, Checa-Robles FJ, Patel V, Cayzac C, Dubuc B, Chimienti F, Abraham JD, Dupré P, Vetter D, Méreuze S, Lang JP, Kupfer DJ, Courtet P, Weissmann D. A game changer for bipolar disorder diagnosis using RNA editing-based biomarkers. Transl Psychiatry 2022; 12:182. [PMID: 35504874 PMCID: PMC9064541 DOI: 10.1038/s41398-022-01938-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
In clinical practice, differentiating Bipolar Disorder (BD) from unipolar depression is a challenge due to the depressive symptoms, which are the core presentations of both disorders. This misdiagnosis during depressive episodes results in a delay in proper treatment and a poor management of their condition. In a first step, using A-to-I RNA editome analysis, we discovered 646 variants (366 genes) differentially edited between depressed patients and healthy volunteers in a discovery cohort of 57 participants. After using stringent criteria and biological pathway analysis, candidate biomarkers from 8 genes were singled out and tested in a validation cohort of 410 participants. Combining the selected biomarkers with a machine learning approach achieved to discriminate depressed patients (n = 267) versus controls (n = 143) with an AUC of 0.930 (CI 95% [0.879-0.982]), a sensitivity of 84.0% and a specificity of 87.1%. In a second step by selecting among the depressed patients those with unipolar depression (n = 160) or BD (n = 95), we identified a combination of 6 biomarkers which allowed a differential diagnosis of bipolar disorder with an AUC of 0.935 and high specificity (Sp = 84.6%) and sensitivity (Se = 90.9%). The association of RNA editing variants modifications with depression subtypes and the use of artificial intelligence allowed developing a new tool to identify, among depressed patients, those suffering from BD. This test will help to reduce the misdiagnosis delay of bipolar patients, leading to an earlier implementation of a proper treatment.
Collapse
Affiliation(s)
- Nicolas Salvetat
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | | | - Vipul Patel
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Christopher Cayzac
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Benjamin Dubuc
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Fabrice Chimienti
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | | | - Pierrick Dupré
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Diana Vetter
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Sandie Méreuze
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Jean-Philippe Lang
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
- Les Toises. Center for Psychiatry and Psychotherapy, Lausanne, Switzerland
| | - David J Kupfer
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Philippe Courtet
- Department of Psychiatric Emergency & Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - Dinah Weissmann
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France.
| |
Collapse
|
16
|
Wu X, Zhu L, Zhao Z, Xu B, Yang J, Long J, Su L. Application of machine learning in diagnostic value of mRNAs for bipolar disorder. Nord J Psychiatry 2022; 76:81-88. [PMID: 34156910 DOI: 10.1080/08039488.2021.1937311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Bipolar disorder (BD) is a type of severe mental illness with symptoms of mania or depression, it is necessary to find out effective diagnostic biomarkers for BD due to diagnosing BD is based on clinical interviews without objective indicators. MATERIALS AND METHODS The mRNA expression levels of genes included PIK3R1, FYN, TP53, PRKCZ, PRKCB, and YWHAB in the peripheral blood of 43 patients with bipolar disorder and 47 healthy controls were detected. Machine learning methods included Artificial Neural Networks, Extreme Gradient Boosting, Random Forest, and Support Vector Machine were adopted to fit different gene combinations to evaluate diagnostic value for bipolar disorder. RESULTS The combination 'PIK3R1 + FYN' in the SVM model showed the best diagnostic value, with AUC, sensitivity, and specificity values of 0.951, 0.928, and 0.937, respectively. CONCLUSIONS The diagnostic efficiency for bipolar disorder was significantly improved by fitting PIK3R1 and FYN through the Support Vector Machine model.
Collapse
Affiliation(s)
- Xulong Wu
- School of Public Health, Guangxi Medical University, Guangxi, China
| | - Lulu Zhu
- School of Public Health, Guangxi Medical University, Guangxi, China
| | - Zhi Zhao
- School of Public Health, Guangxi Medical University, Guangxi, China
| | - Bingyi Xu
- School of Public Health, Guangxi Medical University, Guangxi, China
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, Guangxi, China
| | - Jianxiong Long
- School of Public Health, Guangxi Medical University, Guangxi, China
| | - Li Su
- School of Public Health, Guangxi Medical University, Guangxi, China
| |
Collapse
|
17
|
Abdelrahman AH, Eid OM, Ibrahim MH, Abd El-Fattah SN, Eid MM, Meguid NA. Evaluation of circulating miRNAs and mRNAs expression patterns in autism spectrum disorder. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism spectrum disorder is a condition related to brain development that affects a person’s perception and socialization, resulting in problems in social interaction and communication. It has no single known cause, yet several different genes appear to be involved in autism. As a genetically complex disease, dysregulation of miRNA expression and miRNA–mRNA interactions might be a feature of autism spectrum disorder. The aim of the current study was to investigate the expression profile of circulating miRNA-128, miRNA-7 and SHANK gene family in ASD patients and to assess the possible influence of miRNA-128 and miRNA-7 on SHANK genes, which might provide an insight into the pathogenic mechanisms of ASD and introduce noninvasive molecular biomarkers for the disease diagnosis and prognosis. Quantitative real-time PCR technique was employed to determine expression levels of miRNA-128, miRNA-7 and SHANK gene family in blood samples of 40 autistic cases along with 30 age- and sex-matched normal volunteer subjects.
Results
Our study revealed a statistical significant upregulation of miRNA-128 expression levels in ASD cases compared to controls (p value < 0.001). A statistical significant difference in SHANK-3 expression was encountered on comparing cases to controls (p value < 0.001). However, miRNA-7 expression showed no significant difference between the studied groups.
Conclusions
MiRNA-128 and SHANK-3 gene are emerging players in the field of ASD. They are promising candidates as noninvasive biomarkers in autism. Future studies are needed to emphasize their pivotal role.
Collapse
|
18
|
Detection of SARS-CoV-2 Derived Small RNAs and Changes in Circulating Small RNAs Associated with COVID-19. Viruses 2021; 13:v13081593. [PMID: 34452458 PMCID: PMC8402885 DOI: 10.3390/v13081593] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Cleavage of double-stranded RNA is described as an evolutionary conserved host defense mechanism against viral infection. Small RNAs are the product and triggers of post transcriptional gene silencing events. Up until now, the relevance of this mechanism for SARS-CoV-2-directed immune responses remains elusive. Herein, we used high throughput sequencing to profile the plasma of active and convalescent COVID-19 patients for the presence of small circulating RNAs. The existence of SARS-CoV-2 derived small RNAs in plasma samples of mild and severe COVID-19 cases is described. Clusters of high siRNA abundance were discovered, homologous to the nsp2 3′-end and nsp4 virus sequence. Four virus-derived small RNA sequences have the size of human miRNAs, and a target search revealed candidate genes associated with ageusia and long COVID symptoms. These virus-derived small RNAs were detectable also after recovery from the disease. The additional analysis of circulating human miRNAs revealed differentially abundant miRNAs, discriminating mild from severe cases. A total of 29 miRNAs were reduced or absent in severe cases. Several of these are associated with JAK-STAT response and cytokine storm.
Collapse
|
19
|
Abdolmaleky HM, Zhou JR, Thiagalingam S. Cataloging recent advances in epigenetic alterations in major mental disorders and autism. Epigenomics 2021; 13:1231-1245. [PMID: 34318684 PMCID: PMC8738978 DOI: 10.2217/epi-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
During the last two decades, diverse epigenetic modifications including DNA methylation, histone modifications, RNA editing and miRNA dysregulation have been associated with psychiatric disorders. A few years ago, in a review we outlined the most common epigenetic alterations in major psychiatric disorders (e.g., aberrant DNA methylation of DTNBP1, HTR2A, RELN, MB-COMT and PPP3CC, and increased expression of miR-34a and miR-181b). Recent follow-up studies have uncovered other DNA methylation aberrations affecting several genes in mental disorders, in addition to dysregulation of many miRNAs. Here, we provide an update on new epigenetic findings and highlight potential origin of the diversity and inconsistencies, focusing on drug effects, tissue/cell specificity of epigenetic landscape and discuss shortcomings of the current diagnostic criteria in mental disorders.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, 02218 MA, USA
| |
Collapse
|
20
|
Wang H. MicroRNAs, Multiple Sclerosis, and Depression. Int J Mol Sci 2021; 22:ijms22157802. [PMID: 34360568 PMCID: PMC8346048 DOI: 10.3390/ijms22157802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects the brain and spinal cord. There are several disease courses in MS including relapsing–remitting MS (RRMS), primary progressive MS (PPMS), and secondary progressive MS (SPMS). Up to 50% of MS patients experience depressive disorders. Major depression (MD) is a serious comorbidity of MS. Many dysfunctions including neuroinflammation, peripheral inflammation, gut dysbiosis, chronic oxidative and nitrosative stress, and neuroendocrine and mitochondrial abnormalities may contribute to the comorbidity between MS and MD. In addition to these actions, medical treatment and microRNA (miRNA) regulation may also be involved in the mechanisms of the comorbidity between MS and MD. In the study, I review many common miRNA biomarkers for both diseases. These common miRNA biomarkers may help further explore the association between MS and MD.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
21
|
Identifying Circulating MicroRNA in Kawasaki Disease by Next-Generation Sequencing Approach. Curr Issues Mol Biol 2021; 43:485-500. [PMID: 34202375 PMCID: PMC8929010 DOI: 10.3390/cimb43020037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Kawasaki disease (KD) typically occurs in children aged under 5 years and can cause coronary artery lesions (CALs). Early diagnosis and treatment with intravenous immunoglobulin can reduce the occurrence of CALs; therefore, identifying a good biomarker for diagnosing KD is essential. Here, using next-generation sequencing in patients with recurrent KD, those with viral infection, and healthy controls, we identified dysregulated circulating microRNAs as diagnostic biomarkers for KD. Pathway enrichment analysis illustrated the putative role of these miRNAs in KD progression. Their expression levels were validated using real-time polymerase chain reaction (qPCR). Fifteen dysregulated circulating miRNAs (fold changes >2 and <0.5) were differentially expressed in the recurrent KD group compared with the viral infection and control groups. These miRNAs were significantly involved in the transforming growth factor-β, epithelial-mesenchymal transition, and cell apoptosis signaling pathways. Notably, their expression levels were frequently restored after intravenous immunoglobulin treatment. Among the candidates, miR-24-3p expression level was significantly higher in patients with recurrent KD compared with healthy controls or viral infection controls (p < 0.001). Receiver operating characteristic analysis revealed that high miR-24-3p expression levels may be a potential biomarker for KD diagnosis. In conclusion, we identified miR-24-3p significantly higher in KD patients, which may be a potential diagnostic biomarker for KD.
Collapse
|
22
|
Pérez-Rodríguez D, López-Fernández H, Agís-Balboa RC. Application of miRNA-seq in neuropsychiatry: A methodological perspective. Comput Biol Med 2021; 135:104603. [PMID: 34216893 DOI: 10.1016/j.compbiomed.2021.104603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
MiRNAs are emerging as key molecules to study neuropsychiatric diseases. However, despite the large number of methodologies and software for miRNA-seq analyses, there is little supporting literature for researchers in this area. This review focuses on evaluating how miRNA-seq has been used to study neuropsychiatric diseases to date, analyzing both the main findings discovered and the bioinformatics workflows and tools used from a methodological perspective. The objective of this review is two-fold: first, to evaluate current miRNA-seq procedures used in neuropsychiatry; and second, to offer comprehensive information that can serve as a guide to new researchers in bioinformatics. After conducting a systematic search (from 2016 to June 30, 2020) of articles using miRNA-seq in neuropsychiatry, we have seen that it has already been used for different types of studies in three main categories: diagnosis, prognosis, and mechanism. We carefully analyzed the bioinformatics workflows of each study, observing a high degree of variability with respect to the tools and methods used and several methodological complexities that are identified and discussed in this review.
Collapse
Affiliation(s)
- Daniel Pérez-Rodríguez
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213, Vigo, Spain; NeuroEpigenetics Lab. University Hospital Complex of Vigo, SERGAS-UVIGO, 36213, Vigo, Spain
| | - Hugo López-Fernández
- Instituto de Investigação e Inovação Em Saúde (I3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; CINBIO, Universidade de Vigo, Department of Computer Science, ESEI - Escuela Superior de Ingeniería Informática, 32004, Ourense, Spain; SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain.
| | - Roberto C Agís-Balboa
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213, Vigo, Spain; NeuroEpigenetics Lab. University Hospital Complex of Vigo, SERGAS-UVIGO, 36213, Vigo, Spain.
| |
Collapse
|
23
|
Sun HJ, Zhang FF, Xiao Q, Xu J, Zhu LJ. lncRNA MEG3, Acting as a ceRNA, Modulates RPE Differentiation Through the miR-7-5p/Pax6 Axis. Biochem Genet 2021; 59:1617-1630. [PMID: 34018078 DOI: 10.1007/s10528-021-10072-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/22/2021] [Indexed: 11/26/2022]
Abstract
Accumulated evidence indicated that long non-coding RNAs (lncRNAs) involves in numerous biological and pathological processes, including age-related macular degeneration (AMD). Dysfunction and dedifferentiation of retinal pigment epithelium (RPE) cells have been demonstrated to be one of the crucial factor in AMD etiology. Herein, we aim to investigate the essential role of lncRNA maternally expressed gene 3 (MEG3) in AMD progression. Expression patterns of MEG3 were measured in dysfunctional REP cells exposed with H2O2 or TNF-α using qRT-PCR assay. Specifically, the intercellular distribution of MEG3 in REP cells was further explored using the subcellular fraction detection. Relative expression of RPE markers or RPE dedifferentiation-related markers was determined using qRT-PCR and western blot analysis, respectively. Immunofluorescence staining was performed to examine the expressions of RPE markers ZO-1 and β-catenin. Concentration of vascular endothelial growth factor (VEGFA) in the supernatant was detected using ELISA kit. Luciferase reporter assay was performed to verify the MEG3/miR-7-5p/Pax6 regulatory network, which was further determined in in vitro studies. MEG3 expression was significantly decreased in H2O2 or TNF-α-treated REP cells, and it was upregulated along with RPE differentiation. Reduced MEG3 expression resulted in RPE dedifferentiation, which was indicated by decreased expressions of RPE markers, accumulated mitochondrial reactive oxygen species, and reduced VEGFA. Mechanistically, MEG3 functioned as a sponge for miR-7-5p to restore the expression of Pax6. Our study demonstrated that MEG3 exerts a protective role against AMD by maintaining RPE differentiation via miR-7-5p/Pax6 axis, suggesting a protective therapeutic target in AMD treatment.
Collapse
Affiliation(s)
- Hong-Jing Sun
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Fang-Fang Zhang
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Qing Xiao
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jia Xu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Li-Jin Zhu
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, Hangzhou, 310013, Zhejiang, People's Republic of China.
| |
Collapse
|
24
|
Circulating Soluble ACE2 and Upstream microRNA Expressions in Serum of Type 2 Diabetes Mellitus Patients. Int J Mol Sci 2021; 22:ijms22105263. [PMID: 34067683 PMCID: PMC8156444 DOI: 10.3390/ijms22105263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic was associated with multiple organ failure and comorbidities, such as type 2 diabetes mellitus (T2DM). Risk factors, such as age, gender, and obesity, were associated with COVID-19 infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to use several host receptors for viral entry, such as angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) in the lung and other organs. However, ACE2 could be shed from the surface to be soluble ACE2 (sACE2) in the circulation. The epigenetic factors affecting ACE2 expression include a type of small non-coding RNAs called microRNAs (miRNAs). In this study, we aimed at exploring the status of the sACE2 as well as serum levels of several upstream novel miRNAs as non-invasive biomarkers that might have a potential role in T2DM patients. Serum samples were collected from 50 T2DM patients and 50 healthy controls, and sACE2 levels were quantified using enzyme-linked immunosorbent assay (ELISA). Also, RNA was extracted, and TaqMan miRNA reverse transcription quantitative PCR (RT-qPCR) was performed to measure serum miRNA levels. Our results revealed that sACE2 is decreased in the T2DM patients and is affected by age, gender, and obesity level. Additionally, 4 miRNAs, which are revealed by in silico analysis to be potentially upstream of ACE2 were detectable in the serum. Among them, miR-421 level was found to be decreased in the serum of diabetic patients, regardless of the presence or absence of diabetic complications, as well as being differential in various body mass index (BMI) groups. The other 3 miRNAs (miR-3909, miR-212-5p, and miR-4677-3p) showed associations with multiple factors including age, gender, BMI, and serum markers, in addition to being correlated to each other. In conclusion, our study reveals a decline in the circulating serum levels of sACE2 in T2DM patients and identified 4 novel miRNAs that were associated with T2DM, which are influenced by different clinical and demographic factors.
Collapse
|
25
|
A Comprehensive Review on the Role of Non-Coding RNAs in the Pathophysiology of Bipolar Disorder. Int J Mol Sci 2021; 22:ijms22105156. [PMID: 34068138 PMCID: PMC8152970 DOI: 10.3390/ijms22105156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
Aim: Bipolar disorder is a multifactorial disorder being linked with dysregulation of several genes. Among the recently acknowledged factors in the pathophysiology of bipolar disorder are non-coding RNAs (ncRNAs). Methods: We searched PubMed and Google Scholar databases to find studies that assessed the expression profile of miRNAs, lncRNAs and circRNAs in bipolar disorder. Results: Dysregulated ncRNAs in bipolar patients have been enriched in several neuron-related pathways such as GABAergic and glutamatergic synapses, morphine addiction pathway and redox modulation. Conclusion: Altered expression of these transcripts in bipolar disorder provides clues for identification of the pathogenesis of this disorder and design of targeted therapies for the treatment of patients.
Collapse
|
26
|
Circulating miRNAs Act as Diagnostic Biomarkers for Bladder Cancer in Urine. Int J Mol Sci 2021; 22:ijms22084278. [PMID: 33924142 PMCID: PMC8074331 DOI: 10.3390/ijms22084278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) can be secreted into body fluids and have thus been reported as a new type of cancer biomarker. This study aimed to determine whether urinary miRNAs act as noninvasive biomarkers for diagnosing bladder cancer. Small RNA profiles from urine were generated for 10 patients with bladder cancer and 10 healthy controls by using next-generation sequencing. We identified 50 urinary miRNAs that were differentially expressed in bladder cancer compared with controls, comprising 44 upregulated and six downregulated miRNAs. Pathway enrichment analysis revealed that the biological role of these differentially expressed miRNAs might be involved in cancer-associated signaling pathways. Further analysis of the public database revealed that let-7b-5p, miR-149-5p, miR-146a-5p, miR-193a-5p, and miR-423-5p were significantly increased in bladder cancer compared with corresponding adjacent normal tissues. Furthermore, high miR-149-5p and miR-193a-5p expression was significantly correlated with poor overall survival in patients with bladder cancer. The qRT-PCR approach revealed that the expression levels of let-7b-5p, miR-149-5p, miR-146a-5p and miR-423-5p were significantly increased in the urine of patients with bladder cancer compared with those of controls. Although our results indicated that urinary miRNAs are promising biomarkers for diagnosing bladder cancer, this must be validated in larger cohorts in the future.
Collapse
|
27
|
Lee SY, Wang TY, Lu RB, Wang LJ, Chang CH, Chiang YC, Tsai KW. Peripheral BDNF correlated with miRNA in BD-II patients. J Psychiatr Res 2021; 136:184-189. [PMID: 33610945 DOI: 10.1016/j.jpsychires.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We have identified the association between peripheral levels of candidate miRNAs (miR-7-5p, miR-142-3p, miR-221-5p, and miR-370-3p) for BD-II in previous study. Most of these miRNAs are associated with regulation of expression of peripheral brain derived neurotrophic factor (BDNF) levels. In order to clarify the underlying mechanism of BDNF and miRNAs in the pathogenesis of BD-II, it is of interest to investigate the relation between the peripheral levels of miR-7-5p, miR-142-3p, miR-221-5p, miR-370-3p with BDNF levels. Because the BDNF Val66Met polymorphism influence the secretion of BDNF, we further stratified the above correlations by this polymorphism. METHODS We have recruited 98 BD-II patients. Beside analyzing peripheral levels of miR-7-5p, miR-142-3p, miR-221-5p, miR-370-3p, and BDNF, the genetic distribution of the BDNF Val66Met polymorphism was also analyzed. RESULTS We found that the miR7-5p, miR221-5p, and miR370-3p significantly correlated with the BDNF levels for all patients. If stratified by the BDNF Val66Met polymorphism, the significant correlation between miR221-5p and miR370-3p with BDNF only remained in the Val/Met genotype. However, the correlation between miR7-5p and BDNF level is significant in all 3 genotypes. CONCLUSION Our result supported that these miRNAs may be involved in the pathomechanism of BD-II through relation with BDNF.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Yanjiao Furen Hospital, Hebei, China
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yung-Chih Chiang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan.
| |
Collapse
|
28
|
Mansourian M, Khademi S, Marateb HR. A Comprehensive Review of Computer-Aided Diagnosis of Major Mental and Neurological Disorders and Suicide: A Biostatistical Perspective on Data Mining. Diagnostics (Basel) 2021; 11:393. [PMID: 33669114 PMCID: PMC7996506 DOI: 10.3390/diagnostics11030393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
The World Health Organization (WHO) suggests that mental disorders, neurological disorders, and suicide are growing causes of morbidity. Depressive disorders, schizophrenia, bipolar disorder, Alzheimer's disease, and other dementias account for 1.84%, 0.60%, 0.33%, and 1.00% of total Disability Adjusted Life Years (DALYs). Furthermore, suicide, the 15th leading cause of death worldwide, could be linked to mental disorders. More than 68 computer-aided diagnosis (CAD) methods published in peer-reviewed journals from 2016 to 2021 were analyzed, among which 75% were published in the year 2018 or later. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol was adopted to select the relevant studies. In addition to the gold standard, the sample size, neuroimaging techniques or biomarkers, validation frameworks, the classifiers, and the performance indices were analyzed. We further discussed how various performance indices are essential based on the biostatistical and data mining perspective. Moreover, critical information related to the Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines was analyzed. We discussed how balancing the dataset and not using external validation could hinder the generalization of the CAD methods. We provided the list of the critical issues to consider in such studies.
Collapse
Affiliation(s)
- Mahsa Mansourian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Sadaf Khademi
- Biomedical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan 8174-67344, Iran;
| | - Hamid Reza Marateb
- Biomedical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan 8174-67344, Iran;
| |
Collapse
|
29
|
Gibbons A, Sundram S, Dean B. Changes in Non-Coding RNA in Depression and Bipolar Disorder: Can They Be Used as Diagnostic or Theranostic Biomarkers? Noncoding RNA 2020; 6:E33. [PMID: 32846922 PMCID: PMC7549354 DOI: 10.3390/ncrna6030033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
The similarities between the depressive symptoms of Major Depressive Disorders (MDD) and Bipolar Disorders (BD) suggest these disorders have some commonality in their molecular pathophysiologies, which is not apparent from the risk genes shared between MDD and BD. This is significant, given the growing literature suggesting that changes in non-coding RNA may be important in both MDD and BD, because they are causing dysfunctions in the control of biochemical pathways that are affected in both disorders. Therefore, understanding the changes in non-coding RNA in MDD and BD will lead to a better understanding of how and why these disorders develop. Furthermore, as a significant number of individuals suffering with MDD and BD do not respond to medication, identifying non-coding RNA that are altered by the drugs used to treat these disorders offer the potential to identify biomarkers that could predict medication response. Such biomarkers offer the potential to quickly identify patients who are unlikely to respond to traditional medications so clinicians can refocus treatment strategies to ensure more effective outcomes for the patient. This review will focus on the evidence supporting the involvement of non-coding RNA in MDD and BD and their potential use as biomarkers for treatment response.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Suresh Sundram
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
30
|
MicroRNA-7: expression and function in brain physiological and pathological processes. Cell Biosci 2020; 10:77. [PMID: 32537124 PMCID: PMC7288475 DOI: 10.1186/s13578-020-00436-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional level and play critical roles in regulating physiological function, and are becoming worldwide research hot spot in brain development and diseases. However, the exact value of miRNAs in brain physiological and pathological processes remain to be fully elucidated, which is vital for the application of miRNAs as diagnostic, prognostic, and therapeutic biomarkers for brain diseases. MicroRNA-7 (miR-7), as a highly expressed miRNA molecule in the mammalian brain, is well documented to play a critical role in development of various diseases. Importantly, accumulating evidence has shown that miR-7 is involved in a range of developmental and pathological processes of brain. Expressively, miR-7, encoded by three genes located different chromosomes, is dominantly expressed in neurons with sensory or neurosecretory. Moreover, the expression of miR-7 is regulated at three levels including gene transcription, process of primary and precursor sequence and formation of mature sequence. Physiologically, miR-7 principally governs the physiological development of Pituitary gland, Optic nervous system and Cerebral cortex. Pathologically, miR-7 can regulate multiple genes thereby manipulating the process of various brain diseases including neurodegenerative diseases, neuroinflammation, and mental disorders and so on. These emerging studies have shown that miR-7, a representative member of miRNA family, might be a novel intrinsic regulatory molecule involved in the physiological and pathological process of brain. Therefore, in-depth studies on the role of miR-7 in brain physiology and pathology undoubtedly not only provide a light on the roles of miRNAs in brain development and diseases, but also are much helpful for ultimate development of therapeutic strategies against brain diseases. In this review, we provide an overview of current scientific knowledge regarding the expression and function of miR-7 in development and disease of brain and raise many issues involved in the relationship between miR-7 and brain physiological and pathological processes.
Collapse
|
31
|
Roy B, Yoshino Y, Allen L, Prall K, Schell G, Dwivedi Y. Exploiting Circulating MicroRNAs as Biomarkers in Psychiatric Disorders. Mol Diagn Ther 2020; 24:279-298. [PMID: 32304043 PMCID: PMC7269874 DOI: 10.1007/s40291-020-00464-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-invasive peripheral biomarkers play a significant role in both disease diagnosis and progression. In the past few years, microRNA (miRNA) expression changes in circulating peripheral tissues have been found to be correlative with changes in neuronal tissues from patients with neuropsychiatric disorders. This is a notable quality of a biomolecule to be considered as a biomarker for both prognosis and diagnosis of disease. miRNAs, members of the small non-coding RNA family, have recently gained significant attention due to their ability to epigenetically influence almost every aspect of brain functioning. Empirical evidence suggests that miRNA-associated changes in the brain are often translated into behavioral changes. Current clinical understanding further implicates their role in the management of major psychiatric conditions, including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). This review aims to critically evaluate the potential advantages and disadvantages of miRNAs as diagnostic/prognostic biomarkers in psychiatric disorders as well as in treatment response.
Collapse
Affiliation(s)
- Bhaskar Roy
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Yuta Yoshino
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Lauren Allen
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Kevin Prall
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Grant Schell
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|