1
|
Alothman L, Alhadlaq E, Alhussain A, Alabdulkarim A, Sari Y, AlSharari SD. New Pharmacological Insight into Etanercept and Pregabalin in Allodynia and Nociception: Behavioral Studies in a Murine Neuropathic Pain Model. Brain Sci 2024; 14:1145. [PMID: 39595909 PMCID: PMC11591859 DOI: 10.3390/brainsci14111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Neuropathic pain is challenging to treat, often resistant to current therapies, and associated with significant side effects. Pregabalin, an anticonvulsant that modulates calcium channels, is effective but can impair mental and motor functions, especially in older patients. To improve patient outcomes, reducing the doses of pregabalin and combining it with other drugs targeting different neuropathic pain mechanisms may be beneficial. TNF-α blockers such as etanercept have shown potential in addressing neuropathic pain by affecting sodium channels, synaptic transmission, and neuroinflammation. This study evaluates the efficacy and safety of combining low doses of etanercept and pregabalin in allodynia and nociceptive tests. Materials and Methods: Male C57/BL6 mice underwent chronic constriction injury (CCI) of the sciatic nerve to induce neuropathic pain. They were divided into seven groups: sham control, CCI control, low and high doses of pregabalin, low and high doses of etanercept, and a combination of low doses of both drugs. Behavioral tests, including von Frey, hot-plate, and rotarod tests, were used to assess pain responses and motor activity. Results: The results indicated that a high dose of pregabalin significantly reduced mechanical allodynia and thermal hyperalgesia but impaired motor function. Conversely, low doses of etanercept alone had no significant effect. However, the combination of low doses of etanercept (20 mg/kg) and pregabalin (5 mg/kg) effectively alleviated pain without compromising locomotor activity. Conclusions: These results suggest a novel therapeutic strategy for neuropathic pain, enhancing analgesic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
- Loulwah Alothman
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (E.A.); (A.A.)
| | - Emad Alhadlaq
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (E.A.); (A.A.)
| | - Asma Alhussain
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (E.A.); (A.A.)
| | - Alwaleed Alabdulkarim
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.D.A.)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43606, USA
| | - Shakir D. AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.D.A.)
| |
Collapse
|
2
|
Xavier GMB, Ferreira LMDMC, Passos MF, Rodrigues APD, Franco FTDC, Silva CM, Silva Júnior JOC, Ribeiro-Costa RM, Araújo JLN. Characterization and Evaluation of the Cytotoxicity of Pregabalin Gels for Oral Application. Pharmaceuticals (Basel) 2024; 17:1168. [PMID: 39338331 PMCID: PMC11435025 DOI: 10.3390/ph17091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 09/30/2024] Open
Abstract
The efficacy of pregabalin in pain treatment has led to the search for new formulations for its use through different routes of administration. This study aimed to prepare, characterize, and evaluate the cytotoxicity of pregabalin (PG) gels for topical application in the oral cavity. Solutions with three different concentrations of PG were prepared and added to a 1.0% carbopol gel base. Thermal analyses (TG and DSC) and FTIR were performed on the gel and pure pregabalin. Stability (preliminary and accelerated) and rheology studies were also conducted on the gels. Cytotoxicity was evaluated in human gingival fibroblasts in the following groups: WG (1.0% carbopol gel base), PG2G (2.0% pregabalin gel), PG5G (5.0% pregabalin gel), and PG10G (10% pregabalin gel). A transparent and homogeneous gel with a pH of 6 was obtained. The formulations showed stability, and the different drug concentrations did not influence the product's characteristics. None of the tested groups showed cytotoxicity for the analyzed cells. The pregabalin gels exhibited favorable and non-toxic characteristics for human gingival fibroblasts in vitro. Therefore, this product may be a promising therapeutic alternative for topical application in the oral mucosa.
Collapse
Affiliation(s)
| | | | | | | | | | - Cecy Martins Silva
- School of Dentistry, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | - Roseane Maria Ribeiro-Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | |
Collapse
|
3
|
Samy EM, Radwan RR, Mosallam FM, Mohamed HA. Ameliorative effect of nano-pregabalin in gastrocnemius muscle of gamma irradiated rats with an experimental model of fibromyalgia: Crosstalk of Sirt3, IL-1β and PARP1 pathways. Toxicol Appl Pharmacol 2024; 490:117037. [PMID: 39004143 DOI: 10.1016/j.taap.2024.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Fibromyalgia (FM) is a complex syndrome with somatic symptoms connected to the operational state of muscles. Although radiotherapy is a cornerstone in cancer treatment, it is implicated in the aggravation of FM. Lately, formulation of medicines in nano-forms become of great prominence due to their prospective applications in medicine. So, this study aimed to assess possible therapeutic benefits of formulating pregabalin in a nono-form (N-PG) for managing FM during exposure to gamma radiation. METHODS Gamma rays administered in fractionated doses (2 Gy/day) to male rats after one hour of s.c. injection of reserpine (1 mL/kg per day) to induce FM, then treated with single daily dose of (30 mg/kg, p.o.) PG or N-PG for ten successive days. Rats were subjected to behavioral tests, then sacrificed to obtain serum and gastrocnemius muscles. RESULTS N-PG significantly antagonized reserpine-induced FM as proved by; the immobility and performance times in forced swim and rotarod performance tests, respectively were restored near to the normal time, serum IL-8 and MCP-1 chemokines were nearby the normal levels, mitigated oxidative stress through increasing total thiol, Sirt3, CAT enzyme and decreasing COX-1, inhibition of inflammation via IL-1β and MIF significant reduction, it possessed anti-apoptotic effect verified by decreasing PARP-1 and increasing Bcl-XL, gastrocnemius muscles had minimal fibrosis levels as seen after Masson trichrome staining. Histopathological results were coincidence with biochemical inspection. CONCLUSION This study identifies N-PG as a novel drug that could be of a value in the management of FM particularly in cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Esraa M Samy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 9621, 11787 Nasr City, Cairo, Egypt.
| | - Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 9621, 11787 Nasr City, Cairo, Egypt
| | - Farag M Mosallam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 9621, 11787 Nasr City, Cairo, Egypt
| | - Heba A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 9621, 11787 Nasr City, Cairo, Egypt
| |
Collapse
|
4
|
D'Onofrio AM, Di Vincenzo F, Ferrajoli GF, Scaldaferri F, Camardese G. Low Dose Pregabalin Improves Gastrointestinal Symptoms of Crohn's Disease. Case Rep Gastrointest Med 2024; 2024:3744500. [PMID: 38524665 PMCID: PMC10959577 DOI: 10.1155/2024/3744500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are lifelong conditions with no definite cure. Several studies demonstrated that patients with IBD more frequently experience symptoms of common mental disorders, such as anxiety and depression, because of bidirectional communication through the gut-brain axis and the chronicity of symptoms, as well as because of impaired quality of life and reduced social functioning. However, psychological conditions of affected patients are often underestimated and not fully considered. Herein, we present the case of a 37-year-old woman with Crohn's disease and a mild depressive condition, characterized by anxious distress, tachycardia, tachypnea, tremors, sweating, avoidant behaviors, and intestinal somatizations (diarrhea), who was treated with Pregabalin upon indication of the referring psychiatrist. Following the beginning of the treatment, the patient rapidly reported an improvement in the overall clinical symptoms as well as a better management of psychic and physical anxiety with a marked reduction in diarrheal discharges under stress at work. After 6 months of Pregabalin therapy, we additionally observed an improvement in Crohn's disease activity, both clinically, in the laboratory, and endoscopically. Our case showed that patients with Crohn's disease and anxiety problems may benefit from low-dose Pregabalin medication to improve both their mental and physical condition.
Collapse
Affiliation(s)
- Antonio Maria D'Onofrio
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Federica Di Vincenzo
- UOS Malattie Infiammatorie Croniche Intestinali, CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Gaspare Filippo Ferrajoli
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Franco Scaldaferri
- UOS Malattie Infiammatorie Croniche Intestinali, CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Giovanni Camardese
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
5
|
Hasan M, Choi J, Akter H, Kang H, Ahn M, Lee S. Antibody-Conjugated Magnetic Nanoparticle Therapy for Inhibiting T-Cell Mediated Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307148. [PMID: 38161230 PMCID: PMC10953552 DOI: 10.1002/advs.202307148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Tolerance induction is critical for mitigating T cell-mediated inflammation. Treatments based on anti-CD3 monoclonal antibody (mAb) play a pivotal role in inducing such tolerance. Anti-CD3 mAb conjugated with dextran-coated magnetic nanoparticles (MNPs) may induce inflammatory tolerance is posited. MNPs conjugated with anti-CD3 mAb (Ab-MNPs) are characterized using transmission and scanning electron microscopy, and their distribution is assessed using a nanoparticle tracking analyzer. Compared to MNPs, 90% of Ab-MNPs increased in size from 54.7 ± 0.5 to 71.7 ± 2.7 nm. The in vitro and in vivo studies confirmed the therapeutic material as nontoxic and biocompatible. Mice are administered various dosages of Ab-MNPs before receiving concanavalin-A (ConA), an inflammation inducer. Preadministration of Ab-MNPs, as opposed to MNPs or anti-CD3 mAb alone, significantly reduced the serum levels of interferon-γ and interleukin-6 in ConA-treated mice. Additionally, the transdermal stamp patch as an effective delivery system for Ab-MNPs is validated. This study demonstrates the utility of the Ab-MNP complex in pathologies associated with T cell-mediated hyperinflammation, such as organ transplantation and COVID-19.
Collapse
Affiliation(s)
- Mahbub Hasan
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
- Department of Biochemistry and Molecular BiologyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganj8100Bangladesh
| | - Jong‐Gu Choi
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| | - Hafeza Akter
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| | - Hasung Kang
- Department of MedicineCollege of MedicineSeoul National UniversitySeoul08826South Korea
| | - Meejung Ahn
- Department of Animal ScienceCollege of Life ScienceSangji UniversityWonju26339South Korea
| | - Sang‐Suk Lee
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| |
Collapse
|
6
|
Çevik D, Gümral N, Aslankoç R, Özmen Ö, Yalçın A, Kavrık O. Protective effect of pregabalin on renal and renal endothelial damage in sepsis induced by lipopolysaccharide. Immunopharmacol Immunotoxicol 2024; 46:55-66. [PMID: 37606510 DOI: 10.1080/08923973.2023.2250911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE We investigated the protective effects of pregabalin (PRG) on kidney and renal endothelial damage in sepsis induced by Lipopolysaccharide (LPS). MATERIALS AND METHODS Rats were randomly divided into three groups as control, LPS and LPS+PRG. Saline solution was administered 30 mg/kg orally and 5 mg/kg intraperitoneally (i.p.) to the control group. LPS was applied as 5 mg/kg, i.p. to the LPS group. In the LPS+PRG group, PRG at 30 mg/kg orally and one hour before LPS administration, one hour later 5 mg/kg i.p. LPS was applied. Rats were sacrificed 6 hours after LPS administration. RESULTS White Blood Cell (WBC), granulocyte, Blood Urea Nitrogen (BUN), creatinine, uric asid, Total Oxidant Status (TOS) and Oxidative Stress Index (OSI) significantly increased (p<0.05); platelets (PLT), activated partial thromboplastin time (aPTT) and Total Antioxidant Status (TAS) significantly decreased in the LPS group compared to the control group (p<0.05). In the LPS+PRG group WBC, granulocyte, BUN, creatinine, uric asid, TOS and OSI significantly decreased (p<0.05); PLT, aPTT and TAS significantly increased compared to the LPS group(p<0.05). Histopathological examinations showed that kidney and renal endothelial damage in the LPS group decreased in the LPS+PRG group. Immunohistochemically IL1-β, IL-6, IL-10, TNF-α expressions in kidney tissue and Toll-Like Receptors-4 (TLR-4) and NF-κB expressions in the renal endothelial tissue significantly increased in the LPS group compared to the control group and significantly decreased in the LPS+PRG group compared to the LPS group (p<0.001). CONCLUSIONS Sepsis causes kidney and renal endothelial damage and PRG reduces this damage. Therefore PRG can be used in prophylactic treatment in sepsis, supported by more studies.
Collapse
Affiliation(s)
- Dilek Çevik
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Nurhan Gümral
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Rahime Aslankoç
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Özlem Özmen
- Department of Pathology, Burdur Mehmet Akif Ersoy University Faculty of Veterinary, Burdur, Turkey
| | - Arzu Yalçın
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Oğuzhan Kavrık
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
7
|
Itaya T, Sano M, Kajiwara I, Oshima Y, Kuramochi T, Kim J, Ichimaru Y, Kitajima O, Masamune A, Ijichi H, Ishii Y, Suzuki T. Mirogabalin improves cancer-associated pain but increases the risk of malignancy in mice with pancreatic cancer. Pain 2023; 164:1545-1554. [PMID: 36701124 DOI: 10.1097/j.pain.0000000000002852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 01/27/2023]
Abstract
ABSTRACT Mirogabalin, a selective voltage-gated calcium channel α2δ ligand, improves peripheral neuropathic pain; however, its effects on patients with cancers including pancreatic ductal adenocarcinoma (PDAC) remain unknown. We analyzed the effects of mirogabalin on a KPPC ( LSL-KrasG12D/+; Trp53flox/flox; Pdx-1cre/+ ) mouse model of PDAC. Six-week-old KPPC mice received oral mirogabalin (10 mg/kg/day) (n = 10) or vehicle water (n = 14) until the humane end point. Cancer-associated pain was evaluated using the scores of hunching and mouse grimace scale (MGS). Tumor status and plasma cytokine levels were determined using histopathological analysis and cytokine array, respectively. The effects of mirogabalin on the proliferative ability of PDAC cell lines were determined. The scores of the hunching and MGS improved after mirogabalin administration with a decrease in the plasma levels of inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6, and interferon-γ. Although no significant difference in the survival rate was observed, mirogabalin significantly increased pancreatic tumor size and proliferative index of Ki-67 and cyclins. Local arginase-1 + M2-like tumor-associated macrophages and CD31 + tumor blood vessels increased after mirogabalin administration. By contrast, the number of α-smooth muscle actin + cancer-associated fibroblasts, desmoplastic stroma, and CD8 + T cells decreased. Local myeloperoxidase + tumor-associated neutrophils and CD45R + B cells were unaltered. Mirogabalin enhanced the proliferative ability of PDAC cell lines with the upregulation of cyclins and cyclin-dependent kinases; however, it inhibited the potential of pancreatic stellate cells in vitro. Therefore, our results suggest that mirogabalin improves cancer-associated pain but enhances the proliferative potential of PDAC in vitro and in vivo.
Collapse
Affiliation(s)
- Tomoaki Itaya
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Sano
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Ichie Kajiwara
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yukino Oshima
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomoya Kuramochi
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Jinsuk Kim
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshimi Ichimaru
- School of Pharmacy, Shonan University of Medical Sciences, Yokohama, Japan
| | - Osamu Kitajima
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Clinical Nutrition Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukimoto Ishii
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Ellergezen P, Alp A, Çavun S, Çelebi M, Macunluoğlu AC. Pregabalin inhibits proinflammatory cytokine release in patients with fibromyalgia syndrome. Arch Rheumatol 2023; 38:307-314. [PMID: 37680505 PMCID: PMC10481681 DOI: 10.46497/archrheumatol.2023.9517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/21/2022] [Indexed: 09/09/2023] Open
Abstract
Objectives The main goal of the study was to investigate how pregabalin (PGB) affects proinflammatory cytokine release in patients with fibromyalgia syndrome (FMS). Patients and methods This experimental research study was conducted with 85 female participants (mean age: 49.6±10.1 years; range, 30 to 73 years) between April 2020 and November 2020. Of the participants, 30 were FMS patients using PGB 150 mg/day for at least three months, 30 were FMS patients not using PGB, and 25 were healthy individuals. The detection of FMS was carried out according to the 2010 American College of Rheumatology diagnostic criteria. Levels of proinflammatory cytokines (interleukin [IL]-2, IL-6, IL-12, IL-17, interferon-gamma, and tumor necrosis factor-alpha) were measured by enzyme-linked immunosorbent assay. Results Serum concentrations of proinflammatory cytokines were remarkably decreased in FMS patients using PGB (p<0.001) and were higher in patients with FMS not using PGB than in healthy subjects (p<0.001). The highest values of proinflammatory cytokines were found in the group of FMS patients not using PGB (p<0.001). Conclusion These results indicate that PGB inhibits the release of proinflammatory cytokines, suggesting that it can be used as an anti-inflammatory agent in inflammatory cases.
Collapse
Affiliation(s)
- Pınar Ellergezen
- Department of Medical Pharmacology, Uludağ University Faculty of Medicine, Bursa, Türkiye
| | - Alev Alp
- Department of Physical Medicine and Rehabilitation, Uludağ University Faculty of Medicine, Bursa, Türkiye
| | - Sinan Çavun
- Department of Medical Pharmacology, Uludağ University Faculty of Medicine, Bursa, Türkiye
| | - Melih Çelebi
- Department of Physical Medicine and Rehabilitation, Uludağ University Faculty of Medicine, Bursa, Türkiye
| | | |
Collapse
|
9
|
Qin L, Cao J, Xu H, Li N, Wang K, Zhang L, Qu C, Miao J. Structural characterization of a sulfated polysaccharide from Ishige okamurae and its effect on recovery from immunosuppression. Int J Biol Macromol 2023; 236:123948. [PMID: 36898463 DOI: 10.1016/j.ijbiomac.2023.123948] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
A sulfated polysaccharide from the brown alga Ishige okamurae Yendo, designated IOY, was successfully isolated by anion-exchange and size-exclusion chromatography. Chemical and spectroscopic analyses demonstrated that IOY was a fucoidan, that consisted of →3)-α-l-Fucp-(1→, →4)-α-l-Fucp-(1→, →6)-β-d-Galp-(1 → and →3)-β-d-Galp-(1 → residues with sulfate groups at C-2/C-4 the of (1 → 3)-α-l-Fucp and C-6 the of (1 → 3)-β-d-Galp residues. IOY possessed a potent immunomodulatory effect in vitro as measured by lymphocyte proliferation assay. The immunomodulatory effect of IOY was further investigated in vivo using immunosuppressed mice induced by cyclophosphamide (CTX). The results showed that IOY significantly increased the spleen and thymus indexes and alleviated CTX-induced spleen and thymus damage. Furthermore, IOY had a significant effect on hematopoietic function recovery and promoted the secretion of interleukin-2 (IL-2) and tumor necrosis factor (TNF-α). Notably, IOY reversed CD4+ and CD8+ T cell reduction and improved immune response. These data indicated that IOY had vital in immunomodulatory function and could be used as drug or functional food to lessen chemotherapy-induced immunosuppression.
Collapse
Affiliation(s)
- Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Hui Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Nianxu Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Biomedical Polymers, Shandong Academy of Pharmaceutical Science, Jinan, 250100, China.
| |
Collapse
|
10
|
Khan J, Wang Q, Korczeniewska OA, McNeil R, Ren Y, Benoliel R, Eliav E. Response profile in a rat model of exercise-induced hypoalgesia is associated with duloxetine, pregabalin and diclofenac effect on constriction-induced neuropathy. Eur J Pain 2023; 27:129-147. [PMID: 36198034 DOI: 10.1002/ejp.2044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Exercise is a known trigger of the inhibitory pain modulation system and its analgesic effect is termed exercise-induced hypoalgesia (EIH). Previous studies have demonstrated that rats with deficient analgesic response following exercise develop more significant hypersensitivity following nerve injury compared to rats with substantial analgesic response following exercise. OBJECTIVES A rat model of EIH as an indicator of the pain inhibitory system's efficiency was used to explore the association between EIH profiles and the effect of pharmacotherapy on rat's neuropathic pain. METHODS EIH profiles were assessed by evaluating paw responses to mechanical stimuli before and after exercise on a rotating rod. Rats with a reduction of ≤33% in responses were classified as low EIH and those with ≥67% as high EIH. Low and high EIH rats underwent sciatic nerve chronic constriction injury (CCI). Paw responses to mechanical stimuli were measured at baseline, following CCI, and after treatment with diclofenac, duloxetine or pregabalin. In a different group of low and high EIH rats, EIH was measured before and following treatment with the same medications. RESULTS Low EIH rats developed more significant hypersensitivity following CCI. Duloxetine and pregabalin successfully reduced hypersensitivity, although significantly more so in low EIH rats. Diclofenac had limited effects, and only on low EIH rats. Four days of duloxetine administration transformed low EIH rats' profiles to high EIH. CONCLUSIONS The findings of this study suggest that EIH profiles in rats can not only predict the development of hypersensitivity following injury but may also support targeted pharmacological treatment. SIGNIFICANCE Exercise is a known trigger of the inhibitory pain modulation. Rats with deficient analgesic response following exercise develop more significant hypersensitivity following nerve injury. Pain modulation profiles in rats can also support targeted pharmacological treatment; rats with deficient analgesic response following exercise benefit more from treatment with duloxetine and gabapentin. Treatment with duloxetine can improve pain modulation profile.
Collapse
Affiliation(s)
- Junad Khan
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| | - Qian Wang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | - Yanfang Ren
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| | - Rafael Benoliel
- Rutgers School of Dental Medicine, Rutgers university, Newark, New Jersey, USA
| | - Eli Eliav
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
11
|
Zhang YT, Tian W, Lu YS, Li ZM, Ren DD, Zhang Y, Sha JY, Huo XH, Li SS, Sun YS. American ginseng with different processing methods ameliorate immunosuppression induced by cyclophosphamide in mice via the MAPK signaling pathways. Front Immunol 2023; 14:1085456. [PMID: 37153583 PMCID: PMC10160487 DOI: 10.3389/fimmu.2023.1085456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
This study aimed to clarify the effects of two processed forms of American ginseng (Panax quinquefolius L.) on immunosuppression caused by cyclophosphamide (CTX) in mice. In the CTX-induced immunosuppressive model, mice were given either steamed American ginseng (American ginseng red, AGR) or raw American ginseng (American ginseng soft branch, AGS) by intragastric administration. Serum and spleen tissues were collected, and the pathological changes in mice spleens were observed by conventional HE staining. The expression levels of cytokines were detected by ELISA, and the apoptosis of splenic cells was determined by western blotting. The results showed that AGR and AGS could relieve CTX-induced immunosuppression through the enhanced immune organ index, improved cell-mediated immune response, increased serum levels of cytokines (TNF-α, IFN-γ, and IL-2) and immunoglobulins (IgG, IgA, and IgM), as well as macrophage activities including carbon clearance and phagocytic index. AGR and AGS downregulated the expression of BAX and elevated the expression of Bcl-2, p-P38, p-JNK, and p-ERK in the spleens of CTX-injected animals. Compared to AGS, AGR significantly improved the number of CD4+CD8-T lymphocytes, the spleen index, and serum levels of IgA, IgG, TNF-α, and IFN-γ. The expression of the ERK/MAPK pathway was markedly increased. These findings support the hypothesis that AGR and AGS are effective immunomodulatory agents capable of preventing immune system hypofunction. Future research may investigate the exact mechanism to rule out any unforeseen effects of AGR and AGS.
Collapse
Affiliation(s)
- Yan-Ting Zhang
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Wei Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Yu-Shun Lu
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Zhi-Man Li
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Duo-Duo Ren
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Yue Zhang
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Ji-Yue Sha
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Xiao-Hui Huo
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Shan-Shan Li
- Institute of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
- *Correspondence: Shan-Shan Li, ; Yin-Shi Sun,
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Shan-Shan Li, ; Yin-Shi Sun,
| |
Collapse
|
12
|
Gremke N, Printz M, Möller L, Ehrenberg C, Kostev K, Kalder M. Association between anti-seizure medication and the risk of lower urinary tract infection in patients with epilepsy. Epilepsy Behav 2022; 135:108910. [PMID: 36115082 DOI: 10.1016/j.yebeh.2022.108910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The aim of this retrospective study was to analyze the incidence of lower urinary tract infections (LUTI) and antibiotic prescriptions within 12 months after initial prescription of anti-seizure medication (ASM) between January and December 2020 (index date) and to investigate the association between a broad spectrum of ASMs and the risk of LUTI in patients with epilepsy. METHODS This retrospective cohort study included a total of 9186 adult patients (≥18 years) with an initial diagnosis of epilepsy and a prescription of an ASM treated in 1284 general practices in Germany between January 2010 and December 2020 (index date). Six frequently prescribed ASMs with at least 1000 available patients were analyzed. Patients treated with one of six ASMs were matched to each other by propensity scores based on sex, age, and secondary diagnoses. Cox regression models were used to analyze the association between the use of ASM and LUTI risk. RESULTS The cumulative LUTI incidence 12 months after the start of therapy was highest in patients treated with pregabalin (16.7%), followed by valproate (11.6%) and gabapentin (10.2%). A similar trend was observed for LUTI with antibiotic prescription (9.2% pregabalin, 6.8% valproate, 6.8% gabapentin). Conditional regression analyses revealed that pregabalin therapy was significantly positively associated with LUTI (HR: 1.76; 95% CI 1.29-2.39) and LUTI-based antibiotic prescription (HR: 2.16; 95% CI 1.43-3.27). Carbamazepine was associated with a significantly lower incidence of LUTI in women (HR: 0.47; 95% CI: 0.30-0.75), but not in men. No significant associations were observed for other ASMs. CONCLUSION The present study identifies a significant positive association between ASM and LUTI incidence and antibiotic prescriptions in patients with epilepsy treated with pregabalin, whereas a protective effect was found for carbamazepine in women only. No significant associations were observed for the four remaining ASMs.
Collapse
Affiliation(s)
- Niklas Gremke
- Department of Gynecology and Obstetrics, Philipps-University, Marburg, Germany.
| | - Marcel Printz
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Leona Möller
- Department of Neurology, Philipps-University, Marburg, Germany
| | | | | | - Matthias Kalder
- Department of Gynecology and Obstetrics, Philipps-University, Marburg, Germany
| |
Collapse
|
13
|
Zhang Z, Jiang J, He Y, Cai J, Xie J, Wu M, Xing M, Zhang Z, Chang H, Yu P, Chen S, Yang Y, Shi Z, Liu Q, Sun H, He B, Zeng J, Huang J, Chen J, Li H, Li Y, Lin WJ, Tang Y. Pregabalin mitigates microglial activation and neuronal injury by inhibiting HMGB1 signaling pathway in radiation-induced brain injury. J Neuroinflammation 2022; 19:231. [PMID: 36131309 PMCID: PMC9490947 DOI: 10.1186/s12974-022-02596-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Background Radiation-induced brain injury (RIBI) is the most serious complication of radiotherapy in patients with head and neck tumors, which seriously affects the quality of life. Currently, there is no effective treatment for patients with RIBI, and identifying new treatment that targets the pathological mechanisms of RIBI is urgently needed. Methods Immunofluorescence staining, western blotting, quantitative real-time polymerase chain reaction (Q-PCR), co-culture of primary neurons and microglia, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and CRISPR–Cas9-mediated gene editing techniques were employed to investigate the protective effects and underlying mechanisms of pregabalin that ameliorate microglial activation and neuronal injury in the RIBI mouse model. Results Our findings showed that pregabalin effectively repressed microglial activation, thereby reducing neuronal damage in the RIBI mouse model. Pregabalin mitigated inflammatory responses by directly inhibiting cytoplasmic translocation of high-mobility group box 1 (HMGB1), a pivotal protein released by irradiated neurons which induced subsequent activation of microglia and inflammatory cytokine expression. Knocking out neuronal HMGB1 or microglial TLR2/TLR4/RAGE by CRISPR/Cas9 technique significantly inhibited radiation-induced NF-κB activation and pro-inflammatory transition of microglia. Conclusions Our findings indicate the protective mechanism of pregabalin in mitigating microglial activation and neuronal injury in RIBI. It also provides a therapeutic strategy by targeting HMGB1-TLR2/TLR4/RAGE signaling pathway in the microglia for the treatment of RIBI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02596-7.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong He
- Radiotherapeutic Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Minyi Wu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Mengdan Xing
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhenzhen Zhang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Pei Yu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Siqi Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Haohui Sun
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Baixuan He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junbo Zeng
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jialin Huang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiongxue Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
14
|
Ma Y, Liu W, Liang L, Ye J, Huang C, Zhuang T, Zhang G. Synergistic Antinociceptive Effects of Indomethacin-Pregabalin and Meloxicam-Pregabalin in Paclitaxel-Induced Neuropathic Pain. Biomedicines 2022; 10:biomedicines10061413. [PMID: 35740434 PMCID: PMC9219661 DOI: 10.3390/biomedicines10061413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/05/2023] Open
Abstract
Neuropathic pain is often closely associated with nerve injury or inflammation, and the role of traditional nonsteroidal anti-inflammatory drugs as adjuvants for treating chemotherapy-induced peripheral neuropathic pain remains unclear. In this study, the potential synergistic antinociceptive effects of indomethacin–pregabalin and meloxicam–pregabalin were evaluated in paclitaxel-induced neuropathic pain and carrageenan-induced inflammatory pain in rodents. Although indomethacin and meloxicam alone only slightly relieved mechanical allodynia in the above two models, isobolographic analysis showed that the combination of indomethacin or meloxicam with pregabalin produced significant synergistic antinociceptive effects for paclitaxel-induced neuropathic pain (IN-PGB, experimental ED25 = [4.41 (3.13–5.82)] mg/kg, theoretical ED25 = [8.50 (6.62–10.32)] mg/kg; MEL-PGB, experimental ED25 = [3.96 (2.62–5.46)] mg/kg, theoretical ED25 = [7.52 (5.73–9.39)] mg/kg). In addition, MEL-PGB dosed via intraplantar injection into the left paw, intragastric injection, or intraperitoneal injection reversed paclitaxel-induced allodynia, indicating that they may act at multiple sites in the neuroaxis and periphery. However, indomethacin–pregabalin and meloxicam–pregabalin exerted antagonistic antiallodynic interactions in carrageenan-induced inflammatory pain in rats. Taken together, coadministration of indomethacin or meloxicam with pregabalin may possess potential therapeutic advantages for treating chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Yurong Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenwen Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lingzhi Liang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
| | - Jiaqi Ye
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
| | - Chaonan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (T.Z.); (G.Z.); Tel.: +86-27-87792235 (G.Z.)
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (Y.M.); (W.L.); (L.L.); (J.Y.); (C.H.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (T.Z.); (G.Z.); Tel.: +86-27-87792235 (G.Z.)
| |
Collapse
|
15
|
Old and New Biomarkers for Infection, Inflammation, and Autoimmunity in Treatment-Resistant Affective and Schizophrenic Spectrum Disorders. Pharmaceuticals (Basel) 2022; 15:ph15030299. [PMID: 35337097 PMCID: PMC8949012 DOI: 10.3390/ph15030299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Affective (AF) and Schizophrenic (SZ) Spectrum disorders manifest with risk factors, involving inflammatory processes linked to infections and autoimmunity. This study searched for novel biomarkers in cerebrospinal fluid (CSF) and peripheral blood. A total of 29 AF and 39 SZ patients with treatment-resistant disease were included. In CSF, the chemokine IL-8 was significantly elevated in AF and SZ patients. IL-8 promotes chemotaxis by neutrophils and may originate from different tissues. S100B, a glia-derived brain damage marker, was higher in CSF from AF than SZ patients. Among the plasma-derived biomarkers, ferritin was elevated in AF and SZ. Soluble CD25, indicating Treg dysfunction, was higher in SZ than in AF patients. Interferon-γ, implying virus-specific immune activation, was positive in selective AF patients, only. Both groups showed elevated expression of immunosuppressive CD33 on monocytes, but higher amounts of CD123+ plasmacytoid dendritic cells were restricted to SZ. In conclusion, chemotactic IL-8 indicates neuronal stress and inflammation in the CSF of both groups. Novel plasma-derived biomarkers such as sCD25 and monocytic CD33 distinguish SZ from AF with an autoimmune phenotype.
Collapse
|
16
|
Chen W, Chen S, Zhao L, Zhang M, Geng H, Dong C, Li R. Effects of real-ambient PM 2.5 exposure plus lipopolysaccharide on multiple organ damage in mice. Hum Exp Toxicol 2022; 41:9603271211061505. [PMID: 35098763 DOI: 10.1177/09603271211061505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The toxicological effects of fine particulate matter (PM2.5) on the cardiopulmonary and nervous systems have been studied widely, whereas the study of PM2.5 on systemic toxicity is not in-depth enough. Lipopolysaccharide (LPS) can cause multiple organ damage. The combined effects of co-exposure of PM2.5 plus LPS on the stomach, spleen, intestine, and kidney are still unclear. Purpose: This study was aimed to explore the toxicological effects of co-exposure of PM2.5 and LPS on the different organs of mice. Research Design and Study Sample Using a real-ambient PM2.5 exposure system and an intraperitoneal LPS injection mouse model, we investigated multiple organ damage effects on male BALB/c mice after co-exposure of PM2.5 plus LPS for 23 weeks in Linfen, a city with a high PM2.5 concentration in China. Data Collection: Eosin-hematoxylin staining, ELISA and the biochemical assay analysed the toxicological effects. Results: The pathological tissue injury on the four organs above appeared in mice co-exposed to PM2.5 plus LPS, accompanied by the body weight and stomach organ coefficient abnormality, and significant elevation of pro-inflammatory cytokines levels, oxidative stress in the spleen and kidney, and levels of kidney injury molecule (KIM-1) increase in the kidney. There were tissue differences in the pathological damage and toxicological effects on mice after co-exposure, in which the spleen and kidney were more sensitive to pollutants. In the PM2.5 + LPS group, the superoxide dismutase inhibition and catalase (CAT) activity promotion in the kidney or spleen of mice were significant relative to the PM2.5 group; the CAT and interleukin-6 (IL-6) levels in the spleen were raised considerably compared with the LPS group. Conclusions: These findings suggested the severity and sensitivity of multiple organ injuries in mice in response to PM2.5 plus LPS.
Collapse
Affiliation(s)
- Wenqi Chen
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Shanshan Chen
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Lifang Zhao
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Mei Zhang
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Hong Geng
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Ruijin Li
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| |
Collapse
|
17
|
Mao K, Lu G, Li Y, Zang Y, Zhao X, Qiu Q, Qu M, Ouyang K. Effects of rumen-protected creatine pyruvate on blood biochemical parameters and rumen fluid characteristics in transported beef cattle. BMC Vet Res 2022; 18:35. [PMID: 35033088 PMCID: PMC8760677 DOI: 10.1186/s12917-021-03134-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/29/2021] [Indexed: 12/04/2022] Open
Abstract
Background The fasting and stress associated with road transportation contributes to a lack of energy and a decline in the immune system of beef cattle. Therefore, it is essential for beef cattle to enhance energy reserves before transportation. Creatine pyruvate (CrPyr) is a new multifunctional nutrient that can provide both pyruvate and creatine, which are two intermediate products of energy metabolism. To investigate the effects of transport and rumen-protected (RP)-CrPyr on the blood biochemical parameters and rumen fluid characteristics of beef cattle, twenty male Simmental crossbred cattle (659 ± 16 kg) aged 18 months were randomly allocated to four groups (n = 5) using a 2 × 2 factorial arrangement with two RP-CrPyr supplemental levels (0 or 140 g/d) and two transport treatments (5 min or 12 h): T_CrPyr140, T_CrPyr0, NT_CrPyr140, and NT_CrPyr0. After feeding for 30 days, three cattle per treatment were slaughtered. Results Compared with nontransport, transport decreased the total antioxidant capacity, catalase activity, contents of IgA, interferon γ, interleukin-1β (IL-1β), and IL-6 in serum, and the amounts of total volatile fatty acids (TVFA), acetate, and butyrate in rumen (P < 0.05); increased the serum lipopolysaccharide (LPS) level, contents of rumen LPS and ammonia nitrogen (P < 0.05). RP-CrPyr supplementation decreased the levels of cortisol and LPS in serum and the butyrate concentration in the rumen of beef cattle compared with those in the unsupplemented groups (P < 0.05). RP-CrPyr and transport interaction had a significant effect on the contents of serum tumour necrosis factor-α, IL-6, LPS, ruminal pH, acetate content, and acetate/propionate (P < 0.05). In terms of ruminal bacterial composition, group T_CrPyr0 increased the Prevotella genus abundance compared with group NT_CrPyr0 (P < 0.05), while group T_CrPyr140 increased Firmicutes phylum abundance and decreased Bacteroidetes phylum and genus Prevotella abundance compared with group T_CrPyr0 (P < 0.05). Moreover, Bacteroidetes was positively correlated with serum LPS. Conclusions These results indicated that dietary supplementation with RP-CrPyr might be beneficial to alleviate transport stress by decreasing serum cortisol and LPS levels and promoting the restoration of the rumen natural flora.
Collapse
Affiliation(s)
- Kang Mao
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guwei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| | - Yitian Zang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qinghua Qiu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
18
|
Zhang J, Wang Y, Zhang J, Huang S. The Anti-Inflammatory Effect of 6% HES 200/0.5 on RAW264.7 Cells Induced by LPS through HMGB1/NF-κB Signaling Pathway. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Zhang
- Department of Anesthesiology, Yantaishan Hospital
| | - Yongli Wang
- Department of Anesthesiology, The 80th Army Hospital of People’s Liberation Army
| | | | | |
Collapse
|
19
|
Motavallian A, Zamani E, Bouzari S, Rezaeyan F, Karimian P, Evazalipour M. Anti-inflammatory effect of pregabalin on acetic acid-induced colitis in the rats. Res Pharm Sci 2021; 17:35-42. [PMID: 34909042 PMCID: PMC8621841 DOI: 10.4103/1735-5362.329924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/08/2021] [Accepted: 10/23/2021] [Indexed: 12/01/2022] Open
Abstract
Background and purpose: Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease characterized by the inflammation of the intestine. The available medicinal treatments for IBD are not efficacious enough since they exert various adverse effects. Therefore, the search for new therapeutic agents should be continued. The present study aimed to assess the anti-inflammatory effects of pregabalin on acetic acid-induced colitis in rats. Experimental approach: Using 2 mL of 3% acetic acid solution, colitis was intra-rectally induced in rats. Animals were randomly divided into 6 groups including the normal group, colitis control group, pregabalin treatment groups (30, 50, and 100 mg/kg; i.p., respectively), and dexamethasone treatment group (1 mg/kg; i.p.). Macroscopic, microscopic, and biochemical (myeloperoxidase, tumor necrosis factor-alpha, interleukin-6, and interleukin-1 beta) examinations were used to evaluate the efficacy of pregabalin in the inflamed colon. Findings/Results: All the applied doses of pregabalin significantly decreased the severity of macroscopic and microscopic colonic damages including ulcer severity, ulcer area, percentage of necrosis, and total colitis index compared to the colitis control group. These results were confirmed by the reduced colonic concentration of tumor necrosis factor-alpha, interleukin-6, interleukin-1 beta, and myeloperoxidase activity. Conclusion and implications: Results of this study indicated that pregabalin administration has beneficial effects upon the treatment of experimental colitis, which might be partly due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Azadeh Motavallian
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran.,Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Saba Bouzari
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Farzam Rezaeyan
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Paridokht Karimian
- Department of Pathology and Histology, School of Medicine, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| |
Collapse
|
20
|
Serrano Afonso AA, Pérez Hernández C, Ochoa Mazarro D, Román Martínez M, Failde Martínez I, Montes Pérez A, López Pais P, Cánovas Martínez L, Revuelta Rizo M, Padilla del Rey ML, Peiró Perió A, Aberasturi Fueyo T, Margarit Ferrí C, Rojo Rodríguez E, Mendiola de la Osa A, Muñoz Martinez MJ, Domínguez Bronchal MJ, Herrero Trujillano M, Cid Calzada J, Fabregat-Cid G, Hernández-Cádiz MJ, Mareque Ortega M, Gómez-Caro Álvarez Palencia L, Mayoral Rojals V. Association between chronic pain medications and the severity and mortality of COVID-19: Study protocol for a case-population study. Medicine (Baltimore) 2021; 100:e26725. [PMID: 34397708 PMCID: PMC8322492 DOI: 10.1097/md.0000000000026725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/07/2021] [Indexed: 01/04/2023] Open
Abstract
In patients with coronavirus disease 2019 (COVID-19) infection, common drugs may exacerbate symptoms and negatively impact outcomes. However, the role of chronic medications on COVID-19 effects remains poorly understood. We hypothesized that certain chronic pain medications would influence outcomes in patients with COVID-19. The main aim is to assess the effect of these medications on the course of the disease in COVID-19 patients. Secondary aims are to compare disease severity and outcomes in patients with COVID-19 receiving chronic treatment with analgesics or other medications versus untreated patients and to determine prevalence of chronic pain medications in specific subgroups of hospitalized patients for COVID-19. Multicenter case-population study in 15 care centers for patients ≥18 years of age diagnosed and hospitalized with COVID-19. Controls will include patients treated at participating centers for chronic pain during the six-month period prior to March 15th, 2020. Each case will be age- and sex-matched to 10 controls. Patients will be grouped according to disease severity criteria. The primary outcome measures in patients admitted for COVID-19 will be: 1. statistical association between chronic pain medication and disease severity; 2. association between chronic pain treatment and survival. Secondary outcome measures include: 1. prevalence of chronic pain medications in patients with COVID-19 by age and sex; 2. prevalence of chronic pain medications in patients with COVID-19 vs controls. Patients and controls will be paired by age, sex, and geographic residence. Odds ratios with 95% confidence intervals will be calculated to determine the association between each drug and clinical status. Univariate and multivariate analyses will be performed. This is a study protocol. Data is actually being gathered and results are yet not achieved. There is no numerical data presented, so the conclusions cannot be considered solid at this point. Pain medications are likely to influence severity of COVID-19 and patient survival. Identifying those medications that are most closely associated with severe COVID-19 will provide clinicians with valuable data to guide treatment and reduce mortality rates and the long-term sequelae of the disease.
Collapse
Affiliation(s)
- Andrés Ancor Serrano Afonso
- Pain Unit, Anthesthesiology Department, Hospital Universitari de Bellvitge - IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | | | - Dolores Ochoa Mazarro
- Department of Clinical Pharmacology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Manuel Román Martínez
- Department of Clinical Pharmacology, Hospital Universitario de la Princesa, Madrid, Spain
| | | | | | - Pablo López Pais
- Pain Unit, Anthesthesiology Department, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Luz Cánovas Martínez
- Pain Unit, Anthesthesiology Department, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Miren Revuelta Rizo
- Pain Unit, Anthesthesiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - María Luz Padilla del Rey
- Pain Unit, Anthesthesiology Department, Complejo Hospitalario Universitario de Cartagena, Murcia Spain
| | - Ana Peiró Perió
- Pain Unit, Anthesthesiology Department, Hospital General Universitario de Alicante, Alicante, Spain
| | | | - César Margarit Ferrí
- Pain Unit, Anthesthesiology Department, Hospital General Universitario de Alicante, Alicante, Spain
| | - Elena Rojo Rodríguez
- Pain Unit, Anthesthesiology Department, Hospital Universitario de la Princesa, Madrid, Spain
| | | | | | | | | | - José Cid Calzada
- Pain Unit, Anthesthesiology Department, Complejo Hospitalario Universitario de Toledo, Toledo, Spain
| | - Gustavo Fabregat-Cid
- Pain Unit, Anthesthesiology Department, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - María José Hernández-Cádiz
- Pain Unit, Anthesthesiology Department, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Manuel Mareque Ortega
- Pain Unit, Anthesthesiology Department, Complejo Hospitalario Universitario de Toledo, Toledo, Spain
| | | | - Víctor Mayoral Rojals
- Pain Unit, Anthesthesiology Department, Hospital Universitari de Bellvitge - IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
21
|
Chen YC, Figliozzi RW, Hsia SV. Pilot Analyses of Interferon Subtype Expression Profiles in Patients with Herpes Zoster or Postherpetic Neuralgia. Viral Immunol 2021; 34:437-447. [PMID: 33857386 DOI: 10.1089/vim.2020.0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Postherpetic neuralgia (PHN) is a painful neuropathic complication resulting from herpes zoster (HZ). The pain manifests in peripheral nerves infected by herpesviruses, mostly from reactivation of latent varicella zoster virus. Mechanistic descriptions suggest that PHN develops because of disrupted immune system signaling and inflammation or peripheral nerve damage; however, the pathophysiology is not clear. It is difficult to predict/prevent PHN manifestations of HZ patients due to the lack of accurate diagnostics. In this study, sera from healthy controls, HZ patients, and PHN patients were subjected to an interferon (IFN) expression profile (IEP) study. The corresponding cDNAs were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) using primer pairs against a panel of 21 different IFN subtypes. The results showed that distinct IEPs were observed among HZ and PHN cohorts in comparison to the healthy controls. Together, this pilot study suggested that the IEP study may be used as a molecular tool for diagnosis of PHN and assist in designing new PHN therapeutic protocols.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Robert W Figliozzi
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Shaochung V Hsia
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| |
Collapse
|
22
|
Pinheiro-Neto FR, Lopes EM, Acha BT, Gomes LDS, Dias WA, Reis Filho ACD, Leal BDS, Rodrigues DCDN, Silva JDN, Dittz D, Ferreira PMP, Almeida FRDC. α-Phellandrene exhibits antinociceptive and tumor-reducing effects in a mouse model of oncologic pain. Toxicol Appl Pharmacol 2021; 418:115497. [PMID: 33744277 DOI: 10.1016/j.taap.2021.115497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 11/16/2022]
Abstract
Medical reports indicate a prevalence of pain in 50% of patients with cancer. In this context, this article investigated the antinociceptive activity of α-PHE using in vivo Sarcoma-180-induced hypernociception in mice to detail its mechanism(s) of antinociception under different conditions of treatment and tumor progression. Firsty, in vitro cytotoxic action was assessed using melanoma B-16/F-10 and S-180 murine cells and colorimetric MTT assays. For in vivo studies, acute treatment with α-PHE (6.25, 12.5, 25 and 50 mg/kg orally by gavage) was performed on the 1st day after S-180 inoculation. Subacute treatments were performed for 8 days starting on the next day (early protocol) or on day 8 after S-180 inoculation (late protocol). For all procedures, mechanical nociceptive evaluations were carried out by von Frey's technique in the subaxillary region peritumoral tissue (direct nociception) and in right legs of S-180-bearing mice (indirect nociception). α-PHE showed in vitro cytotoxic action on B-16/F-10 and S-180 (CI50 values of 436.0 and 217.9 μg/mL), inhibition of in vivo tumor growth (ranging from 47.3 to 82.7%) and decreased direct (peritumoral tissue in subaxillary region) and indirect (right leg) mechanical nociception in Sarcoma 180-bearing mice with early and advanced tumors under acute or subacute conditions of treatment especially at doses of 25 and 50 mg/kg. It improved serum levels of GSH as well as diminished systemic lipid peroxidation, blood cytokines (interleukin-1β, -4, -6, and tumor necrosis factor-α). Such outcomes highlight α-PHE as a promising lead compound that combines antinociceptive and antineoplasic properties. Its structural simplicity make it a cost-effective alternative, justifying further mechanistic investigations and the development of pharmaceutical formulations. Moreover, the protocols developed and standardized here make it possible to use Sarcoma-180 hypernociception model to evaluate the capacity of new antinociceptive molecules under conditions of cancer-related allodynia.
Collapse
Affiliation(s)
- Flaviano Ribeiro Pinheiro-Neto
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Everton Moraes Lopes
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Boris Timah Acha
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Laércio da Silva Gomes
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Willian Amorim Dias
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Antonio Carlos Dos Reis Filho
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Bianca de Sousa Leal
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Posgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Débora Caroline do Nascimento Rodrigues
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Posgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Jurandy do Nascimento Silva
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Posgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Dalton Dittz
- Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Posgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550 Teresina, Brazil.
| | - Fernanda Regina de Castro Almeida
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil.
| |
Collapse
|
23
|
Influence of anti-osteoporosis treatments on the incidence of COVID-19 in patients with non-inflammatory rheumatic conditions. Aging (Albany NY) 2020; 12:19923-19937. [PMID: 33080571 PMCID: PMC7655189 DOI: 10.18632/aging.104117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 19 (COVID-19) is currently a global pandemic that affects patients with other pathologies. Here, we investigated the influence of treatments for osteoporosis and other non-inflammatory rheumatic conditions, such as osteoarthritis and fibromyalgia, on COVID-19 incidence. To this end, we conducted a cross-sectional study of 2,102 patients being treated at the Rheumatology Service of Hospital del Mar (Barcelona, Spain). In our cohort, COVID-19 cumulative incidence from March 1 to May 3, 2020 was compared to population estimates for the same city. We used Poisson regression models to determine the adjusted relative risk ratios for COVID-19 associated with different treatments and comorbidities. Denosumab, zoledronate and calcium were negatively associated with COVID-19 incidence. Some analgesics, particularly pregabalin and most of the studied antidepressants, were positively associated with COVID-19 incidence, whereas duloxetine presented a negative association. Oral bisphosphonates, vitamin D, thiazide diuretics, anti-hypertensive drugs and chronic non-steroidal anti-inflammatory drugs had no effect on COVID-19 incidence in the studied population. Our results provide novel evidence to support the maintenance of the main anti-osteoporosis treatments in COVID-19 patients, which may be of particular relevance to elderly patients affected by the SARS-CoV-2 pandemic.
Collapse
|
24
|
Hegazy N, Rezq S, Fahmy A. Mechanisms Involved in Superiority of Angiotensin Receptor Blockade over ACE Inhibition in Attenuating Neuropathic Pain Induced in Rats. Neurotherapeutics 2020; 17:1031-1047. [PMID: 32804335 PMCID: PMC7609714 DOI: 10.1007/s13311-020-00912-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although previous reports described the beneficial role of angiotensin-converting enzyme inhibitors (ACE-Is) or AT1 receptor blockers (ARBs) in attenuating neuropathic pain (NP), no study has yet explored the exact underlying mechanisms, as well as the superiority of using centrally versus peripherally acting renin-angiotensin-aldosterone system (RAAS) drugs in NP. We investigated the effects of 14 days of treatment with centrally (telmisartan and ramipril) or peripherally (losartan and enalapril) acting ARBs and ACE-Is, respectively, in attenuating peripheral NP induced by sciatic nerve chronic constriction injury (CCI) in rats. We also compared these with the effects of pregabalin, the standard treatment for NP. Behavioral changes, inflammatory markers (NFкB, TNF-α, COX-2, PGE2, and bradykinin), oxidative stress markers (NADPH oxidase and catalase), STAT3 activation, levels of phosphorylated P38-MAPK, ACE, AT1 receptor (AT1R), and AT2 receptor (AT2R), as well as histopathological features, were assessed in the brainstem and sciatic nerve. CCI resulted in clear pain-related behavior along with increased levels of inflammatory and oxidative stress markers, and STAT3 activity, as well as increased levels of phosphorylated P38-MAPK, ACE, AT1R, and AT2R, along with worsened histopathological findings in both the brainstem and sciatic nerve. ARBs improved both animal behavior and all measured parameters in CCI rats and were more effective than ACE-Is. At the tested doses, centrally acting ARBs or ACE-Is were not superior to the peripherally acting drugs of the same category. These findings suggest that ARBs (centrally or peripherally acting) are an effective treatment modality for NP.
Collapse
Affiliation(s)
- Nora Hegazy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, 39216, MS, USA.
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|