1
|
Chen C, Zhang J, Yu T, Feng H, Liao J, Jia Y. LRG1 Contributes to the Pathogenesis of Multiple Kidney Diseases: A Comprehensive Review. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:237-248. [PMID: 38799248 PMCID: PMC11126829 DOI: 10.1159/000538443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/08/2024] [Indexed: 05/29/2024]
Abstract
Background The increasing prevalence of kidney diseases has become a significant public health issue, with a global prevalence exceeding 10%. In order to accurately identify biochemical changes and treatment outcomes associated with kidney diseases, novel methods targeting specific genes have been discovered. Among these genes, leucine-rich α-2 glycoprotein 1 (LRG1) has been identified to function as a multifunctional pathogenic signaling molecule in multiple diseases, including kidney diseases. This study aims to provide a comprehensive overview of the current evidence regarding the roles of LRG1 in different types of kidney diseases. Summary Based on a comprehensive review, it was found that LRG1 was upregulated in the urine, serum, or renal tissues of patients or experimental animal models with multiple kidney diseases, such as diabetic nephropathy, kidney injury, IgA nephropathy, chronic kidney diseases, clear cell renal cell carcinoma, end-stage renal disease, canine leishmaniosis-induced kidney disease, kidney fibrosis, and aristolochic acid nephropathy. Mechanistically, the role of LRG1 in kidney diseases is believed to be detrimental, potentially through its regulation of various genes and signaling cascades, i.e., fibronectin 1, GPR56, vascular endothelial growth factor (VEGF), VEGFR-2, death receptor 5, GDF15, HIF-1α, SPP1, activin receptor-like kinase 1-Smad1/5/8, NLRP3-IL-1b, and transforming growth factor β pathway. Key Messages Further research is needed to fully comprehend the molecular mechanisms by which LRG1 contributes to the pathogenesis and pathophysiology of kidney diseases. It is anticipated that targeted treatments focusing on LRG1 will be utilized in clinical trials and implemented in clinical practice in the future.
Collapse
Affiliation(s)
- Chunyan Chen
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Jingwei Zhang
- Department of Urology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Tao Yu
- Department of Emergency Medicine, Dean People’s Hospital, Jiujiang, China
| | - Haiya Feng
- Department of Burn Surgery, Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Yifei Jia
- Department of Burn Surgery, Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
2
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
3
|
Luo T, Jiang X, Zhang Z, Gao M, Wang H. Plasma leucine-rich α-2 glycoprotein 1 in ST-elevation myocardial infarction: vertical variation, correlation with T helper 17/regulatory T ratio, and predictive value on major adverse cardiovascular events. Front Cardiovasc Med 2024; 11:1326897. [PMID: 38742172 PMCID: PMC11089199 DOI: 10.3389/fcvm.2024.1326897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Objective Leucine-rich α-2 glycoprotein 1 (LRG1) promotes inflammation and myocardial injury, but its clinical role in ST-elevation myocardial infarction (STEMI) is rarely disclosed. Herein, this prospective study aimed to explore the value of plasma LRG1 at different time points to predict major adverse cardiovascular event (MACE) risk in patients with STEMI. Methods In total, 209 patients with STEMI were enrolled for determining plasma LRG1 at admission and on day (D)1/D7/D30 after admission via enzyme-linked immunosorbent assay, as well as for determination of peripheral blood T helper 17 (Th17) cells and regulatory T (Treg) cells by flow cytometry. In addition, plasma LRG1 was obtained from 30 healthy controls at enrollment. Results LRG1 was increased in patients with STEMI at admission compared with healthy controls (P < 0.001). In patients with STEMI, LRG1 varied at different time points (P < 0.001), which elevated from admission to D1, and gradually declined thereafter. LRG1 at admission was positively associated with Th17 cells (P = 0.001) and Th17/Treg ratio (P = 0.014). LRG1 at admission (P = 0.013), D1 (P = 0.034), D7 (P = 0.001), and D30 (P = 0.010) were increased in patients with MACE compared with those without. LRG1 at D7 exhibited good ability to estimate MACE risk (area under curve = 0.750, 95% confidence interval = 0.641-0.858). LRG1 at admission > 60 μg/ml (P = 0.031) and D7 > 60 μg/ml (P = 0.018) were linked with increased accumulating MACE. Importantly, LRG1 at D7 > 60 μg/ml was independently correlated with increased MACE risk (hazard ratio = 5.216, P = 0.033). Conclusion Plasma LRG1 increases from admission to D1 and gradually declines until D30, which positively links with Th17 cells and MACE risk in patients with STEMI.
Collapse
Affiliation(s)
- Ting Luo
- Department of Cardiology, The First People’s Hospital of Chengdu, Chengdu, China
| | - Xiaoli Jiang
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China
| | - Zhenzhen Zhang
- Department of Cardiology, The First People’s Hospital of Chengdu, Chengdu, China
| | - Ming Gao
- Department of Cardiology, The First People’s Hospital of Chengdu, Chengdu, China
| | - Hao Wang
- Department of Cardiology, The First People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
4
|
Gu J, Liu C, Yao Y. Prognostic potency of plasma LRG1 measurement at multiple time points in acute ischemic stroke patients. Biomark Med 2024; 18:181-190. [PMID: 38440887 DOI: 10.2217/bmm-2023-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Objective: This study aimed to investigate the prognostic potency of LRG1 in acute ischemic stroke (AIS) patients. Methods: Plasma LRG1 levels were detected at admission and on days 3, 7 and 30 in 150 AIS patients. Results: LRG1 positively correlated with total cholesterol (p = 0.016), triglycerides (p = 0.046), C-reactive protein (p < 0.001), TNF-α (p = 0.001) and IL-6 (p = 0.004). After admission, LRG1 showed a decreasing trend (p < 0.001). Interestingly, LRG1 levels at admission (p = 0.014), day 3 (p = 0.027), day 7 (p = 0.008) and day 30 (p = 0.002) were higher in patients with modified Rankin scale score ≥2 versus those with scores <2. The LRG1 levels at day 7 (p = 0.032) and day 30 (p = 0.023) were higher in patients with recurrence versus no recurrence. Conclusion: LRG1 correlates with blood lipids, inflammation and short-term prognosis of AIS.
Collapse
Affiliation(s)
- Juxian Gu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061001, China
| | - Chao Liu
- Department of CT Diagnosis, Cangzhou Central Hospital, Cangzhou, 061001, China
| | - Yan Yao
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061001, China
| |
Collapse
|
5
|
Cheng X, Wei H, Liu Y, Sun Y, Ye J, Lu P, Han B. Relation between LRG1 and CD4 + T cells, cognitive impairment and neurological function in patients with acute ischemic stroke. Biomark Med 2024; 18:5-14. [PMID: 38380988 DOI: 10.2217/bmm-2023-0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Objective: To assess the relationship between LRG1 and CD4+ T cells, cognitive impairment and neurological function in acute ischemic stroke (AIS). Methods: Plasma LRG1 was detected by ELISA in 175 patients with AIS at baseline, day (D) 1, D7, month (M) 1 and M3. Results: LRG1 was negatively related to Th2 and Treg cells and positively linked to Th17 (all p < 0.05). LRG1 increased from baseline to D1, then decreased until M3 (p < 0.001). LRG1 at each assessment point was increased in patients with cognitive impairment or poor neurological function at M3 versus those without (all p < 0.05). Conclusion: LRG1 is linked to decreased Th2 and Tregs, increased Th17, cognitive impairment and nonideal neurological function recovery in patients with AIS.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
- Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, 030009, China
| | - Hongen Wei
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
- Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, 030009, China
| | - Yi Liu
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| | - Yaxuan Sun
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| | - Jianxin Ye
- Department of Neurology, The 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Fuzhou, 350000, China
| | - Pengyu Lu
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| | - Bin Han
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| |
Collapse
|
6
|
Grzesiak L, Amaya-Garrido A, Feuillet G, Malet N, Swiader A, Sarthou MK, Wahart A, Ramel D, Gayral S, Schanstra JP, Klein J, Laffargue M. Leucine-Rich Alpha-2 Glycoprotein 1 Accumulates in Complicated Atherosclerosis and Promotes Calcification. Int J Mol Sci 2023; 24:16537. [PMID: 38003727 PMCID: PMC10671851 DOI: 10.3390/ijms242216537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular disease. The development of plaque complications, such as calcification and neo-angiogenesis, strongly impacts plaque stability and is a good predictor of mortality in patients with atherosclerosis. Despite well-known risk factors of plaque complications, such as diabetes mellitus and chronic kidney disease, the mechanisms involved are not fully understood. We and others have identified that the concentration of circulating leucine-rich α-2 glycoprotein 1 (LRG1) was increased in diabetic and chronic kidney disease patients. Using apolipoprotein E knockout mice (ApoE-/-) (fed with Western diet) that developed advanced atherosclerosis and using human carotid endarterectomy, we showed that LRG1 accumulated into an atherosclerotic plaque, preferentially in calcified areas. We then investigated the possible origin of LRG1 and its functions on vascular cells and found that LRG1 expression was specifically enhanced in endothelial cells via inflammatory mediators and not in vascular smooth muscle cells (VSMC). Moreover, we identified that LRG1 was able to induce calcification and SMAD1/5-signaling pathways in VSMC. In conclusion, our results identified for the first time that LRG1 is a direct contributor to vascular calcification and suggest a role of this molecule in the development of plaque complications in patients with atherosclerosis.
Collapse
Affiliation(s)
- Lucile Grzesiak
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Ana Amaya-Garrido
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Nicole Malet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Audrey Swiader
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Marie-Kerguelen Sarthou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Amandine Wahart
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Damien Ramel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Stéphanie Gayral
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Muriel Laffargue
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| |
Collapse
|
7
|
Alhammad R, Abu-Farha M, Rahman A, Thanaraj TA, Shaban L, Alsabah R, Hamad S, Hammad MM, Channanath A, Al-Mulla F, Abubaker J. LRG1 Associates with Iron Deficiency Anemia Markers in Adolescents. Nutrients 2023; 15:3100. [PMID: 37513518 PMCID: PMC10384480 DOI: 10.3390/nu15143100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Leucine-rich α-2 glycoprotein1 (LRG1) has been shown to be associated with several health conditions; however, its association with iron deficiency anemia, especially in children, has not been previously explored. In this study, we investigated the association between LRG1 and several iron deficiency anemia markers, including hemoglobin (Hb), albumin, red cell distribution width (RDW), iron, ferritin, and Hb transferrin saturation. A total of 431 participants were included in this analysis aged between 11 and 14 years. Higher LRG1 levels were observed in children diagnosed with anemia [31.1 (24.6, 43.2) µg/mL] compared to non-anemic children [29.2 (22.7-35.95) µg/mL]. Statistically significant differences of LRG1 level across the three groups (tertiles) of Hb, iron, transferrin saturation, albumin, RDW, ferritin, and WBC were observed. Strong negative correlations were observed between LRG1 and Hb (Spearman's rho = -0.11, p = 0.021), albumin (Spearman's rho = -0.24, p < 0.001), iron (Spearman's rho = -0.25, p < 0.001), and Hb transferrin saturation (Spearman's rho = -0.24, p < 0.001), whereas circulating LRG1 levels were positively associated with RDW (Spearman's rho = 0.21, p < 0.001). In conclusion, our findings demonstrate for the first time the strong association between iron deficiency anemia markers and LRG1 in otherwise healthy school-aged children. However, further studies are needed to corroborate those results and to look for similar associations in other population subgroups.
Collapse
Affiliation(s)
- Rashed Alhammad
- Department of Pharmacology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City 13110, Kuwait
| | - Thangavel Alphonse Thanaraj
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Lemia Shaban
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City 13110, Kuwait
| | - Reem Alsabah
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Samar Hamad
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Maha M Hammad
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Arshad Channanath
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| |
Collapse
|
8
|
Loch A, Tan KL, Danaee M, Idris I, Ng ML. Leucine-Rich Alpha-2-Glycoprotein: A Novel Predictor of Diastolic Dysfunction. Biomedicines 2023; 11:944. [PMID: 36979923 PMCID: PMC10045934 DOI: 10.3390/biomedicines11030944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Leucine-rich α2-glycoprotein (LRG1) mediates cardiac fibrocyte activation. It is upregulated in inflammatory conditions, atherosclerosis, and fibrosis. Diastolic dysfunction (DD) is due to myocardial fibrosis. This cross-sectional study examined the relationship between LRG1 and DD. Patients with symptoms of chronic coronary ischemia were recruited. Patients with symptoms of overt heart failure, ejection fraction (EF) < 55%, impaired renal function, infection, and recent trauma were excluded from the study. Clinical parameters examined were SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery (SYNTAX) score, echocardiographic assessment, and LRG1 levels. Binary stepwise logistic regression was used to evaluate the association between LRG1 and DD. Receiver Operating Characteristic (ROC) analysis was used to determine optimal cut-off values and predictive performance of LRG1. A total of 94 patients were enrolled in the study, with 47 having a clinical diagnosis of DD. Plasma LRG1 was significantly (U = 417.00, p < 0.001) higher in the DD group (M = 14) compared to the No-DD group (M = 8) by Mann-Whitney U test. There were higher SYNTAX scores in the DD group (M = 24.5) compared with No-DD (M = 7). LRG1 had significant predictability of DD (OR = 1.32 (95% CI: 1.14-1.53)). The ROC showed an AUC = 0.89 (95% CI: 0.82-0.95). LRG1 had a 78% sensitivity (95% CI: 65.3-87.7) and 72.3% specificity (95% CI: 57.4-84.4) for predicting DD at a cut-off value of "9". In conclusion, we identified LRG1 as a novel independent predictor of DD. Further studies are warranted to validate the utility of LRG1 in predicting DD.
Collapse
Affiliation(s)
- Alexander Loch
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.L.); (M.D.)
| | - Kok Leng Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
| | - Mahmoud Danaee
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.L.); (M.D.)
| | - Iskandar Idris
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Mei Li Ng
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
9
|
Li J, Mukiibi R, Jiminez J, Wang Z, Akanno EC, Timsit E, Plastow GS. Applying multi-omics data to study the genetic background of bovine respiratory disease infection in feedlot crossbred cattle. Front Genet 2022; 13:1046192. [PMID: 36579334 PMCID: PMC9790935 DOI: 10.3389/fgene.2022.1046192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Bovine respiratory disease (BRD) is the most common and costly infectious disease affecting the wellbeing and productivity of beef cattle in North America. BRD is a complex disease whose development is dependent on environmental factors and host genetics. Due to the polymicrobial nature of BRD, our understanding of the genetic and molecular mechanisms underlying the disease is still limited. This knowledge would augment the development of better genetic/genomic selection strategies and more accurate diagnostic tools to reduce BRD prevalence. Therefore, this study aimed to utilize multi-omics data (genomics, transcriptomics, and metabolomics) analyses to study the genetic and molecular mechanisms of BRD infection. Blood samples of 143 cattle (80 BRD; 63 non-BRD animals) were collected for genotyping, RNA sequencing, and metabolite profiling. Firstly, a genome-wide association study (GWAS) was performed for BRD susceptibility using 207,038 SNPs. Two SNPs (Chr5:25858264 and BovineHD1800016801) were identified as associated (p-value <1 × 10-5) with BRD susceptibility. Secondly, differential gene expression between BRD and non-BRD animals was studied. At the significance threshold used (log2FC>2, logCPM>2, and FDR<0.01), 101 differentially expressed (DE) genes were identified. These DE genes significantly (p-value <0.05) enriched several immune responses related functions such as inflammatory response. Additionally, we performed expression quantitative trait loci (eQTL) analysis and identified 420 cis-eQTLs and 144 trans-eQTLs significantly (FDR <0.05) associated with the expression of DE genes. Interestingly, eQTL results indicated the most significant SNP (Chr5:25858264) identified via GWAS was a cis-eQTL for DE gene GPR84. This analysis also demonstrated that an important SNP (rs209419196) located in the promoter region of the DE gene BPI significantly influenced the expression of this gene. Finally, the abundance of 31 metabolites was significantly (FDR <0.05) different between BRD and non-BRD animals, and 17 of them showed correlations with multiple DE genes, which shed light on the interactions between immune response and metabolism. This study identified associations between genome, transcriptome, metabolome, and BRD phenotype of feedlot crossbred cattle. The findings may be useful for the development of genomic selection strategies for BRD susceptibility, and for the development of new diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Jiyuan Li
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Janelle Jiminez
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Everestus C. Akanno
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Edouard Timsit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Graham S. Plastow
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Bălănescu A, Băicuș C, Bălănescu E, Bălănescu P. Circulatory cytokeratin 17, marginal zone B1 protein and leucine-rich α2-glycoprotein-1 as biomarkers for disease severity and fibrosis in systemic sclerosis patients. Biochem Med (Zagreb) 2022; 32:030707. [PMID: 36277429 PMCID: PMC9562799 DOI: 10.11613/bm.2022.030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Systemic sclerosis (Ssc) is a multiorgan debilitating autoimmune disease that associates the triad: vascular involvement, tissue fibrosis and profound immune response alterations. Numerous previous studies focused on identification of candidate proteomic Ssc biomarkers using mass-spectrometry techniques and a large number of candidate Ssc biomarkers emerged. These biomarkers must firstly be confirmed in independent patient groups. The aim of the present study was to investigate the association of cytokeratin 17 (CK17), marginal zone B1 protein (MZB1) and leucine-rich α2-glycoprotein-1 (LRG1) with clinical and biological Ssc characteristics. Material and methods Serum CK17, MZB1 and LRG1 were assessed in samples of the available Ssc biobank comprising of samples from 53 Ssc patients and 26 matched age and gender controls. Results Circulatory CK17, LRG1 and MZB1 concentrations were increased in Ssc patients. Cytokeratin 17 is independently associated with Ssc disease activity. Patients with pulmonary fibrosis expressed higher LRG1 and MZB1 concentrations. Serum MZB1 concentrations were also associated with extensive skin fibrosis. Conclusions Serum CK17, MZB1 and LRG1 were confirmed biomarkers for Ssc. LRG1 seems a good biomarker for pulmonary fibrosis, while MZB1 is a good biomarker for extensive skin fibrosis. CK17 proved to be independently associated with Ssc disease severity, higher CK17 values being protective for a more active disease.
Collapse
Affiliation(s)
- Anca Bălănescu
- Pediatrics Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Cristian Băicuș
- Internal Medicine Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Eugenia Bălănescu
- Clinical Immunology Laboratory CDPC, Colentina Clinical Hospital, Bucharest, Romania
| | - Paul Bălănescu
- Internal Medicine Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| |
Collapse
|
11
|
An Immunological Axis Involving Interleukin 1β and Leucine-Rich-α2-Glycoprotein Reflects Therapeutic Response of Children with Kawasaki Disease: Implications from the KAWAKINRA Trial. J Clin Immunol 2022; 42:1330-1341. [PMID: 35699824 PMCID: PMC9537216 DOI: 10.1007/s10875-022-01301-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022]
Abstract
Purpose A recent phase II open-label study of the interleukin 1 (IL-1) receptor antagonist (IL-1Ra) anakinra in treating IVIG-resistant Kawasaki disease (KD) patients reported promising results. Here, we aimed to characterize the immunological impact of IL-1 blockade in this unique study population. Methods Patients’ and control sera and supernatants of cells (whole blood, neutrophils, coronary artery endothelial cells) stimulated with recombinant IL-1β were analyzed for single or multiple marker (n = 22) expression by ELISA or multiplexed bead array assay. Data were analyzed using unsupervised hierarchical clustering, multiple correlation, and multi-comparison statistics and were compared to retrospective analyses of KD transcriptomics. Results Inflammation in IVIG-resistant KD (n = 16) is hallmarked by over-expression of innate immune mediators (particularly IL-6 > CXCL10 > S100A12 > IL-1Ra). Those as well as levels of immune or endothelial cell activation markers (sICAM-1, sVCAM-1) declined most significantly in course of anakinra treatment. Prior as well as following IL-1R blockade, over-expression of leucine-rich-α2-glycoprotein 1 (LRG1) associated best with remnant inflammatory activity and the necessity to escalate anakinra dosage and separated inflammatory KD patients from sJIA-MAS (n = 13) and MIS-C (n = 4). Protein as well as retrospective gene expression analyses indicated tight association of LRG1 with IL-1β signaling and neutrophilia, while particularly neutrophil stimulation with recombinant IL-1β resulted in concentration-dependent LRG1 release. Conclusion Our study identifies LRG1 as known trigger of endothelial activation and cardiac re-modeling to associate with IL-1β signaling in KD. Besides a potential patho-mechanistic implication of these findings, our data suggest blood leukocyte and neutrophil counts to best predict response to IL-1Ra treatment in IVIG-resistant KD. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-022-01301-w.
Collapse
|
12
|
Schmitz K, Turnwald EM, Kretschmer T, Janoschek R, Bae-Gartz I, Voßbrecher K, Kammerer MD, Köninger A, Gellhaus A, Handwerk M, Wohlfarth M, Gründemann D, Hucklenbruch-Rother E, Dötsch J, Appel S. Metformin Prevents Key Mechanisms of Obesity-Related Complications in Visceral White Adipose Tissue of Obese Pregnant Mice. Nutrients 2022; 14:nu14112288. [PMID: 35684088 PMCID: PMC9182976 DOI: 10.3390/nu14112288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
With the gaining prevalence of obesity, related risks during pregnancy are rising. Inflammation and oxidative stress are considered key mechanisms arising in white adipose tissue (WAT) sparking obesity-associated complications and diseases. The established anti-diabetic drug metformin reduces both on a systemic level, but only little is known about such effects on WAT. Because inhibiting these mechanisms in WAT might prevent obesity-related adverse effects, we investigated metformin treatment during pregnancy using a mouse model of diet-induced maternal obesity. After mating, obese mice were randomised to metformin administration. On gestational day G15.5, phenotypic data were collected and perigonadal WAT (pgWAT) morphology and proteome were examined. Metformin treatment reduced weight gain and visceral fat accumulation. We detected downregulation of perilipin-1 as a correlate and observed indications of recovering respiratory capacity and adipocyte metabolism under metformin treatment. By regulating four newly discovered potential adipokines (alpha-1 antitrypsin, Apoa4, Lrg1 and Selenbp1), metformin could mediate anti-diabetic, anti-inflammatory and oxidative stress-modulating effects on local and systemic levels. Our study provides an insight into obesity-specific proteome alterations and shows novel modulating effects of metformin in pgWAT of obese dams. Accordingly, metformin therapy appears suitable to prevent some of obesity’s key mechanisms in WAT.
Collapse
Affiliation(s)
- Katrin Schmitz
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Eva-Maria Turnwald
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Tobias Kretschmer
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
- UFZ-Helmholtz Centre for Environmental Research, Department Environmental Immunology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ruth Janoschek
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Inga Bae-Gartz
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Kathrin Voßbrecher
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Merlin D. Kammerer
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Angela Köninger
- Department of Obstetrics and Gynecology, University of Regensburg, St. Hedwigs Clinic of the Order of St. John, Steinmetzstrasse 1-3, 93049 Regensburg, Germany;
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany;
| | - Marion Handwerk
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Maria Wohlfarth
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Dirk Gründemann
- Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany;
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Sarah Appel
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
- Correspondence: ; Tel.: +49-221-478-96890
| |
Collapse
|
13
|
Zou Y, Xu Y, Chen X, Wu Y, Fu L, Lv Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front Pharmacol 2022; 12:809225. [PMID: 35095520 PMCID: PMC8797156 DOI: 10.3389/fphar.2021.809225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich alpha⁃2 glycoprotein 1 (LRG1) is an important member of the leucine-rich repetitive sequence protein family. LRG1 was mainly involved in normal physiological activities of the nervous system, such as synapse formation, synapse growth, the development of nerve processes, neurotransmitter transfer and release, and cell adhesion molecules or ligand-binding proteins. Also, LRG1 affected the development of respiratory diseases, hematological diseases, endocrine diseases, tumor diseases, eye diseases, cardiovascular diseases, rheumatic immune diseases, infectious diseases, etc. LRG1 was a newly discovered important upstream signaling molecule of transforming growth factor⁃β (TGF⁃β) that affected various pathological processes through the TGF⁃β signaling pathway. However, research on LRG1 and its involvement in the occurrence and development of diseases was still in its infancy and the current studies were mainly focused on proteomic detection and basic animal experimental reports. We could reasonably predict that LRG1 might act as a new direction and strategy for the treatment of many diseases.
Collapse
Affiliation(s)
- Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xiaofeng Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,College of Pharmacy, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
LRG1 expression reduced inflammation of sepsis-renal injury via activation of NLRP3 inflammasome by HIF-1 alpha. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Camilli C, Hoeh AE, De Rossi G, Moss SE, Greenwood J. LRG1: an emerging player in disease pathogenesis. J Biomed Sci 2022; 29:6. [PMID: 35062948 PMCID: PMC8781713 DOI: 10.1186/s12929-022-00790-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
The secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1) was first described as a key player in pathogenic ocular neovascularization almost a decade ago. Since then, an increasing number of publications have reported the involvement of LRG1 in multiple human conditions including cancer, diabetes, cardiovascular disease, neurological disease, and inflammatory disorders. The purpose of this review is to provide, for the first time, a comprehensive overview of the LRG1 literature considering its role in health and disease. Although LRG1 is constitutively expressed by hepatocytes and neutrophils, Lrg1-/- mice show no overt phenotypic abnormality suggesting that LRG1 is essentially redundant in development and homeostasis. However, emerging data are challenging this view by suggesting a novel role for LRG1 in innate immunity and preservation of tissue integrity. While our understanding of beneficial LRG1 functions in physiology remains limited, a consistent body of evidence shows that, in response to various inflammatory stimuli, LRG1 expression is induced and directly contributes to disease pathogenesis. Its potential role as a biomarker for the diagnosis, prognosis and monitoring of multiple conditions is widely discussed while dissecting the mechanisms underlying LRG1 pathogenic functions. Emphasis is given to the role that LRG1 plays as a vasculopathic factor where it disrupts the cellular interactions normally required for the formation and maintenance of mature vessels, thereby indirectly contributing to the establishment of a highly hypoxic and immunosuppressive microenvironment. In addition, LRG1 has also been reported to affect other cell types (including epithelial, immune, mesenchymal and cancer cells) mostly by modulating the TGFβ signalling pathway in a context-dependent manner. Crucially, animal studies have shown that LRG1 inhibition, through gene deletion or a function-blocking antibody, is sufficient to attenuate disease progression. In view of this, and taking into consideration its role as an upstream modifier of TGFβ signalling, LRG1 is suggested as a potentially important therapeutic target. While further investigations are needed to fill gaps in our current understanding of LRG1 function, the studies reviewed here confirm LRG1 as a pleiotropic and pathogenic signalling molecule providing a strong rationale for its use in the clinic as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Carlotta Camilli
- Institute of Ophthalmology, University College London, London, UK.
| | - Alexandra E Hoeh
- Institute of Ophthalmology, University College London, London, UK
| | - Giulia De Rossi
- Institute of Ophthalmology, University College London, London, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
16
|
Lin M, Liu J, Zhang F, Qi G, Tao S, Fan W, Chen M, Ding K, Zhou F. The role of leucine-rich alpha-2-glycoprotein-1 in proliferation, migration, and invasion of tumors. J Cancer Res Clin Oncol 2022; 148:283-291. [PMID: 35037101 DOI: 10.1007/s00432-021-03876-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Leucine-rich alpha-2-glycoprotein-1 (LRG1) is widely involved in proliferation, migration, and invasion of various tumor cells. Recent studies have evaluated the potential of LRG1 as both an early tumor and a prognostic biomarker. METHOD The relevant literature from PubMed is reviewed in this article. RESULTS It has been found that LRG1 mainly acts on the regulatory mechanisms of angiogenesis, epithelial-mesenchymal transition (EMT), and apoptosis by transforming growth factor (TGF-β) signaling pathway as well as affecting the occurrence and development of the tumors. Moreover, with advancement of research, LRG1 regulation pathways which are independent of TGF-β signaling pathway have been gradually revealed in different tumor cells; There are several studies on the biological effects of LRG1 as an inflammatory factor, vascular growth regulator, cell adhesion, and a cell viability influencing factor. In addition, various tumor suppression methods which are based on regulation of LRG1 levels have also shown high potential clinical value. CONCLUSIONS LRG1 are critical for the processes of tumorigenesis, development, and metastasis in various tumors. The present study reviewed the latest research on the achievements of LRG1 in tumor genesis and development. Further, this study also discussed the related molecular mechanisms of various biological functions of LRG1.
Collapse
Affiliation(s)
- Meng Lin
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Jinmeng Liu
- Laboratory of Biochemistry and Molecular Biology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Fengping Zhang
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Gaoxiu Qi
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Shuqi Tao
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Wenyuan Fan
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Min Chen
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Kang Ding
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Fenghua Zhou
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China.
| |
Collapse
|
17
|
Molecular Pathogenesis of Psoriasis and Biomarkers Reflecting Disease Activity. J Clin Med 2021; 10:jcm10153199. [PMID: 34361983 PMCID: PMC8346978 DOI: 10.3390/jcm10153199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease induced by multifactorial causes and is characterized by bothersome, scaly reddish plaques, especially on frequently chafed body parts, such as extensor sites of the extremities. The latest advances in molecular-targeted therapies using biologics or small-molecule inhibitors help to sufficiently treat even the most severe psoriatic symptoms and the extra cutaneous comorbidities of psoriatic arthritis. The excellent clinical effects of these therapies provide a deeper understanding of the impaired quality of life caused by this disease and the detailed molecular mechanism in which the interleukin (IL)-23/IL-17 axis plays an essential role. To establish standardized therapeutic strategies, biomarkers that define deep remission are indispensable. Several molecules, such as cytokines, chemokines, antimicrobial peptides, and proteinase inhibitors, have been recognized as potent biomarker candidates. In particular, blood protein markers that are repeatedly measurable can be extremely useful in daily clinical practice. Herein, we summarize the molecular mechanism of psoriasis, and we describe the functions and induction mechanisms of these biomarker candidates.
Collapse
|
18
|
Wang S, Wang E, Chen Q, Yang Y, Xu L, Zhang X, Wu R, Hu X, Wu Z. Uncovering Potential lncRNAs and mRNAs in the Progression From Acute Myocardial Infarction to Myocardial Fibrosis to Heart Failure. Front Cardiovasc Med 2021; 8:664044. [PMID: 34336943 PMCID: PMC8322527 DOI: 10.3389/fcvm.2021.664044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Morbidity and mortality of heart failure (HF) post-myocardial infarction (MI) remain elevated. The aim of this study was to find potential long non-coding RNAs (lncRNAs) and mRNAs in the progression from acute myocardial infarction (AMI) to myocardial fibrosis (MF) to HF. Methods: Firstly, blood samples from AMI, MF, and HF patients were used for RNA sequencing. Secondly, differentially expressed lncRNAs and mRNAs were obtained in MF vs. AMI and HF vs. MF, followed by functional analysis of shared differentially expressed mRNAs between two groups. Thirdly, interaction networks of lncRNA-nearby targeted mRNA and lncRNA-co-expressed mRNA were constructed in MF vs. AMI and HF vs. MF. Finally, expression validation and diagnostic capability analysis of selected lncRNAs and mRNAs were performed. Results: Several lncRNA-co-expressed/nearby targeted mRNA pairs including AC005392.3/AC007278.2-IL18R1, AL356356.1/AL137145.2-PFKFB3, and MKNK1-AS1/LINC01127-IL1R2 were identified. Several signaling pathways including TNF and cytokine–cytokine receptor interaction, fructose and mannose metabolism and HIF-1, hematopoietic cell lineage and fluid shear stress, and atherosclerosis and estrogen were selected. IL1R2, IRAK3, LRG1, and PLAC4 had a potential diagnostic value for both AMI and HF. Conclusion: Identified AC005392.3/AC007278.2-IL18R1, AL356356.1/AL137145.2-PFKFB3, and MKNK1-AS1/LINC01127-IL1R2 lncRNA-co-expressed/nearby targeted mRNA pairs may play crucial roles in the development of AMI, MF, and HF.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Enmao Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Qincong Chen
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yan Yang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Lei Xu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaolei Zhang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Rubing Wu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xitian Hu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhihong Wu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
19
|
Serum biomarker discovery related to pathogenesis in acute coronary syndrome by proteomic approach. Biosci Rep 2021; 41:228672. [PMID: 34002800 PMCID: PMC8182988 DOI: 10.1042/bsr20210344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Acute coronary syndrome (ACS) results from inadequate supply of blood flow from the coronary arteries to the heart or ischemia. ACS has an extremely high morbidity and mortality. The levels of biomarkers currently used for detection of ACS also increase in response to myocardial necrosis and other diseases and are not elevated immediately after symptoms appear, thus limiting their diagnostic capacity. Therefore, we aimed to discover new ACS diagnostic biomarkers with high sensitivity and specificity that are specifically related to ACS pathogenesis. Sera from 50 patients with ACS and healthy controls (discovery cohort) each were analyzed using mass spectrometry (MS) to identify differentially expressed proteins, and protein candidates were evaluated as ACS biomarkers in 120 people in each group (validation cohort). α-1-acid glycoprotein 1 (AGP1), complement C5 (C5), leucine-rich α-2-glycoprotein (LRG), and vitronectin (VN) were identified as biomarkers whose levels increase and gelsolin (GSN) as a biomarker whose levels decrease in patients with ACS. We concluded that these biomarkers are associated with the pathogenesis of ACS and can predict the onset of ACS prior to the appearance of necrotic biomarkers.
Collapse
|
20
|
Shin M, Park SH, Mun S, Lee J, Kang HG. Biomarker Discovery of Acute Coronary Syndrome Using Proteomic Approach. Molecules 2021; 26:molecules26041136. [PMID: 33672727 PMCID: PMC7924321 DOI: 10.3390/molecules26041136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
Acute coronary syndrome (ACS) is a condition in which the coronary artery supplying blood to the heart is infarcted via formation of a plaque and thrombus, resulting in abnormal blood supply and high mortality and morbidity. Therefore, the prompt and efficient diagnosis of ACS and the need for new ACS diagnostic biomarkers are important. In this study, we aimed to identify new ACS diagnostic biomarkers with high sensitivity and specificity using a proteomic approach. A discovery set with samples from 20 patients with ACS and 20 healthy controls was analyzed using mass spectrometry. Among the proteins identified, those showing a significant difference between each group were selected. Functional analysis of these proteins was conducted to confirm their association with functions in the diseased state. To determine ACS diagnostic biomarkers, standard peptides of the selected protein candidates from the discovery set were quantified, and these protein candidates were validated in a validation set consisting of the sera of 50 patients with ACS and 50 healthy controls. We showed that hemopexin, leucine-rich α-2-glycoprotein, and vitronectin levels were upregulated, whereas fibronectin level was downregulated, in patients with ACS. Thus, the use of these biomarkers may increase the accuracy of ACS diagnosis.
Collapse
Affiliation(s)
- Miji Shin
- Department of Senior Healthcare, Graduate School, Eulji University, Seongnam 13135, Korea; (M.S.); (S.M.)
| | - Sang Hyun Park
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon 34824, Korea;
| | - Sora Mun
- Department of Senior Healthcare, Graduate School, Eulji University, Seongnam 13135, Korea; (M.S.); (S.M.)
| | - Jiyeong Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Uijeongbu 11759, Korea
- Correspondence: (J.L.); (H.-G.K.); Tel.: +82-42-259-1752 (J.L.); +82-31-740-7315 (H.-G.K.)
| | - Hee-Gyoo Kang
- Department of Senior Healthcare, Graduate School, Eulji University, Seongnam 13135, Korea; (M.S.); (S.M.)
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Korea
- Correspondence: (J.L.); (H.-G.K.); Tel.: +82-42-259-1752 (J.L.); +82-31-740-7315 (H.-G.K.)
| |
Collapse
|
21
|
Liu JJ, Pek SLT, Wang J, Liu S, Ang K, Shao YM, Tang JIS, Gurung RL, Tavintharan S, Tang WE, Sum CF, Lim SC. Association of Plasma Leucine-Rich α-2 Glycoprotein 1, a Modulator of Transforming Growth Factor-β Signaling Pathway, With Incident Heart Failure in Individuals With Type 2 Diabetes. Diabetes Care 2021; 44:571-577. [PMID: 33293346 DOI: 10.2337/dc20-2065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/01/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Leucine-rich α-2 glycoprotein 1 (LRG1) is a circulating protein potentially involved in several pathways related to pathogenesis of heart failure (HF). We aimed to study whether plasma LRG1 is associated with risks of incident HF and hospitalization attributable to HF (HHF) in individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS A total of 1,978 individuals with type 2 diabetes were followed for a median of 7.1 years (interquartile range 6.1-7.6). Association of LRG1 with HF was studied using cause-specific Cox regression models. RESULTS In follow-up, 191 incident HF and 119 HHF events were identified. As compared with quartile 1, participants with LRG1 in quartiles 3 and 4 had 3.60-fold (95% CI 1.63-7.99) and 5.99-fold (95% CI 2.21-16.20) increased risk of incident HF and 5.88-fold (95% CI 1.83-18.85) and 10.44-fold (95% CI 2.37-45.98) increased risk of HHF, respectively, after adjustment for multiple known cardiorenal risk factors. As a continuous variable, 1 SD increment in natural log-transformed LRG1 was associated with 1.78-fold (95% CI 1.33-2.38) adjusted risk of incident HF and 1.92-fold (95% CI 1.27-2.92) adjusted risk of HHF. Adding LRG1 to the clinical variable-based model improved risk discrimination for incident HF (area under the curve [AUC] 0.79-0.81; P = 0.02) and HHF (AUC 0.81-0.84; P = 0.02). CONCLUSIONS Plasma LRG1 is associated with risks of incident HF and HHF, suggesting that it may potentially be involved in pathogenesis of HF in individuals with type 2 diabetes. Additional studies are warranted to determine whether LRG1 is a novel biomarker for HF risk stratification.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sharon L T Pek
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | | | | | | | - Chee Fang Sum
- Diabetes Center, Admiralty Medical Center, Singapore
| | - Su Chi Lim
- Diabetes Center, Admiralty Medical Center, Singapore .,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|