1
|
Jayaprakash Saiji S, Tang Y, Wu ST, Stand L, Tratsiak Y, Dong Y. Metal halide perovskite polymer composites for indirect X-ray detection. NANOSCALE 2024; 16:17654-17682. [PMID: 39248411 DOI: 10.1039/d4nr02716g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Metal halide perovskites (MHPs) have emerged as a promising class of materials for radiation detection due to their high atomic numbers and thus high radiation absorption, tunable and efficient luminescent properties and simple solution processability. Traditional MHP scintillators, however, suffer from environmental degradation, spurring interest in perovskite-polymer composites. This paper reviews recent developments in these composites tailored for scintillator applications. It discusses various synthesis methods, including solution-based and mechanochemical techniques, that enable the formation of composites with enhanced performance metrics such as light yield, detection limit, and environmental stability. The review also covers the remaining challenges and opportunities in fabrication techniques and performance metric evaluations of this class of materials. By offering a comprehensive overview of current research and future perspectives, this paper underscores the potential of perovskite-polymer composites to revolutionize the field of radiation detection.
Collapse
Affiliation(s)
- Shruti Jayaprakash Saiji
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| | - Yiteng Tang
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
| | - Shin-Tson Wu
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| | - Luis Stand
- Scintillation Materials Research Center, University of Tennessee, Knoxville, Tennessee, USA
| | - Yauhen Tratsiak
- Scintillation Materials Research Center, University of Tennessee, Knoxville, Tennessee, USA
| | - Yajie Dong
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| |
Collapse
|
2
|
Mahato S, Makowski M, Bose S, Kowal D, Kuddus Sheikh MA, Braueninger-Wemer P, Witkowski ME, Ray SK, Drozdowski W, Birowosuto MD. Improvement of Light Output of MAPbBr 3 Single Crystal for Ultrafast and Bright Cryogenic Scintillator. J Phys Chem Lett 2024; 15:3713-3720. [PMID: 38546293 PMCID: PMC11017313 DOI: 10.1021/acs.jpclett.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
The remarkable brightness and rapid scintillation observed in perovskite single crystals (SCs) become even more striking when they are operated at cryogenic temperatures. In this study, we present advancements in enhancing the scintillation properties of methylammonium lead bromide (MAPbBr3) SCs by optimizing the synthesis process. We successfully synthesized millimeter-sized MAPbBr3 SCs with bright green luminescence under UV light. However, both MAPbBr3 (Control-1M and THF-0.4M) SCs display notable radioluminescence exclusively at low temperatures due to their phase transitions. Notably, the THF-0.4M SCs exhibit a remarkable improvement in radioluminescence light yield, surpassing Control-1M SCs more than 2-fold. Further, THF-0.4M SCs demonstrate an ultrafast decay component of 0.52 ns (82.2%) and a slower component of 1.80 ns (17.8%), contributing to a rapid scintillation response at low temperatures. Therefore, the amalgamation of ultrafast decay components and improved radioluminescence light yield equips THF-0.4M SCs to emerge as a top choice for perovskite scintillators for X-ray timing applications.
Collapse
Affiliation(s)
- Somnath Mahato
- Lukasiewicz
Research Network - PORT Polish Center for Technology Development, Wroclaw 54-066, Poland
| | - Michal Makowski
- Lukasiewicz
Research Network - PORT Polish Center for Technology Development, Wroclaw 54-066, Poland
| | - Shaona Bose
- Department
of Physics, Indian Institute of Technology
Kharagpur, Kharagpur-721 302, India
| | - Dominik Kowal
- Lukasiewicz
Research Network - PORT Polish Center for Technology Development, Wroclaw 54-066, Poland
| | - Md Abdul Kuddus Sheikh
- Lukasiewicz
Research Network - PORT Polish Center for Technology Development, Wroclaw 54-066, Poland
| | | | - Marcin E. Witkowski
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Samit Kumar Ray
- Department
of Physics, Indian Institute of Technology
Kharagpur, Kharagpur-721 302, India
| | - Winicjusz Drozdowski
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | | |
Collapse
|
3
|
Zhang H, Zhang B, Cai C, Zhang K, Wang Y, Wang Y, Yang Y, Wu Y, Ba X, Hoogenboom R. Water-dispersible X-ray scintillators enabling coating and blending with polymer materials for multiple applications. Nat Commun 2024; 15:2055. [PMID: 38448434 PMCID: PMC10917805 DOI: 10.1038/s41467-024-46287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Developing X-ray scintillators that are water-dispersible, compatible with polymeric matrices, and processable to flexible substrates is an important challenge. Herein, Tb3+-doped Na5Lu9F32 is introduced as an X-ray scintillating material with steady-state X-ray light yields of 15,800 photons MeV-1, which is generated as nanocrystals on halloysite nanotubes. The obtained product exhibits good water-dispersibility and highly sensitive luminescence to X-rays. It is deposited onto a polyurethane foam to afford a composite foam material with dose-dependent radioluminescence. Moreover, the product is dispersed into polymer matrixes in aqueous solution to prepare rigid or flexible scintillator screen for X-ray imaging. As a third example, it is incorporated multilayer hydrogels for information camouflage and multilevel encryption. Encrypted information can be recognized only by X-ray irradiation, while the false information is read out under UV light. Altogether, we demonstrate that the water-dispersible scintillators are highly promising for aqueous processing of radioluminescent, X-ray imaging, and information encrypting materials.
Collapse
Affiliation(s)
- Hailei Zhang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China.
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000, Gent, Belgium.
| | - Bo Zhang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Chongyang Cai
- College of Physics Science and Technology, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Kaiming Zhang
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000, Gent, Belgium
| | - Yu Wang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Yuan Wang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Yanmin Yang
- College of Physics Science and Technology, Hebei University, 180 Wusi Road, 071002, Baoding, China.
| | - Yonggang Wu
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Xinwu Ba
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000, Gent, Belgium.
| |
Collapse
|
4
|
Cova F, Erroi A, Zaffalon ML, Cemmi A, Di Sarcina I, Perego J, Monguzzi A, Comotti A, Rossi F, Carulli F, Brovelli S. Scintillation Properties of CsPbBr 3 Nanocrystals Prepared by Ligand-Assisted Reprecipitation and Dual Effect of Polyacrylate Encapsulation toward Scalable Ultrafast Radiation Detectors. NANO LETTERS 2024; 24:905-913. [PMID: 38197790 DOI: 10.1021/acs.nanolett.3c04083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Lead halide perovskite nanocrystals (LHP-NCs) embedded in polymeric hosts are gaining attention as scalable and low-cost scintillation detectors for technologically relevant applications. Despite rapid progress, little is currently known about the scintillation properties and stability of LHP-NCs prepared by the ligand assisted reprecipitation (LARP) method, which allows mass scalability at room temperature unmatched by any other type of nanostructure, and the implications of incorporating LHP-NCs into polyacrylate hosts are still largely debated. Here, we show that LARP-synthesized CsPbBr3 NCs are comparable to particles from hot-injection routes and unravel the dual effect of polyacrylate incorporation, where the partial degradation of LHP-NCs luminescence is counterbalanced by the passivation of electron-poor defects by the host acrylic groups. Experiments on NCs with tailored surface defects show that the balance between such antithetical effects of polymer embedding is determined by the surface defect density of the NCs and provide guidelines for further material optimization.
Collapse
Affiliation(s)
- Francesca Cova
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Andrea Erroi
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Matteo L Zaffalon
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Alessia Cemmi
- ENEA Fusion and Technology for Nuclear Safety and Security Department, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Ilaria Di Sarcina
- ENEA Fusion and Technology for Nuclear Safety and Security Department, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Jacopo Perego
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Angiolina Comotti
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Francesca Rossi
- IMEM-CNR Institute, Parco Area delle Scienze, 37/A, 43124, Parma, Italy
| | - Francesco Carulli
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Sergio Brovelli
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
5
|
Zhou W, Yu Y, Han P, Li C, Wu T, Ding Z, Liu R, Zhang R, Luo C, Li H, Zhao K, Han K, Lu R. Sb-Doped Cs 3 TbCl 6 Nanocrystals for Highly Efficient Narrow-Band Green Emission and X-Ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302140. [PMID: 37801733 DOI: 10.1002/adma.202302140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/15/2023] [Indexed: 10/08/2023]
Abstract
Metal halide nanocrystals (NCs) with high photoluminescence quantum yield (PLQY) are desirable for lighting, display, and X-ray detection. Herein, the novel lanthanide-based halide NCs are committed to designing and optimizing the optical and scintillating properties, so as to unravel the PL origin, exciton dynamics, and optoelectronic applications. Sb-doped zero-dimensional (0D) Cs3 TbCl6 NCs exhibit a green emission with a narrow full width of half maximum of 8.6 nm, and the best PLQY of 48.1% is about three times higher than that of undoped NCs. Experiments and theoretical calculations indicate that 0D crystalline and electronic structures make the exciton highly localized on [TbCl6 ]3- octahedron, which boosts the Cl- -Tb3+ charge transfer process, thus resulting in bright Tb3+ emission. More importantly, the introduction of Sb3+ not only facilitates the photon absorption transition, but also builds an effective thermally boosting energy transfer channel assisted by [SbCl6 ]3- -induced self-trapped state, which is responsible for the PL enhancement. The high luminescence efficiency and negligible self-absorption of the Cs3 TbCl6 : Sb nanoscintillator enable a more sensitive X-ray detection response compared with undoped sample. The study opens a new perspective to deeply understand the excited state dynamics of metal halide NCs, which helps to design high-performance luminescent lanthanide-based nanomaterials.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yang Yu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Peigeng Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Cheng Li
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Tong Wu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zhiling Ding
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Runze Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Cheng Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Hui Li
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Kun Zhao
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Keli Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Ruifeng Lu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
6
|
Wang Y, Li M, Chai Z, Wang Y, Wang S. Perovskite Scintillators for Improved X-ray Detection and Imaging. Angew Chem Int Ed Engl 2023; 62:e202304638. [PMID: 37258939 DOI: 10.1002/anie.202304638] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
Halide perovskites (HPs) recently have emerged as one class of competitive scintillators for X-ray detection and imaging owing to its high quantum efficiency, short decay time, superior X-ray absorption capacity, low cost, and ease of crystal growth. The tunable structure and versatile chemical compositions of halide perovskites provide distinguishable advantages over traditional inorganic scintillators for optimizing scintillation performance. Since the first observation of the scintillation phenomenon in HPs, substantial efforts have been devoted to expanding the inventory of HP scintillators and regulating material properties. Understanding the relationship between the structure and scintillation properties of HP scintillators is essential for developing materials with improved X-ray detection and imaging capacities. This review summarizes strategies for improving the light yield of HP scintillators and provides a roadmap for improving the X-ray imaging performance. Additionally, methods for controlling the light propagation direction in HP scintillators are highlighted for improving X-ray imaging resolution. Finally, we highlight the current challenge in HP scintillators and provide a perspective on the future development of this emerging scintillator.
Collapse
Affiliation(s)
- Yumin Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ming Li
- Radiotherapy Center of the Second People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Ghosh J, O’Neill J, Masteghin MG, Braddock I, Crean C, Dorey R, Salway H, Anaya M, Reiss J, Wolfe D, Sellin P. Surfactant-Dependent Bulk Scale Mechanochemical Synthesis of CsPbBr 3 Nanocrystals for Plastic Scintillator-Based X-ray Imaging. ACS APPLIED NANO MATERIALS 2023; 6:14980-14990. [PMID: 37649835 PMCID: PMC10463220 DOI: 10.1021/acsanm.3c02531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
We report a facile, solvent-free surfactant-dependent mechanochemical synthesis of highly luminescent CsPbBr3 nanocrystals (NCs) and study their scintillation properties. A small amount of surfactant oleylamine (OAM) plays an important role in the two-step ball milling method to control the size and emission properties of the NCs. The solid-state synthesized perovskite NCs exhibit a high photoluminescence quantum yield (PLQY) of up to 88% with excellent stability. CsPbBr3 NCs capped with different amounts of surfactant were dispersed in toluene and mixed with polymethyl methacrylate (PMMA) polymer and cast into scintillator discs. With increasing concentration of OAM during synthesis, the PL yield of CsPbBr3/PMMA nanocomposite was increased, which is attributed to reduced NC aggregation and PL quenching. We also varied the perovskite loading concentration in the nanocomposite and studied the resulting emission properties. The most intense PL emission was observed from the 2% perovskite-loaded disc, while the 10% loaded disc exhibited the highest radioluminescence (RL) emission from 50 kV X-rays. The strong RL yield may be attributed to the deep penetration of X-rays into the composite, combined with the large interaction cross-section of the X-rays with the high-Z atoms within the NCs. The nanocomposite disc shows an intense RL emission peak centered at 536 nm and a fast RL decay time of 29.4 ns. Further, we have demonstrated the X-ray imaging performance of a 10% CsPbBr3 NC-loaded nanocomposite disc.
Collapse
Affiliation(s)
- Joydip Ghosh
- Department
of Physics, University of Surrey, Guildford GU2 7XH, U.K.
| | - Joseph O’Neill
- Department
of Physics, University of Surrey, Guildford GU2 7XH, U.K.
| | - Mateus G. Masteghin
- Advanced
Technology Institute, University of Surrey, Guildford GU2 7XH, U.K.
| | - Isabel Braddock
- Department
of Physics, University of Surrey, Guildford GU2 7XH, U.K.
| | - Carol Crean
- Department
of Chemistry, University of Surrey, Guildford GU2 7XH, U.K.
| | - Robert Dorey
- School
of Mechanical Engineering Sciences, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Hayden Salway
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Miguel Anaya
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
- Departamento
Física de la Materia Condensada, Instituto de Ciencia
de Materiales de Sevilla, Universidad de
Sevilla−CSIC, Avenida Reina Mercedes SN, Sevilla 41012, Spain
| | - Justin Reiss
- Applied
Research
Laboratory, Materials Science and Engineering Department, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Douglas Wolfe
- Applied
Research
Laboratory, Materials Science and Engineering Department, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Paul Sellin
- Department
of Physics, University of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
8
|
He X, Deng Y, Ouyang D, Zhang N, Wang J, Murthy AA, Spanopoulos I, Islam SM, Tu Q, Xing G, Li Y, Dravid VP, Zhai T. Recent Development of Halide Perovskite Materials and Devices for Ionizing Radiation Detection. Chem Rev 2023; 123:1207-1261. [PMID: 36728153 DOI: 10.1021/acs.chemrev.2c00404] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.
Collapse
Affiliation(s)
- Xiaoyu He
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Yao Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi39217, United States
| | - Qing Tu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas77840, United States
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR999078, People's Republic of China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| |
Collapse
|
9
|
Wu Y, Feng J, Yang Z, Liu Y, Liu S(F. Halide Perovskite: A Promising Candidate for Next-Generation X-Ray Detectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205536. [PMID: 36453564 PMCID: PMC9811474 DOI: 10.1002/advs.202205536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Indexed: 05/31/2023]
Abstract
In the past decade, metal halide perovskite (HP) has become a superstar semiconductor material due to its great application potential in the photovoltaic and photoelectric fields. In fact, HP initially attracted worldwide attention because of its excellent photovoltaic efficiency. However, HP and its derivatives also show great promise in X-ray detection due to their strong X-ray absorption, high bulk resistivity, suitable optical bandgap, and compatibility with integrated circuits. In this review, the basic working principles and modes of both the direct-type and the indirect-type X-ray detectors are first summarized before discussing the applicability of HP for these two types of detection based on the pros and cons of different perovskites. Furthermore, the authors expand their view to different preparation methods developed for HP including single crystals and polycrystalline materials. Upon systematically analyzing their potential for X-ray detection and photoelectronic characteristics on the basis of different structures and dimensions (0D, 2D, and 3D), recent progress of HPs (mainly polycrystalline) applied to flexible X-ray detection are reviewed, and their practicability and feasibility are discussed. Finally, by reviewing the current research on HP-based X-ray detection, the challenges in this field are identified, and the main directions and prospects of future research are suggested.
Collapse
Affiliation(s)
- Ya Wu
- College of Chemistry and Chemical EngineeringXi'an Shiyou UniversityXi'an710065China
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jiangshan Feng
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Zhou Yang
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Yucheng Liu
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Shengzhong (Frank) Liu
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
- State Key Laboratory of CatalysisDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| |
Collapse
|
10
|
Liu B, Sun Y, Chen L, Liao B, Ruan J, Zhou L, Li Y, Ouyang X. Cryogenic Scintillation Properties of Lead-Free Cs 3Cu 2I 5 Single Crystals. Inorg Chem 2022; 61:16141-16147. [PMID: 36150008 DOI: 10.1021/acs.inorgchem.2c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perovskite scintillators have become increasingly popular in recent years because of their simple production and high sensitivity to X-ray. Due to large Stokes shifts, high light yield, eco-friendly fabrication, and good stability, the lead-free Cu-based perovskites have gained much attention. In this paper, we prepared the Cs3Cu2I5 single crystals (SCs) by the solution-processed method. At room temperature, we measured the emission band at 440 nm with an average decay time of 595 ns under X-ray excitation. Under 137Cs γ-ray excitation, we determined that the light yield of Cs3Cu2I5 SCs was 23 000 photons/MeV. Notably, under alpha particle excitation by 241Am, the light yield of Cs3Cu2I5 SCs is approximately 3.2 times higher than that of the commercial scintillator LYSO(Ce). In addition, we systematically investigated the cryogenic scintillation properties of Cs3Cu2I5 SCs at the temperature range of 60-300 K. With decreasing temperature, the intensity of the emission band at 440 nm significantly increases, and an additional emission band at 336 nm emerges below 100 K. Meanwhile, the temperature-dependent decay times were determined. The fast and slow decay time of Cs3Cu2I5 SCs are estimated to be 221 and 1193 ns, respectively, at 60 K. Our findings highlight the great potential for Cs3Cu2I5 SCs to be a cryogenic scintillator.
Collapse
Affiliation(s)
- Bo Liu
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Yunhou Sun
- Institute of Defense Engineering, AMS, PLA, Beijing 100850, China
| | - Liang Chen
- Northwest Institute of Nuclear Technology, Xi'an 710024, China
| | - Bin Liao
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Jinlu Ruan
- Northwest Institute of Nuclear Technology, Xi'an 710024, China
| | - Leidang Zhou
- School of Microelectronic, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Li
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xiaoping Ouyang
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China.,Northwest Institute of Nuclear Technology, Xi'an 710024, China
| |
Collapse
|
11
|
van Blaaderen JJ, Maddalena F, Dang C, Birowosuto MD, Dorenbos P. Temperature dependent scintillation properties and mechanisms of (PEA) 2PbBr 4 single crystals. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:11598-11606. [PMID: 36090966 PMCID: PMC9386685 DOI: 10.1039/d2tc01483a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/20/2022] [Indexed: 06/01/2023]
Abstract
In this work the scintillation properties of PEA2PbBr4 are studied as function of temperature, accessing the potential use of these materials for low temperature applications. The scintillation properties and mechanism have been studied using a combination of temperature dependent photoluminescence emission and excitation, X-ray excited emission and decay measurements. At room temperature the X-ray excited emission is dominated by the 442 nm emission with a lifetime of 35.2 ns. Under UV-Vis photon excitation an additional emission peak is observed at 412 nm. At 10 K, both X-ray and UV-Vis photon excited emission spectra show a narrow emission peak at 412 nm and a broad emission band centred around 525 nm with a lifetime of 1.53 ns (24%) and 154 ns (76%) respectively. The exact nature of the observed emission peaks is not known. For this reason two potential mechanisms explaining the difference between UV-Vis photon and X-ray excitation and their temperature dependent emissions are explored. The total spectral intensity decreases to 72% of the intensity at room temperature at 10 K. It is suggested that the observed negative thermal quenching behaviour results from a combination of more self absorption and a higher degree of self trapped exciton formation under X-ray excitation. Based on the observed fast decay component at 10 K and light yield of 9400 photons per MeV at room temperature, showing only a 28% decrease at 10 K, could make this material potentially interesting for low temperature and fast timing applications.
Collapse
Affiliation(s)
- Jacob Jasper van Blaaderen
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Francesco Maddalena
- Nanyang Technological University, School of Electrical and Electronic Engineering Nanyang Avenue 50 639798 Singapore
| | - Cuong Dang
- Nanyang Technological University, School of Electrical and Electronic Engineering Nanyang Avenue 50 639798 Singapore
| | - Muhammad Danang Birowosuto
- Lukasiewicz Research Network-PORT Polish Center for Technology Development Stablowicka 147 54-066 Wroclaw Poland
| | - Pieter Dorenbos
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology Mekelweg 15 2629 JB Delft The Netherlands
| |
Collapse
|
12
|
Dagnall K, Conley AM, Yoon LU, Rajeev HS, Lee SH, Choi JJ. Ytterbium-Doped Cesium Lead Chloride Perovskite as an X-ray Scintillator with High Light Yield. ACS OMEGA 2022; 7:20968-20974. [PMID: 35755380 PMCID: PMC9219522 DOI: 10.1021/acsomega.2c01712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/25/2022] [Indexed: 05/26/2023]
Abstract
Ytterbium-doped cesium lead halides are quantum cutting materials with exceptionally high photoluminescence quantum yields, making them promising materials as scintillators. In this work, we report ytterbium-doped cesium lead chloride (Yb3+:CsPbCl3) with an X-ray scintillation light yield of 102,000 photons/MeV at room temperature, which is brighter than the current state-of-the-art commercial scintillators. The high light yield was achieved based on a novel method of synthesizing Yb3+:CsPbCl3 powders using water and low-temperature processing. The combination of high light yield and the simple and inexpensive manufacturing method reported in this work demonstrates the great potential of Yb3+:CsPbCl3 for scintillation applications.
Collapse
Affiliation(s)
- Katelyn
A. Dagnall
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ashley M. Conley
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Lucy U. Yoon
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Haritha S. Rajeev
- Department
of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Seung-Hun Lee
- Department
of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Joshua J. Choi
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
13
|
Abstract
Due to their many varieties of excellent optoelectric properties, perovskites have attracted large numbers of researchers in the past few years. For the hybrid perovskites, a long diffusion length, long carrier lifetime, and high μτ product are particularly noticeable. However, some disadvantages, including high toxicity and instability, restrict their further large-scale application. By contrast, all-inorganic perovskites not only have remarkable optoelectric properties but also feature high structure stability due to the lack of organic compositions. Benefiting from these, all-inorganic perovskites have been extensively explored and studied. Compared with the thin film type, all-inorganic perovskite single crystals (PSCs) with fewer grain boundaries and crystalline defects have better optoelectric properties. Nevertheless, it is important to note that only a few reports to date have presented a summary of all-inorganic PSCs. In this review, we firstly make a summary and propose a classification method according to the crystal structure. Then, based on the structure classification, we introduce several representative materials and focus on their corresponding growth methods. Finally, applications for detectors of all-inorganic PSCs are listed and summarized. At the end of the review, based on the current research situation and trends, some perspectives and advice are proposed.
Collapse
|
14
|
Li Y, Chen L, Ouyang X, Zhao K, Xu Q. Cryogenic Scintillation Performance of Cs 4PbI 6 Perovskite Single Crystals. Inorg Chem 2022; 61:7553-7559. [PMID: 35503991 DOI: 10.1021/acs.inorgchem.2c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All-inorganic Cs4PbI6 single crystals (SCs) is emerging scintillators for radiation detection. In this study, we report on the X-ray scintillation properties of Cs4PbI6 SCs at the temperature range of 50-290 K. The temperature-dependent radioluminescence (RL) spectrum and decay time were investigated. It was found that the RL spectra show very pronounced temperature-dependent changes in the overall shape. The RL intensity increases with a decrease in the temperature under X-ray excitation. The emission bands at 318, 360, and 554 nm are attributed to the near-band-edge emission in Cs4PbI6 SCs, the 3P1 → 1S0 transition of the Pb2+ ion, and the emission of δ-CsPbI3 aggregates dispersed in the Cs4PbI6 SC matrix, respectively. With decreasing temperature, the fast and slow decay times tend to slow down and are estimated to be 46.0 ns (33.22%) and 820 ns (66.78%) at 50 K, which are far superior to that of the common cryogenic scintillator. These cryogenic scintillation characteristics of Cs4PbI6 SCs demonstrate its potential for cryogenic detection.
Collapse
Affiliation(s)
- Yang Li
- The Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Liang Chen
- States Key Laboratory of Intense Pulsed Radiation Simulation and Effect and Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi'an 710024, China
| | - Xiaoping Ouyang
- States Key Laboratory of Intense Pulsed Radiation Simulation and Effect and Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi'an 710024, China
| | - Kuo Zhao
- Xi'an Research Institute of Hi-Tech, Xi'an 710025, China
| | - Qiang Xu
- The Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
15
|
Lu L, Sun M, Wu T, Lu Q, Chen B, Huang B. All-inorganic perovskite nanocrystals: next-generation scintillation materials for high-resolution X-ray imaging. NANOSCALE ADVANCES 2022; 4:680-696. [PMID: 36131822 PMCID: PMC9417099 DOI: 10.1039/d1na00815c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
With super strong penetrability, high-energy X-rays can be applied to probe the inner structure of target objects under nondestructive situations. Scintillation materials can down-convert X-rays into visible light, enabling the reception of photon signals and photoelectric conversion by common sensing arrays such as photomultiplier tubes and amorphous-Si photodiode matrixes. All-inorganic perovskite nanocrystals are emerging photovoltaic and scintillation materials, with tremendous light-conversion efficiency and tunable luminous properties, exhibiting great potential for high-quality X-ray imaging. Recent advancements in nanotechnology further accelerate the performance improvement of scintillation materials. In this review, we will provide a comprehensive overview of novel all-inorganic perovskite nano-scintillators in terms of potential applications in low-dose X-ray medical radiography. Compared with conventional scintillators, the merits/drawbacks, challenges, and scintillation performance control will be the focus of this article.
Collapse
Affiliation(s)
- Lu Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Tong Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Qiuyang Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Baian Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| |
Collapse
|
16
|
Pan F, Li J, Ma X, Nie Y, Liu B, Ye H. Free and self-trapped exciton emission in perovskite CsPbBr 3 microcrystals. RSC Adv 2021; 12:1035-1042. [PMID: 35425136 PMCID: PMC8978929 DOI: 10.1039/d1ra08629d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
The all-inorganic perovskite CsPbBr3 has been capturing extensive attention due to its high quantum yield in luminescence devices and relatively high stability. Its luminescence is dominated by free exciton (FE) recombination but additional emission peaks were also commonly observed. In this work, a CsPbBr3 microcrystal sample in the orthorhombic phase was prepared by the chemical vapor deposition method. In addition to the FE peak, a broad emission peak was found in this sample and it was attributed to self-trapped excitons (STEs) based on its photophysical properties. The STE emission can only be observed below 70 K. The derived Huang-Rhys factor is ∼12 and the corresponding phonon energy is 15.3 meV. Its lifetime is 123 ns at 10 K, much longer than that of FE emission. The STE emission is thought to be an intrinsic property of CsPbBr3.
Collapse
Affiliation(s)
- Fang Pan
- Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 People's Republic of China
| | - Jinrui Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University Xi'an 710049 People's Republic of China
| | - Xiaoman Ma
- School of Physical Science and Technology, Xinjiang University Urumqi 830046 People's Republic of China
| | - Yang Nie
- Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 People's Republic of China
| | - Beichen Liu
- Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 People's Republic of China
| | - Honggang Ye
- Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 People's Republic of China
| |
Collapse
|
17
|
Děcká K, Král J, Hájek F, Průša P, Babin V, Mihóková E, Čuba V. Scintillation Response Enhancement in Nanocrystalline Lead Halide Perovskite Thin Films on Scintillating Wafers. NANOMATERIALS 2021; 12:nano12010014. [PMID: 35009964 PMCID: PMC8746850 DOI: 10.3390/nano12010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Lead halide perovskite nanocrystals of the formula CsPbBr3 have recently been identified as potential time taggers in scintillating heterostructures for time-of-flight positron emission tomography (TOF-PET) imaging thanks to their ultrafast decay kinetics. This study investigates the potential of this material experimentally. We fabricated CsPbBr3 thin films on scintillating GGAG:Ce (Gd2.985Ce0.015Ga2.7Al2.3O12) wafer as a model structure for the future sampling detector geometry. We focused this study on the radioluminescence (RL) response of this composite material. We compare the results of two spin-coating methods, namely the static and the dynamic process, for the thin film preparation. We demonstrated enhanced RL intensity of both CsPbBr3 and GGAG:Ce scintillating constituents of a composite material. This synergic effect arises in both the RL spectra and decays, including decays in the short time window (50 ns). Consequently, this study confirms the applicability of CsPbBr3 nanocrystals as efficient time taggers for ultrafast timing applications, such as TOF-PET.
Collapse
Affiliation(s)
- Kateřina Děcká
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (J.K.); (V.Č.)
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (F.H.); (P.P.); (V.B.); (E.M.)
- Correspondence:
| | - Jan Král
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (J.K.); (V.Č.)
| | - František Hájek
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (F.H.); (P.P.); (V.B.); (E.M.)
- Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic
| | - Petr Průša
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (F.H.); (P.P.); (V.B.); (E.M.)
- Department of Dosimetry and Application of Ionizing Radiation, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic
| | - Vladimir Babin
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (F.H.); (P.P.); (V.B.); (E.M.)
| | - Eva Mihóková
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (F.H.); (P.P.); (V.B.); (E.M.)
- Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic
| | - Václav Čuba
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (J.K.); (V.Č.)
| |
Collapse
|
18
|
Moseley ODI, Doherty TAS, Parmee R, Anaya M, Stranks SD. Halide perovskites scintillators: unique promise and current limitations. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:11588-11604. [PMID: 34671480 PMCID: PMC8444306 DOI: 10.1039/d1tc01595h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 05/31/2023]
Abstract
The widespread use of X- and gamma-rays in a range of sectors including healthcare, security and industrial screening is underpinned by the efficient detection of the ionising radiation. Such detector applications are dominated by indirect detectors in which a scintillating material is combined with a photodetector. Halide perovskites have recently emerged as an interesting class of semiconductors, showing enormous promise in optoelectronic applications including solar cells, light-emitting diodes and photodetectors. Here, we discuss how the same superior semiconducting properties that have catalysed their rapid development in these optoelectronic devices, including high photon attenuation and fast and efficient emission properties, also make them promising scintillator materials. By outlining the key mechanisms of their operation as scintillators, we show why reports of remarkable performance have already emerged, and describe how further learning from other optoelectronic devices will propel forward their applications as scintillators. Finally, we outline where these materials can make the greatest impact in detector applications by maximally exploiting their unique properties, leading to dramatic improvements in existing detection systems or introducing entirely new functionality.
Collapse
Affiliation(s)
- Oliver D I Moseley
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Tiarnan A S Doherty
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Richard Parmee
- Cheyney Design and Development, Ltd., Litlington Cambridge SG8 0SS UK
| | - Miguel Anaya
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
19
|
Děcká K, Suchá A, Král J, Jakubec I, Nikl M, Jarý V, Babin V, Mihóková E, Čuba V. On the Role of Cs 4PbBr 6 Phase in the Luminescence Performance of Bright CsPbBr 3 Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1935. [PMID: 34443766 PMCID: PMC8400622 DOI: 10.3390/nano11081935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
CsPbBr3 nanocrystals have been identified as a highly promising material for various optoelectronic applications. However, they tend to coexist with Cs4PbBr6 phase when the reaction conditions are not controlled carefully. It is therefore imperative to understand how the presence of this phase affects the luminescence performance of CsPbBr3 nanocrystals. We synthesized a mixed CsPbBr3-Cs4PbBr6 sample, and compared its photo- and radioluminescence properties, including timing characteristics, to the performance of pure CsPbBr3 nanocrystals. The possibility of energy transfer between the two phases was also explored. We demonstrated that the presence of Cs4PbBr6 causes significant drop in radioluminescence intensity of CsPbBr3 nanocrystals, which can limit possible future applications of Cs4PbBr6-CsPbBr3 mixtures or composites as scintillation detectors.
Collapse
Affiliation(s)
- Kateřina Děcká
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (A.S.); (J.K.); (V.Č.)
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (M.N.); (V.J.); (V.B.); (E.M.)
| | - Adéla Suchá
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (A.S.); (J.K.); (V.Č.)
| | - Jan Král
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (A.S.); (J.K.); (V.Č.)
| | - Ivo Jakubec
- Institute of Inorganic Chemistry, Czech Academy of Sciences, Husinec-Řež č.p. 1001, 250 68 Řež, Czech Republic;
| | - Martin Nikl
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (M.N.); (V.J.); (V.B.); (E.M.)
| | - Vítězslav Jarý
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (M.N.); (V.J.); (V.B.); (E.M.)
| | - Vladimir Babin
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (M.N.); (V.J.); (V.B.); (E.M.)
| | - Eva Mihóková
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (M.N.); (V.J.); (V.B.); (E.M.)
| | - Václav Čuba
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (A.S.); (J.K.); (V.Č.)
| |
Collapse
|
20
|
Effect of heterovalent doping on photostimulated defect formation in CsPbBr3. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|