1
|
Yang JC, Liu M, Huang RH, Zhao L, Niu QJ, Xu ZJ, Wei JT, Lei XG, Sun LH. Loss of SELENOW aggravates muscle loss with regulation of protein synthesis and the ubiquitin-proteasome system. SCIENCE ADVANCES 2024; 10:eadj4122. [PMID: 39303039 DOI: 10.1126/sciadv.adj4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
Sarcopenia is characterized by accelerated muscle mass and function loss, which burdens and challenges public health worldwide. Several studies indicated that selenium deficiency is associated with sarcopenia; however, the specific mechanism remains unclear. Here, we demonstrated that selenoprotein W (SELENOW) containing selenium in the form of selenocysteine functioned in sarcopenia. SELENOW expression is up-regulated in dexamethasone (DEX)-induced muscle atrophy and age-related sarcopenia mouse models. Knockout (KO) of SELENOW profoundly aggravated the process of muscle mass loss in the two mouse models. Mechanistically, SELENOW KO suppressed the RAC1-mTOR cascade by the interaction between SELENOW and RAC1 and induced the imbalance of protein synthesis and degradation. Consistently, overexpression of SELENOW in vivo and in vitro alleviated the muscle and myotube atrophy induced by DEX. SELENOW played a role in age-related sarcopenia and regulated the genes associated with aging. Together, our study uncovered the function of SELENOW in age-related sarcopenia and provides promising evidence for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rong-Hui Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin-Jian Niu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin-Tao Wei
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
2
|
Shi H, Wang H, Yu M, Su J, Zhao Z, Gao T, Zhang Q, Wei Y. Serum trace elements and osteoarthritis: A meta-analysis and Mendelian randomization study. J Trace Elem Med Biol 2024; 86:127520. [PMID: 39255532 DOI: 10.1016/j.jtemb.2024.127520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/23/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE This study aims to establish the correlation between shifts in serum trace element (TE) levels and the progression of osteoarthritis (OA), while also exploring the underlying causal relationship between these variables. METHODS An investigation was conducted, which included a systematic review, a meta-analysis of observational studies, and a two-sample Mendelian randomization (MR) study. RESULTS This meta-analysis revealed significant differences in serum levels of copper, manganese, cadmium, and selenium between OA patients and healthy controls, after adjusting for heterogeneity. Specifically, significant disparities were observed for copper (SMD 0.118 [95 % CI: 0.061 ∼ 0.175], P < 0.001), manganese (SMD -0.180 [95 % CI: -0.326 ∼ -0.034], P = 0.016), cadmium (SMD 0.227 [95 % CI: 0.131 ∼ 0.322], P < 0.001), and selenium (SMD -0.138 [95 % CI: -0.209 ∼ -0.068], P < 0.001), while zinc levels did not show a significant difference (SMD -0.02 [95 % CI: -0.077 ∼ 0.038], P = 0.503). Further, MR analysis suggested a causal link between genetically predicted serum copper level changes and OA development, but not for other TEs. CONCLUSION The study suggests that there is an association between the occurrence of OA and variations in serum levels of copper, manganese, cadmium, and selenium. Elevated serum copper may play a pivotal role. Further research is needed to explore the therapeutic potential of TE level modulation in OA management.
Collapse
Affiliation(s)
- Haoyan Shi
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ze Zhao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianqi Gao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qian Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Burns DP, Drummond SE, Wölfel S, Murphy KH, Szpunar J, O’Halloran KD, Mackrill JJ. Impaired Upper Airway Muscle Function with Excessive or Deficient Dietary Intake of Selenium in Rats. Antioxidants (Basel) 2024; 13:1080. [PMID: 39334739 PMCID: PMC11429047 DOI: 10.3390/antiox13091080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Obstructive sleep apnoea (OSA) involves impaired upper airway muscle function and is linked to several pathologies including systemic hypertension, daytime somnolence and cognitive decline. Selenium is an essential micronutrient that exerts many of its effects through selenoproteins. Evidence indicates that either deficient or excessive dietary selenium intake can result in impaired muscle function, termed nutritional myopathy. To investigate the effects of selenium on an upper airway muscle, the sternohyoid, rats were fed on diets containing deficient, normal (0.5 ppm sodium selenite) or excessive (5 ppm selenite) selenium for a period of two weeks. Sternohyoid contractile function was assessed ex vivo. Serum selenium levels and activity of the glutathione antioxidant system were determined by biochemical assays. The abundance of three key muscle selenoproteins (selenoproteins -N, -S and -W (SELENON, SELENOS and SELENOW)) in sternohyoid muscle were quantified by immunoblotting. Levels of these selenoproteins were also compared between rats exposed to chronic intermittent hypoxia, a model of OSA, and sham treated animals. Although having no detectable effect on selected organ masses and whole-body weight, either selenium-deficient or -excessive diets severely impaired sternohyoid contractile function. These changes did not involve altered fibre size distribution. These dietary interventions resulted in corresponding changes in serum selenium concentrations but did not alter the activity of glutathione-dependent antioxidant systems in sternohyoid muscle. Excess dietary selenium increased the abundance of SELENOW protein in sternohyoid muscles but had no effect on SELENON or SELENOS. In contrast, chronic intermittent hypoxia increased SELENON, decreased SELENOW and had no significant effect on SELENOS in sternohyoid muscle. These findings indicate that two-week exposure to selenium-deficient or -excessive diets drastically impaired upper airway muscle function. In the sternohyoid, SELENON, SELENOS and SELENOW proteins show distinct alterations in level following exposure to different dietary selenium intakes, or to chronic intermittent hypoxia. Understanding how alterations in Se and selenoproteins impact sternohyoid muscle function has the potential to be translated into new therapies for prevention or treatment of OSA.
Collapse
Affiliation(s)
- David P. Burns
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland; (D.P.B.); (S.E.D.); (S.W.); (K.H.M.); (K.D.O.)
| | - Sarah E. Drummond
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland; (D.P.B.); (S.E.D.); (S.W.); (K.H.M.); (K.D.O.)
| | - Stefanie Wölfel
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland; (D.P.B.); (S.E.D.); (S.W.); (K.H.M.); (K.D.O.)
| | - Kevin H. Murphy
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland; (D.P.B.); (S.E.D.); (S.W.); (K.H.M.); (K.D.O.)
| | - Joanna Szpunar
- IPREM UMR 5254, CNRS, E2S UPPA, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France;
| | - Ken D. O’Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland; (D.P.B.); (S.E.D.); (S.W.); (K.H.M.); (K.D.O.)
| | - John J. Mackrill
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland; (D.P.B.); (S.E.D.); (S.W.); (K.H.M.); (K.D.O.)
| |
Collapse
|
4
|
Conte E, Mantuano P, Boccanegra B, Imbrici P, Dinoi G, Lenti R, Cappellari O, Cappetta D, De Angelis A, Berrino L, Gordish-Dressman H, Bianchini G, Aramini A, Allegretti M, Liantonio A, De Luca A. Branched-chain amino acids and L-alanine supplementation ameliorate calcium dyshomeostasis in sarcopenia: New insights for nutritional interventions. Front Pharmacol 2024; 15:1393746. [PMID: 38962308 PMCID: PMC11220240 DOI: 10.3389/fphar.2024.1393746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: During aging, sarcopenia and decline in physiological processes lead to partial loss of muscle strength, atrophy, and increased fatigability. Muscle changes may be related to a reduced intake of essential amino acids playing a role in proteostasis. We have recently shown that branched-chain amino acid (BCAA) supplements improve atrophy and weakness in models of muscle disuse and aging. Considering the key roles that the alteration of Ca2+-related homeostasis and store-operated calcium entry (SOCE) play in several muscle dysfunctions, this study has been aimed at gaining insight into the potential ability of BCAA-based dietary formulations in aged mice on various players of Ca2+ dyshomeostasis. Methods: Seventeen-month-old male C57BL/6J mice received a 12-week supplementation with BCAAs alone or boosted with two equivalents of L-alanine (2-Ala) or with dipeptide L-alanyl-L-alanine (Di-Ala) in drinking water. Outcomes were evaluated on ex vivo skeletal muscles indices vs. adult 3-month-old male C57BL/6J mice. Results: Ca2+ imaging confirmed a decrease in SOCE and an increase of resting Ca2+ concentration in aged vs. adult mice without alteration in the canonical components of SOCE. Aged muscles vs. adult muscles were characterized by a decrease in the expression of ryanodine receptor 1 (RyR1), the Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) pump, and sarcalumenin together with an alteration of the expression of mitsugumin 29 and mitsugumin 53, two recently recognized players in the SOCE mechanism. BCAAs, particularly the formulation BCAAs+2-Ala, were able to ameliorate all these alterations. Discussion: These results provide evidence that Ca2+ homeostasis dysfunction plays a role in the functional deficit observed in aged muscle and supports the interest of dietary BCAA supplementation in counteracting sarcopenia-related SOCE dysregulation.
Collapse
Affiliation(s)
- Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Imbrici
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Giorgia Dinoi
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Roberta Lenti
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States
| | - Gianluca Bianchini
- Research & Early Development, Dompé farmaceutici S.p.A., L’Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé farmaceutici S.p.A., L’Aquila, Italy
| | | | - Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
5
|
Shen Y, Zhang C, Dai C, Zhang Y, Wang K, Gao Z, Chen X, Yang X, Sun H, Yao X, Xu L, Liu H. Nutritional Strategies for Muscle Atrophy: Current Evidence and Underlying Mechanisms. Mol Nutr Food Res 2024; 68:e2300347. [PMID: 38712453 DOI: 10.1002/mnfr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/28/2024] [Indexed: 05/08/2024]
Abstract
Skeletal muscle can undergo detrimental changes in various diseases, leading to muscle dysfunction and atrophy, thus severely affecting people's lives. Along with exercise, there is a growing interest in the potential of nutritional support against muscle atrophy. This review provides a brief overview of the molecular mechanisms driving skeletal muscle atrophy and summarizes recent advances in nutritional interventions for preventing and treating muscle atrophy. The nutritional supplements include amino acids and their derivatives (such as leucine, β-hydroxy, β-methylbutyrate, and creatine), various antioxidant supplements (like Coenzyme Q10 and mitoquinone, resveratrol, curcumin, quercetin, Omega 3 fatty acids), minerals (such as magnesium and selenium), and vitamins (such as vitamin B, vitamin C, vitamin D, and vitamin E), as well as probiotics and prebiotics (like Lactobacillus, Bifidobacterium, and 1-kestose). Furthermore, the study discusses the impact of a combined approach involving nutritional support and physical therapy to prevent muscle atrophy, suggests appropriate multi-nutritional and multi-modal interventions based on individual conditions to optimize treatment outcomes, and enhances the recovery of muscle function for patients. By understanding the molecular mechanisms behind skeletal muscle atrophy and implementing appropriate interventions, it is possible to enhance the recovery of muscle function and improve patients' quality of life.
Collapse
Grants
- 81901933 National Natural Science Foundation of China
- 82072160 National Natural Science Foundation of China
- 20KJA310012 Major Natural Science Research Projects in Universities of Jiangsu Province
- BK20202013 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- BK20201209 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- ZDB2020003 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- QingLan Project in Jiangsu Universities
- JC22022037 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- MS22022010 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- JC12022010 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- HS2022003 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Chaolun Dai
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, P. R. China, 226001
| | - Yijie Zhang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, P. R. China, 226001
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| |
Collapse
|
6
|
Sullivan BP, Collins BC, McMillin SL, Toussaint E, Stein CZ, Spangenburg EE, Lowe DA. Ablation of skeletal muscle estrogen receptor alpha impairs contractility in male mice. J Appl Physiol (1985) 2024; 136:764-773. [PMID: 38328824 DOI: 10.1152/japplphysiol.00714.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Estradiol and estrogen receptor α (ERα) have been shown to be important for the maintenance of skeletal muscle strength in females; however, little is known about the roles of estradiol and ERα in male muscle. The purpose of this study was to determine if skeletal muscle ERα is required for optimal contractility in male mice. We hypothesize that reduced ERα in skeletal muscle impairs contractility in male mice. Skeletal muscle-specific knockout (skmERαKO) male mice exhibited reduced strength across multiple muscles and several contractile parameters related to force generation and kinetics compared with wild-type littermates (skmERαWT). Isolated EDL muscle-specific isometric tetanic force, peak twitch force, peak concentric and peak eccentric forces, as well as the maximal rates of force development and relaxation were 11%-21% lower in skmERαKO compared with skmERαWT mice. In contrast, isolated soleus muscles from skmERαKO mice were not affected. In vivo peak torque of the anterior crural muscles was 20% lower in skmERαKO compared with skmERαWT mice. Muscle masses, contractile protein contents, fiber types, phosphorylation of the myosin regulatory light chain, and caffeine-elicited force did not differ between muscles of skmERαKO and skmERαWT mice, suggesting that strength deficits were not due to size, composition, or calcium release components of muscle contraction. These results indicate that in male mice, reduced skeletal muscle ERα blunts contractility to a magnitude similar to that previously reported in females; however, the mechanism may be sexually dimorphic.NEW & NOTEWORTHY We comprehensively measured in vitro and in vivo contractility of leg muscles with reduced estrogen receptor α (ERα) in male mice and reported that force generation and contraction kinetics are impaired. In contrast to findings in females, phosphorylation of myosin regulatory light chain cannot account for low force production in male skeletal muscle ERα knockout mice. These results indicate that ERα is required for optimal contractility in males and females but via sexually dimorphic means.
Collapse
Affiliation(s)
- Brian P Sullivan
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Brittany C Collins
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Shawna L McMillin
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Elise Toussaint
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Clara Z Stein
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Espen E Spangenburg
- Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| | - Dawn A Lowe
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
7
|
Kanazawa Y, Takahashi T, Nagano M, Koinuma S, Shigeyoshi Y. The Effects of Aging on Sarcoplasmic Reticulum-Related Factors in the Skeletal Muscle of Mice. Int J Mol Sci 2024; 25:2148. [PMID: 38396828 PMCID: PMC10889371 DOI: 10.3390/ijms25042148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The pathogenesis of sarcopenia includes the dysfunction of calcium homeostasis associated with the sarcoplasmic reticulum; however, the localization in sarcoplasmic reticulum-related factors and differences by myofiber type remain unclear. Here, we investigated the effects of aging on sarcoplasmic reticulum-related factors in the soleus (slow-twitch) and gastrocnemius (fast-twitch) muscles of 3- and 24-month-old male C57BL/6J mice. There were no notable differences in the skeletal muscle weight of these 3- and 24-month-old mice. The expression of Atp2a1, Atp2a2, Sln, and Pln increased with age in the gastrocnemius muscles, but not in the soleus muscles. Subsequently, immunohistochemical analysis revealed ectopic sarcoplasmic reticulum calcium ion ATPase (SERCA) 1 and SERCA2a immunoreactivity only in the gastrocnemius muscles of old mice. Histochemical and transmission electron microscope analysis identified tubular aggregate (TA), an aggregation of the sarcoplasmic reticulum, in the gastrocnemius muscles of old mice. Dihydropyridine receptor α1, ryanodine receptor 1, junctophilin (JPH) 1, and JPH2, which contribute to sarcoplasmic reticulum function, were also localized in or around the TA. Furthermore, JPH1 and JPH2 co-localized with matrix metalloproteinase (MMP) 2 around the TA. These results suggest that sarcoplasmic reticulum-related factors are localized in or around TAs that occur in fast-twitch muscle with aging, but some of them might be degraded by MMP2.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| | - Tatsuo Takahashi
- Department of Clinical Pharmacology, Hokuriku University, Kanazawa 920-1181, Ishikawa, Japan;
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| |
Collapse
|
8
|
Nan Y, Zhou Y, Dai Z, Yan T, Zhong P, Zhang F, Chen Q, Peng L. Role of nutrition in patients with coexisting chronic obstructive pulmonary disease and sarcopenia. Front Nutr 2023; 10:1214684. [PMID: 37614743 PMCID: PMC10442553 DOI: 10.3389/fnut.2023.1214684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common chronic diseases in the elderly population and is characterized by persistent respiratory symptoms and airflow obstruction. During COPD progression, a variety of pulmonary and extrapulmonary complications develop, with sarcopenia being one of the most common extrapulmonary complications. Factors that contribute to the pathogenesis of coexisting COPD and sarcopenia include systemic inflammation, hypoxia, hypercapnia, oxidative stress, protein metabolic imbalance, and myocyte mitochondrial dysfunction. These factors, individually or in concert, affect muscle function, resulting in decreased muscle mass and strength. The occurrence of sarcopenia severely affects the quality of life of patients with COPD, resulting in increased readmission rates, longer hospital admission, and higher mortality. In recent years, studies have found that oral supplementation with protein, micronutrients, fat, or a combination of nutritional supplements can improve the muscle strength and physical performance of these patients; some studies have also elucidated the possible underlying mechanisms. This review aimed to elucidate the role of nutrition among patients with coexisting COPD and sarcopenia.
Collapse
Affiliation(s)
- Yayun Nan
- Department of Ningxia Geriatrics Medical Center, Ningxia People’s Hospital, Yinchuan, China
| | - Yuting Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Yan
- Department of Ningxia Geriatrics Medical Center, Ningxia People’s Hospital, Yinchuan, China
| | - Pingping Zhong
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fufeng Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Shigeta M, Aoi W, Morita C, Soga K, Inoue R, Fukushima Y, Kobayashi Y, Kuwahata M. Matcha green tea beverage moderates fatigue and supports resistance training-induced adaptation. Nutr J 2023; 22:32. [PMID: 37403052 DOI: 10.1186/s12937-023-00859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Resistance training adaptively increases muscle strength and mass, contributing to athletic performance and health promotion. Dietary intervention with natural foods provides nutrients that help accelerate muscle adaptation to training. Matcha green tea contains several bioactive factors such as antioxidants, amino acids, and dietary fibers; however, its effect on muscle adaptation is unclear. In this study, we aimed to investigate the effects of matcha beverage intake on muscle adaptation to resistance training. METHODS Healthy, untrained men were randomized into placebo and matcha groups. Participants consumed either a matcha beverage containing 1.5 g of matcha green tea powder or a placebo beverage twice a day and engaged in resistance training programs for 8 (trial 1) or 12 weeks (trial 2). RESULTS In trial 1, maximum leg strength after training tended to increase more in the matcha group than that in the placebo group. In the matcha group, subjective fatigue after exercise at 1 week of training was lower than that in the placebo group. Gut microbe analysis showed that the abundance of five genera changed after matcha intake. The change in Ruminococcus, Butyricimonas, and Oscillospira compositions positively correlated with the change in maximum strength. In trial 2, the change in skeletal muscle mass in response to training was larger in the matcha group. In addition, the salivary cortisol level was lower in the matcha group than that in the placebo group. CONCLUSION Daily intake of matcha green tea beverages may help in muscle adaptation to training, with modulations in stress and fatigue responses and microbiota composition.
Collapse
Affiliation(s)
- Mizuho Shigeta
- Laboratory of Nutrition Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan
| | - Wataru Aoi
- Laboratory of Nutrition Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan.
| | - Chiharu Morita
- Laboratory of Nutrition Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan
| | - Kurumi Soga
- Laboratory of Nutrition Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Yoichi Fukushima
- Department of Health Science, Faculty of Sports and Health Science, Daito Bunka University, Saitama, Japan
| | - Yukiko Kobayashi
- Laboratory of Nutrition Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan
| | - Masashi Kuwahata
- Laboratory of Nutrition Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan
| |
Collapse
|
10
|
Wu D, Wang H, Wang W, Qing C, Zhang W, Gao X, Shi Y, Li Y, Zheng Z. Association between composite dietary antioxidant index and handgrip strength in American adults: Data from National Health and Nutrition Examination Survey (NHANES, 2011-2014). Front Nutr 2023; 10:1147869. [PMID: 37063339 PMCID: PMC10102380 DOI: 10.3389/fnut.2023.1147869] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Background The Composite Dietary Antioxidant Index (CDAI), a composite score of multiple dietary antioxidants (including vitamin A, C, and E, selenium, zinc, and carotenoids), represents an individual's comprehensive dietary antioxidant intake profile. CDAI was developed based on its combined effect on pro-inflammatory markers Tumor Necrosis Factor-α (TNF-α) and anti-inflammatory effects of Interleukin-1β (IL-1β), which are associated with many health outcomes, including depression, all-cause mortality, colorectal cancer, etc. Handgrip strength is used as a simple measure of muscle strength, not only is it highly correlated with overall muscle strength, but also serves as a diagnostic tool for many adverse health outcomes, including sarcopenia and frailty syndromes. Purpose The association between CDAI and Handgrip strength (HGS) is currently unclear. This study investigated the association between CDAI (including its components) and HGS in 6,019 American adults. Method The research data were selected from the 2011-2014 National Health and Nutrition Survey (NHANES), and a total of 6,019 American adults were screened and included. A weighted generalized linear regression model was used to evaluate CDAI (including its components) and HGS. Results (1) CDAI was significantly positively correlated with HGS (β = 0.009, 0.005∼0.013, P < 0.001), and the trend test showed that compared with the lowest quartile of CDAI, the highest quartile of CDAI was positively correlated with HGS (β = 0.084, 0.042∼0.126, P = 0.002) and significant in trend test (P for trend < 0.0100). Gender subgroup analysis showed that male CDAI was significantly positively correlated with HGS (β = 0.015, 0.007∼0.023, P = 0.002), and the trend test showed that compared with the lowest quartile of CDAI, the highest quartile of CDAI was positively correlated with HGS (β = 0.131, 0.049∼0.213, P = 0.006) and the trend test was significant (P for trend < 0.0100). There was no correlation between female CDAI and HGS, and the trend test was not statistically significant (P > 0.05). (2) The intake of dietary vitamin E, Zinc and Selenium showed a significant positive correlation with HGS (β = 0.004, 0.002∼0.007, P = 0.006; β = 0.007, 0.004∼0.009, P < 0.001; β = 0.001, 0.001∼0.001, P < 0.001), vitamin A, vitamin C and carotenoid were significantly associated with HGS in the Crude Model, but this significant association disappeared in the complete model with the increase of control variables. Gender subgroup analysis showed that in model 3, male dietary intake levels of vitamin E, Zinc, and Selenium were significantly positively correlated with HGS (β = 0.005, 0.002∼0.009, P = 0.011; β = 0.007, 0.004∼0.011, P = 0.001; β = 0.001, 0.001∼0.001, P = 0.004), the rest of the indicators had no significant correlation with HGS. Among the female subjects, dietary zinc intake was significantly positively correlated with HGS (β = 0.005, 0.001∼0.008, P = 0.008), and there was no significant correlation between other indicators and HGS (P > 0.05). Conclusion There was an association between the CDAI and HGS, but there was a gender difference, and there was an association between the CDAI and HGS in male, but the association was not significant in female. Intake of the dietary antioxidants vitamin E, selenium, and zinc was associated with HGS in male, but only zinc was associated with HGS among dietary antioxidants in female.
Collapse
Affiliation(s)
- Dongzhe Wu
- Department of Physical Education, Central South University, Changsha, China
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Hao Wang
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Wendi Wang
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Chang Qing
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Weiqiang Zhang
- Department of Physical Education, Central South University, Changsha, China
| | - Xiaolin Gao
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Yongjin Shi
- Department of Physical Education and Art, China Agricultural University, Beijing, China
| | - Yanbin Li
- Department of Human Health Science Research, Tokyo Metropolitan University, Tokyo, Japan
| | - Zicheng Zheng
- Human and Social Sciences, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
11
|
Mayfield DL, Cronin NJ, Lichtwark GA. Understanding altered contractile properties in advanced age: insights from a systematic muscle modelling approach. Biomech Model Mechanobiol 2023; 22:309-337. [PMID: 36335506 PMCID: PMC9958200 DOI: 10.1007/s10237-022-01651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and combined effects on isometric force of several known ageing-related adaptations. Simulating literature-informed reductions in free Ca2+ concentration and Ca2+ sensitivity generated predictions at odds qualitatively with the characteristic slowing of contraction speed. Conversely, incorporating slower Ca2+ removal or a fractional increase in type I fibre area emulated expected changes; the former was required to simulate slowing of the twitch measured experimentally. Slower Ca2+ removal more than compensated for force loss arising from a large reduction in Ca2+ sensitivity or moderate reduction in Ca2+ release, producing realistic age-related shifts in the force-frequency relationship. Consistent with empirical data, reductions in free Ca2+ concentration and Ca2+ sensitivity reduced maximum tetanic force only slightly, even when acting in concert, suggesting a modest contribution to lower specific force. Lower tendon stiffness and slower intrinsic shortening speed slowed and prolonged force development in a compliance-dependent manner without affecting force decay. This work demonstrates the advantages of muscle modelling for exploring sources of variation and identifying mechanisms underpinning the altered contractile properties of aged muscle.
Collapse
Affiliation(s)
- Dean L Mayfield
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, USA.
| | - Neil J Cronin
- Neuromuscular Research Centre, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, UK
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Tang X. SPECIAL TRAINING ON LOWER LIMBS SMALL MUSCLE GROUPS STRENGTH. REV BRAS MED ESPORTE 2022. [DOI: 10.1590/1517-8692202228062022_0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction Specific training with vibration can show short- and long-term effects on neuromuscular capacity. This training method gives muscles a frequent stimulus amplitude variation and can promote muscle strength, explosive power, neuromuscular coordination, and balance training. Objective This paper compares the effects of strength training with vibration on the strength of small muscle groups in the lower limbs of athletes. Methods 24 young people were randomly assigned to a low- and high-frequency group. Both groups used traditional strength training with the addition of 30 and 40Hz vibrational training. Training with load intensity between 30 and 70% of maximal strength lasting 60 minutes was repeated in 3 weekly sessions for eight weeks. Functional tests were recorded before and after the experiment, and their results were statistically analyzed. Results The peak torque of the hip muscles of the two groups of athletes increased significantly after training (P<0.05). In the high-frequency athletes, the peak in the hip extensor increased by 15.3% and the flexor by 18.2%; in the low-frequency group, there was an increase of 10.3%, representing a very significant difference (P<0.01). Conclusion Additional vibration stimulation for resistance strength training can effectively improve strength training. With a relatively small load, this training method can effectively improve maximal muscular strength, explosive power, and muscular endurance. Evidence level II; Therapeutic Studies - Investigating the results.
Collapse
|
13
|
Peyton MP, Yang TY, Higgins L, Markowski TW, Vue C, Parker LL, Lowe DA. Global phosphoproteomic profiling of skeletal muscle in ovarian hormone-deficient mice. Physiol Genomics 2022; 54:417-432. [PMID: 36062884 PMCID: PMC9639773 DOI: 10.1152/physiolgenomics.00104.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Protein phosphorylation is important in skeletal muscle development, growth, regeneration, and contractile function. Alterations in the skeletal muscle phosphoproteome due to aging have been reported in males; however, studies in females are lacking. We have demonstrated that estrogen deficiency decreases muscle force, which correlates with decreased myosin regulatory light chain phosphorylation. Thus, we questioned whether the decline of estrogen in females that occurs with aging might alter the skeletal muscle phosphoproteome. C57BL/6J female mice (6 mo) were randomly assigned to a sham-operated (Sham) or ovariectomy (Ovx) group to investigate the effects of estrogen deficiency on skeletal muscle protein phosphorylation in a resting, noncontracting condition. After 16 wk of estrogen deficiency, the tibialis anterior muscle was dissected and prepped for label-free nano-liquid chromatography-tandem mass spectrometry phosphoproteomic analysis. We identified 4,780 phosphopeptides in tibialis anterior muscles of ovariectomized (Ovx) and Sham-operated (Sham) control mice. Further analysis revealed 647 differentially regulated phosphopeptides (Benjamini-Hochberg adjusted P value < 0.05 and 1.5-fold change ratio) that corresponded to 130 proteins with 22 proteins differentially phosphorylated (3 unique to Ovx, 2 unique to Sham, 6 upregulated, and 11 downregulated). Differentially phosphorylated proteins associated with the sarcomere, cytoplasm, and metabolic and calcium signaling pathways were identified. Our work provides the first global phosphoproteomic analysis in females and how estrogen deficiency impacts the skeletal muscle phosphoproteome.
Collapse
Affiliation(s)
- Mina P Peyton
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Twin Cities, Minneapolis, Minnesota
- Department of Computer Science, Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota
| | - Tzu-Yi Yang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Cha Vue
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Laurie L Parker
- Department of Computer Science, Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Dawn A Lowe
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Twin Cities, Minneapolis, Minnesota
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
14
|
Chen M, Wang Y, Deng S, Lian Z, Yu K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy. Front Cell Dev Biol 2022; 10:964130. [PMID: 36111339 PMCID: PMC9470179 DOI: 10.3389/fcell.2022.964130] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 12/06/2022] Open
Abstract
With aging, the progressive loss of skeletal muscle will have negative effect on multiple physiological parameters, such as exercise, respiration, thermoregulation, and metabolic homeostasis. Accumulating evidence reveals that oxidative stress and inflammation are the main pathological characteristics of skeletal muscle during aging. Here, we focus on aging-related sarcopenia, summarize the relationship between aging and sarcopenia, and elaborate on aging-mediated oxidative stress and oxidative damage in skeletal muscle and its critical role in the occurrence and development of sarcopenia. In addition, we discuss the production of excessive reactive oxygen species in aging skeletal muscle, which reduces the ability of skeletal muscle satellite cells to participate in muscle regeneration, and analyze the potential molecular mechanism of ROS-mediated mitochondrial dysfunction in aging skeletal muscle. Furthermore, we have also paid extensive attention to the possibility and potential regulatory pathways of skeletal muscle aging and oxidative stress mediate inflammation. Finally, in response to the abnormal activity of oxidative stress and inflammation during aging, we summarize several potential antioxidant and anti-inflammatory strategies for the treatment of sarcopenia, which may provide beneficial help for improving sarcopenia during aging.
Collapse
Affiliation(s)
- Mingming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiyi Wang
- Zhejiang A&F University, Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Lin’an, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| |
Collapse
|
15
|
Bisset ES, Howlett SE. The Use of Dietary Supplements and Amino Acid Restriction Interventions to Reduce Frailty in Pre-Clinical Models. Nutrients 2022; 14:2806. [PMID: 35889763 PMCID: PMC9316446 DOI: 10.3390/nu14142806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Frailty is a state of accelerated aging that increases susceptibility to adverse health outcomes. Due to its high societal and personal costs, there is growing interest in discovering beneficial interventions to attenuate frailty. Many of these interventions involve the use of lifestyle modifications such as dietary supplements. Testing these interventions in pre-clinical models can facilitate our understanding of their impact on underlying mechanisms of frailty. We conducted a narrative review of studies that investigated the impact of dietary modifications on measures of frailty or overall health in rodent models. These interventions include vitamin supplements, dietary supplements, or amino acid restriction diets. We found that vitamins, amino acid restriction diets, and dietary supplements can have beneficial effects on frailty and other measures of overall health in rodent models. Mechanistic studies show that these effects are mediated by modifying one or more mechanisms underlying frailty, in particular effects on chronic inflammation. However, many interventions do not measure frailty directly and most do not investigate effects in both sexes, which limits their applicability. Examining dietary interventions in animal models allows for detailed investigation of underlying mechanisms involved in their beneficial effects. This may lead to more successful, translatable interventions to attenuate frailty.
Collapse
Affiliation(s)
- Elise S. Bisset
- Department of Pharmacology, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada;
| | - Susan E. Howlett
- Department of Pharmacology, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada;
- Department of Medicine (Geriatric Medicine), Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
16
|
Jeong GJ, Castels H, Kang I, Aliya B, Jang YC. Nanomaterial for Skeletal Muscle Regeneration. Tissue Eng Regen Med 2022; 19:253-261. [PMID: 35334091 PMCID: PMC8971233 DOI: 10.1007/s13770-022-00446-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle has an innate regenerative capacity to restore their structure and function following acute damages and injuries. However, in congenital muscular dystrophies, large volumetric muscle loss, cachexia, or aging, the declined regenerative capacity of skeletal muscle results in muscle wasting and functional impairment. Recent studies indicate that muscle mass and function are closely correlated with morbidity and mortality due to the large volume and location of skeletal muscle. However, the options for treating neuromuscular disorders are limited. Biomedical engineering strategies such as nanotechnologies have been implemented to address this issue.In this review, we focus on recent studies leveraging nano-sized materials for regeneration of skeletal muscle. We look at skeletal muscle pathologies and describe various proof-of-concept and pre-clinical studies that have used nanomaterials, with a focus on how nano-sized materials can be used for skeletal muscle regeneration depending on material dimensionality.Depending on the dimensionality of nano-sized materials, their application have been changed because of their different physical and biochemical properties.Nanomaterials have been spotlighted as a great candidate for addressing the unmet needs of regenerative medicine. Nanomaterials could be applied to several types of tissues and diseases along with the unique characteristics of nanomaterials. However, when confined to muscle tissue, the targets of nanomaterial applications are limited and can be extended in future research.
Collapse
Affiliation(s)
- Gun-Jae Jeong
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hannah Castels
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Innie Kang
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Berna Aliya
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Young C Jang
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory School of Medicine, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
17
|
Bayasgalan T, Stupniki S, Kovács A, Csemer A, Szentesi P, Pocsai K, Dionisio L, Spitzmaul G, Pál B. Alteration of Mesopontine Cholinergic Function by the Lack of KCNQ4 Subunit. Front Cell Neurosci 2021; 15:707789. [PMID: 34381336 PMCID: PMC8352570 DOI: 10.3389/fncel.2021.707789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
The pedunculopontine nucleus (PPN), a structure known as a cholinergic member of the reticular activating system (RAS), is source and target of cholinergic neuromodulation and contributes to the regulation of the sleep–wakefulness cycle. The M-current is a voltage-gated potassium current modulated mainly by cholinergic signaling. KCNQ subunits ensemble into ion channels responsible for the M-current. In the central nervous system, KCNQ4 expression is restricted to certain brainstem structures such as the RAS nuclei. Here, we investigated the presence and functional significance of KCNQ4 in the PPN by behavioral studies and the gene and protein expressions and slice electrophysiology using a mouse model lacking KCNQ4 expression. We found that this mouse has alterations in the adaptation to changes in light–darkness cycles, representing the potential role of KCNQ4 in the regulation of the sleep–wakefulness cycle. As cholinergic neurons from the PPN participate in the regulation of this cycle, we investigated whether the cholinergic PPN might also possess functional KCNQ4 subunits. Although the M-current is an electrophysiological hallmark of cholinergic neurons, only a subpopulation of them had KCNQ4-dependent M-current. Interestingly, the absence of the KCNQ4 subunit altered the expression patterns of the other KCNQ subunits in the PPN. We also determined that, in wild-type animals, the cholinergic inputs of the PPN modulated the M-current, and these in turn can modulate the level of synchronization between neighboring PPN neurons. Taken together, the KCNQ4 subunit is present in a subpopulation of PPN cholinergic neurons, and it may contribute to the regulation of the sleep–wakefulness cycle.
Collapse
Affiliation(s)
- T Bayasgalan
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - S Stupniki
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - A Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - A Csemer
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - P Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - K Pocsai
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - L Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - G Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - B Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Nutraceuticals in the Prevention and Treatment of the Muscle Atrophy. Nutrients 2021; 13:nu13061914. [PMID: 34199575 PMCID: PMC8227811 DOI: 10.3390/nu13061914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Imbalance of protein homeostasis, with excessive protein degradation compared with protein synthesis, leads to the development of muscle atrophy resulting in a decrease in muscle mass and consequent muscle weakness and disability. Potential triggers of muscle atrophy include inflammation, malnutrition, aging, cancer, and an unhealthy lifestyle such as sedentariness and high fat diet. Nutraceuticals with preventive and therapeutic effects against muscle atrophy have recently received increasing attention since they are potentially more suitable for long-term use. The implementation of nutraceutical intervention might aid in the development and design of precision medicine strategies to reduce the burden of muscle atrophy. In this review, we will summarize the current knowledge on the importance of nutraceuticals in the prevention of skeletal muscle mass loss and recovery of muscle function. We also highlight the cellular and molecular mechanisms of these nutraceuticals and their possible pharmacological use, which is of great importance for the prevention and treatment of muscle atrophy.
Collapse
|
19
|
Triolo M, Hood DA. Manifestations of Age on Autophagy, Mitophagy and Lysosomes in Skeletal Muscle. Cells 2021; 10:cells10051054. [PMID: 33946883 PMCID: PMC8146406 DOI: 10.3390/cells10051054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
Sarcopenia is the loss of both muscle mass and function with age. Although the molecular underpinnings of sarcopenia are not fully understood, numerous pathways are implicated, including autophagy, in which defective cargo is selectively identified and degraded at the lysosome. The specific tagging and degradation of mitochondria is termed mitophagy, a process important for the maintenance of an organelle pool that functions efficiently in energy production and with relatively low reactive oxygen species production. Emerging data, yet insufficient, have implicated various steps in this pathway as potential contributors to the aging muscle atrophy phenotype. Included in this is the lysosome, the end-stage organelle possessing a host of proteolytic and degradative enzymes, and a function devoted to the hydrolysis and breakdown of defective molecular complexes and organelles. This review provides a summary of our current understanding of how the autophagy-lysosome system is regulated in aging muscle, highlighting specific areas where knowledge gaps exist. Characterization of the autophagy pathway with a particular focus on the lysosome will undoubtedly pave the way for the development of novel therapeutic strategies to combat age-related muscle loss.
Collapse
Affiliation(s)
- Matthew Triolo
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: ; Tel.: +(416)-736-2100 (ext. 66640)
| |
Collapse
|
20
|
Salvi A, Maues De Paula A, Lévy N, Attarian S, Bartoli M. Commentary: Long-Term Exercise Reduces Formation of Tubular Aggregates and Promotes Maintenance of Ca 2+ Entry Units in Aged Muscle. Front Physiol 2021; 12:663677. [PMID: 33868028 PMCID: PMC8047298 DOI: 10.3389/fphys.2021.663677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexandra Salvi
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - André Maues De Paula
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France.,Department of Anatomopathology, CHU La Timone, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France.,Department of Medical Genetics, La Timone Children's Hospital, Marseille, France
| | - Shahram Attarian
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France.,Reference Center for Neuromuscular Disease and ALS, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| |
Collapse
|
21
|
Boncompagni S, Pecorai C, Michelucci A, Pietrangelo L, Protasi F. Long-Term Exercise Reduces Formation of Tubular Aggregates and Promotes Maintenance of Ca 2+ Entry Units in Aged Muscle. Front Physiol 2021; 11:601057. [PMID: 33469430 PMCID: PMC7813885 DOI: 10.3389/fphys.2020.601057] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Tubular aggregates (TAs) in skeletal muscle fibers are unusual accumulation of sarcoplasmic reticulum (SR) tubes that are found in different disorders including TA myopathy (TAM). TAM is a muscular disease characterized by muscle pain, cramping, and weakness that has been recently linked to mutations in STIM1 and ORAI1. STIM1 and ORAI1 are the two main proteins mediating store-operated Ca2+ entry (SOCE), a mechanism activated by depletion of intracellular Ca2+ stores (e.g., SR) that allows recovery of Ca2+ from the extracellular space during repetitive muscle activity. We have recently shown that exercise triggers the formation of unique intracellular junctions between SR and transverse tubules named Ca 2+ entry units (CEUs). CEUs promote colocalization of STIM1 with ORAI1 and improve muscle function in presence of external Ca2+. TAs virtually identical to those of TAM patients are also found in fast-twitch fibers of aging male mice. Here, we used a combination of electron and confocal microscopy, Western blotting, and ex vivo stimulation protocols (in presence or absence of external Ca2+) to evaluate the presence of TAs, STIM1-ORAI1 localization and expression and fatigue resistance of intact extensor digitorum longus (EDL) muscles in wild-type male adult (4-month-old) and aged (24-month-old) mice and in mice trained in wheel cages for 15 months (from 9 to 24 months of age). The results collected indicate that (i) aging causes STIM1 and ORAI1 to accumulate in TAs and (ii) long-term exercise significantly reduced formation of TAs. In addition, (iii) EDL muscles from aged mice exhibited a faster decay of contractile force than adult muscles, likely caused by their inability to refill intracellular Ca2+ stores, and (iv) exercise in wheel cages restored the capability of aged EDL muscles to use external Ca2+ by promoting maintenance of CEUs. In conclusion, exercise prevented improper accumulation of STIM1 and ORAI1 in TAs during aging, maintaining the capability of aged muscle to refill intracellular Ca2+ stores via SOCE.
Collapse
Affiliation(s)
- Simona Boncompagni
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Claudia Pecorai
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Antonio Michelucci
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
22
|
Restoration of Sarcoplasmic Reticulum Ca 2+ ATPase (SERCA) Activity Prevents Age-Related Muscle Atrophy and Weakness in Mice. Int J Mol Sci 2020; 22:ijms22010037. [PMID: 33375170 PMCID: PMC7792969 DOI: 10.3390/ijms22010037] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023] Open
Abstract
Sarcopenia has a significant negative impact on healthspan in the elderly and effective pharmacologic interventions remain elusive. We have previously demonstrated that sarcopenia is associated with reduced activity of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump. We asked whether restoring SERCA activity using pharmacologic activation in aging mice could mitigate the sarcopenia phenotype. We treated 16-month male C57BL/6J mice with vehicle or CDN1163, an allosteric SERCA activator, for 10 months. At 26 months, maximal SERCA activity was reduced 41% in gastrocnemius muscle in vehicle-treated mice but maintained in old CDN1163 treated mice. Reductions in gastrocnemius mass (9%) and in vitro specific force generation in extensor digitorum longus muscle (11%) in 26 versus 16-month-old wild-type mice were also reversed by CDN1163. CDN1163 administered by intra-peritoneal injection also prevented the increase in mitochondrial ROS production in gastrocnemius muscles of aged mice. Transcriptomic analysis revealed that these effects are at least in part mediated by enhanced cellular energetics by activation of PGC1-α, UCP1, HSF1, and APMK and increased regenerative capacity by suppression of MEF2C and p38 MAPK signaling. Together, these exciting findings are the first to support that pharmacological targeting of SERCA can be an effective therapy to counter age-related muscle dysfunction.
Collapse
|
23
|
García-Esquinas E, Carrasco-Rios M, Ortolá R, Sotos Prieto M, Pérez-Gómez B, Gutiérrez-González E, Banegas JR, Queipo R, Olmedo P, Gil F, Tellez-Plaza M, Navas-Acien A, Pastor-Barriuso R, Rodríguez-Artalejo F. Selenium and impaired physical function in US and Spanish older adults. Redox Biol 2020; 38:101819. [PMID: 33316745 PMCID: PMC7744768 DOI: 10.1016/j.redox.2020.101819] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Background Selenium (Se) is a trace element with a narrow safety margin. Objectives To evaluate the cross-sectional and longitudinal dose-response association between Se exposure and measures of impaired physical function and disability in older adults. Design NHANES 2011–2014 cross-sectional (US, n = 1733, age ≥60 years) and Seniors-ENRICA-2 2017–2019 cross-sectional and longitudinal (Spain, n = 2548 and 1741, respectively, age ≥65 years) data were analyzed. Whole blood and serum Se levels were measured using inductively coupled plasma-mass spectrometry. Lower-extremity performance was assessed with the Short Physical Performance Battery, and muscle weakness with a dynamometer. Incident mobility and agility limitations, and disability in instrumental activities of daily living (IADL) were ascertained with standardized questionnaires. Analyses were adjusted for relevant confounders, including physical activity. Results across studies were pooled using random-effects meta-analysis. Results Meta-analyzed odds ratios (95% confidence interval) per log2 increase in whole blood Se were 0.54 (0.32; 0.76) for weakness, 0.59 (0.34; 0.83) for impaired lower-extremity performance, 0.48 (0.31; 0.68) for mobility limitations, 0.71 (0.45; 0.97) for agility limitations, and 0.34 (0.12; 0.56) for disability in at least one IADL. Analyses for serum Se in NHANES showed similar results. Findings suggest the inverse association with grip strength is progressive below 140 μg/L (p-value for non-linear trend in the Seniors-ENRICA-2 study = 0.13), and above 140 μg/L (p-value for non-linear trend in NHANES = 0.11). In the Seniors-ENRICA-2 cohort, with a 2.2 year follow-up period, a doubling in baseline Se levels were associated with a lower incidence of weakness [odds ratio (95% confidence interval): 0.45 (0.22; 0.91)], impaired lower-extremity performance [0.63 (0.32; 1.23)], mobility [0.43 (0.21; 0.91)] and agility [0.38 (0.18; 0.78)] limitations. Discussion In US and Spanish older adults, Se concentrations were inversely associated with physical function limitations. Further studies are needed to elucidate underlying mechanisms.
Collapse
Affiliation(s)
- E García-Esquinas
- Department of Preventive Medicine and Public Health. School of Medicine. Universidad Autónoma de Madrid, Madrid. Spain; IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain.
| | - M Carrasco-Rios
- Department of Preventive Medicine and Public Health. School of Medicine. Universidad Autónoma de Madrid, Madrid. Spain
| | - R Ortolá
- Department of Preventive Medicine and Public Health. School of Medicine. Universidad Autónoma de Madrid, Madrid. Spain; IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; Department of Environmental Health, Harvard T.H. Chan School of Public Health. Boston, MA, USA
| | - M Sotos Prieto
- Department of Preventive Medicine and Public Health. School of Medicine. Universidad Autónoma de Madrid, Madrid. Spain; IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - B Pérez-Gómez
- CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; National Center of Epidemiology. Carlos III Health Institute, Madrid, Spain
| | | | - J R Banegas
- Department of Preventive Medicine and Public Health. School of Medicine. Universidad Autónoma de Madrid, Madrid. Spain; IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - R Queipo
- IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain; Department of Medicine. School of Biomedical Sciences. Universidad Europea. Madrid, Spain
| | - P Olmedo
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, Granada, Spain
| | - F Gil
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, Granada, Spain
| | - M Tellez-Plaza
- National Center of Epidemiology. Carlos III Health Institute, Madrid, Spain; Biomedical Research Institute Hospital Clinic de Valencia (INCLIVA), Valencia, Spain
| | - A Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - R Pastor-Barriuso
- CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; National Center of Epidemiology. Carlos III Health Institute, Madrid, Spain
| | - F Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health. School of Medicine. Universidad Autónoma de Madrid, Madrid. Spain; IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; IMDEA Research Institute on Food and Health Sciences. Universidad Autónoma de Madrid + Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
24
|
Kumar RA, Kelley RC, Hahn D, Ferreira LF. Dietary nitrate supplementation increases diaphragm peak power in old mice. J Physiol 2020; 598:4357-4369. [PMID: 33460123 PMCID: PMC10195135 DOI: 10.1113/jp280027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023] Open
Abstract
KEY POINTS Respiratory muscle function declines with ageing, contributing to breathing complications in the elderly. Here we report greater in vitro respiratory muscle contractile function in old mice receiving supplemental NaNO3 for 14 days compared with age-matched controls. Myofibrillar protein phosphorylation, which enhances contractile function, did not change in our study - a finding inconsistent with the hypothesis that this post-translational modification is a mechanism for dietary nitrate to improve muscle contractile function. Nitrate supplementation did not change the abundance of calcium-handling proteins in the diaphragm of old mice, in contrast with findings from the limb muscles of young mice in previous studies. Our findings suggest that nitrate supplementation enhances myofibrillar protein function without affecting the phosphorylation status of key myofibrillar proteins. ABSTRACT Inspiratory muscle (diaphragm) function declines with age, contributing to ventilatory dysfunction, impaired airway clearance, and overall decreased quality of life. Diaphragm isotonic and isometric contractile properties are reduced with ageing, including maximal specific force, shortening velocity and peak power. Contractile properties of limb muscle in both humans and rodents can be improved by dietary nitrate supplementation, but effects on the diaphragm and mechanisms behind these improvements remain poorly understood. One potential explanation underlying the nitrate effects on contractile properties is increased phosphorylation of myofibrillar proteins, a downstream outcome of nitrate reduction to nitrite and nitric oxide. We hypothesized that dietary nitrate supplementation would improve diaphragm contractile properties in aged mice. To test our hypothesis, we measured the diaphragm function of old (24 months) mice allocated to 1 mm NaNO3 in drinking water for 14 days (n = 8) or untreated water (n = 6). The maximal rate of isometric force development (∼30%) and peak power (40%) increased with nitrate supplementation (P < 0.05). There were no differences in the phosphorylation status of key myofibrillar proteins and abundance of Ca2+-release proteins in nitrate vs. control animals. In general, our study demonstrates improved diaphragm contractile function with dietary nitrate supplementation and supports the use of this strategy to improve inspiratory function in ageing populations. Additionally, our findings suggest that dietary nitrate improves diaphragm contractile properties independent of changes in abundance of Ca2+-release proteins or phosphorylation of myofibrillar proteins.
Collapse
Affiliation(s)
- Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Rachel C Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| |
Collapse
|
25
|
Vitamin C and E Treatment Blunts Sprint Interval Training-Induced Changes in Inflammatory Mediator-, Calcium-, and Mitochondria-Related Signaling in Recreationally Active Elderly Humans. Antioxidants (Basel) 2020; 9:antiox9090879. [PMID: 32957522 PMCID: PMC7555371 DOI: 10.3390/antiox9090879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Sprint interval training (SIT) has emerged as a time-efficient training regimen for young individuals. Here, we studied whether SIT is effective also in elderly individuals and whether the training response was affected by treatment with the antioxidants vitamin C and E. Recreationally active elderly (mean age 65) men received either vitamin C (1 g/day) and vitamin E (235 mg/day) or placebo. Training consisted of nine SIT sessions (three sessions/week for three weeks of 4-6 repetitions of 30-s all-out cycling sprints) interposed by 4 min rest. Vastus lateralis muscle biopsies were taken before, 1 h after, and 24 h after the first and last SIT sessions. At the end of the three weeks of training, SIT-induced changes in relative mRNA expression of reactive oxygen/nitrogen species (ROS)- and mitochondria-related proteins, inflammatory mediators, and the sarcoplasmic reticulum Ca2+ channel, the ryanodine receptor 1 (RyR1), were blunted in the vitamin treated group. Western blots frequently showed a major (>50%) decrease in the full-length expression of RyR1 24 h after SIT sessions; in the trained state, vitamin treatment seemed to provide protection against this severe RyR1 modification. Power at exhaustion during an incremental cycling test was increased by ~5% at the end of the training period, whereas maximal oxygen uptake remained unchanged; vitamin treatment did not affect these measures. In conclusion, treatment with the antioxidants vitamin C and E blunts SIT-induced cellular signaling in skeletal muscle of elderly individuals, while the present training regimen was too short or too intense for the changes in signaling to be translated into a clear-cut change in physical performance.
Collapse
|