1
|
Salomon J, Leeke E, Montemayor H, Durden C, Auckland L, Balasubramanian S, Hamer GL, Hamer SA. On-host flea phenology and flea-borne pathogen surveillance among mammalian wildlife of the pineywoods of East Texas. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2024; 49:R39-R49. [PMID: 39315960 DOI: 10.52707/1081-1710-49.2.r39] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/27/2024] [Indexed: 09/25/2024]
Abstract
Flea-borne diseases are endemic in Texas, U.S.A., with an increasing incidence of flea-borne typhus and cat scratch disease. Knowledge of flea natural history could provide information to protect public health, yet many knowledge gaps remain outside of plague-endemic regions. Our objective was to characterize seasonal activity patterns of fleas on common mammalian wildlife species and test fleas and wildlife for Rickettsia and Bartonella pathogens. We performed one year of monthly trapping for rodents and medium-sized mammals in a national forest with high recreational use and urban encroachment in East Texas. From 90 mammal captures representing seven species, 101 fleas were collected representing Polygenis spp., Ctenocephalides felis, and Orchopeas species. Virginia opossums (Didelphis virginianus) hosted 99% of the collected fleas (100 fleas) and a single flea was on an eastern woodrat (Neotoma floridana). Flea infestation prevalence of opossums was 79% (23/29). Mean flea abundance was 4.39 fleas, with intensity peaking in spring. One cat flea removed from an opossum was positive for Bartonella henselae. Furthermore, we identified tissue or blood of four raccoons (Procyon lotor) and one golden mouse (Ochrotomys nuttalli) positive for Rickettsia amblyommatis. These findings provide an ecological basis for the maintenance of vectors and pathogens from sylvatic settings.
Collapse
Affiliation(s)
- Jordan Salomon
- Ecology and Evolutionary Biology Program, Texas A&M University, College Station, TX, U.S.A
| | - Emily Leeke
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, U.S.A
- Department of Entomology, Texas A&M University, College Station, TX, U.S.A
| | - Haydee Montemayor
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, U.S.A
| | - Cassandra Durden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, U.S.A
| | - Lisa Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, U.S.A
| | - Sujata Balasubramanian
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, U.S.A
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, U.S.A
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, U.S.A.,
| |
Collapse
|
2
|
Huggins LG, Namgyel U, Wangchuk P, Atapattu U, Traub R, Colella V. Metabarcoding using nanopore sequencing enables identification of diverse and zoonotic vector-borne pathogens from neglected regions: A case study investigating dogs from Bhutan. One Health 2024; 19:100839. [PMID: 39005237 PMCID: PMC11238191 DOI: 10.1016/j.onehlt.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
The diversity and prevalence of canine vector-borne pathogens (VBPs) in Bhutan have to date remained unexplored, whilst recent epidemiological surveys in other South Asian nations have found diseases caused by VBPs to be rife in local dog populations. Importantly, many of such VBPs can infect people as well, with a building body of evidence identifying potentially zoonotic rickettsial organisms infecting humans in Bhutan. Given the lack of data on canine pathogens in Bhutan we employed a suite of deep-sequencing metabarcoding methods using Oxford Nanopore Technologies' MinION™ device to holistically characterise the bacterial, apicomplexan and filarial worm blood-borne pathogens of dogs in the country's south. Of the 95 stray, owned and community dogs sampled 78% (95% CI = 69%-85%) were infected with at least one VBP. Pathogen species detected were highly diverse including the bacteria Mycoplasma haemocanis in 16% (95% CI: 10-24%), Ehrlichia canis in 4% (95% CI: 2-10%), Anaplasma platys in 2% (95% CI: 0.5-7%) of dogs as well as the zoonotic species Bartonella clarridgeiae in 1% (95% CI: 0.1-6%), a potentially novel Bartonella spp. and an Ehrlichia chaffeensis-like bacterium, both in 1% (95% CI: 0.1-6%) of dogs. The apicomplexan haemoparasites Hepatozoon canis in 62% (95% CI: 52-71%), Babesia gibsoni in 45% (95% CI: 36-55%) and Babesia vogeli in 3% (95% CI: 1-9%) of dogs were also detected. Finally, 5% (95% CI: 2-12%) of dogs were found to be infected with the filarioid Acanthocheilonema reconditum and 1% (95% CI: 0.1-6%) with zoonotic Dirofilaria sp. hongkongensis. One canine was found positive to the filarioid Setaria tundra, a species normally found infecting cervids. The elucidated diversity of VBP communities highlights the strength of assumption-free diagnostics, such as metabarcoding, in detecting rare, novel, and unexpected pathogens. This approach to identifying pathogen diversity is of critical importance when investigating regions and populations that have thus far been neglected, with the findings aiding the development of future One Health informed strategies for disease control.
Collapse
Affiliation(s)
- Lucas G. Huggins
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Ugyen Namgyel
- National Centre for Animal Health, Serbithang, Thimphu 11001, Bhutan
| | - Pelden Wangchuk
- National Centre for Animal Health, Serbithang, Thimphu 11001, Bhutan
| | - Ushani Atapattu
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Rebecca Traub
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3050, Australia
- CityU Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Vito Colella
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
3
|
Shaw G, Lilly M, Mai V, Clark J, Summers S, Slater K, Karpathy S, Nakano A, Crews A, Lawrence A, Salomon J, Sambado SB, Swei A. The roles of habitat isolation, landscape connectivity and host community in tick-borne pathogen ecology. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240837. [PMID: 39507992 PMCID: PMC11540178 DOI: 10.1098/rsos.240837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024]
Abstract
Habitat loss and forest fragmentation are often linked to increased pathogen transmission, but the extent to which habitat isolation and landscape connectivity affect disease dynamics through movement of disease vectors and reservoir hosts has not been well examined. Tick-borne diseases are the most prevalent vector-borne diseases in the United States and on the West Coast, Ixodes pacificus is one of the most epidemiologically important vectors. We investigated the impacts of habitat fragmentation on pathogens transmitted by I. pacificus and sought to disentangle the effects of wildlife communities and landscape metrics predictive of pathogen diversity, prevalence and distribution. We collected pathogen data for four co-occurring bacteria transmitted by I. pacificus and measured wildlife parameters. We also used spatial data and cost-distance analysis integrating expert opinions to assess landscape metrics of habitat fragmentation. We found that landscape metrics were significant predictors of tick density and pathogen prevalence. However, wildlife variables were essential when predicting the prevalence and distribution of pathogens reliant on wildlife reservoir hosts for maintenance. We found that landscape structure was an informative predictor of tick-borne pathogen richness in an urban matrix. Our work highlights the implications of large-scale land management on human disease risk.
Collapse
Affiliation(s)
- Grace Shaw
- Department of Biology, San Francisco State University, Holloway Avenue, San Francisco, CA1600, USA
| | - Marie Lilly
- Department of Ecology, Evolution and Environmental Biology, Columbia University, Amsterdam Avenue, New York, NY1200, USA
| | - Vincent Mai
- Department of Biology, San Francisco State University, Holloway Avenue, San Francisco, CA1600, USA
| | - Jacoby Clark
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Rampart Road, Fort Collins, CO80521, USA
| | - Shannon Summers
- Department of Biology, San Francisco State University, Holloway Avenue, San Francisco, CA1600, USA
| | - Kimetha Slater
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Clifton Road, Atlanta, GA1600, USA
| | - Sandor Karpathy
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Clifton Road, Atlanta, GA1600, USA
| | - Angie Nakano
- San Mateo County Mosquito and Vector Control District, Rollins Rd, Burlingame, CA1351, USA
| | - Arielle Crews
- San Mateo County Mosquito and Vector Control District, Rollins Rd, Burlingame, CA1351, USA
| | - Alexandra Lawrence
- Division of Forestry and Natural Resources, West Virginia University, 322 Evansdale Dr Percival Hall, Morgantown, WV, USA
| | - Jordan Salomon
- Department of Veterinary Integrated Biosciences, Texas A&M University, College Station, TX, USA
| | - Samantha Brianne Sambado
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Andrea Swei
- Department of Biology, San Francisco State University, Holloway Avenue, San Francisco, CA1600, USA
| |
Collapse
|
4
|
Prasetyo DB, Fiorenzano JM, Nop D, Noch N, Huot B, Mom S, Prum S, Chhe V, Dul S, Heang V, Prom S, Jiang J, Richards AL, Farris CM, Hertz JC. Molecular detection of Rickettsia species in ectoparasites collected from two southern provinces of Cambodia. PLoS Negl Trop Dis 2024; 18:e0012544. [PMID: 39348408 PMCID: PMC11476676 DOI: 10.1371/journal.pntd.0012544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024] Open
Abstract
Arthropod-borne rickettsioses comprise a wide variety of subtypes that are endemic in Cambodia, but there remains very little data on the geographic distribution of the pathogens or their vectors. Surveys were conducted in Koh Kong and Preah Sihanouk Provinces between September 2017 and June 2018 to collect ectoparasites from peridomestic animals and the environment using dragging and flagging methods. Collected ectoparasites were sorted and identified morphologically, then pooled by species, host, and location for molecular detection using Rickettsia genus- and species-specific qPCR and/or multilocus sequence typing (MLST) assays. A total of 14,254 ectoparasites were collected including seven new locality records. Rickettsia species were detected in 35.5% (174/505) of the pools screened representing 3,149 randomly selected ectoparasites from the total collected. Rickettsia asembonensis was detected in 89.6% (147/164) of Rickettsia-positive flea pools and 3.6% (6/164) of the flea pools were positive for both R. asembonensis and Rickettsia felis. Candidatus Rickettsia senegalensis from Ctenocephalides orientis fleas and Rickettsia sp. close to Rickettsia japonica and Rickettsia heilongjiangensis from Haemaphysalis ticks were identified by MLST. This appears to be the first report of these new ectoparasite records and rickettsial species in southern Cambodia, suggesting a potential health risk to military and civilians in this region.
Collapse
Affiliation(s)
| | | | - Daliya Nop
- Vysnova Partners, LLC, Alexandria, Virginia, United States of America
| | - Nin Noch
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Boren Huot
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Sokly Mom
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Sitha Prum
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Visal Chhe
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Sokha Dul
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Vireak Heang
- U.S. Naval Medical Research Unit INDO PACIFIC, Phnom Penh, Cambodia
| | - Satharath Prom
- Department of Health, Ministry of National Defence, Phnom Penh, Cambodia
| | - Ju Jiang
- Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Allen L. Richards
- Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Christina M. Farris
- Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Jeffrey C. Hertz
- U.S. Naval Medical Research Unit INDO PACIFIC, Sembawang, Singapore
| |
Collapse
|
5
|
Atapattu U, Colella V, Traub RJ, Wiethoelter A. Knowledge, attitude, and practices of veterinarians towards canine vector-borne pathogens in Sri Lanka. PLoS Negl Trop Dis 2024; 18:e0012365. [PMID: 39074136 PMCID: PMC11309419 DOI: 10.1371/journal.pntd.0012365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Canine vector-borne pathogens (CVBP) have a worldwide distribution and show a high prevalence in tropical countries such as Sri Lanka. Some CVBP are zoonotic, with dogs identified as reservoir hosts for human subcutaneous dirofilariasis and potentially for spotted fever rickettsioses and re-emergent brugian filariasis in Sri Lanka, making these pathogens emerging public health issues in the country. Veterinarians are crucial in monitoring, preventing, and controlling these pathogens in dogs. Therefore, it is imperative to understand veterinarians' knowledge, attitude, and practices (KAP) regarding CVBP to mitigate their impact. A survey was designed and administered electronically to veterinarians residing and practising in Sri Lanka. Responses were evaluated using descriptive, univariable, and multivariable analyses to investigate associations between demographic factors, knowledge, attitude, and practices related to CVBP. Out of the 170 participating veterinarians, nearly 70% had moderate or high knowledge. However, the awareness of zoonotic pathogens, Brugia spp. (16%) and Rickettsia conorii (18%), was low, and a considerable number of veterinarians were unaware of the zoonotic nature of Dirofilaria repens. Based on multivariable analysis adjusting for experience and self-rated knowledge, new graduates had higher odds of knowledge compared to experienced veterinarians (OR 5.7, 95% CI 1.7-23, p = 0.028). Questions assessing the attitude towards CVBP indicated that most participating veterinarians comprehend and agree with their importance. Nearly all participants agreed that ectoparasite control is the best option to prevent CVBP infections (91%, 153/167) and that for effective treatment of CVBP, a definitive diagnosis is required (81%, 135/167). However, veterinarians recommended suboptimal treatments for some CVBP, like Babesia gibsoni. Better practices were associated with being a companion animal practitioner (OR 2.4, 95% CI 1.1-5.7, p = 0.032) and having a low to moderate canine caseload (OR 3.6, 95% CI 1.3-10.4, p = 0.038). Limited knowledge of zoonotic CVBP among veterinarians, along with suboptimal treatment, might contribute to dogs acting as reservoirs and high prevalence of these pathogens in Sri Lanka. Therefore, continued veterinary education is recommended to improve knowledge and practices, which in turn will help to improve the diagnosis, treatment, and control of these infections in Sri Lanka to ensure the well-being of dogs and humans.
Collapse
Affiliation(s)
- Ushani Atapattu
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Victoria, Australia
| | - Vito Colella
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Victoria, Australia
| | - Rebecca J. Traub
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Victoria, Australia
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Anke Wiethoelter
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Zurita A, Trujillo I, Cutillas C. New records of pathogenic bacteria in different species of fleas collected from domestic and peridomestic animals in Spain. A potential zoonotic threat? Comp Immunol Microbiol Infect Dis 2024; 107:102153. [PMID: 38460359 DOI: 10.1016/j.cimid.2024.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Climate change is causing many vectors of infectious diseases to expand their geographic distribution as well as the pathogens they transmit are also conditioned by temperature for their multiplication. Within this context, it is worth highlighting the significant role that fleas can play as vectors of important pathogenic bacteria. For this purpose, our efforts focused on detecting and identifying a total of 9 bacterial genera (Rickettsia sp.; Bartonella sp.; Yersinia sp.; Wolbachia sp., Mycobacterium sp., Leishmania sp., Borrelia sp., Francisella sp. and Coxiella sp.) within fleas isolated from domestic and peridomestic animals in the southwestern region of Spain (Andalusia). Over a 19-months period, we obtained flea samples from dogs, cats and hedgehogs. A total of 812 fleas was collected for this study. Five different species were morphologically identified, including C. felis, C. canis, S. cuniculi, P. irritans, and A. erinacei. Wolbachia sp. was detected in all five species identified in our study which a total prevalence of 86%. Within Rickettsia genus, two different species, R. felis and R. asembonensis were mainly identified in C. felis and A. erinacei, respectively. On the other hand, our results revealed a total of 131 fleas testing positive for the presence of Bartonella sp., representing a prevalence rate of 16% for this genus identifying two species B. henselae and B. clarridgeiae. Lastly, both Y. pestis and L. infantum were detected in DNA of P. irritans and C. felis, respectively isolated from dogs. With these data we update the list of bacterial zoonotic agents found in fleas in Spain, emphasizing the need to continue conducting future experimental studies to assess and confirm the potential vectorial role of certain synanthropic fleas.
Collapse
Affiliation(s)
- Antonio Zurita
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, Seville 41012, Spain.
| | - Ignacio Trujillo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, Seville 41012, Spain.
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, Seville 41012, Spain.
| |
Collapse
|
7
|
Moore CO, André MR, Šlapeta J, Breitschwerdt EB. Vector biology of the cat flea Ctenocephalides felis. Trends Parasitol 2024; 40:324-337. [PMID: 38458883 PMCID: PMC11168582 DOI: 10.1016/j.pt.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Ctenocephalides felis, the cat flea, is among the most prevalent and widely dispersed vectors worldwide. Unfortunately, research on C. felis and associated pathogens (Bartonella and Rickettsia spp.) lags behind that of other vectors and vector-borne pathogens. Therefore, we aimed to review fundamental aspects of C. felis as a vector (behavior, epidemiology, phylogenetics, immunology, and microbiome composition) with an emphasis on key techniques and research avenues employed in other vector species. Future laboratory C. felis experimental infections with Bartonella, Rickettsia, and Wolbachia species/strains should examine the vector-pathogen interface utilizing contemporary visualization, transcriptomic, and gene-editing techniques. Further environmental sampling will inform the range and prevalence of C. felis and associated pathogens, improving the accuracy of vector and pathogen modeling to improve infection/infestation risk assessment and diagnostic recommendations.
Collapse
Affiliation(s)
- Charlotte O Moore
- Intracellular Pathogens Research Laboratory, Department of Clinical Science, North Carolina State University, NC, USA
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction, and One Health, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (FCAV/UNESP), Jaboticabal, SP 14884-900, Brazil
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Edward B Breitschwerdt
- Intracellular Pathogens Research Laboratory, Department of Clinical Science, North Carolina State University, NC, USA.
| |
Collapse
|
8
|
Hoang MTT, Ngo VP, Stenos J, Ng-Nguyen D. The presence of Rickettsia felis in communities in the central highlands of Vietnam. Acta Trop 2023; 248:107034. [PMID: 37793492 DOI: 10.1016/j.actatropica.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Rickettsia felis is an emerging flea-borne spotted fever pathogen that causes febrile illness in humans. In Vietnam, R. felis was detected in hospitalized patients, but there is no information on its presence in the Vietnamese community. This cross-sectional study aimed to determine the presence of R. felis in humans of the Central Highlands of Vietnam. A total of 158 blood and 213 serum samples were subjected to PCR and IFAT, respectively, to detect the presence of R. felis DNA and antibodies against R. felis. PCR assays detected R. felis DNA in four out of 158 blood samples, accounting for a prevalence of 2.53 % (95 % CI: 0.81 %-6.76 %). Phylogenetic analysis indicated the presence of R. felis and R. felis genotype RF2125 in the communities in the Central Highlands of Vietnam. The result of IFAT identified seven out of 213 serum samples (3.29 %, 95 % CI: 1.45 %-6.93 %) positive for antibodies against R. felis. This study was the first to demonstrate the presence of active R. felis infections in the communities in the Central Highlands of Vietnam utilizing both molecular and serological methods.
Collapse
Affiliation(s)
- Minh-Trang Thi Hoang
- Faculty of Medicine, Buon Ma Thuot Medical University, 298 Ha Huy Tap St., Buon Ma Thuot City, Dak Lak Province, Vietnam
| | - Van-Phuong Ngo
- Faculty of Medicine, Buon Ma Thuot Medical University, 298 Ha Huy Tap St., Buon Ma Thuot City, Dak Lak Province, Vietnam
| | - John Stenos
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, VIC, Australia
| | - Dinh Ng-Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Tay Nguyen University, 567 Le Duan St., Buon Ma Thuot City, Dak Lak Province, Vietnam.
| |
Collapse
|
9
|
Nguyen TV, Nguyen HQ, Stenos J, Nguyen TV, Ng-Nguyen D. Molecular detection of Rickettsia sp. genotype RF2125 from household dogs in the central highlands of Vietnam. Res Vet Sci 2023; 163:104989. [PMID: 37639804 DOI: 10.1016/j.rvsc.2023.104989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/12/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Rickettsia felis, a zoonotic vector-borne bacteria, is reported globally in humans, animals, and its invertebrate hosts. This study was designed to detect antibodies against R. felis and the DNA of R. felis in blood of domestic dogs in the Central Highlands of Vietnam using immunofluorescence antibody test (IFAT), and ompB- and gltA-PCRs, respectively. Using IFAT, 23 out of 338 plasma samples collected from household dogs were seropositive for R. felis, accounting for 6.80% (CI 95%: 4.45-10.1%). Of 171 buffy coat samples from household dogs, 50 were positive for spotted fever group rickettsioses using ompB-PCR assay, accounting for 29.2% (CI 95%: 22.6-36.7%). The gltA-PCR assay detected R. felis in 30% (15/50) of ompB-positive samples. DNA sequencing of ompB-PCR and gltA-PCR products confirmed the presence of R. felis and Rickettsia sp. genotype RF2125 / R. asembonensis. Our findings suggest a potential risk of R. felis infection in the communities in the Central Highlands of Vietnam, and the reservoir role of dogs to Rickettsia sp. genotype RF2125.
Collapse
Affiliation(s)
- Trong Van Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot City, Dak Lak Province, Viet Nam
| | - Hieu Quoc Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot City, Dak Lak Province, Viet Nam
| | - John Stenos
- Australian Rickettsial Reference Laboratory, Geelong, Victoria, Australia
| | - Thai Van Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot City, Dak Lak Province, Viet Nam
| | - Dinh Ng-Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot City, Dak Lak Province, Viet Nam.
| |
Collapse
|
10
|
Minahan NT, Wu WJ, Tsai KH. Rickettsia felis is an emerging human pathogen associated with cat fleas: A review of findings in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:10-19. [PMID: 36585292 DOI: 10.1016/j.jmii.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Rickettsia felis is an emerging rickettsial agent principally associated with cat fleas (Ctenocephalides felis), formerly discovered in 1990. Since then, clinical cases of R. felis infection have been identified globally by specific DNA sequences in patients with undifferentiated febrile illness, including in Taiwan, but such evidence is limited. R. felis rickettsiosis is self-limiting and easily treated with doxycycline, but its diagnosis remains a challenge. Environmental risk factors for R. felis rickettsiosis have yet to be clearly demonstrated, and its transmission biology is incompletely understood. Cat fleas are naturally infected with R. felis at varying rates, and vector competence in the transmission of R. felis has been demonstrated in animal models, including dogs, which may serve as reservoir hosts. In northern Taiwan, despite ∼20% of cat fleas infesting companion animals consistently found to be infected with R. felis, only a few cases of potential R. felis infection have been identified through a retrospective serological investigation, though without molecular confirmation. Ecological studies have identified divergent R. felis-like organisms in different arthropod hosts, but these strains appear to serve as nonpathogenic endosymbionts. Although its association with disease is limited, we believe cat flea-borne R. felis warrants increased recognition in an aging population due to immunosenescence and the proximity of companion animals to the elderly. Adopting a One Health approach involving collaboration and communication between clinicians, veterinarians, public health practitioners, and environmental scientists will improve our knowledge about this neglected pathogen and promote the prevention and control of vector-borne diseases.
Collapse
Affiliation(s)
- Nicholas T Minahan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wen-Jer Wu
- Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Huggins LG, Koehler AV, Gasser RB, Traub RJ. Advanced approaches for the diagnosis and chemoprevention of canine vector-borne pathogens and parasites-Implications for the Asia-Pacific region and beyond. ADVANCES IN PARASITOLOGY 2023; 120:1-85. [PMID: 36948727 DOI: 10.1016/bs.apar.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vector-borne pathogens (VBPs) of canines are a diverse range of infectious agents, including viruses, bacteria, protozoa and multicellular parasites, that are pernicious and potentially lethal to their hosts. Dogs across the globe are afflicted by canine VBPs, but the range of different ectoparasites and the VBPs that they transmit predominate in tropical regions. Countries within the Asia-Pacific have had limited prior research dedicated to exploring the epidemiology of canine VBPs, whilst the few studies that have been conducted show VBP prevalence to be high, with significant impacts on dog health. Moreover, such impacts are not restricted to dogs, as some canine VBPs are zoonotic. We reviewed the status of canine VBPs in the Asia-Pacific, with particular focus on nations in the tropics, whilst also investigating the history of VBP diagnosis and examining recent progress in the field, including advanced molecular methods, such as next-generation sequencing (NGS). These tools are rapidly changing the way parasites are detected and discovered, demonstrating a sensitivity equal to, or exceeding that of, conventional molecular diagnostics. We also provide a background to the armoury of chemopreventive products available for protecting dogs from VBP. Here, field-based research within high VBP pressure environments has underscored the importance of ectoparasiticide mode of action on their overall efficacy. The future of canine VBP diagnosis and prevention at a global level is also explored, highlighting how evolving portable sequencing technologies may permit diagnosis at point-of-care, whilst further research into chemopreventives will be essential if VBP transmission is to be effectively controlled.
Collapse
Affiliation(s)
- Lucas G Huggins
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia.
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Rebecca J Traub
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Sing A, Berger A. Cats – Revered and Reviled – and Associated Zoonoses. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:837-914. [DOI: 10.1007/978-3-031-27164-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Moore C, Breitschwerdt EB, Kim L, Li Y, Ferris K, Maggi R, Lashnits E. The association of host and vector characteristics with Ctenocephalides felis pathogen and endosymbiont infection. Front Microbiol 2023; 14:1137059. [PMID: 36950155 PMCID: PMC10025546 DOI: 10.3389/fmicb.2023.1137059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Surveillance of the fleas and flea-borne pathogens infecting cats is important for both human and animal health. Multiple zoonotic Bartonella and Rickettsia species are known to infect the most common flea infesting cats and dogs worldwide: Ctenocephalides felis, the cat flea. The ability of other flea species to transmit pathogens is relatively unexplored. We aimed to determine cat host and flea factors independently associated with flea Bartonella and Rickettsia infection. We also assessed flea and cat infection by flea-host pair and location. To accomplish these aims, we performed qPCR for the detection of Bartonella, hemotropic Mycoplasma, Rickettsia, and Wolbachia DNA using paired cat and flea samples obtained from free-roaming cats presenting for spay or neuter across four locations in the United States. A logistic regression model was employed to identify the effect of cat (sex, body weight, geographic location, and Bartonella, hemotropic Mycoplasma, and Rickettsia spp., infection) and flea (clade and Rickettsia and Wolbachia infection) factors on C. felis Bartonella clarridgeiae infection. From 189 free roaming cats, we collected 84 fleas: Ctenocephalides felis (78/84), Cediopsylla simplex (4/84), Orchopeas howardi (1/84), and Nosopsyllus fasciatus (1/84). Ctenocephalides felis were phylogenetically assigned to Clades 1, 4, and 6 by cox1 gene amplification. Rickettsia asembonensis (52/84) and B. clarridgeiae (16/84) were the most common pathogenic bacteria detected in fleas. Our model identified host cat sex and weight as independently associated with B. clarridgeiae infection in fleas. Rickettsia asembonensis (52/84), Rickettsia felis (7/84) and Bartonella henselae (7/84) were detected in specific clades: R. felis was detected only in Clades 1 and 6 while B. henselae and R. asembonensis were detected only in Clade 4. Wolbachia spp., also displayed clade specificity with strains other than Wolbachia wCfeT only infecting fleas from Clade 6. There was poor flea and host agreement for Bartonella spp., infection; however, there was agreement in the Bartonella species detected in cats and fleas by geographic location. These findings reinforce the importance of considering reservoir host attributes and vector phylogenetic diversity in epidemiological studies of flea-borne pathogens. Widespread sampling is necessary to identify the factors driving flea-borne pathogen presence and transmission.
Collapse
Affiliation(s)
- Charlotte Moore
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lisa Kim
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Yiyao Li
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Kelli Ferris
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Ricardo Maggi
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Erin Lashnits
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
- *Correspondence: Erin Lashnits,
| |
Collapse
|
14
|
Rickettsia felis and species of fleas parasitizing on household dogs in the Central Highlands of Vietnam. Comp Immunol Microbiol Infect Dis 2023; 92:101926. [PMID: 36473364 DOI: 10.1016/j.cimid.2022.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Rickettsia felis is an obligate intracellular gra m-negative bacterium that belongs to the family of Rickettsiaceae. Ctenocephalides felis, cat flea, is the primary vector of the bacteria. The flea is the most common ectoparasite in dogs and associated with flea-borne spotted fever in humans. Information on R. felis and flea species parasitizing on dogs in Vietnam is limited. This study aimed to identify the species of fleas collected from dogs in the Central Highlands of Vietnam and detected the existence of R. felis in these fleas utilizing molecular tools. Morphological identification of 1618 fleas and molecular confirmation revealed the predominance of C. felis orientis parasitizing on dogs in the Central Highlands of Vietnam. Sixty-eight out of 100 fleas collected from household dogs were positive for spotted fever group rickettsiae; whilst R. felis was detected in 97.06 % (66/68) of C. felis orientis and C. felis felis. The results of this study indicate the potentially high risk of R. felis infection to humans and animals.
Collapse
|
15
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
16
|
Laukaitis HJ, Cooper TT, Suwanbongkot C, Verhoeve VI, Kurtti TJ, Munderloh UG, Macaluso KR. Transposon mutagenesis of Rickettsia felis sca1 confers a distinct phenotype during flea infection. PLoS Pathog 2022; 18:e1011045. [PMID: 36542675 DOI: 10.1371/journal.ppat.1011045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/05/2023] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Since its recognition in 1994 as the causative agent of human flea-borne spotted fever, Rickettsia felis, has been detected worldwide in over 40 different arthropod species. The cat flea, Ctenocephalides felis, is a well-described biological vector of R. felis. Unique to insect-borne rickettsiae, R. felis can employ multiple routes of infection including inoculation via salivary secretions and potentially infectious flea feces into the skin of vertebrate hosts. Yet, little is known of the molecular interactions governing flea infection and subsequent transmission of R. felis. While the obligate intracellular nature of rickettsiae has hampered the function of large-scale mutagenesis strategies, studies have shown the efficiency of mariner-based transposon systems in Rickettsiales. Thus, this study aimed to assess R. felis genetic mutants in a flea transmission model to elucidate genes involved in vector infection. A Himar1 transposase was used to generate R. felis transformants, in which subsequent genome sequencing revealed a transposon insertion near the 3' end of sca1. Alterations in sca1 expression resulted in unique infection phenotypes. While the R. felis sca1::tn mutant portrayed enhanced growth kinetics compared to R. felis wild-type during in vitro culture, rickettsial loads were significantly reduced during flea infection. As a consequence of decreased rickettsial loads within infected donor fleas, R. felis sca1::tn exhibited limited transmission potential. Thus, the use of a biologically relevant model provides evidence of a defective phenotype associated with R. felis sca1::tn during flea infection.
Collapse
Affiliation(s)
- Hanna J Laukaitis
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Triston T Cooper
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Chanakan Suwanbongkot
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy J Kurtti
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ulrike G Munderloh
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| |
Collapse
|
17
|
Hao S, Han H, Yang Z, Chen M, Jiang Y, Lu G, Dong L, Wen H, Li H, Liu J, Wu L, Wang Z, Wang F. Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials. NANO-MICRO LETTERS 2022; 14:178. [PMID: 36001173 PMCID: PMC9402885 DOI: 10.1007/s40820-022-00901-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/26/2022] [Indexed: 05/04/2023]
Abstract
HIGHLIGHTS Fabrication, characterizations and photothermal properties of MXenes are systematically described. Photothermal-derived antibacterial performances and mechanisms of MXenes-based materials are summarized and reviewed. Recent advances in the derivative applications relying on antibacterial properties of MXenes-based materials, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics, are investigated. ABSTRACT The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health, which drives researchers to develop antibiotic-free strategies to eradicate these fierce microbes. Although enormous achievements have already been achieved, it remains an arduous challenge to realize efficient sterilization to cut off the drug resistance generation. Recently, photothermal therapy (PTT) has emerged as a promising solution to efficiently damage the integrity of pathogenic bacteria based on hyperthermia beyond their tolerance. Until now, numerous photothermal agents have been studied for antimicrobial PTT. Among them, MXenes (a type of two-dimensional transition metal carbides or nitrides) are extensively investigated as one of the most promising candidates due to their high aspect ratio, atomic-thin thickness, excellent photothermal performance, low cytotoxicity, and ultrahigh dispersibility in aqueous systems. Besides, the enormous application scenarios using their antibacterial properties can be tailored via elaborated designs of MXenes-based materials. In this review, the synthetic approaches and textural properties of MXenes have been systematically presented first, and then the photothermal properties and sterilization mechanisms using MXenes-based materials are documented. Subsequently, recent progress in diverse fields making use of the photothermal and antibacterial performances of MXenes-based materials are well summarized to reveal the potential applications of these materials for various purposes, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics. Last but not least, the current challenges and future perspectives are discussed to provide theoretical guidance for the fabrication of efficient antimicrobial systems using MXenes. [Image: see text]
Collapse
Affiliation(s)
- Shuyan Hao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Hecheng Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Mengting Chen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, People's Republic of China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Nanshan High-Tech Zone, Shenzhen, 518057, People's Republic of China.
| | - Guixia Lu
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China.
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, People's Republic of China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Zhou Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Nanshan High-Tech Zone, Shenzhen, 518057, People's Republic of China.
| |
Collapse
|
18
|
Wang L, Rupani A, Grado LA, Lopez Salazara LM, Trinidad LA, Cook JL, Bechelli J. Molecular Detection of Rickettsia felis in Fleas of Companion Animals in East Texas. Am J Trop Med Hyg 2022; 107:416-419. [PMID: 35895411 PMCID: PMC9393449 DOI: 10.4269/ajtmh.21-0783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/07/2022] [Indexed: 08/03/2023] Open
Abstract
Flea-borne spotted fever is an emerging insect-borne rickettsial infection caused by Rickettsia felis and has been identified worldwide. This study sought to explore the prevalence of rickettsiae associated with fleas on companion dogs and cats from Walker and Montgomery Counties in East Texas. Fleas were collected from animals entering local veterinary clinics for routine checkups. Collected fleas were identified as Ctenocephalides felis or Pulex irritans and analyzed by polymerase chain reaction for the presence of rickettsiae and subsequent sequencing. An estimation of the bcMLE (bias-corrected maximum likelihood estimation) of pooled samples was calculated. Four hundred eighty-eight fleas (comprising C. felis and P. irritans) were collected from 16 cats and 77 dogs. Our results demonstrate R. felis in 21 pools of fleas from dogs (bcMLE 15.28%) and a bcMLE of 7.25% from flea samples collected from cats. Sequence analysis revealed R. felis as the only Rickettsia that could be amplified in our samples using the rickettsial citrate synthase gene and subsequent sequencing. In this study, the presence of R. felis in fleas from companion cats and dogs suggests a potential risk of flea-borne spotted fever in humans who encounter flea-infested animals.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| | - Ammie Rupani
- College of Osteopathic Medicine, Sam Houston State University, Conroe, Texas
| | - Luis A. Grado
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| | - Luis M. Lopez Salazara
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| | - LaReyna A. Trinidad
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| | - Jerry L. Cook
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| | - Jeremy Bechelli
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| |
Collapse
|
19
|
Fongsaran C, Jirakanwisal K, Tongluan N, Latour A, Healy S, Christofferson RC, Macaluso KR. The role of cofeeding arthropods in the transmission of Rickettsia felis. PLoS Negl Trop Dis 2022; 16:e0010576. [PMID: 35759517 PMCID: PMC9269922 DOI: 10.1371/journal.pntd.0010576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/08/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Rickettsia felis is an emerging etiological agent of rickettsioses worldwide. The cosmopolitan cat flea (Ctenocephalides felis) is the primary vector of R. felis, but R. felis has also been reported in other species of hematophagous arthropods including ticks and mosquitoes. Canines can serve as a bacteremic host to infect fleas under laboratory conditions, yet isolation of R. felis from the blood of a vertebrate host in nature has not been realized. Cofeeding transmission is an efficient mechanism for transmitting rickettsiae between infected and uninfected fleas; however, the mechanism of transmission among different orders and classes of arthropods is not known. The potential for R. felis transmission between infected fleas and tick (Dermacentor variabilis) and mosquito (Anopheles quadrimaculatus) hosts was examined via cofeeding bioassays. Donor cat fleas infected with R. felis transmitted the agent to naïve D. variabilis nymphs via cofeeding on a rat host. Subsequent transstadial transmission of R. felis from the engorged nymphs to the adult ticks was observed with reduced prevalence in adult ticks. Using an artificial host system, An. quadrimaculatus exposed to a R. felis-infected blood meal acquired rickettsiae and maintained infection over 12 days post-exposure (dpe). Similar to ticks, mosquitoes were able to acquire R. felis while cofeeding with infected cat fleas on rats infection persisting in the mosquito for up to 3 dpe. The results indicate R. felis-infected cat fleas can transmit rickettsiae to both ticks and mosquitoes via cofeeding on a vertebrate host, thus providing a potential avenue for the diversity of R. felis-infected arthropods in nature. Primarily associated with the common cat flea, Rickettsia felis is an intracellular bacterial pathogen that can be transmitted from the flea to vertebrate hosts. This flea-borne infection has now been identified worldwide as a human pathogen. In addition to fleas, other blood feeding arthropods including ticks and mosquitoes are being recognized as possible vectors of R. felis. Although the mammalian infectious source for arthropods is still unknown, cofeeding transmission of Rickettsia is known to occur between vectors of the same species. However, potential for flea transmission of R. felis to other orders and classes of arthropods is unknown. Here, we examined the potential for fleas to transmit R. felis to American dog ticks and mosquitoes during feeding events on rat hosts. Our data suggested that ticks and mosquitoes can be infected when simultaneously feeding on a host with R. felis-infected cat fleas.
Collapse
Affiliation(s)
- Chanida Fongsaran
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Krit Jirakanwisal
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Natthida Tongluan
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Allison Latour
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sean Healy
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Rebecca C. Christofferson
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kevin R. Macaluso
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
20
|
Culture Isolate of Rickettsia felis from a Tick. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074321. [PMID: 35410003 PMCID: PMC8998211 DOI: 10.3390/ijerph19074321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Although the cat flea, Ctenocephalides felis, has been identified as the primary vector of Rickettsia felis, additional flea, tick, mite, and louse species have also been associated with this bacterium by molecular means; however, the role of these arthropods in the transmission of R. felis has not been clarified. Here, we succeeded in culture isolation of R. felis from a host-seeking castor bean tick, Ixodes ricinus, the most common tick in Slovakia. The bacterial isolation was performed on XTC-2 cells at 28 °C using the shell-vial technique. An evaluation of the growth properties was performed for both the XTC-2 and Vero cell lines. We observed R. felis in the infected host cells microscopically by Gimenez staining and immunofluorescence assay. The R. felis isolate was purified by gradient ultracentrifugation and visualized by electron microscopy. Fragments of the genes gltA, ompA, ompB, htrA, rpoB, sca4, rffE, and rrs were amplified and compared with the corresponding sequences of the type strain URRWXCal2 and other R. felis culture -isolated strains. We did not detect any nucleotide polymorphisms; however, plasmid pRFδ, characteristic of the standard strain, was absent in our isolate. Herein, we describe the first successful isolation and characterization of a tick-derived R. felis strain “Danube”, obtained from an I. ricinus nymph.
Collapse
|
21
|
Chaisiri K, Tanganuchitcharnchai A, Kritiyakan A, Thinphovong C, Tanita M, Morand S, Blacksell SD. Risk factors analysis for neglected human rickettsioses in rural communities in Nan province, Thailand: A community-based observational study along a landscape gradient. PLoS Negl Trop Dis 2022; 16:e0010256. [PMID: 35320277 PMCID: PMC8979453 DOI: 10.1371/journal.pntd.0010256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/04/2022] [Accepted: 02/12/2022] [Indexed: 12/05/2022] Open
Abstract
In this study, we estimated exposure for Scrub typhus (STG), Typhus (TG) and Spotted fever groups (SFG) rickettsia using serology at a fine scale (a whole sub-district administration level) of local communities in Nan Province, Thailand. Geographical characteristics of the sub-district were divided into two landscape types: lowland agricultural area in an urbanized setting (lowland-urbanized area) and upland agricultural area located close to a protected area of National Park (upland-forested area). This provided an ideal contrast between the two landscapes with low and high levels of human-altered habitats to study in differences in disease ecology. In total, 824 serum samples of participants residing in the eight villages were tested by screening IgG ELISA, and subsequently confirmed by the gold standard IgG Immunofluorescent Assay (IFA). STG and TG IgG positivity were highest with seroprevalence of 9.8% and 9.0%, respectively; whereas SFG positivity was lower at 6.9%. Inhabitants from the villages located in upland-forested area demonstrated significantly higher STG exposure, compared to those villages in the lowland-urbanized area (chi-square = 51.97, p < 0.0001). In contrast, TG exposure was significantly higher in those villagers living in lowland-urbanized area (chi-square = 28.26, p < 0.0001). In addition to the effect of landscape types, generalized linear model (GLM) analysis identified socio-demographic parameters, i.e., gender, occupation, age, educational level, domestic animal ownership (dog, cattle and poultry) as influential factors to explain the level of rickettsial exposure (antibody titers) in the communities. Our findings raise the public health awareness of rickettsiosis as a cause of undiagnosed febrile illness in the communities. Evidence of human exposures to rickettsial pathogens were reported from a cross-sectional study at a whole sub-district scale of local communities in Nan Province, Thailand. Seroprevalence and level of rickettsial exposures demonstrated differences between the habitat types, ecological aspects and socio-demographic factors. In addition, abundance of domestic animals in the community appeared to be one of significant factors influencing levels of human exposure to rickettsial pathogens. Our findings will benefit the local public health by raising awareness of rickettsial infections as one of potential health concerns in the community. Inclusion of rickettsioses in routine laboratory diagnosis would help to differentiate unknown febrile illness and guide appropriate treatment. Further studies are required, particularly in the fields of disease ecology as well as medical and veterinary entomology, in order to better understand epidemiology and potential zoonotic transmission of these neglected rickettsioses in endemic areas.
Collapse
Affiliation(s)
- Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail: (KC); (SDB)
| | - Ampai Tanganuchitcharnchai
- Mahidol-Oxford Tropical Research Medicine Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anamika Kritiyakan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | - Malee Tanita
- Saen Thong Health Promoting Hospital, Tha Wang Pha, Nan, Thailand
| | - Serge Morand
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
- Faculty of Veterinary Technology, CNRS ISEM–CIRAD ASTRE, Kasetsart University, Bangkok, Thailand
| | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine & Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- * E-mail: (KC); (SDB)
| |
Collapse
|
22
|
Huang HHH, Power RI, Mathews KO, Ma GC, Bosward KL, Šlapeta J. Cat fleas ( Ctenocephalides felis clade 'Sydney') are dominant fleas on dogs and cats in New South Wales, Australia: Presence of flea-borne Rickettsia felis, Bartonella spp. but absence of Coxiella burnetii DNA. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100045. [PMID: 35284882 PMCID: PMC8906117 DOI: 10.1016/j.crpvbd.2021.100045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 01/04/2023]
Abstract
The cat flea (Ctenocephalides felis) is the most common flea species parasitising both domestic cats and dogs globally. Fleas are known vectors of zoonotic pathogens such as vector-borne Rickettsia spp. and Bartonella spp. and could theoretically transmit Coxiella burnetii, the causative agent of Q fever. A total of 107 fleas were collected from 21 cats and 14 dogs in veterinary clinics, a feline rescue organisation and a grooming salon in New South Wales, Australia, to undergo PCR detection of Bartonella spp., Rickettsia spp. and C. burnetii DNA. Morphological identification confirmed that the cat flea (C. felis) is the most common flea in New South Wales, Australia, with only a single stick fast flea, Echidnophaga gallinacea recorded. The examined fleas (n = 35) at the cox1 locus revealed five closely related C. felis haplotypes (inter-haplotype distance < 0.5%). Multiplex TaqMan qPCR targeting the gltA (Rickettsia spp.) and ssrA (Bartonella spp.) genes was positive in 22.9% (95% CI: 11.8–39.3%) and 11.4% (95% CI: 3.9–26.6%) of samples, respectively. None of the DNA isolated from fleas was positive on TaqMan qPCRs targeting the C. burnetii IS1111, Com1 and htpAB genes. Co-infection of C. felis with Bartonella henselae and Bartonella clarridgeiae was demonstrated using gltA and ssrA Illumina next-generation amplicon sequencing. These findings reinforce the importance of flea control on domestic dogs and cats to effectively control the transmission of Rickettsia felis and Bartonella spp. The flea, however, is unlikely to be a vector of C. burnetii between companion animals and humans. The cat flea (Ctenocephalides felis) is the flea species on cats and dogs in New South Wales Australia. Absence of Coxiella burnetii DNA in flea extract, but presence of Rickettsia felis. Detection of Bartonella DNA using gltA and ssrA Illumina next-generation amplicon sequencing.
Collapse
|
23
|
Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci Rep 2022; 12:3807. [PMID: 35264613 PMCID: PMC8907221 DOI: 10.1038/s41598-022-07725-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Rickettsia species are endosymbionts hosted by arthropods and are known to cause mild to fatal diseases in humans. Here, we analyse the evolution and diversity of 34 Rickettsia species using a pangenomic meta-analysis (80 genomes/41 plasmids). Phylogenomic trees showed that Rickettsia spp. diverged into two Spotted Fever groups, a Typhus group, a Canadensis group and a Bellii group, and may have inherited their plasmids from an ancestral plasmid that persisted in some strains or may have been lost by others. The results suggested that the ancestors of Rickettsia spp. might have infected Acari and/or Insecta and probably diverged by persisting inside and/or switching hosts. Pangenomic analysis revealed that the Rickettsia genus evolved through a strong interplay between genome degradation/reduction and/or expansion leading to possible distinct adaptive trajectories. The genus mainly shared evolutionary relationships with α-proteobacteria, and also with γ/β/δ-proteobacteria, cytophagia, actinobacteria, cyanobacteria, chlamydiia and viruses, suggesting lateral exchanges of several critical genes. These evolutionary processes have probably been orchestrated by an abundance of mobile genetic elements, especially in the Spotted Fever and Bellii groups. In this study, we provided a global evolutionary genomic view of the intracellular Rickettsia that may help our understanding of their diversity, adaptation and fitness.
Collapse
|
24
|
Muz MN, Erat S, Mumcuoglu KY. Protozoan and Microbial Pathogens of House Cats in the Province of Tekirdag in Western Turkey. Pathogens 2021; 10:pathogens10091114. [PMID: 34578146 PMCID: PMC8466416 DOI: 10.3390/pathogens10091114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Domestic felines’ re-emerging infectious and neglected zoonotic diseases are a significant focus of global “One Health” efforts. This study aimed to rapidly diagnose 14 pathogens, including zoonoses by using PCR primers in 167 client-owned symptomatic cats, routinely accepted to the Veterinary Clinics of Tekirdag. The prevalence of pathogens investigated were as follows: Babesia canis canis (24%), Babesia microti (2.4%), Hepatozoon felis (10.8%), Cytauxzoon felis (6.6%), Bartonella henselae (40.1%), Anaplasma platys (30.5%), Anaplasma phagocytophilum (7.2%), Rickettsia felis (26.3%), Borrelia burgdorferi (21%), and hemotropic Mycoplasma sp. (11.4%). There was a significant difference between the prevalence of the pathogens (χ2 = 152.26, df = 9, p < 0.001). There was also a statistical difference between the gender of the cats in terms of the prevalence of all pathogens considered together (χ2 = 4.80, df = 1, p = 0.028), where the female cats showed a higher prevalence. This was not the case for the different age groups (χ2 = 2.92, df = 1, p = 0.088). The lowest infection was observed for B. microti (p < 0.001), while the highest infection was observed for B. henselae (p < 0.01). Leishmania donovani, Plasmodium spp., Ehrlichia chaffeensis, and Neoehrlichia mikurensis PCR test results were negative in all samples. In conclusion, house cats of Tekirdag are apparently highly susceptible to some neglected zoonoses important for “One Health”, and their prevalence in the region is most probably underestimated. Hence, applying PCR tests to assist fast clinic diagnosis in routine, may be an efficient option to protect the public as well as the cats from severe diseases.
Collapse
Affiliation(s)
- Mustafa Necati Muz
- Department of Parasitology, Faculty of Veterinary Medicine, University of Namik Kemal, Tekirdag 59000, Turkey
- Correspondence:
| | - Serkan Erat
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale 71450, Turkey;
| | - Kosta Y. Mumcuoglu
- Parasitology Unit, Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hadassah Medical School, The Hebrew University, Jerusalem 91120, Israel;
| |
Collapse
|
25
|
Groom Q, Adriaens T, Bertolino S, Phelps K, Poelen JH, Reeder DM, Richardson DM, Simmons NB, Upham N. Holistic understanding of contemporary ecosystems requires integration of data on domesticated, captive and cultivated organisms. Biodivers Data J 2021; 9:e65371. [PMID: 34168517 PMCID: PMC8219659 DOI: 10.3897/bdj.9.e65371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Domestic and captive animals and cultivated plants should be recognised as integral components in contemporary ecosystems. They interact with wild organisms through such mechanisms as hybridization, predation, herbivory, competition and disease transmission and, in many cases, define ecosystem properties. Nevertheless, it is widespread practice for data on domestic, captive and cultivated organisms to be excluded from biodiversity repositories, such as natural history collections. Furthermore, there is a lack of integration of data collected about biodiversity in disciplines, such as agriculture, veterinary science, epidemiology and invasion science. Discipline-specific data are often intentionally excluded from integrative databases in order to maintain the “purity” of data on natural processes. Rather than being beneficial, we argue that this practise of data exclusivity greatly limits the utility of discipline-specific data for applications ranging from agricultural pest management to invasion biology, infectious disease prevention and community ecology. This problem can be resolved by data providers using standards to indicate whether the observed organism is of wild or domestic origin and by integrating their data with other biodiversity data (e.g. in the Global Biodiversity Information Facility). Doing so will enable efforts to integrate the full panorama of biodiversity knowledge across related disciplines to tackle pressing societal questions.
Collapse
Affiliation(s)
- Quentin Groom
- Meise Botanic Garden, Meise, Belgium Meise Botanic Garden Meise Belgium.,Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University Stellenbosch South Africa
| | - Tim Adriaens
- Research Inst. for Nature and Forest (INBO), Brussels, Belgium Research Inst. for Nature and Forest (INBO) Brussels Belgium
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy Department of Life Sciences and Systems Biology, University of Turin Torino Italy
| | - Kendra Phelps
- EcoHealth Alliance, New York, United States of America EcoHealth Alliance New York United States of America
| | - Jorrit H Poelen
- Ronin Institute for Independent Scholarship, Montclair, United States of America Ronin Institute for Independent Scholarship Montclair United States of America
| | - DeeAnn Marie Reeder
- Bucknell University, Lewisburg, United States of America Bucknell University Lewisburg United States of America
| | - David M Richardson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University Stellenbosch South Africa
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, United States of America Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History New York United States of America
| | - Nathan Upham
- Arizona State University, Tempe, United States of America Arizona State University Tempe United States of America
| |
Collapse
|
26
|
Mathews KO, Phalen D, Norris JM, Stenos J, Toribio JA, Wood N, Graves S, Sheehy PA, Nguyen C, Bosward KL. Serological Evidence of Exposure to Spotted Fever Group and Typhus Group Rickettsiae in Australian Wildlife Rehabilitators. Pathogens 2021; 10:pathogens10060745. [PMID: 34204809 PMCID: PMC8231516 DOI: 10.3390/pathogens10060745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rickettsioses are arthropod-borne zoonotic diseases, several of which occur in Australia. This study aimed to assess the exposure levels and risk factors for Rickettsia spp. among Australian wildlife rehabilitators (AWRs) using serology, PCR and a questionnaire. Antibody titres against Spotted Fever Group (SFG), Typhus Group (TG) and Scrub Typhus Group (STG) antigens were determined using an immunofluorescence assay. PCR targeting the gltA gene was performed on DNA extracts from whole blood and serum. Logistic regression was used to identify risk factors associated with seropositivity. Of the 27 (22.1%; 27/122) seropositive participants all were seropositive for SFG, with 5/27 (4.1%) also positive for TG. Of the 27 positive sera, 14.8% (4/27) were further classified as exposure to R. australis, 3.7% (1/27) to R. honei, 3.7% (1/27) to R. felis and 77.8% (21/27) were classified as ‘indeterminate’—most of which (85.7%; 18/21) were indeterminate R. australis/R. honei exposures. Rickettsia DNA was not detected in whole blood or serum. Rehabilitators were more likely to be seropositive if more than one household member rehabilitated wildlife, were older than 50 years or had occupational animal contact. These findings suggest that AWRs are at increased risk of contracting Rickettsia-related illnesses, however the source of the increased seropositivity remains unclear.
Collapse
Affiliation(s)
- Karen O. Mathews
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
- Correspondence: (K.O.M.); (K.L.B.)
| | - David Phalen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
| | - Jacqueline M. Norris
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia; (J.S.); (S.G.); (C.N.)
| | - Jenny-Ann Toribio
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
| | - Nicholas Wood
- Discipline of Paediatrics and Child Health, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia;
- National Centre for Immunisation Research and Surveillance, Westmead, NSW 2145, Australia
| | - Stephen Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia; (J.S.); (S.G.); (C.N.)
| | - Paul A. Sheehy
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
| | - Chelsea Nguyen
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia; (J.S.); (S.G.); (C.N.)
| | - Katrina L. Bosward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
- Correspondence: (K.O.M.); (K.L.B.)
| |
Collapse
|
27
|
Huggins LG, Colella V, Koehler AV, Schunack B, Traub RJ. A multipronged next-generation sequencing metabarcoding approach unearths hyperdiverse and abundant dog pathogen communities in Cambodia. Transbound Emerg Dis 2021; 69:1933-1950. [PMID: 34096687 DOI: 10.1111/tbed.14180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
Recent surveys in Southeast Asia, including Cambodia, have identified canine vector-borne pathogens (VBPs), including those with zoonotic potential, as highly prevalent. The lack of veterinary care alongside the close association semidomesticated dogs have with humans in the region exacerbates these zoonotic risks. Nonetheless, the number of studies investigating such pathogens and the threats they pose to dog and human health is limited. Here, we utilize a next-generation sequencing (NGS)-based metabarcoding protocol to conduct an assumption-free characterization of the bacterial, apicomplexan, and kinetoplastid blood-borne pathogens of free-roaming dogs from across Cambodia. From 467 dogs at five field sites, 62% were infected with one of eight confirmed pathogens, comprising Anaplasma platys (32%), Ehrlichia canis (20%), Hepatozoon canis (18%), Babesia vogeli (14%), Mycoplasma haemocanis (13%), the zoonotic pathogen Bartonella clarridgeiae (3%), Candidatus Mycoplasma haematoparvum (0.2%), and Trypanosoma evansi (0.2%). Coinfections of between two and four VBPs were common with 28% of dogs found to have a mixed infection. Moreover, DNA from putatively infectious agents belonging to the bacterial family and genera Coxiella, Mycobacterium, Neisseria, Rickettsiaceae, Treponema, and two uncharacterized Mycoplasma species were identified, in addition to protozoan genera Colpodella, Parabodo, and Bodo. Using a multiple logistic regression model, the presence of ectoparasites, abnormal mucous membranes, anemia, and total protein were found as predictors of canine VBP exposure. This study represents the first time an NGS metabarcoding technique has been used to holistically detect the bacterial and protozoan hemoparasites communities of dogs through an in-depth survey, highlighting the power of such methods to unearth a wide spectrum of pathogenic organisms in an unbiased manner.
Collapse
Affiliation(s)
- Lucas G Huggins
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Vito Colella
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - Rebecca J Traub
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Yang WH, Hsu MS, Shu PY, Tsai KH, Fang CT. Neglected human Rickettsia felis infection in Taiwan: A retrospective seroepidemiological survey of patients with suspected rickettsioses. PLoS Negl Trop Dis 2021; 15:e0009355. [PMID: 33872325 PMCID: PMC8084327 DOI: 10.1371/journal.pntd.0009355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/29/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Current knowledge on Rickettsia felis infection in humans is based on sporadic case reports. Here we conducted a retrospective seroepidemiological survey of R. felis infection among febrile patients visiting a medical center in Taipei. METHODOLOGY/PRINCIPAL FINDINGS A total of 122 patients with suspected rickettsioses presenting with fever of unknown origin (FUO) but tested negative for scrub typhus, murine typhus, or Q fever were retrospectively identified during 2009 to 2010. The archived serum samples were examined for the presence of antibodies against R. felis, Rickettsia japonica, and Rickettsia typhi using microimmunofluorescence (MIF) assay. Serological evidence of Rickettsia exposure was found in 23 (19%, 23/122) patients. Eight patients had antibodies reactive to R. felis, including four with current infection (a ≥4-fold increase in IgG titer between acute and convalescent sera). The clinical presentations of these four patients included fever, skin rash, lymphadenopathy, as well as more severe conditions such as pancytopenia, hepatomegaly, elevated liver enzymes/bilirubin, and life-threatening acute respiratory distress syndrome. One of the patients died after doxycycline was stopped after being tested negative for scrub typhus, Q fever, and murine typhus. CONCLUSIONS Rickettsia felis is a neglected flea-borne pathogen in Taiwan, and its infection can be life-threatening. Further prospective studies of the prevalence of R. felis among patients with FUO and compatible clinical manifestations are warranted.
Collapse
Affiliation(s)
- Wan-Hsiu Yang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Meng-Shiuan Hsu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, Section of Infectious Disease, Far Eastern Memorial Hospital, Taipei, Taiwan.,Department of Healthcare Administration, Oriental Institute of Technology, Taipei, Taiwan
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chi-Tai Fang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
29
|
Urban ecology of hosts and vectors of Rickettsia in a rickettsiosis-endemic city of the Yucatan peninsula, Mexico. Acta Trop 2021; 216:105832. [PMID: 33465349 DOI: 10.1016/j.actatropica.2021.105832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/20/2022]
Abstract
Rickettsioses are vector-borne zoonotic diseases that occur in urban environments. Currently, they are associated with the presence of domestic and synanthropic animals, the ectoparasites that they harbor, and their local habitat. The implementation of prevention actions relies on the understanding of the local ecology of interactions between hosts, vector species, and the etiologic agents. In this context, this study aimed to explore and describe the occurrence of infected mammals and their ectoparasites in human urban dwellings, and those characteristics of urban dwellings associated to the presence of Rickettsia infected animals in groups of households where at least one human case of rickettsiosis has occurred in the previous year of the study. Briefly, blood-samples and ectoparasites from synanthropic and domestic animals, were obtained from groups of households from different areas of an urban settlement. Serologic and molecular diagnostics helped to identify Spotted Fever Group (SFG) and TG (Typhus Group) Rickettsia in animal and ectoparasite samples. A total of 99 mammals were sampled, 29 opossums (Didelphis virginiana), 13 house mice (Mus musculus), seven black rats (Rattus rattus) and 50 dogs. Infection occurrence in opossums was 8.3% of SFG, 50% for TG, and 4.2% of undetermined group. For house mice 46.2% for SFG and 30.8% were undetermined. Black rats 28.6% of SFG and 57.1% undetermined. Finally, dogs were 19.1% of SFG, 57.4% to TG, and 23.4% belonged to undetermined group. A total of 424 ectoparasites were collected from the mammals. In opossums occurred the ticks Ambyomma sp., Ornithodoros (Alecterobius) nr. talaje, and the flea Ctenocephalides felis. In dogs we found the ticks Rhipicephalus sanguineus s. l., Amblyomma sp., O. (A.) nr. talaje, and the flea Ct. felis. No ectoparasites were collected from rodents. The occurrence of infected animals was associated primarily with the material of the backyard floor, the type of sanitary system in the household, the presence of garbage in the backyard, presence of firewood storage, stored polyethylene terephthalate (PET) containers for sale to recyclers, and the store of construction supplies in the backyard. Nonetheless a generalized linear model showed that the household with a backyard with a dirt floor or other non-concrete material has more chances of harboring infected animals (RR= 1.74, 95% CI= 1.07-2.84 and RR= 1.03, 95% CI= 0.39-2.32 respectively). In contrast, when the house has a sanitary system of urban sewer system or a latrine outside de house, the chances of having infected animals decreased significantly (RR= 0.39, 95% CI= 0.12-0.94 and RR= 0.46, 95% CI= 0.03-2.22). We conclude that both SFG and TG rickettsioses occur in animals and their ectoparasites in peridomiciles of urban households were at least one human rickettsiosis case had occurred.
Collapse
|
30
|
Danchenko M, Laukaitis HJ, Macaluso KR. Dynamic gene expression in salivary glands of the cat flea during Rickettsia felis infection. Pathog Dis 2021; 79:6189691. [PMID: 33770162 PMCID: PMC8062234 DOI: 10.1093/femspd/ftab020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cat flea, Ctenocephalides felis, is an arthropod vector capable of transmitting several human pathogens including Rickettsia species. Earlier studies identified Rickettsia felis in the salivary glands of the cat flea and transmission of rickettsiae during arthropod feeding. The saliva of hematophagous insects contains multiple biomolecules with anticlotting, vasodilatory and immunomodulatory activities. Notably, the exact role of salivary factors in the molecular interaction between flea-borne rickettsiae and their insect host is still largely unknown. To determine if R. felis modulates gene expression in the cat flea salivary glands, cat fleas were infected with R. felis and transcription patterns of selected salivary gland-derived factors, including antimicrobial peptides and flea-specific antigens, were assessed. Salivary glands were microdissected from infected and control cat fleas at different time points after exposure and total RNA was extracted and subjected to reverse-transcriptase quantitative PCR for gene expression analysis. During the experimental 10-day feeding period, a dynamic change in gene expression of immunity-related transcripts and salivary antigens between the two experimental groups was detected. The data indicated that defensin-2 (Cf-726), glycine-rich antimicrobial peptide (Cf-83), salivary antigens (Cf-169 and Cf-65) and deorphanized peptide (Cf-75) are flea-derived factors responsive to rickettsial infection.
Collapse
Affiliation(s)
- Monika Danchenko
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, 610 Clinic Drive, Mobile, AL 36688, USA
| | - Hanna J Laukaitis
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, 610 Clinic Drive, Mobile, AL 36688, USA
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, 610 Clinic Drive, Mobile, AL 36688, USA
| |
Collapse
|
31
|
Yevstafieva V, Horb K, Melnychuk V, Gorb O. Differential characters of fleas of the genus Ctenocephalides (Siphonaptera, Pulicidae) obtained from dogs. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fleas are the common name of the order Siphonaptera, obligate provisional nidiculous parasites of mammals and, to a lesser extent, birds, which can also feed on humans. Fleas can cause ctenocephalidosis of dogs and are carriers of many dangerous infectious and invasive diseases. Their ability to use humans as an alternative host determines the importance of these parasites in health care. Therefore, the aim of the work was to establish morphological and metric characters of adult male and female fleas of the species Ctenocephalides felis Bouche, 1835 and C. canis Curtis, 1826, isolated from domestic dogs for species identification. Morphological studies of fleas have shown that the differential features of C. felis and C. canis include the shape of the head and anterior-dorsal cuticular notch on the head. Notably, male fleas of both species have a more rounded forehead than female fleas. The metric parameters of adult fleas can be used as additional identification features, which will increase the efficiency of differential diagnosis of parasitic insects. We found differences in male fleas by 23 parameters, of which the value of 17 parameters were smaller in C. canis specimens. Males of C. felis were 9.1–21.1% larger in total body length, lengths of head and thorax, as well as lengths of mesothorax and metathorax. Differential features included size of the teeth of the main ctenidium and pronotal ctenidium: in C. felis males all eight teeth of the main ctenidium, located on the left side, were longer by 12.7–41.7%, and the first, seventh, eighth teeth were wider by 25.4–43.0% than in C. canis. In female fleas, differences were found for 24 metric parameters, of which the values of 20 parameters were also smaller in C. canis specimens. Females of C. felis were 12.1–22.2% larger in terms of total body length, head, breast, prothorax, mesothorax, and metathorax. All their teeth of the main ctenidium were longer by 5.6–40.6%, and the first, second, third, and eighth teeth were 18.1–48.9% wider than in females of C. canis. The obtained results add to the already existing data on morphometric features of adult fleas of C. felis and C. canis species, and will allow timely and accurate diagnosis of ctenocephalidosis in dogs caused by parasites of these species.
Collapse
|
32
|
Caravedo Martinez MA, Ramírez-Hernández A, Blanton LS. Manifestations and Management of Flea-Borne Rickettsioses. Res Rep Trop Med 2021; 12:1-14. [PMID: 33574726 PMCID: PMC7873028 DOI: 10.2147/rrtm.s274724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Murine typhus and flea-borne spotted fever are undifferentiated febrile illnesses caused by Rickettsia typhi and Rickettsia felis, respectively. These organisms are small obligately intracellular bacteria and are transmitted to humans by fleas. Murine typhus is endemic to coastal areas of the tropics and subtropics (especially port cities), where rats are the primary mammalian host and rat fleas (Xenopsylla cheopis) are the vector. In the United States, a cycle of transmission involving opossums and cat fleas (Ctenocephalides felis) are the presumed reservoir and vector, respectively. The incidence and distribution of murine typhus appear to be increasing in endemic areas of the US. Rickettsia felis has also been reported throughout the world and is found within the ubiquitous cat flea. Flea-borne rickettsioses manifest as an undifferentiated febrile illness. Headache, malaise, and myalgia are frequent symptoms that accompany fever. The incidence of rash is variable, so its absence should not dissuade the clinician to consider a rickettsial illness as part of the differential diagnosis. When present, the rash is usually macular or papular. Although not a feature of murine typhus, eschar has been found in 12% of those with flea-borne spotted fever. Confirmatory laboratory diagnosis is usually obtained by serology; the indirect immunofluorescence assay is the serologic test of choice. Antibodies are seldom present during the first few days of illness. Thus, the diagnosis requires acute- and convalescent-phase specimens to document seroconversion or a four-fold increase in antibody titer. Since laboratory diagnosis is usually retrospective, when a flea-borne rickettsiosis is considered, empiric treatment should be initiated. The treatment of choice for both children and adults is doxycycline, which results in a swift and effective response. The following review is aimed to summarize the key clinical, epidemiological, ecological, diagnostic, and treatment aspects of flea-borne rickettsioses.
Collapse
Affiliation(s)
- Maria A Caravedo Martinez
- Department of Internal Medicine – Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Lucas S Blanton
- Department of Internal Medicine – Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
33
|
Nguyen VL, Dantas-Torres F, Otranto D. Canine and feline vector-borne diseases of zoonotic concern in Southeast Asia. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021. [PMCID: PMC8906074 DOI: 10.1016/j.crpvbd.2020.100001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Dogs and cats are important hosts and reservoirs of many viral, bacterial, protozoal, and helminthic pathogens transmitted by arthropods, including some of zoonotic concern. By sharing the same environment, these companion animals play an important role in the transmission of zoonotic pathogens to humans in various regions and socioeconomic contexts. While canine and feline vector-borne diseases (VBD) are of major concern in wealthy regions (e.g. Europe and North America), less attention has been received in developing countries such as those in Southeast Asia (SEA). This review provides summarized and updated information on canine and feline VBD with emphasis on those of zoonotic concern in SEA. Of these, zoonotic bacteria (i.e. Bartonella henselae, Bartonella clarridgeiae, and Rickettsia felis) and filarial nematodes (i.e. Brugia malayi, Dirofilaria repens, and Dirofilaria immitis) stand out as the most important in veterinary and human medicine. Additionally, the recent finding of Leishmania infantum in dogs in SEA raised more concerns about the spreading of this zoonotic agent in this region. Further epidemiological surveys, especially in countries with extremely scant information such as Cambodia, Laos, Myanmar, and Timor-Leste are advocated. Additionally, effective control measures of canine and feline VBD as well as their arthropod vectors should be simultaneously performed for the management of zoonotic infections. Many canine and feline vector-borne infections affect animals and humans in Southeast Asia. Ticks, fleas and mosquitoes are the most common vectors transmitting pathogens to dogs, cats and humans in Southeast Asia. Bartonella henselae, Rickettsia felis and Dirofilaria repens are of concern to human health in this region. Collaboration between governments and researchers is encouraged for a better management of vector-borne diseases.
Collapse
Affiliation(s)
- Viet-Linh Nguyen
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Filipe Dantas-Torres
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
- Corresponding author. Department of Veterinary Medicine, University of Bari, Bari, Italy.
| |
Collapse
|
34
|
Sánchez-Montes S, Colunga-Salas P, Lozano-Sardaneta YN, Zazueta-Islas HM, Ballados-González GG, Salceda-Sánchez B, Huerta-Jiménez H, Torres-Castro M, Panti-May JA, Peniche-Lara G, Muñoz-García CI, Rendón-Franco E, Ojeda-Chi MM, Rodríguez-Vivas RI, Zavala-Castro J, Dzul-Rosado K, Lugo-Caballero C, Alcántara-Rodríguez VE, Delgado-de la Mora J, Licona-Enríquez JD, Delgado-de la Mora D, López-Pérez AM, Álvarez-Hernández G, Tinoco-Gracia L, Rodríguez-Lomelí M, Ulloa-García A, Blum-Domínguez S, Tamay-Segovia P, Aguilar-Tipacamú G, Cruz-Romero A, Romero-Salas D, Martínez-Medina MA, Becker I. The genus Rickettsia in Mexico: Current knowledge and perspectives. Ticks Tick Borne Dis 2020; 12:101633. [PMID: 33388556 DOI: 10.1016/j.ttbdis.2020.101633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
The genus Rickettsia encompasses 35 valid species of intracellular, coccobacilli bacteria that can infect several eukaryotic taxa, causing multiple emerging and re-emerging diseases worldwide. This work aimed to gather and summarise the current knowledge about the genus Rickettsia in Mexico, updating the taxonomy of the bacteria and their hosts by including all the records available until 2020, to elucidate host-parasite relationships and determine the geographical distribution of each Rickettsia species present in the country. Until now, 14 species of Rickettsia belonging to four groups have been recorded in Mexico. These species have been associated with 26 arthropod species (14 hard ticks, three soft ticks, two sucking lice, and seven fleas) and 17 mammal species distributed over 30 states in Mexico. This work highlights the high biological inventory of rickettsias for Mexico and reinforces the need to approach the study of this group from a One Health perspective.
Collapse
Affiliation(s)
- Sokani Sánchez-Montes
- Facultad de Ciencias Biológicas y Agropecuarias región Tuxpan, Universidad Veracruzana, Veracruz, Mexico; Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Pablo Colunga-Salas
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yokomi N Lozano-Sardaneta
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Héctor M Zazueta-Islas
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gerardo G Ballados-González
- Facultad de Medicina Veterinaria y Zootecnia, Rancho Torreón del Molino, Universidad Veracruzana, Veracruz, Mexico
| | - Beatriz Salceda-Sánchez
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Ciudad de México, Mexico
| | - Herón Huerta-Jiménez
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Ciudad de México, Mexico
| | - Marco Torres-Castro
- Laboratorio de Enfermedades Emergentes y Reemergentes, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Yucatán, Mexico
| | - Jesús Alonso Panti-May
- Campus de Ciencias Biológicas y Agropecuarias, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Gaspar Peniche-Lara
- Laboratorio de Enfermedades Infecciosas y Parasitarias, Facultad de Medicina, Universidad Autónoma de Yucatán, Mexico
| | - Claudia I Muñoz-García
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
| | - Emilio Rendón-Franco
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
| | - Melina M Ojeda-Chi
- Campus de Ciencias Biológicas y Agropecuarias, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Roger I Rodríguez-Vivas
- Campus de Ciencias Biológicas y Agropecuarias, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Jorge Zavala-Castro
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Yucatán, Mexico
| | - Karla Dzul-Rosado
- Laboratorio de Enfermedades Emergentes y Reemergentes, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Yucatán, Mexico
| | - César Lugo-Caballero
- Laboratorio de Enfermedades Emergentes y Reemergentes, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Yucatán, Mexico
| | | | - Jesús Delgado-de la Mora
- Departamento de Anatomía Patológica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Jesús D Licona-Enríquez
- Unidad Médica de Alta Especialidad Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Ciudad de México, Mexico
| | - David Delgado-de la Mora
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Andrés M López-Pérez
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California, Davis, CA, United States; Laboratorio de Ecología de Enfermedades y una Salud. Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Luis Tinoco-Gracia
- Laboratorio de Salud Pública Veterinaria, Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Baja California, Mexico
| | | | | | - Selene Blum-Domínguez
- Laboratorio de Enfermedades Tropicales, Centro de Investigaciones Biomédicas de la Universidad Autónoma de Campeche, Campeche, Mexico
| | - Paulino Tamay-Segovia
- Laboratorio de Enfermedades Transmitidas por Vectores y Zoonosis, Centro de Investigaciones Biomédicas de la Universidad Autónoma de Campeche, Campeche, Mexico
| | - Gabriela Aguilar-Tipacamú
- C. A. Salud Animal y Microbiología Ambiental, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Anabel Cruz-Romero
- Facultad de Medicina Veterinaria y Zootecnia, Rancho Torreón del Molino, Universidad Veracruzana, Veracruz, Mexico
| | - Dora Romero-Salas
- Facultad de Medicina Veterinaria y Zootecnia, Rancho Torreón del Molino, Universidad Veracruzana, Veracruz, Mexico
| | | | - Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
35
|
Abreu-Yanes E, Abreu-Acosta N, Kosoy M, Foronda P. Molecular detection of Bartonella henselae, Bartonella clarridgeiae and Rickettsia felis in cat and dog fleas in Tenerife, Canary Islands, Spain. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:233-240. [PMID: 33207065 DOI: 10.1111/jvec.12394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The cat flea Ctenocephalides felis is the main vector of Bartonella henselae and Bartonella clarridgeiae, the causative agents of cat-scratch disease (CSD) and the spotted-fever agent Rickettsia felis. In spite of their worldwide distribution, there are no data on the occurrence of CSD-causing Bartonella species or the prevalence of Rickettsia species in the Canary Islands, Spain. Therefore, the aim of our study was to screen cat and dog fleas for both pathogens. A total of 128 C. felis from cats and dogs were screened for Bartonella and Rickettsia by PCR. Bartonella henselae (2.3%) and B. clarridgeiae (3.9%) were found in fleas infesting cats, whereas R. felis was identified in both cat (36.6%) and dog (40.7%) fleas. Further, co-infections were observed. This work constitutes the first finding of CSD-causing Bartonella species and the first study on the prevalence of R. felis in fleas from domestic animals in the Canary Islands. These results indicate public health importance, as associated infections could be misdiagnosed in the Archipelago despite their clinical relevance. Establishing human and animal routine diagnosis procedures for these pathogens along with improving vector control in shelters is necessary in order to prevent the spread of the infections among animals.
Collapse
Affiliation(s)
- Estefanía Abreu-Yanes
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna. Avda. Astrofísico F. Sánchez, s/n, 38203, La Laguna, Canary Islands, Spain
- Nertalab S.L. José Rodríguez Mouré, 38008, Santa Cruz de Tenerife, Canary Islands, Spain
- Departament Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203, La Laguna, Canary Islands, Spain
| | - Néstor Abreu-Acosta
- Nertalab S.L. José Rodríguez Mouré, 38008, Santa Cruz de Tenerife, Canary Islands, Spain
| | | | - Pilar Foronda
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna. Avda. Astrofísico F. Sánchez, s/n, 38203, La Laguna, Canary Islands, Spain
- Departament Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203, La Laguna, Canary Islands, Spain
| |
Collapse
|
36
|
Hoque MM, Barua S, Kelly PJ, Chenoweth K, Kaltenboeck B, Wang C. Identification of Rickettsia felis DNA in the blood of domestic cats and dogs in the USA. Parasit Vectors 2020; 13:581. [PMID: 33208186 PMCID: PMC7672164 DOI: 10.1186/s13071-020-04464-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The main vector and reservoir host of Rickettsia felis, an emerging human pathogen causing flea-borne spotted fever, is the cat flea Ctenocephalides felis. While cats have not been found to be infected with the organism, significant percentages of dogs from Australia and Africa are infected, indicating that they may be important mammalian reservoirs. The objective of this study was to determine the presence of R. felis DNA in the blood of domestic dogs and cats in the USA. METHODS Three previously validated PCR assays for R. felis and DNA sequencing were performed on blood samples obtained from clinically ill domestic cats and dogs from 45 states (2008-2020) in the USA. The blood samples had been submitted for the diagnosis of various tick-borne diseases in dogs and feline infectious peritonitis virus, feline immunodeficiency virus, and Bartonella spp. in cats. Phylogenetic comparisons were performed on the gltA nucleotide sequences obtained in the study and those reported for R. felis and R. felis-like organisms. RESULTS Low copy numbers of R. felis DNA (around 100 copies/ml whole blood) were found in four cats (4/752, 0.53%) and three dogs (3/777, 0.39%). The very low levels of infection in clinically ill animals is consistent with R. felis being an unlikely cause of disease in naturally infected dogs and cats. The low copy numbers we found emphasize the requirement for very sensitive PCRs in prevalence studies. CONCLUSIONS The low prevalence of naturally infected PCR-positive cats is further evidence that cats are unlikely to be important reservoirs of R. felis. Similarly, the low prevalence in dogs suggests they are not important reservoirs in the USA. Investigations should continue into the role other mammalian species may be playing in the epidemiology of R. felis infections.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, 36832, USA
| | - Subarna Barua
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, 36832, USA
| | - Patrick John Kelly
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Island Main Road, West Farm, Basseterre, Saint Kitts and Nevis
| | - Kelly Chenoweth
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, 36832, USA
| | - Bernhard Kaltenboeck
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, 36832, USA
| | - Chengming Wang
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, 36832, USA.
| |
Collapse
|
37
|
Tsai KH, Yen TY, Wu WJ, Carvalho R, Raoult D, Fournier PE. Investigation of Ctenocephalides felis on domestic dogs and Rickettsia felis infection in the Democratic Republic of Sao Tome and Principe. Zoonoses Public Health 2020; 67:892-902. [PMID: 33145971 DOI: 10.1111/zph.12776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Abstract
Rickettsia felis is an obligate intracellular Gram-negative bacterium which causes flea-borne spotted fever in humans. In the past decades, R. felis has been detected worldwide in Ctenocephalides felis fleas and various other arthropods. However, due to its shared symptoms with other common vector-borne diseases, human infection is prone to be underestimated or misdiagnosed, especially in the malaria-endemic areas including sub-Saharan Africa, where confirmatory laboratory diagnoses are not usually available. In this study, a 'One Health' approach was adopted to explore potential vector-borne and zoonotic pathogens in the Democratic Republic of Sao Tome and Principe (DRSTP), an island nation in the Gulf of Guinea. By collaborating with local veterinarians, 1,187 fleas were collected from 95 domestic dogs across the country and later identified as Ct. felis using taxonomic keys. A cytochrome oxidase gene-based phylogenetic analysis revealed that all collected fleas belonged to a single haplotype and were identical to isolates from Ivory Coast and Brazil that clustered into a clade of tropical distribution. Additional samples of 14 chigoe fleas (Tunga penetrans) were collected from the surrounding environment of the dogs' resting spots. Rickettsia felis infection in fleas was examined by molecular methods targeting the citrate synthase (gltA)- and outer membrane protein A (ompA)-coding genes as well as the R. felis-specific pRF plasmid. The bacterial DNA was detected in 21.01% (146/695) of cat fleas but none of the chigoe fleas. Microimmunofluorescence assay was then performed to assess pathogen exposure of the residents. Of 240 dried blood spots from participants with dog contacts, 8 (3.33%) exhibited R. felis antibodies. Our findings demonstrated the presence of R. felis in DRSTP. Further extensive epidemiological studies regarding its prevalence and its role in causing febrile illness while the nation is entering pre-elimination stage of malaria will be carried out.
Collapse
Affiliation(s)
- Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Tsai-Ying Yen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wen-Jer Wu
- Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ronalg Carvalho
- Taiwanese Medical Mission, Sao Tome, Democratic Republic of Sao Tome and Principe
| | - Didier Raoult
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France.,French Reference Center for Rickettsioses, Q fever and Bartonelloses, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Pierre-Edouard Fournier
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France.,French Reference Center for Rickettsioses, Q fever and Bartonelloses, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| |
Collapse
|
38
|
Díaz-Sánchez AA, Corona-González B, Meli ML, Roblejo-Arias L, Fonseca-Rodríguez O, Pérez Castillo A, Vega Cañizares E, Lobo Rivero E, Hofmann-Lehmann R. Molecular Diagnosis, Prevalence and Importance of Zoonotic Vector-Borne Pathogens in Cuban Shelter Dogs-A Preliminary Study. Pathogens 2020; 9:E901. [PMID: 33126690 PMCID: PMC7692765 DOI: 10.3390/pathogens9110901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to determine the prevalence of zoonotic vector-borne pathogens, including Anaplasma platys, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Ehrlichia canis and Rickettsia spp. in shelter dogs from Cuba. Blood samples were collected from 100 shelter dogs and examined by molecular methods. Overall, 85 (85%; 95% CI: 77.88-92.12) dogs tested positive for at least one vector-borne pathogen using species-specific qPCR assays. Among the positive samples, E. canis was the most prevalent 62% (95% CI: 52.32-71.68), followed by A. platys 40% (95% CI: 30.23-49.77) and Rickettsia felis 27% (95% CI: 18.15-35.85), whereas 36% (95% CI: 26.43-45.57) showed co-infections. All samples were negative for A. phagocytophilum and B. burgdorferi s.l. The presence of 248 Rhipicephalus sanguineus ticks collected from the dogs was not statistically associated with the occurrence of infections. Thrombocytopenia was the most frequent haematological alteration found in PCR-positive dogs; it was statistically associated with the presence of E. canis, as well as co-infections (p < 0.05). The phylogenetic analyses of A. platys and E. canis based on 16S rRNA, groEL and gltA genes showed a low genetic diversity between Cuban strains. The present study demonstrates the high prevalence of vector-borne pathogens with zoonotic potential in shelter dogs from Cuba.
Collapse
Affiliation(s)
- Adrian Alberto Díaz-Sánchez
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Cuba; (A.A.D.-S.); (B.C.-G.); (L.R.-A.); (A.P.C.); (E.V.C.); (E.L.R.)
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Belkis Corona-González
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Cuba; (A.A.D.-S.); (B.C.-G.); (L.R.-A.); (A.P.C.); (E.V.C.); (E.L.R.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Lisset Roblejo-Arias
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Cuba; (A.A.D.-S.); (B.C.-G.); (L.R.-A.); (A.P.C.); (E.V.C.); (E.L.R.)
| | | | - Anisleidy Pérez Castillo
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Cuba; (A.A.D.-S.); (B.C.-G.); (L.R.-A.); (A.P.C.); (E.V.C.); (E.L.R.)
- Instituto Nacional de Higiene, Epidemiología y Microbiología (INHEM), La Habana 10300, Cuba
| | - Ernesto Vega Cañizares
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Cuba; (A.A.D.-S.); (B.C.-G.); (L.R.-A.); (A.P.C.); (E.V.C.); (E.L.R.)
| | - Evelyn Lobo Rivero
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Cuba; (A.A.D.-S.); (B.C.-G.); (L.R.-A.); (A.P.C.); (E.V.C.); (E.L.R.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
39
|
Ectoparasites Ctenocephalides (Siphonaptera, Pulicidae) in the Composition of Mixed Infestations in Domestic Dogs from Poltava, Ukraine. FOLIA VETERINARIA 2020. [DOI: 10.2478/fv-2020-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
One of the most common ectoparasites on domestic carnivores are fleas from the genus Ctenocephalides. This group of blood sucking insects are one of the most important in medical and veterinary terms, as they can serve as carriers of dangerous infectious and may cause other invasive diseases. Research studies have established a variety of fleas and other contagions parasitizing domestic dogs in Poltava, Ukraine. Certain peculiarities of these ectoparasitic studies, as a part of mixed infestations of dogs, have recently been determined. The results of the studies have shown that the species composition of the fleas was represented by two main species. The dominant species was Ct. felis, and their prevalence was 36.05 %. Another species (Ct. canis) was diagnosed less often and had a prevalence of 27.94 %. It was found that in 31.18 % of the dogs, the blood-sucking insects were mostly parasitizing in the form of an associations with: nematoda (Toxocara canis, Trichuris vulpis, Uncinaria stenocephala), Cestoda (Dipylidium caninum), protozoa (Cystoisospora canis), and another ectoparasite (Trichodectes canis). Overall, 33 types of mixed infestations were detected. Moreover, the number of different parasitic species in each dog ranged from one to seven. Fleas of the genus Ctenocephalides (in the composition of two species of parasites) were registered the most often (14.60 %). The infestation of dogs with other forms of mixed infestations was 0.69—8.01 %. The most frequent co-members for Ct. felis were Cestoda [D. caninum (13.47 %)], for Ct. canis—Cestoda [D. caninum (11.23 %)] and Nematoda [T. vulpis (8.29 %)].
Collapse
|
40
|
Nguyen VL, Colella V, Greco G, Fang F, Nurcahyo W, Hadi UK, Venturina V, Tong KBY, Tsai YL, Taweethavonsawat P, Tiwananthagorn S, Tangtrongsup S, Le TQ, Bui KL, Do T, Watanabe M, Rani PAMA, Dantas-Torres F, Halos L, Beugnet F, Otranto D. Molecular detection of pathogens in ticks and fleas collected from companion dogs and cats in East and Southeast Asia. Parasit Vectors 2020; 13:420. [PMID: 32799914 PMCID: PMC7429691 DOI: 10.1186/s13071-020-04288-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background Ticks and fleas are considered amongst the most important arthropod vectors of medical and veterinary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and fleas from companion dogs and cats in East and Southeast Asia. Methods A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp. Result Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and “Candidatus Rickettsia senegalensis” (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)). Conclusion Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.![]()
Collapse
Affiliation(s)
- Viet-Linh Nguyen
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| | - Vito Colella
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - Grazia Greco
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| | - Fang Fang
- School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wisnu Nurcahyo
- Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakata, Indonesia
| | | | - Virginia Venturina
- College of Veterinary Science & Medicine, Central Luzon State University, Nueva Ecija, Philippines
| | | | - Yi-Lun Tsai
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | - Thong Quang Le
- Faculty of Animal Science & Veterinary Medicine, Nong Lam University, Ho Chi Minh city, Vietnam
| | - Khanh Linh Bui
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thom Do
- Biodiversity Conservation and Tropical Disease Research Institute, Hanoi, Vietnam
| | - Malaika Watanabe
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Filipe Dantas-Torres
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy.,Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil
| | - Lenaig Halos
- Boehringer Ingelheim Animal Health, Lyon, France
| | | | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
41
|
Sánchez-Montes S, Salceda-Sánchez B, Ballados-González GG, Valtierra-Alzaga L, Soto-Gutiérrez JJ, Becker I. Rickettsia asembonensis: New records associated with the cat flea (Ctenocephalides felis felis) in Mexico. Vet Parasitol Reg Stud Reports 2020; 21:100433. [PMID: 32862918 DOI: 10.1016/j.vprsr.2020.100433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 11/15/2022]
Abstract
In the present work, we report for the first time the presence of an emerging rickettsial agent in Mexico, Rickettsia asembonensis, recorded in the cat flea (Ctenocephalides felis felis) collected in dogs from the states of Morelos and Veracruz. Possible implications for public health and its contribution to the biodiversity of the country are discussed.
Collapse
Affiliation(s)
- Sokani Sánchez-Montes
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico; Facultad de Ciencias Biológicas y Agropecuarias, Región Tuxpan, Universidad Veracruzana, Veracruz, Mexico
| | - Beatriz Salceda-Sánchez
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico.
| | | | - Laura Valtierra-Alzaga
- Laboratorio de Entomología, Laboratorio Estatal de Salud Pública, Secretaría de Salud, Morelos, Mexico
| | - Juan J Soto-Gutiérrez
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico
| | - Ingeborg Becker
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
42
|
Huggins LG, Koehler AV, Schunack B, Inpankaew T, Traub RJ. A Host-Specific Blocking Primer Combined with Optimal DNA Extraction Improves the Detection Capability of a Metabarcoding Protocol for Canine Vector-Borne Bacteria. Pathogens 2020; 9:E258. [PMID: 32244645 PMCID: PMC7238069 DOI: 10.3390/pathogens9040258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial canine vector-borne diseases are responsible for some of the most life-threatening conditions of dogs in the tropics and are typically poorly researched with some presenting a zoonotic risk to cohabiting people. Next-generation sequencing based methodologies have been demonstrated to accurately characterise a diverse range of vector-borne bacteria in dogs, whilst also proving to be more sensitive than conventional PCR techniques. We report two improvements to a previously developed metabarcoding tool that increased the sensitivity and diversity of vector-borne bacteria detected from canine blood. Firstly, we developed and tested a canine-specific blocking primer that prevents cross-reactivity of bacterial primer amplification on abundant canine mitochondrial sequences. Use of our blocking primer increased the number of canine vector-borne infections detected (five more Ehrlichia canis and three more Anaplasma platys infections) and increased the diversity of bacterial sequences found. Secondly, the DNA extraction kit employed can have a significant effect on the bacterial community characterised. Therefore, we compared four different DNA extraction kits finding the Qiagen DNeasy Blood and Tissue Kit to be superior for detection of blood-borne bacteria, identifying nine more A. platys, two more E. canis, one more Mycoplasma haemocanis infection and more putative bacterial pathogens than the lowest performing kit.
Collapse
Affiliation(s)
- Lucas G. Huggins
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3050, Australia; (A.V.K.); (R.J.T.)
| | - Anson V. Koehler
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3050, Australia; (A.V.K.); (R.J.T.)
| | | | - Tawin Inpankaew
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Rebecca J. Traub
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3050, Australia; (A.V.K.); (R.J.T.)
| |
Collapse
|