1
|
Anıl S, Ersoy E, Tavlı ÖF, Daci A, Topal G, Dönmez AA, Demirci Kayıran S, Eroğlu Özkan E, Melikoğlu G. Innovative findings on three endemic Crataegus spp. from Türkiye: flavonoid-enriched extracts with cardiovascular benefits demonstrated by reduction of oxidative and inflammatory markers on rat aorta tissue. Nat Prod Res 2025:1-12. [PMID: 40232171 DOI: 10.1080/14786419.2025.2490053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/13/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Türkiye is a significant genetic diversity center for Crataegus species. The fruits, leaves, flowers, and sprouts of Crataegus sp. are widely used in traditional medicine, mainly for cardiovascular diseases. Products containing Crataegus monogyna Jacq. subsp. monogyna ("alıç") are recognized as therapeutic agents used alongside conventional treatments. Thus, investigating the chemical composition and biological activity of other Crataegus species is essential to explore their medicinal potential. This study provides the first report on total flavonoid content and detailed phytochemical profiling of leaf and immature fruit extracts from three endemic species-Crataegus peshmenii Dönmez, Crataegus petrodavisii Dönmez, and Crataegus christensenii Dönmez-using High-Performance Liquid Chromatography (HPLC). A comparative analysis with C. monogyna subsp. monogyna was also included. Notably, C. peshmenii leaf extract was the richest in compounds linked to cardiovascular benefits, including vitexin and hyperoside. Its anti-inflammatory and antioxidant properties were further evaluated using isolated rat thoracic aortas. The release of inflammatory and oxidative markers was measured by enzyme-linked immunosorbent assay (ELISA). C. peshmenii leaf extract significantly reduced the levels of oxidative and inflammatory markers (MDA, MPO, TNF-α, and IL-1β) in isolated aortas, supporting its potential as a cardiovascular protective agent.
Collapse
Affiliation(s)
- Sezin Anıl
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Ezgi Ersoy
- Department of Pharmacognosy, Faculty of Pharmacy, Biruni University, Istanbul, Türkiye
| | - Ömerül F Tavlı
- Department of Pharmacognosy, Institute of Health Sciences, Istanbul University, Istanbul, Türkiye
- Department of Pharmacognosy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Türkiye
| | - Armond Daci
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Gökçe Topal
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Ali A Dönmez
- Department of Biology, Faculty of Science, Molecular Plant Systematic Laboratory (MOBIS), Hacettepe University, Ankara, Türkiye
| | - Serpil Demirci Kayıran
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Cukurova University, Adana, Türkiye
| | - Esra Eroğlu Özkan
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Gülay Melikoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
2
|
Cheng YF, Zhou DY, Liao ZL, Lin Y, Liu YH, Luo JY, Liang JY, Chai WM. Condensed tannins from the pulp of Chinese hawthorn as an anti-browning agent: Structure, activity, and structure-activity relationship. Int J Biol Macromol 2025; 308:142726. [PMID: 40174820 DOI: 10.1016/j.ijbiomac.2025.142726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Condensed tannins (proanthocyanidins) were isolated from the pulp of Chinese hawthorn (Crataegus pinnatifida Bge. var. major N.E.Br.) and fractioned into three subfractions (F1-F3) using 40 %, 60 %, and 80 % ethanol on a macroporous resin column. HPLC-ESI-MS analysis revealed that epicatechin-polymerized procyanidins were the predominant components of the three subfractions, with mean degrees of polymerization (mDP) of 5.78, 10.09, and 3.03, respectively. These subfractions exhibited excellent antioxidant capacity and showed a significant positive correlation (P < 0.05) with mDP. The subfraction F2 was further proven to be an efficient inhibitor of polyphenol oxidase (PPO) and bacteria. In addition, subfraction F2 controlled the browning of fresh-cut apples by regulating phenolic metabolism, enhancing antioxidant system, and reducing lipid peroxidation. Overall, these findings provided a theoretical foundation for utilizing condensed tannins from Chinese hawthorn pulp as an effective anti-browning agent for fruits and vegetables.
Collapse
Affiliation(s)
- Yi-Fan Cheng
- College of Life Science and Jiangxi Provincial Key Laboratory of Biodiversity Conservation and Resource Utilization (2023SSY02091), Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Dong-Yan Zhou
- College of Life Science and Jiangxi Provincial Key Laboratory of Biodiversity Conservation and Resource Utilization (2023SSY02091), Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ze-Lin Liao
- College of Life Science and Jiangxi Provincial Key Laboratory of Biodiversity Conservation and Resource Utilization (2023SSY02091), Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan Lin
- College of Life Science and Jiangxi Provincial Key Laboratory of Biodiversity Conservation and Resource Utilization (2023SSY02091), Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan-Hao Liu
- College of Life Science and Jiangxi Provincial Key Laboratory of Biodiversity Conservation and Resource Utilization (2023SSY02091), Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jia-Yi Luo
- College of Life Science and Jiangxi Provincial Key Laboratory of Biodiversity Conservation and Resource Utilization (2023SSY02091), Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jia-Yi Liang
- College of Life Science and Jiangxi Provincial Key Laboratory of Biodiversity Conservation and Resource Utilization (2023SSY02091), Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wei-Ming Chai
- College of Life Science and Jiangxi Provincial Key Laboratory of Biodiversity Conservation and Resource Utilization (2023SSY02091), Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
3
|
Gavrila AI, Damian EJ, Rosca A, Calinescu I, Hodosan C, Popa I. Optimization of Microwave-Assisted Extraction of Polyphenols from Crataegus monogyna L. Antioxidants (Basel) 2025; 14:357. [PMID: 40227419 PMCID: PMC11939473 DOI: 10.3390/antiox14030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Hawthorns (Crataegus monogyna L.) contain numerous bioactive compounds, with its extracts demonstrating health benefits. This study focused on optimizing a more sustainable extraction method, specifically microwave-assisted extraction (MAE), to obtain polyphenols from hawthorn leaves and flowers. HPLC/UV analysis identified key compounds, including gallic and chlorogenic acids, isoquercetin, rutin, hyperoside, vitexin, and quercetin. Principal component analysis (PCA) assessed correlations between extraction conditions, total phenolic content (TPC), and key compounds. PCA grouped conditions into three clusters, with two remaining ungrouped. The highest vitexin, rutin, and isoquercetin contents were achieved at 60 °C for 10 min using 160-500 μm particles in 75% ethanol (20/1 ratio) or 50% ethanol (20/1 and 30/1 ratios). An ungrouped condition (60 °C, 10 min, < 160 μm particles, 50% ethanol, 20/1 ratio) produced a higher TPC and greater gallic acid, chlorogenic acid, and hyperoside concentrations. The TPC and antioxidant activity (AA) of the extracts were optimized using a 23 full factorial design, with temperature, ethanol concentration, and solvent-to-plant ratio as variables. Optimal MAE conditions (S/Popt = 20.4 mL/g, Topt = 65 °C, and EtOHopt = 60%) yielded a TPC of 116.23 ± 2.85 mg GAE/g DM and an AA of 237.6 ± 6.33 mg TE/g DM using hawthorn leaves and flowers. Summarizing the above, to maximize phytocompound content, a one-factor-at-a-time design identified extraction parameters, but its limitations led to a 23 full factorial design. The latter effectively optimized the TPC and AA, while PCA revealed correlations between extraction parameters, total phenolics, and key compounds.
Collapse
Affiliation(s)
- Adina I. Gavrila
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.G.); (A.R.); (I.C.)
| | - Emilia J. Damian
- Research & Development Department, Teva Pharmaceuticals S.R.L., 011171 Bucharest, Romania;
| | - Anca Rosca
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.G.); (A.R.); (I.C.)
| | - Ioan Calinescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.G.); (A.R.); (I.C.)
| | - Camelia Hodosan
- Faculty of Engineering and Animal Production, University of Agronomic Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Ioana Popa
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.G.); (A.R.); (I.C.)
| |
Collapse
|
4
|
Yong LX, Li W, Conway PL, Loo SCJ. Additive Effects of Natural Plant Extracts/Essential Oils and Probiotics as an Antipathogenic Topical Skin Patch Solution for Acne and Eczema. ACS APPLIED BIO MATERIALS 2025; 8:1571-1582. [PMID: 39814597 DOI: 10.1021/acsabm.4c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This work leverages the additive antipathogenic effects of natural extracts/essential oils (EOs) and probiotics for the treatment of acne vulgaris associated with Cutibacterium acnes (C. acnes) and eczema complicated by secondary infections with Staphylococcus aureus (S. aureus). Six probiotic strains and various extracts/EOs were evaluated in a large screening to evaluate their potential against both pathogens. Lacticaseibacillus paracasei PCB003 was able to inhibit the growth of both pathogens. For extracts/EOs, Oregano EO had the best antipathogenic effects on both pathogens and did not show any adverse impact on the growth of probiotics, making it suitable for simultaneous use. Using Lactiplantibacillus plantarum PCB011 as a probiotic model, five material formulations were assessed for their suitability to protect probiotic cells within freeze-dried topical patches. Alginate and trehalose (ALG+TRE) and thermoplastic starch (TPS) had the highest probiotic survivability, with ALG+TRE chosen as the final patch material as it was more robust. PCB003 and PCB011 were individually incorporated into the ALG+TRE freeze-dried matrix to form a 6 mm patch; both ALG+TRE (PCB003) and ALG+TRE (PCB011) patches, when used individually, successfully inhibited C. acnes growth by 4.7 and 6.0 mm, respectively, surpassing the performance of commercially available acne patches. The additive effect with 30% Oregano EO further improved pathogen inhibition. For S. aureus, the incorporation of 30% Oregano EO to ALG+TRE (PCB003) increased the size of the inhibition zone more than 10-fold. For C. acnes, the ALG+TRE (PCB003) patch with 30% Oregano EO demonstrated an inhibition zone of 16.3 mm, and the ALG+TRE (PCB011) patch with 30% Oregano EO achieved a 14.3 mm inhibition zone. Genomic analysis confirmed that PCB003 and PCB011 lack antimicrobial resistance determinants, ensuring safety. This study successfully combined probiotics and natural agents to create effective dermatological antipathogenic patches.
Collapse
Affiliation(s)
- Ling Xin Yong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Wenrui Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Patricia L Conway
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Center for Marine Science Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
5
|
Zhai Q, Shang S, Zhang Z, Sun L, Huang Y, Feng S, Wu Q, Cui H, Shi X. Mechanism of salvianolic phenolic acids and hawthorn triterpenic acids combination in intervening atherosclerosis: network pharmacology, molecular docking, and experimental validation. Front Pharmacol 2025; 16:1501846. [PMID: 39950115 PMCID: PMC11821658 DOI: 10.3389/fphar.2025.1501846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
Background This study employs network pharmacology and molecular docking methods in conjunction with animal experimentation to elucidate the underlying mechanism by which the combination of salvianolic phenolic acids and hawthorn triterpenic acids (SHC) exerts its therapeutic effect on carotid atherosclerosis (AS) in ApoE-/- mice. Methods A network pharmacology research approach was used to predict potential core targets for SHC intervention in atherosclerosis. The predictions were subsequently validated through the implementation of animal in vivo experiments. ApoE-/- mice were randomly assigned to three experimental groups, namely, a model group, an atorvastatin group, and an SHC group. After the administration period, the plaque area in the carotid artery and aortic arch, blood lipid levels, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and nitric oxide (NO) content were measured. Additionally, the expression of PI3K, Akt, NF-κB, JNK1, ERK1/2, and p38-MAPK in the aortic arteries was analyzed. Based on the protein expression results, molecular docking was used to predict the binding activity between the core compounds and core targets. Results A total of 23 core compounds were identified in SHC, and 55 core targets of SHC were screened as potential targets for intervention in AS. The results of the enrichment analysis indicated that the principal mechanisms through which SHC exerts its effects in AS are associated with lipid metabolism and the PI3K-Akt and MAPK pathways. The results from animal experiments demonstrated that atorvastatin and SHC markedly reduced the area of carotid plaque and downregulated the levels of TC and LDL-C in ApoE-/- mice. The administration of SHC was associated with an increase in SOD activity and a reduction in NO levels in the livers of mice. Furthermore, SHC was observed to downregulate the expression of NF-κB and p38-MAPK in the carotid region. The results of molecular docking demonstrated that the core compounds of SHC, including salvianolic acid A, B, and C, maslinic acid, ursolic acid, and oleic acid, were capable of stably binding to the core targets NF-κB and MAPK14. Conclusion It is hypothesized that SHC may reduce lipid deposition and plaque formation in AS by regulating blood lipids, a process that may be closely linked to the inhibition of inflammatory regulator expression, including NF-κB and p38-MAPK.
Collapse
Affiliation(s)
- Qu Zhai
- Institute of Executive Development, China National Medical Products Administration, Beijing, China
| | - Shixi Shang
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihan Zhang
- Beijing University of Chinese Medical, Beijing, China
| | - Lihua Sun
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Huang
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuyi Feng
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haifeng Cui
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Shi
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Bai T, Wang X, Du W, Cheng J, Zhang J, Zhang Y, Klinjapo R, Asavasanti S, Yasurin P. Recent Advances, Challenges, and Functional Applications of Natural Phenolic Compounds in the Meat Products Industry. Antioxidants (Basel) 2025; 14:138. [PMID: 40002324 PMCID: PMC11851614 DOI: 10.3390/antiox14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Natural phenolic compounds (NPCs) have been proven to effectively extend the storage time of meat products in recent years. To promote the discovery of more NPCs and their applications, this review examines recent progress in the classification, antioxidant, and antibacterial mechanisms of NPCs used in meat products. These compounds are found in both edible and inedible parts of plants, including fruits, vegetables, and trees. The recycling of agricultural by-products aligns with green agricultural trends and serves as a guideline for developing new sources of natural additives. Studies on the application of NPCs in various livestock and poultry products, either directly mixed into the matrix or indirectly contacted by preparation into bioactive films and packaging materials, has highlighted the great potential of NPCs. The pro-oxidative effects of NPCs on proteins and their interactions with biological macromolecules, such as proteins, provide new ideas for in-depth research on antioxidant and antibacterial mechanisms.
Collapse
Affiliation(s)
- Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| | - Xiulian Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wenqing Du
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Roungdao Klinjapo
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| | - Suvaluk Asavasanti
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| | - Patchanee Yasurin
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| |
Collapse
|
7
|
Cheng Y, Liu Z, Yang J, Zhao H, Chao Z. Metabolomics analysis of physicochemical properties associated with quality deterioration in insect-infested hawthorn berries. Food Chem 2024; 459:140374. [PMID: 38981382 DOI: 10.1016/j.foodchem.2024.140374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
The sliced and dried hawthorn berries are easily infested by insects during storage. This study aimed to determine the effect of insect infestation on the quality of hawthorn berries and assess the change at metabolite level by analyzing physicochemical property and metabolomics profiling. A total of 184 shared differential metabolites were obtained, mainly including flavonoids, fatty acids, carboxylic acids and derivatives, and nitrogenous compounds. Through receiver operating characteristic curve assessment, 9 significant differential markers were screened out to distinguish insect infestation of hawthorn berries. Correlation analysis showed that the color, total organic acids, total phenolics, and total flavonoids were effective indicators for quality evaluation of insect infestation, and uric acid and hippuric acid can serve as biomarkers for the quality deterioration of hawthorn berries during storage. This study demonstrated that insect infestation could decrease the quality of hawthorn berries from macro and micro perspectives.
Collapse
Affiliation(s)
- Yunxia Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhimao Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
8
|
Malik S, Kumaraguru G, Bruat M, Chefdor F, Depierreux C, Héricourt F, Carpin S, Shanmugam G, Lamblin F. Organic extracts from sustainable hybrid poplar hairy root cultures as potential natural antimicrobial and antibiofilm agents. PROTOPLASMA 2024; 261:1311-1326. [PMID: 39060468 DOI: 10.1007/s00709-024-01971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
In order to meet growing consumer demands in terms of naturalness, the pharmaceutical, food, and cosmetic industries are looking for active molecules of plant origin. In this context, hairy roots are considered a promising biotechnological system for the sustainable production of compounds of interest. Poplars (genus Populus, family Salicaceae) are trees of ecological interest in temperate alluvial forests and are also cultivated for their industrial timber. Poplar trees also produce specialized metabolites with a wide range of bioactive properties. The present study aimed to assess the hybrid poplar hairy root extracts for antimicrobial and antibiofilm activities against four main life-threatening strains of Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Ethyl acetate extracts from two hairy root lines (HP15-3 and HP A4-12) showed significant antibacterial properties as confirmed by disc diffusion assay. Antibiofilm activities were found to be dose dependent with significant biofilm inhibition (75-95%) recorded at 1000 µg.mL-1 in all the bacterial strains tested. Dose-dependent enhancement in the release of exopolysaccharides was observed in response to treatment with extracts, possibly because of stress and bacterial cell death. Fluorescence microscopy confirmed loss of cell viability of treated bacterial cells concomitant with increased production of reactive oxygen species compared to the untreated control. Overall, this study demonstrates for the first time a high potential of poplar hairy root extracts as a natural and safe platform to produce antimicrobial agents in pharmaceutical, food, industrial water management, or cosmetic industries.
Collapse
Affiliation(s)
- Sonia Malik
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Gowtham Kumaraguru
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Margot Bruat
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Françoise Chefdor
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Christiane Depierreux
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - François Héricourt
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Sabine Carpin
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Girija Shanmugam
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Frédéric Lamblin
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France.
| |
Collapse
|
9
|
Mattos MMG, Filho SA, Martins GR, Venturi LS, Canetti VB, Ferreira FA, Foguel D, Silva ASD. Antimicrobial and antibiofilm properties of procyanidins: potential for clinical and biotechnological applications. Crit Rev Microbiol 2024:1-24. [PMID: 39301598 DOI: 10.1080/1040841x.2024.2404509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Procyanidins (PCs) have emerged as agents with potential antimicrobial and antibiofilm activities, although their mechanisms of action and structure-activity relationships remain poorly understood. This review assessed the potential mechanisms of action and applications of these compounds to explore these aspects. Studies on the antimicrobial properties of PCs suggest that they are involved in osmotic imbalance, DNA interactions and metabolic disruption. Although less studied, their antibiofilm activities include antiadhesive effects and the modulation of mobility and quorum sensing. However, most research has used uncharacterized plant extracts for in vitro assays, limiting the understanding of the structure-activity relationships of PCs and their in vivo mechanisms. Clinical trials on the antimicrobial and antibiofilm properties of PCs have not clarified these issues due to nonstandardized methodologies, inadequate chemical characterization, and the limited number of studies, preventing a consensus and evaluation of the in vivo effects. Additionally, patent analysis revealed that technological developments in the antimicrobial and antibiofilm uses of PCs are concentrated in health care and dental care, but new biotechnological uses are emerging. Therefore, while PCs are promising antimicrobial and antibiofilm compounds, further research into their chemical structures and mechanisms of action is crucial for evidence-based applications in biotechnology and health care.
Collapse
Affiliation(s)
- Mariana M G Mattos
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Antunes Filho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R Martins
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lara Souza Venturi
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Benjamim Canetti
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabienne Antunes Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ayla Sant'Ana da Silva
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Rajeswariammal N, Palaniappan S. Antibacterial, Antifungal, Antioxidant and Phytochemical Studies on Extracts of <i>Justicia beddomei</i> (C. B. Clarke) Bennet. JOURNAL OF NATURAL REMEDIES 2024:1773-1783. [DOI: 10.18311/jnr/2024/43855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 01/05/2025]
Abstract
Background: Justicia beddomei (C.B. Clarke) Bennet, is an important ingredient in “Vasa”, a key medication in Ayurveda. There are only a few research studies of J. beddomei. Objectives: The goal of the current investigation is to perform a qualitative and quantitative screening for phytochemicals, and characterizing the antibacterial, antifungal, and antioxidant properties of successive solvent extracts of J. beddomei. Methodology: Phytochemical screening, total phenolic, alkaloid and flavonoid contents were determined using standard methods. The antioxidant activity of plant extracts was determined by DPPH and ABTS scavenging assays. The antimicrobial activity of the plant extracts was determined by agar well diffusion method. Results and Discussion: The qualitative phytochemical screening results demonstrated that each extract (water, petroleum ether, chloroform, and ethyl acetate) was mainly constituted of phenols, flavonoids, and alkaloids. The greatest concentrations of phenolic (70.21 ± 0.4086 μg gallic acid equivalent/mg extract), flavonoids (23.36 ± 0.3007 μg quercetin equivalent/mg extract) and alkaloids (74.56 ± 0.5052 μg atropine equivalent/mg extract) were found in the ethanol extract. The extracts of water, petroleum ether, and chloroform of J. beddomei showed moderate inhibitory activity against Staphylococcus aureus (MTCC 87) at 1000 μg. None of the extracts exhibited any inhibitory effects on Pseudomonas aeruginosa (MTCC 741) up to 1000 μg. The ethyl acetate and water extract of J. beddomei exhibited antifungal activity against Candida albicans (MTCC 227) at 1000 μg. According to the antioxidant studies, the aqueous extract had the highest scavenging activity for ABTS (IC50 373.83 μg/ml) and DPPH (IC50 368.90 μg/ml). Conclusion: J. beddomei possesses various secondary metabolites with antibacterial, antifungal, and antioxidant properties.
Collapse
|
11
|
Nguyen TP, Duong TV, Le TQ, Nguyen KT. Uncovering the Antibacterial Potential of a Peptide-Rich Extract of Edible Bird's Nest against Staphylococcus aureus. J Microbiol Biotechnol 2024; 34:1680-1687. [PMID: 39086227 PMCID: PMC11380515 DOI: 10.4014/jmb.2402.02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The diverse pharmacological properties of edible bird's nest (EBN) have been elucidated in recent years; however, investigations into its antibacterial effects are still limited. In the present study, we explored the antibacterial activity of a peptide-rich extract of EBN against Staphylococcus aureus, a notorious pathogen. The EBN extract (EEE) was prepared by soaking EBN in 80% ethanol for 2 days at 60°C. Biochemical analyses showed that peptides at the molecular weight range of 1.7-10 kDa were the major biochemical compounds in the EEE. The extract exhibited strong inhibition against S. aureus at a minimum inhibitory concentration (MIC) of 125 μg/ml and a minimum bactericidal concentration (MBC) of 250 μg/ml. This activity could be attributed to the impact of the extract on cell membrane integrity and potential, biofilm formation, and reactive oxidative species (ROS) production. Notably, the expression of biofilm- and ROS-associated genes, including intercellular adhesion A (icaA), icaB, icaC, icaD, and superoxide dismutase A (sodA), were deregulated in S. aureus upon the extract treatment. Our findings indicate a noteworthy pharmacological activity of EBN that could have potential application in the control of S. aureus.
Collapse
Affiliation(s)
- Thi-Phuong Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Tang Van Duong
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Thai Quang Le
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Khoa Thi Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
12
|
Fu S, Yi X, Li Y, Li Y, Qu X, Miao P, Xu Y. Berberine and chlorogenic acid-assembled nanoparticles for highly efficient inhibition of multidrug-resistant Staphylococcus aureus. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134680. [PMID: 38795486 DOI: 10.1016/j.jhazmat.2024.134680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Due to the bacteria resistant to various first-line antibiotics, it is urgent to develop efficient antibiotic alternatives and formulate multidimensional strategies. Herein, supramolecular Chinese medicine nanoparticles are synthesized by self-assembly of berberine (BBR) and chlorogenic acid (CGA), which exhibit higher inhibitory effect against Staphylococcus aureus and multidrug-resistant Staphylococcus aureus (MRSA) than ampicillin, oxacillin, BBR, CGA, as well as mixture of BBR and CGA (minimum inhibitory concentration, MIC = 1.5 µM). The inhibition by BBR/CGA nanoparticles (2.5 µM) reaches 99.06 % for MRSA, which is significantly higher than ampicillin (29.03 %). The nanoparticles with 1/2 MIC can also synergistically restore the antimicrobial activity of ampicillin against MRSA. Moreover, in vivo therapeutic outcome in the murine skin wound infection model suggests that the nanoparticles are able to promote wound healing. This study provides new insights in the application of Chinese medicines self-assembly for MRSA inhibition, as well as solutions for potential persistent clinical infections and drug deficiencies.
Collapse
Affiliation(s)
- Siyuan Fu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Yi
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Li
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanhui Li
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolin Qu
- Shandong Laboratory of Advanced Biomaterials and Medical Devices in Weihai, Weihai 264200, China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Yuanyuan Xu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
14
|
Xu Q, Yu Z, Zhang M, Feng T, Song F, Tang H, Wang S, Li H. Danshen-Shanzha formula for the treatment of atherosclerosis: ethnopharmacological relevance, preparation methods, chemical constituents, pharmacokinetic properties, and pharmacological effects. Front Pharmacol 2024; 15:1380977. [PMID: 38910885 PMCID: PMC11190183 DOI: 10.3389/fphar.2024.1380977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Danshen-Shanzha Formula (DSF) is a well-known herbal combination comprising Radix Salvia Miltiorrhiza (known as Danshen in Chinese) and Fructus Crataegi (known as Shanzha in Chinese), It has been documented to exhibit considerable benefits for promoting blood circulation and removing blood stasis, and was used extensively in the treatment of atherosclerotic cardiac and cerebral vascular diseases over decades. Despite several breakthroughs achieved in the basic research and clinical applications of DSF over the past decades, there is a lack of comprehensive reviews summarizing its features and research, which hinders further exploration and exploitation of this promising formula. This review aims to provide a comprehensive interpretation of DSF in terms of its ethnopharmacological relevance, preparation methods, chemical constituents, pharmacokinetic properties and pharmacological effects. The related information on Danshen, Shanzha, and DSF was obtained from internationally recognized online scientific databases, including Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure, Baidu Scholar, ScienceDirect, ACS Publications, Online Library, Wan Fang Database as well as Flora of China. Data were also gathered from documentations, printed works and classics, such as the Chinese Pharmacopoeia, Chinese herbal classics, etc. Three essential avenues for future studies were put forward as follows: a) Develop and unify the standard preparation method of DSF as to achieve optimized pharmacological properties. b) Elucidate the functional mechanisms as well as the rationality and rule for the compatibility art of DSF by focusing on the clinic syndromes together with the subsequent development of preclinic study system in vitro and in vivo with consistent pathological features, pharmacokinetical behaviour and biomarkers. c) Perform more extensive clinical studies towards the advancement of mechanism-based on evidence-based medicine on the safety application of DSF. This review will provide substantial data support and broader perspective for further research on the renowned formula.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Zhe Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Meng Zhang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
- School of Graduate Studies, Air Force Medical University, Xi’an, China
| | - Tian Feng
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Fan Song
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Hua Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| |
Collapse
|
15
|
Zhang X, Li P, Wang J, Fu D, Zhao B, Dong W, Liu Y. Comparative genomic and phylogenetic analyses of mitochondrial genomes of hawthorn (Crataegus spp.) in Northeast China. Int J Biol Macromol 2024; 272:132795. [PMID: 38830497 DOI: 10.1016/j.ijbiomac.2024.132795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/18/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Hawthorn (Crataegus spp.) plants are major sources of health food and medicines. Twenty species and seven variations of Crataegus are present in China. A variety of unique Crataegus species was found in their natural distribution in northeast China. In the present study, we assembled and annotated the mitochondrial genomes of five Crataegus species from northeastern China. The sizes of the newly sequenced mitochondrial genomes ranged from 245,907 bp to 410,837 bp. A total of 45-55 genes, including 12-19 transfer RNA genes, three ribosomal RNA genes, and 29-33 protein-coding genes (PCGs) were encoded by these mitochondrial genomes. Seven divergent hotspot regions were identified by comparative analyses: atp6, nad3, ccmFN, matR, nad1, nad5, and rps1. The most conserved genes among the Crataegus species, according to the whole-genome correlation analysis, were nad1, matR, nad5, ccmFN, cox1, nad4, trnQ-TTG, trnK-TTT, trnE-TTC, and trnM-CAT. Horizontal gene transfer between organellar genomes was common in Crataegus plants. Based on the phylogenetic trees of mitochondrial PCGs, C. maximowiczii, C. maximowiczii var. ninganensis, and C. bretschneideri shared similar maternal relationships. This study improves Crataegus mitochondrial genome resources and offers important insights into the taxonomy and species identification of this genus.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; National Field Genebank for Hawthorn, Shenyang, Liaoning 110866, China
| | - Peihao Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongxu Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Baipeng Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; National Field Genebank for Hawthorn, Shenyang, Liaoning 110866, China
| | - Yuexue Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; National Field Genebank for Hawthorn, Shenyang, Liaoning 110866, China.
| |
Collapse
|
16
|
Riga R, Wardatillah R, Suryani O, Ryplida B, Suryelita S, Azhar M, Handayani D, Artasasta MA, Benu SM, Putra A. Endophytic fungus from Gynura japonica: phytochemical screening, biological activities, and characterisation of its bioactive compound. Nat Prod Res 2024:1-9. [PMID: 38529767 DOI: 10.1080/14786419.2024.2332947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
The research aims to identify the chemical constituents of endophytic fungi associated with Gynura japonica and their biological activities. Two endophytic fungi, labelled as GS-1 and GS-2, have been isolated from the leaves of G. japonica. They were cultivated on white rice media for their optimum cultivation time. Cultivated fungi were extracted with ethyl acetate and concentrated to give a crude extract. All crude extracts were evaluated for their phytochemical screening and assayed for their antibacterial and antioxidant activities. Based on the results, fungal GS-1 was the most potential fungus to produce bioactive secondary metabolites and identified as Dimorphiseta acuta. A bioactive compound was isolated from crude extract of fungal D. acuta and identified as emodin. To the best of our knowledge, the study of secondary metabolite and its biological activity of endophytic fungus colonised with the leaves of G. japonica is reported here for the first time.
Collapse
Affiliation(s)
- Riga Riga
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
| | - Ridha Wardatillah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
| | - Okta Suryani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
| | - Benny Ryplida
- Chemical Industry Institute, Korea National University of Transportation, Chungju, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Republic of Korea
| | - Suryelita Suryelita
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
| | - Minda Azhar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
| | - Dian Handayani
- Sumatran Biota Laboratory, Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
| | - Muh Ade Artasasta
- Department of Biotechnology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
| | - Sonni Maurit Benu
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Ahadul Putra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
| |
Collapse
|
17
|
Cui M, Cheng L, Zhou Z, Zhu Z, Liu Y, Li C, Liao B, Fan M, Duan B. Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117229. [PMID: 37788786 DOI: 10.1016/j.jep.2023.117229] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Crataegus (hawthorn), a member of the Rosaceae family, encompasses several species with broad geographical distribution across the Northern Hemisphere, including Asia, Europe, and the Americas. Hawthorn is recognized as an edible medicinal plant with applications related to strengthening the digestive system, promoting blood circulation, and resolving blood stasis. AIM OF THE REVIEW This study critically summarized the traditional uses, phytochemistry, and pharmacological properties to provide a theoretical basis for further studies on hawthorn and its applications in medicine and food. MATERIALS AND METHODS The available information on hawthorn was gathered from scientific databases (including Google Scholar, Web of Science, PubMed, ScienceDirect, Baidu Scholar, CNKI, online ethnobotanical databases, and ethnobotanical monographs, and considered data from 1952 to 2023). Information about traditional uses, phytochemistry, pharmacology, and safety concerns of the collected data is comprehensively summarized in this paper. RESULTS The literature review revealed that hawthorn includes more than 1000 species primarily distributed in the northern temperate zone. Traditional uses of hawthorn have lasted for millennia in Asia, Europe, and the Americas. Within the past decade, 337 chemical compounds, including flavonoids, lignans, fatty acids and organic acids, monoterpenoids and sesquiterpenoids, terpenoids and steroids, have been identified from hawthorn. Modern pharmacological studies have confirmed numerous bioactivities, such as cardiovascular system influence, antitumor activity, hepatoprotective activity, antimicrobial properties, immunomodulatory functions, and anti-inflammatory activities. Additionally, evaluations have indicated that hawthorn lacks toxicity. CONCLUSIONS Based on its traditional uses, chemical composition, and pharmacological studies, hawthorn has significant potential as a medicinal and edible plant with a diverse range of pharmacological activities. Traditional uses of the hawthorn include the treatment of indigestion, dysmenorrhea, and osteoporosis. However, modern pharmacological research primarily focuses on its cardiovascular and cerebrovascular system effects, antitumor effects, and liver protection properties. Currently, there is a lack of correlative research involving its traditional uses and pharmacological activities. Moreover, phytochemical and pharmacological research has yet to focus on many types of hawthorn with traditional applications. Therefore, it is imperative to research the genus Crataegus extensively.
Collapse
Affiliation(s)
- Meng Cui
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Lei Cheng
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Zhongyu Zhou
- College of Pharmaceutical Science, Dali University, Dali, 671000, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Zemei Zhu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Yinglin Liu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Chaohai Li
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Binbin Liao
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Min Fan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| |
Collapse
|
18
|
Roasto M, Mäesaar M, Püssa T, Anton D, Rätsep R, Elias T, Jortikka S, Pärna M, Kapp K, Tepper M, Kerner K, Meremäe K. The Effect of Fruit and Berry Pomaces on the Growth Dynamics of Microorganisms and Sensory Properties of Marinated Rainbow Trout. Microorganisms 2023; 11:2960. [PMID: 38138104 PMCID: PMC10745767 DOI: 10.3390/microorganisms11122960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Plant pomaces in suitable forms (powders, extracts) can be used in foods of animal origin to increase the nutritional value and safety of these foods. In the present study, water extracts of apple, black currant, rhubarb and tomato pomaces were used in fish marinade solutions to evaluate their effect on the growth dynamics of microorganisms and the growth potential of Listeria monocytogenes by challenge testing. The results showed that mesophilic aerobic microorganisms, Pseudomonas spp., yeasts and moulds remained at acceptable levels throughout the predetermined storage period. The challenge test results showed that the overall growth potential of L. monocytogenes in all marinated rainbow trout samples remained at ≤0.5 log10 cfu/g during the study period, and none of the marinated fish samples supported the growth of L. monocytogenes. In addition, the effect of fruit and berry pomaces on the sensory properties of marinated rainbow trout samples was evaluated. The results revealed that it is possible to effectively use fruit and berry pomaces in marinated fish products, ensuring food safety, high microbiological quality, acceptable sensory characteristics and a sufficiently long shelf life of the products.
Collapse
Affiliation(s)
- Mati Roasto
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (M.M.); (T.P.); (D.A.); (T.E.); (S.J.); (K.M.)
| | - Mihkel Mäesaar
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (M.M.); (T.P.); (D.A.); (T.E.); (S.J.); (K.M.)
| | - Tõnu Püssa
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (M.M.); (T.P.); (D.A.); (T.E.); (S.J.); (K.M.)
| | - Dea Anton
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (M.M.); (T.P.); (D.A.); (T.E.); (S.J.); (K.M.)
| | - Reelika Rätsep
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, 69108 Polli, Estonia;
| | - Terje Elias
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (M.M.); (T.P.); (D.A.); (T.E.); (S.J.); (K.M.)
| | - Salli Jortikka
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (M.M.); (T.P.); (D.A.); (T.E.); (S.J.); (K.M.)
| | - Merilin Pärna
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia; (M.P.); (M.T.); (K.K.)
| | - Karmen Kapp
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, FI-00014 Helsinki, Finland;
| | - Marek Tepper
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia; (M.P.); (M.T.); (K.K.)
| | - Kristi Kerner
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia; (M.P.); (M.T.); (K.K.)
| | - Kadrin Meremäe
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51006 Tartu, Estonia; (M.M.); (T.P.); (D.A.); (T.E.); (S.J.); (K.M.)
| |
Collapse
|
19
|
Cheng Y, Liu Z, Xu B, Song P, Chao Z. Comprehensive metabolomic variations of hawthorn before and after insect infestation based on the combination analysis of 1H NMR and UPLC-MS. Curr Res Food Sci 2023; 7:100616. [PMID: 37881336 PMCID: PMC10594559 DOI: 10.1016/j.crfs.2023.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Hawthorn, the sliced and dried ripe fruits of Crataegus pinnatifida Bge. Var. Major N. E. Br. (Rosaceae), is an edible and medicinal substance with a variety of health-promoting benefits. Hawthorn needs to be stored in warehouses after harvesting to meet people's perennial demand. However, it is easily infested by insects of Plodia interpunctella and Tribolium castaneum during storage, which inevitably leads to poor quality and causes adverse effects on people's health. So far, there has been no report on insect-infested hawthorn. In this study, we analyzed the changes of metabolites in hawthorn before and after insect infestation and screened out potential biomarkers to effectively and quickly detect the occurrence of insect infestation. A combination analysis of 1H nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to identify the primary and secondary metabolites. By the comparison of hawthorn and insect-infested hawthorn samples, it was found that the differences were mainly manifested in the content of metabolites. The metabolites of 32 and 1463 were identified by 1H NMR and UPLC-MS analysis, respectively. According to the parameters of VIP >1 and P < 0.05, 10 differential metabolites were screened from 1H NMR analysis. Based on the parameters of VIP >1.0, P < 0.05, and (FC) > 1 or < 1, 47 differential metabolites were screened from UPLC-MS analysis. Therefore, a total of 57 differential metabolites were considered as differential biomarkers. The heat map analysis showed that the content of some differential biomarkers with significant pharmacological activities decreased after insect infestation. Through receiver operating characteristic (ROC) curve assessment, 52 differential biomarkers (6 of 1H NMR analysis and 46 of UPLC-MS analysis) were screened to distinguish whether insect infestation occurred in hawthorn. This is the first report on the changes of metabolites between hawthorn and insect-infested hawthorn and on the screening of differential biomarkers for monitoring insects. These results contributed to evaluate quality of hawthorn and ensure food safety for consumers. It also laid a foundation for further research on the infestation mechanism and safe storage monitoring in hawthorn.
Collapse
Affiliation(s)
- Yunxia Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pingping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhimao Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
20
|
Chen J, Zhong K, Jing Y, Liu S, Qin S, Peng F, Li D, Peng C. Procyanidin B2: A promising multi-functional food-derived pigment for human diseases. Food Chem 2023; 420:136101. [PMID: 37059021 DOI: 10.1016/j.foodchem.2023.136101] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Natural edible pigments play a paramount part in the food industry. Procyanidin B2 (PB2), one of the most representative naturally occurring edible pigments, is usually isolated from the seeds, fruits, and leaves of lots of common plants, such as grapes, Hawthorn, black soybean, as well as blueberry, and functions as a food additive in daily life. Notably, PB2 has numerous bioactivities and possesses the potential to treat/prevent a wide range of human diseases, such as diabetes mellitus, diabetic complications, atherosclerosis, and non-alcoholic fatty liver disease, and the underlying mechanisms were partially elucidated, including mediating signaling pathways like NF-κB, MAPK, PI3K/Akt, apoptotic axis, and Nrf-2/HO-1. This paper presents a review of the natural sources, bioactivities, and the therapeutic/preventive potential of PB2 and the possible mechanisms, with the aim of promoting the development of PB2 as a functional food and providing references for its clinical application in the treatment of diseases.
Collapse
Affiliation(s)
- Junren Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kexin Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiqi Jing
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengmeng Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siqi Qin
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
21
|
Cui L, Ma Z, Li W, Ma H, Guo S, Wang D, Niu Y. Inhibitory activity of flavonoids fraction from Astragalus membranaceus Fisch. ex Bunge stems and leaves on Bacillus cereus and its separation and purification. Front Pharmacol 2023; 14:1183393. [PMID: 37538180 PMCID: PMC10395332 DOI: 10.3389/fphar.2023.1183393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction: Astragalus membranaceus Fisch. ex Bunge is a traditional botanical drug with antibacterial, antioxidant, antiviral, and other biological activities. In the process of industrialization of A. membranaceus, most of the aboveground stems and leaves are discarded without resource utilization except for a small amount of low-value applications such as composting. This study explored the antibacterial activity of A. membranaceus stem and leaf extracts to evaluate its potential as a feed antibiotic substitute. Materials and methods: The antibacterial activity of the flavonoid, saponin, and polysaccharide fractions in A. membranaceus stems and leaves was evaluated by the disk diffusion method. The inhibitory activity of the flavonoid fraction from A. membranaceus stems and leaves on B. cereus was explored from the aspects of the growth curve, cell wall, cell membrane, biofilm, bacterial protein, and virulence factors. On this basis, the flavonoid fraction in A. membranaceus stems and leaves were isolated and purified by column chromatography to determine the main antibacterial components. Results: The flavonoid fraction in A. membranaceus stems and leaves had significant inhibitory activity against B. cereus, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 1.5625 and 6.25 mg/mL, respectively. A. membranaceus stem and leaf flavonoid fraction can induce death of B. cereus in many ways, such as inhibiting growth, destroying cell wall and cell membrane integrity, inhibiting biofilm formation, inhibiting bacterial protein synthesis, and downregulating virulence factor expression. In addition, it was clear that the main flavonoid with antibacterial activity in A. membranaceus stems and leaves was isoliquiritigenin. Molecular docking showed that isoliquiritigenin could form a hydrogen bonding force with FtsZ. Conclusion: A. membranaceus stem and leaf flavonoid fractions had significant inhibitory activity against B. cereus, and the main chemical composition was isoliquiritigenin.
Collapse
Affiliation(s)
- Liyan Cui
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Zhennan Ma
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Wenhui Li
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Haihui Ma
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Defu Wang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yanbing Niu
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
22
|
Arumugam M, Manikandan DB, Marimuthu SK, Muthusamy G, Kari ZA, Téllez-Isaías G, Ramasamy T. Evaluating Biofilm Inhibitory Potential in Fish Pathogen, Aeromonas hydrophila by Agricultural Waste Extracts and Assessment of Aerolysin Inhibitors Using In Silico Approach. Antibiotics (Basel) 2023; 12:antibiotics12050891. [PMID: 37237796 DOI: 10.3390/antibiotics12050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Aeromonas hydrophila, an opportunistic bacteria, causes several devastating diseases in humans and animals, particularly aquatic species. Antibiotics have been constrained by the rise of antibiotic resistance caused by drug overuse. Therefore, new strategies are required to prevent appropriate antibiotic inability from antibiotic-resistant strains. Aerolysin is essential for A. hydrophila pathogenesis and has been proposed as a potential target for inventing drugs with anti-virulence properties. It is a unique method of disease prevention in fish to block the quorum-sensing mechanism of A. hydrophila. In SEM analysis, the crude solvent extracts of both groundnut shells and black gram pods exhibited a reduction of aerolysin formation and biofilm matrix formation by blocking the QS in A. hydrophila. Morphological changes were identified in the extracts treated bacterial cells. Furthermore, in previous studies, 34 ligands were identified with potential antibacterial metabolites from agricultural wastes, groundnut shells, and black gram pods using a literature survey. Twelve potent metabolites showed interactions between aerolysin and metabolites during molecular docking analysis, in that H-Pyran-4-one-2,3 dihydro-3,5 dihydroxy-6-methyl (-5.3 kcal/mol) and 2-Hexyldecanoic acid (-5.2 kcal/mol) showed promising results with potential hydrogen bond interactions with aerolysin. These metabolites showed a better binding affinity with aerolysin for 100 ns in molecular simulation dynamics. These findings point to a novel strategy for developing drugs using metabolites from agricultural wastes that may be feasible pharmacological solutions for treating A. hydrophila infections for the betterment of aquaculture.
Collapse
Affiliation(s)
- Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Sathish Kumar Marimuthu
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology (BIT) Campus, Anna University, Tiruchirappalli 620024, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
23
|
Zhang DD, Zhao P, Huang SW, Song SJ, Huang XX. Four pair of enantiomeric benzofuran lignans from the fruits of Crataegus pinnatifida bunge. Nat Prod Res 2023; 37:1349-1355. [PMID: 34822252 DOI: 10.1080/14786419.2021.2007094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phytochemical investigation of the fruits of Crataegus pinnatifida Bunge led to the isolation of four pairs enantiomeric benzofuran lignans (1a/1b-4a/4b) including four undescribed compounds (1a, 2b, 3b and 4b). Their structures were determined by extensive spectroscopic methods and the absolute configurations were further determined by the comparison of experimental and calculated ECD spectra. All the enantiomeric lignans were evaluated for their inhibitory activities to tyrosinase. Among them, compound 4a showed moderate inhibition activity (IC50 = 0.54 mM).
Collapse
Affiliation(s)
- Ding-Ding Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Shun-Wang Huang
- Hefei Innovative Pharmaceutical Technology Co., Ltd, Hefei, Anhui, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
24
|
Antunes Filho S, dos Santos MS, dos Santos OAL, Backx BP, Soran ML, Opriş O, Lung I, Stegarescu A, Bououdina M. Biosynthesis of Nanoparticles Using Plant Extracts and Essential Oils. Molecules 2023; 28:molecules28073060. [PMID: 37049821 PMCID: PMC10095647 DOI: 10.3390/molecules28073060] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Plant extracts and essential oils have a wide variety of molecules with potential application in different fields such as medicine, the food industry, and cosmetics. Furthermore, these plant derivatives are widely interested in human and animal health, including potent antitumor, antifungal, anti-inflammatory, and bactericidal activity. Given this diversity, different methodologies were needed to optimize the extraction, purification, and characterization of each class of biomolecules. In addition, these plant products can still be used in the synthesis of nanomaterials to reduce the undesirable effects of conventional synthesis routes based on hazardous/toxic chemical reagents and associate the properties of nanomaterials with those present in extracts and essential oils. Vegetable oils and extracts are chemically complex, and although they are already used in the synthesis of nanomaterials, limited studies have examined which molecules are effectively acting in the synthesis and stabilization of these nanostructures. Similarly, few studies have investigated whether the molecules coating the nanomaterials derived from these extracts and essential oils would bring benefits or somehow reduce their potential activity. This synergistic effect presents a promising field to be further explored. Thus, in this review article, we conducted a comprehensive review addressing the main groups of molecules present in plant extracts and essential oils, their extraction capacity, and available methodologies for their characterization. Moreover, we highlighted the potential of these plant products in the synthesis of different metallic nanomaterials and their antimicrobial capacity. Furthermore, we correlated the extract’s role in antimicrobial activity, considering the potential synergy between molecules from the plant product and the different metallic forms associated with nanomaterials.
Collapse
|
25
|
Xu Y, Zhang T, Che J, Yi J, Wei L, Li H. Evaluation of the antimicrobial mechanism of biogenic selenium nanoparticles against Pseudomonas fluorescens. BIOFOULING 2023; 39:157-170. [PMID: 37038871 DOI: 10.1080/08927014.2023.2199932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Selenium nanoparticles (SeNPs) can be biosynthesized by most Lactic acid bacteria thereby converting toxic sodium into SeNPs. However, few studies have reported the antimicrobial activity of biogenic SeNPs against Pseudomonas fluorescens which are the main species of psychrotrophic bacteria in raw milk. This study reported the synthesis and characterization of SeNPs from Lactobacillus casei ZK-AS 1.1482, and the antimicrobial mechanism against P. fluorescens ATCC 13525. The synthesized SeNPs were amorphous with sizes ranging from 52 to 103 nm. Fourier transform infrared spectroscopy (FT-IR) spectra showed the presence of proteins, polysaccharides, and lipids on the surface of particles, which evidently stabilized the SeNPs structure and morphology. Energy-dispersive X-ray (EDX) analysis revealed that the nanoparticles contained selenium. In addition, the minimal inhibitory concentration (MIC) of SeNPs against P. fluorescens ATCC 13525 was 0.1 mg ml-1 and the biofilm inhibition rate was 43.52 ± 0.26%. SeNPs decreased the number of living bacteria observed by confocal laser scanning microscopy (CLSM). Meanwhile, after SeNPs treatment, the intracellular adenosine triphosphate (ATP) concentration and antioxidant enzyme activity decreased, the content of reactive oxygen species (ROS) and the malondialdehyde (MDA) content increased, and lipid peroxidation intensified. Real-time fluorescence quantitative PCR (RT-qPCR) assay showed that the expression of flgA, luxR, lapD, MCP, cheA, c-di-GMP, phoB, and pstC gene were down-regulated after SeNPs treatment. The rfbC and DegT/DnrJ/EryC1/StrS gene were significantly up-regulated, indicating that SeNPs could destroy the integrity of cell membrane and thus play an antimicrobial role. Biogenic SeNPs are expected to be developed as an efficient and novel antimicrobial agent for application in the food industry.
Collapse
Affiliation(s)
- Ying Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ting Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiarui Che
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiajia Yi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lina Wei
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hongliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
26
|
Zhao J, Wang X, Wang Y, Lv G, Lin H, Lin Z. UPLC-MS/MS profiling, antioxidant and anti-inflammatory activities, and potential health benefits prediction of phenolic compounds in hazel leaf. Front Nutr 2023; 10:1092071. [PMID: 36819681 PMCID: PMC9929368 DOI: 10.3389/fnut.2023.1092071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Hazel leaf, one of the by-products of hazelnut, which is widely used in traditional folk medicine around the world. In the present study, the profile of free, conjugated, and bound phenolic compounds from hazel leaf was detected and their antioxidant and anti-inflammatory activities were investigated. The potential health benefits of different phenolic compounds were also predicted. The results showed that the 35 phenolic substances of free, conjugated and bound forms were identified including phenolic acids, flavonoids and catechins. Most of the hazel leaf phenolics were presented in free form, followed by conjugated and bound form. All the fractions effectively inhibited the production of reactive oxygen species and malondialdehyde in TBHP-stimulated human umbilical vein endothelial cells by enhancing endogenous superoxide dismutase, and accordingly alleviated inflammatory cytokines (NO, IL-1β, TNF-α, and IL-6) in LPS-stimulated RAW264.7 cells, showing obvious antioxidant and anti-inflammatory capacity. Moreover, combined with network pharmacology, the potential therapeutic effects and functional pathways of hazel leaf phenolics were predicted, which provided value basis for exploring their treatment on diseases and developing health products in the future.
Collapse
Affiliation(s)
| | | | | | | | - He Lin
- *Correspondence: He Lin ✉
| | | |
Collapse
|
27
|
Fei C, Xue Q, Li W, Xu Y, Mou L, Li W, Lu T, Yin W, Li L, Yin F. Variations in volatile flavour compounds in Crataegi fructus roasting revealed by E-nose and HS-GC-MS. Front Nutr 2023; 9:1035623. [PMID: 36761989 PMCID: PMC9905410 DOI: 10.3389/fnut.2022.1035623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Crataegi fructus (CF) is an edible and medicinal functional food used worldwide that enhances digestion if consumed in the roasted form. The odour of CF, as a measure of processing degree during roasting, significantly changes. However, the changes remain unclear, but are worth exploring. Methods Herein, the variations in volatile flavour compounds due to CF roasting were investigated using an electronic nose (E-nose) and headspace gas chromatography-mass spectrometry (HS-GC-MS). Results A total of 54 components were identified by GC-MS. Aldehydes, ketones, esters, and furans showed the most significant changes. The Maillard reaction, Strecker degradation, and fatty acid oxidation and degradation are the main reactions that occur during roasting. The results of grey relational analysis (GRA) showed that 25 volatile compounds were closely related to odour (r > 0.9). Finally, 9 volatile components [relative odour activity value, (ROAV) ≥ 1] were confirmed as key substances causing odour changes. Discussion This study not only achieves the objectification of odour evaluation during food processing, but also verifies the applicability and similarity of the E-nose and HS-GC-MS.
Collapse
Affiliation(s)
- Chenghao Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianqian Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Mou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China,Wu Yin,
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,Lin Li,
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Fangzhou Yin,
| |
Collapse
|
28
|
Zhou H, Chen L, Ouyang K, Zhang Q, Wang W. Antibacterial activity and mechanism of flavonoids from Chimonanthus salicifolius S. Y. Hu. and its transcriptome analysis against Staphylococcus aureus. Front Microbiol 2023; 13:1103476. [PMID: 36704556 PMCID: PMC9871464 DOI: 10.3389/fmicb.2022.1103476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Chimonanthus salicifolius S. Y. Hu. (FCS) possess many biological activities, but the antibacterial activity and underlying mechanisms of flavonoids from Chimonanthus salicifolius S. Y. Hu. (FCS) is still unknown. Method Maximum diameter of inhibition zone (DIZ), maximum diameter of inhibition zone (DIZ), the lowest minimum inhibition concentration (MIC), and the lowest minimum bactericide concentration (MBC) were used to detect the antibacterial activity. Meanwhile, related enzyme activities, the transcriptome analysis and quantitative RT-PCR were used to investigate the antibacterial activity mechanisms. Results The results showed that FCS (with a purity of 84.2 ± 2.0%) has potential effects on tested strains with the maximum diameter of inhibition zone (DIZ) was 15.93 ± 2.63 mm, the lowest minimum inhibition concentration (MIC) was 1.56 mg/ml and the lowest minimum bactericide concentration (MBC) was 6.25 mg/ml. In addition, the bacterial growth curve test, release of extracellular alkaline phosphatase (AKP), loss of intracellular components, DNA damage and transmission electron microscope (TEM) suggested that FCS could destroy the cell wall and membrane, cause the loss of intracellular substance, cause DNA damage and even lead to cell death. Moreover, the antibacterial mechanism of FCS against Staphylococcus aureus (S. aureus, Gram-positive bacteria) was further confirmed by the transcriptome analysis and quantitative RT-PCR at the molecular level for the first time. A total of 671 differentially expressed genes (DEGs) were identified after treated with FCS (1/2 MIC), with 338 and 333 genes showing up-regulation and down-regulation, respectively. The highlighted changes were those related to the biosynthesis of bacteria wall and membrane, DNA replication and repair, and energy metabolism. Discussion Overall, our research provides theoretical guidance for the application of FCS, which is expected to be potentially used as a natural antimicrobial agent in food safety.
Collapse
Affiliation(s)
- Huan Zhou
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Lingli Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qingfeng Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wenjun Wang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China,*Correspondence: Wenjun Wang, ✉
| |
Collapse
|
29
|
Zhang X, Wang J, Li P, Sun C, Dong W. Integrative metabolome and transcriptome analyses reveals the black fruit coloring mechanism of Crataegus maximowiczii C. K. Schneid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:111-121. [PMID: 36399912 DOI: 10.1016/j.plaphy.2022.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Crataegus is an economically important plant due to its medicinal and health-promoting properties. Flavonoids are the main functional components of Crataegus fruit. Fruits of naturally pollinated Crataegus maximowiczii possess an extraordinary black skin and are rich in anthocyanins and other flavonoids. However, the composition of anthocyanins and the overall molecular mechanism of anthocyanin biosynthesis in C. maximowiczii fruits have not been fully elucidated. In this study, the metabolome and transcriptome of C. maximowiczii fruits with black and red skin were analyzed. The results revealed that the differential metabolites and genes were enriched in the anthocyanin biosynthesis pathways in C. maximowiczii fruits. In total, 52 differentially accumulated flavonoid metabolites, 12 differentially accumulated anthocyanins and 22 differentially expressed genes were identified. After weighted gene coexpression network analysis, two modules were found to be highly interrelated with the accumulation of anthocyanin components. The coexpression networks of these two modules were used to identify key candidate transcription factors associated with anthocyanin biosynthesis, such as MYB5, MYB113, bHLH60, ERF105, bZIP44, NAC082, and WRKY11. The results revealed that cyanidin-based anthocyanins were the main pigments responsible for the black coloration of C. maximowiczii fruits. Based on these differentially accumulated anthocyanins and key genes, genetic and metabolic regulatory networks of anthocyanin biosynthesis were also proposed. Overall, this study elucidates the molecular basis of the formation of black color in C. maximowiczii fruits, and provides an intensive study on anthocyanin biosynthesis in C. maximowiczii for comprehensive utilization.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peihao Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chao Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
30
|
Quercetin Ameliorates Lipopolysaccharide-Induced Duodenal Inflammation through Modulating Autophagy, Programmed Cell Death and Intestinal Mucosal Barrier Function in Chicken Embryos. Animals (Basel) 2022; 12:ani12243524. [PMID: 36552443 PMCID: PMC9774289 DOI: 10.3390/ani12243524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diarrhea has been a global health problem for centuries, and the treatment has become increasingly difficult duo to the antibiotics overuse and resistance. Quercetin is a common flavonoid of extracts of vegetables, fruits, and traditional Chinese herbs, however, the mechanism of quercetin alleviating LPS-induced duodenal inflammation remains elusive. Specific pathogen-free chicken embryos (n = 120) were allocated to groups including control, PBS with or without alcohol, LPS (125 ng/egg) with or without quercetin (10, 20, or 40 nmol/egg, respectively), and quercetin groups (10, 20, or 40 nmol/egg). Fifteen day-old embryonated eggs were inoculated with abovementioned solutions via the allantoic cavity. At embryonic day 19, the duodena of the embryos were collected for histopathological examination, RNA extraction and real-time polymerase chain reaction, immunohistochemical investigations, and Western blotting. The results demonstrated quercetin enhanced the inflammatory cell infiltration in the Peyer's patch of the intestinal mucosa after LPS induction. The LPS-induced expressions of these inflammation-related factors (TLR4, IL-1β, MMP3, MMP9, NFKB1, IFNγ, IL-8, IL-6) were completely blocked by quercetin. Quercetin also decreased the protein expression of TLR4, IL-1β, MMP3, and MMP9 after LPS induction. Quercetin could down-regulate autophagy gene expression (ATG5, LC3-1, LC3-2, and LKB1), and decreased the protein expression of ATG5, and LC3-1/LC3-2 after LPS induction. Quercetin treatment prevented LPS-induced increases of the gene expressions of programmed cell death factors (TNFα, Fas, CASP1, CASP3, CASP12, Drp1, and RIPK1); meanwhile, quercetin decreased the protein expression of CASP1 and CASP3 after LPS challenge. LPS reduced the gene expression of mucin 2, but upregulated the mRNA and protein expression of claudin 1, occludin, and ZO-1, and this was balanced by quercetin. This evidence suggests that quercetin can alleviate duodenal inflammation induced by LPS through modulating autophagy, programmed cell death, intestinal barrier function.
Collapse
|
31
|
Green synthesis of multifunctional carbon dots from Crataegi Fructus for pH sensing, cell imaging and hemostatic effects. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Pan H, Xiao Y, Xie A, Li Z, Ding H, Yuan X, Sun R, Peng Q. The antibacterial mechanism of phenylacetic acid isolated from Bacillus megaterium L2 against Agrobacterium tumefaciens. PeerJ 2022; 10:e14304. [PMID: 36389424 PMCID: PMC9651047 DOI: 10.7717/peerj.14304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Agrobacterium tumefaciens T-37 can infect grapes and other fruit trees and cause root cancer. Given the pollution and damage of chemical agents to the environment, the use of biological control has become an important area of focus. Bacillus megaterium L2 is a beneficial biocontrol strain isolated and identified in the laboratory, which has a good antibacterial effect on a variety of plant pathogens. The antibacterial metabolites of L2 were separated and purified to obtain a bioactive compound phenylacetic acid (PAA). Methods The potential antibacterial mechanism of PAA against A. tumefaciens T-37 strain was determined by relative conductivity, leakage of nucleic acids, proteins, and soluble total sugars, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and reactive oxygen species (ROS). Results PAA showed good antibacterial activity against strain A. tumefaciens T-37 with IC50 of 0.8038 mg/mL. Our data suggested that after treatment with PAA, the relative conductivity, nucleic acid, protein, and total soluble sugar of T-37 were increased significantly compared with the chloramphenicol treatment group and the negative treatment group. The total protein synthesis of T-37 cells was inhibited, the consumption of phosphorus decreased with the increase of incubation time, and the content of ROS was significantly higher than that in the negative treatment group. Meanwhile, the activity of two key enzymes (MDH and SDH) involved in the tricarboxylic acid cycle (TCA cycle) decreased. In addition, T-37 cells were found to be damaged by scanning electron microscopy observation. Our results showed that PAA can destroy cell membrane integrity, damage cell structures, affect cell metabolism, and inhibit protein synthesis to exert an antibacterial effect. Conclusions We concluded that the mechanism of action of the PAA against strain T-37 might be described as PAA exerting antibacterial activity by affecting cell metabolism, inhibiting protein synthesis, and destroying cell membrane integrity and cell ultrastructure. Therefore, PAA has a promising application prospect in the prevention and treatment of root cancer disease caused by A. tumefaciens.
Collapse
Affiliation(s)
- Hang Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Ailin Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China,Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Haixia Ding
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - XiaoJu Yuan
- Development Center of Planting, Huishui County of Qiannan Prefecture, Guizhou Province, China
| | - Ran Sun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Qiuju Peng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
33
|
Zhang SY, Sun XL, Yang XL, Shi PL, Xu LC, Guo QM. Botany, traditional uses, phytochemistry and pharmacological activity of Crataegus pinnatifida (Chinese hawthorn): a review. J Pharm Pharmacol 2022; 74:1507-1545. [PMID: 36179124 DOI: 10.1093/jpp/rgac050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/18/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Crataegus pinnatifida (C. pinnatifida), including C. pinnatifida Bge. and its variant C. pinnatifida Bge. var. major N, E. Br., has traditionally been used as a homologous plant for traditional medicine and food in ethnic medical systems in China. Crataegus pinnatifida, especially its fruit, has been used for more than 2000 years to treat indigestion, stagnation of meat, hyperlipidemia, blood stasis, heart tingling, sores, etc. This review aimed to provide a systematic summary on the botany, traditional uses, phytochemistry, pharmacology and clinical applications of C. pinnatifida. KEY FINDINGS This plant contains flavonoids, phenylpropanoids, terpenoids, organic acids, saccharides and essential oils. Experimental studies showed that it has hypolipidemic, antimyocardial, anti-ischemia, antithrombotic, anti-atherosclerotic, anti-inflammatory, antineoplastic neuroprotective activity, etc. Importantly, it has good effects in treating diseases of the digestive system and cardiovascular and cerebrovascular systems. SUMMARY There is convincing evidence from both in vitro and in vivo studies supporting the traditional uses of C. pinnatifida. However, multitarget network pharmacology and molecular docking technology should be used to study the interaction between the active ingredients and targets of C. pinnatifida. Furthermore, exploring the synergy of C. pinnatifida with other Chinese medicines to provide new understanding of complex diseases may be a promising strategy.
Collapse
Affiliation(s)
- Shi-Yao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Lei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xing-Liang Yang
- School of Classics, Beijing University of Chinese Medicine, Beijing, China
| | - Peng-Liang Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling-Chuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Mei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Zhang J, Chai X, Zhao F, Hou G, Meng Q. Food Applications and Potential Health Benefits of Hawthorn. Foods 2022; 11:foods11182861. [PMID: 36140986 PMCID: PMC9498108 DOI: 10.3390/foods11182861] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hawthorn (Crataegus) is a plant of the Rosaceae family and is widely grown throughout the world as one of the medicinal and edible plants, known as the “nutritious fruit” due to its richness in bioactive substances. Preparations derived from it are used in the formulation of dietary supplements, functional foods, and pharmaceutical products. Rich in amino acids, minerals, pectin, vitamin C, chlorogenic acid, epicatechol, and choline, hawthorn has a high therapeutic and health value. Many studies have shown that hawthorn has antioxidant, anti-inflammatory, anticancer, anti-cardiovascular disease, and digestive enhancing properties. This is related to its bioactive components such as polyphenols (chlorogenic acid, proanthocyanidin B2, epicatechin), flavonoids (proanthocyanidins, mucoxanthin, quercetin, rutin), and pentacyclic triterpenoids (ursolic acid, hawthornic acid, oleanolic acid), which are also its main chemical constituents. This paper briefly reviews the chemical composition, nutritional value, food applications, and the important biological and pharmacological activities of hawthorn. This will contribute to the development of functional foods or nutraceuticals from hawthorn.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Correspondence: (X.C.); (Q.M.)
| | - Fenglan Zhao
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qingguo Meng
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
- Correspondence: (X.C.); (Q.M.)
| |
Collapse
|
35
|
Antimicrobial Activity of Some Plant Extracts and Their Applications in Homemade Tomato Paste and Pasteurized Cow Milk as Natural Preservatives. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synthetic chemical preservatives are widely used in the food industry to delay the deterioration caused by microbial growth, enzyme activities and oxidation reactions. The last few decades have witnessed marked interest in finding natural food preservatives due to the potential health damage of synthetic preservatives; consumers have become skeptical of consuming foods containing these additives. Polyphenols used as natural preservatives that can be extracted from fruits, vegetables, herbs and spices provide the best alternative for partial or complete replacement of their synthetic analogues. The present study’s emphasis was on employing different plant extracts to be efficiently used as antimicrobial agents for developing replacements for the synthetic chemical additives in food products. The study also investigated the antimicrobial potentialities of five medicinal plants, widely used in Egypt (sumac, tamarind, rosemary, roselle and lemon) against six microbial markers (E. coli, P. aeruginosae, B. subtilis, S. aureus, Penicillium sp. and A. niger.). Sumac extracts showed the best activity against all tested microorganisms, producing the widest inhibition zones ranging from 14 to 45 mm, followed by tamarind and roselle extracts, with inhibition zones ranging from 8–36 and 8–34 mm, respectively. On the other hand, extracts of rosemary and lemon showed variable antimicrobial activity. All extracts from all tested plants were less active against fungal species than bacterial species. In all cases, the organic extracts (80% methanol, 80% ethanol) showed the same or greater activity than the aqueous extracts. In addition, the methanolic extracts showed the strongest and broadest spectrum. The most sensitive strain to plant extracts was B. subtilis, while the most resistant strain was P. aeruginosae. The MIC and MBC or MFC values of methanolic extracts were assayed using the broth dilution method. Sumac extract showed the best activity against all tested microorganisms with the lowest values of MIC and MBC or MFC (from 0.260 to 0.877 and 0.310 to 1.316 mg/mL, respectively, for bacteria, and from 1.975 to 2.5 and 2.5 to 4.444 mg/mL, respectively, for fungi). Interestingly, the tested extracts inhibited microbial growth in tomato paste and pasteurized cow milk for a long storage period (increase shelf life) as compared to the control samples. In conclusion, herbal and spice extracts could be successfully applied as natural antimicrobials for the elimination of food borne microbes and pathogen growth.
Collapse
|
36
|
Guo W, Bai J, Zhang Q, Duan K, Zhang P, Zhang J, Zhao J, Zhang W, Kong D. Influence of thermal processing on the quality of hawthorn: quality markers of heat-processed hawthorn. J Sep Sci 2022; 45:3774-3785. [PMID: 35938469 DOI: 10.1002/jssc.202200222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Hawthorn and its derived products are used worldwide as foods as well as complementary medicine. During the preparation of hawthorn, heating and thermal processing are frequently reported. The thermal processing will change the medicinal purposes and modify the efficacy of hawthorn. However, details including the chemical profile shifting and quality markers of heat-processed hawthorn have not been well understood. In the paper, we analyzed the hawthorn samples processed at different temperatures and different times by ultraviolet visible absorption spectrum and LC-MS technologies combined with multivariate statistical analysis. It was revealed for the first time that thermal processing could greatly change the ultraviolet visible absorption spectra and chemical profiles of hawthorn even with heat treatment at 130°C for 10 minutes. And the ultraviolet visible absorption spectrum, especially the ratio value (RA500 nm/400 nm ), was a descriptive and qualitative indicator of heating degree for the thermal processing at the macroscopic level. Several components, such as hyperoside, chlorogenic acid, quercetin and apigenin, decreased or increased in content during the processing, and they could be utilized as the chemical quality markers. The proposed quality markers for heat-processed hawthorn will be helpful for further optimizing the processing conditions of hawthorn. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenyan Guo
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qingning Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Kunfeng Duan
- Department of Pharmacy, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianghua Zhang
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Zhao
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
37
|
Wei L, Zhang Q, Xie A, Xiao Y, Guo K, Mu S, Xie Y, Li Z, He T. Isolation of Bioactive Compounds, Antibacterial Activity, and Action Mechanism of Spore Powder From Aspergillus niger xj. Front Microbiol 2022; 13:934857. [PMID: 35898902 PMCID: PMC9309528 DOI: 10.3389/fmicb.2022.934857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fungi can produce a wide range of secondary metabolites, and they have represented a potential resource of novel bioactive compounds. Bacterial plant diseases have a serious impact on the sustainable development of agriculture worldwide, so it is necessary to use natural antibacterial compounds in microorganisms to control plant pathogens. This study was conducted to investigate the bioactive compounds of Aspergillus niger xj, three plant pathogens (Agrobacterium tumefaciens T-37, Erwinia carotovora EC-1, and Ralstonia solanacearum RS-2) were used as indicator bacteria, according to the biological activity tracking, five compounds were isolated from A. niger xj spore powder, and characterization of compounds was done by NMR (1H-NMR and 13C-NMR) and EI-MS and was identified as ergosterol (1), β-sitosterol (2), 5-pentadecylresorcinol (3), 5-hydroxymethyl-2-furancarboxylic acid (4), and succinimide (5). Compounds 3 and 5 were isolated from A. niger xj for the first time. The minimum inhibitory concentration (MIC) of five compounds against three plant pathogens was evaluated, the results showed that compound 4 exhibited the strongest antibacterial activity against tested bacteria, and RS-2 was the most sensitive to compound 4, showing the lowest MIC of 15.56 μg/ml. We concluded that the mechanism of action of the compound 4 against RS-2 might be described as compound 4 acting on bacterial protein synthesis and intracellular metabolism according to the results of the scanning electron microscopy observation, permeability of cell membrane and SDS-PAGE. These results indicated that compound 4 has good potential to be as a biocontrol agent. In conclusion, the results from this study demonstrated that the compounds with antibacterial activity are of great significance of the prevention and control of plant phytopathogenic bacteria, and they may be applicable to exploring alternative approaches to integrated control of phytopathogens.
Collapse
Affiliation(s)
- Longfeng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Qinyu Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Ailin Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Kun Guo
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yudan Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
38
|
Li G, Ruan L, Meng H, Liu W, Zhong X, Yu J, Zhang L, Zhu M, Wang J. 1H NMR Spectroscopy-Based Metabolomics Approach to Study the Anti-Stroke Activity of G-3702, a Novel Better Alternative to DL-3-n-Butylphthalide. Neurochem Res 2022; 47:3024-3036. [PMID: 35737204 DOI: 10.1007/s11064-022-03648-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Cerebrovascular disease is the leading cause of disability and death, and ischemic stroke accounts for most stroke cases. However, few effective drugs are available for the treatment of ischemic stroke; thus, there is an urgent need to develop effective drugs to treat ischemic stroke. DL-3-n-butylphthalide (NBP) is clinically approved as an anti-ischemic drug in China, but its potential hepatotoxicity limits its use. G-3702 (a structural analogue of NBP) is synthesized with the boron hydroxyl group replacing carbonyl group. G-3702 significantly enhanced the survival of middle cerebral artery occlusion (MCAO) rats, decreased neurobehavioral deficit scores and cerebral infarct volume, comparable with NBP, which was also supported by tissue damage assessment, immunohistochemistry staining, biochemical parameters and ELISA assay. G-3702 showed better anti-stroke activity than NBP according to 1H NMR spectroscopy-based metabolomics analysis, demonstrating the feasibility of metabolomics approach to assess drug efficacy. G-3702 markedly ameliorated energy metabolism, attenuated oxidative and inflammatory stress during ischemia/reperfusion (I/R). G-3702 exhibited good neuroprotective effects against I/R induced injury and favorable little possibility of hepatotoxicity, which made it a promising anti-stroke drug and better NBP alternative.
Collapse
Affiliation(s)
- Guanghui Li
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Lingyu Ruan
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Huihui Meng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Wenya Liu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Xinyu Zhong
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Jinran Yu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Lin Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Minqiang Zhu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
39
|
Isolation, Identification and Antibacterial Mechanism of the Main Antibacterial Component from Pickled and Dried Mustard (Brassica juncea Coss. var. foliosa Bailey). Molecules 2022; 27:molecules27082418. [PMID: 35458613 PMCID: PMC9026341 DOI: 10.3390/molecules27082418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Our previous study showed that the ethyl acetate fraction (EAF) from an ethanolic extract of pickled and dried mustard (Brassica juncea Coss. var. foliosa Bailey) had significant antibacterial activity. Here, the EAF was further separated into seven sub-fractions by silica gel column chromatography. The antibacterial activities of the EAF and its sub-fractions against Staphylococcus aureus and Pseudomonas fluorescens were assessed using the agar diffusion method and double dilution method. Among the seven sub-fractions, the third sub-fraction (Fr 3) possessed the strongest antibacterial activity. The main component in Fr 3 was identified by GC-MS, UV-vis, FT-IR, HPLC, 1H NMR and 13C NMR techniques, and was found to be succinic acid. The content of succinic acid in Fr 3 was determined as 88.68% (w/w) by HPLC. Finally, the antibacterial mechanism of succinic acid against the tested strains was explored by determining the intracellular component leakage, measuring the cell particle size and observing the cell morphology. The results showed that succinic acid could damage the cell membrane structure and intracellular structure to increase the leakage of cell components and reduce the cell particle size. Our results suggest that succinic acid could be used in food industry to control bacterial contamination by S. aureus and P. fluorescens.
Collapse
|
40
|
Wu M, Tian L, Fu J, Liao S, Li H, Gai Z, Gong G. Antibacterial mechanism of Protocatechuic acid against Yersinia enterocolitica and its application in pork. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Liu T, Shen H, Wang F, Zhou X, Zhao P, Yang Y, Guo Y. Thinned-Young Apple Polyphenols Inhibit Halitosis-Related Bacteria Through Damage to the Cell Membrane. Front Microbiol 2022; 12:745100. [PMID: 35281303 PMCID: PMC8905352 DOI: 10.3389/fmicb.2021.745100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
The thinned young apple is a by-product and is generally discarded in the orchard during fruit thinning. The polyphenol content of thinned young apples is about 10 times more than that of ripe apples. In our study, the antibacterial effect of thinned young apple polyphenols (YAP) on the halitosis-related bacteria including Porphyromonas gingivalis, Prevotella intermedius, and Fusobacterium nucleatum was investigated. The minimum inhibitory concentrations of YAP against P. gingivalis, P. intermedia, and F. nucleatum were 8.0, 8.0, and 12.0 mg/ml, while the minimum bactericidal concentrations were 10.0, 10.0, and 14.0 mg/ml, respectively. The scanning electron microscopy and transmission electron microscopy analyses showed that after YAP treatment, the membrane surface of halitosis-related bacterial cells was coarse and the cell wall and membrane were separated and eventually ruptured. The integrity of the cell membrane was determined by flow cytometry, indicating that the cells with the integrity membrane significantly reduced as the YAP concentration treatment increased. The release of proteins and nucleic acids into the cell suspension significantly increased, and the membrane potential reduced after the YAP treatment. This research illustrated the antibacterial mechanism of YAP against halitosis-related bacteria and provided a scientific basis of utilizing the polyphenols from the discarded thinned young apples.
Collapse
Affiliation(s)
- Ting Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| | - Hailiang Shen
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Furong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| | - Xueru Zhou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| | - Yali Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- National Research and Development Center of Apple Processing Technology, Xi’an, China
| |
Collapse
|
42
|
Gutierrez J, Bakke A, Vatta M, Merrill AR. Plant Natural Products as Antimicrobials for Control of Streptomyces scabies: A Causative Agent of the Common Scab Disease. Front Microbiol 2022; 12:833233. [PMID: 35154047 PMCID: PMC8828645 DOI: 10.3389/fmicb.2021.833233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
The common scab disease caused by Streptomyces scabies, a soil-dwelling Gram-positive bacterium, is an economically important disease of potatoes and other tuber crops. The lack of effective treatments against this disease accounts for large economic losses globally. Plant extracts were screened to find several that effectively inhibited Streptomyces scabies growth in culture. Seven tinctures showed the greatest inhibition of S. scabies growth by reducing pathogen growth in culture by 75% or more. These extracts were myrrh, garlic, cayenne, barberry, frankincense, wild indigo root, and lavender. Myrrh extract from Commiphora myrrha, a resin made from tree sap, showed strong antibacterial activity by reducing the growth of S. scabies to 13% of the control. Additionally, a flavonoid library was screened to identify several compounds that were effective to control the pathogen growth. The flavonoids that showed the greatest inhibition of Streptomyces scabies growth were sophoraflavanone G, jaceosidin, baicalein, and quercetin. Minimum inhibitory concentrations for the effective flavonoids were calculated to be 6.8 ± 0.4 μM, 100.0 ± 2.1 μM, 202.9 ± 5.3 μM, and 285.2 ± 6.8 μM, respectively. The mean lethal doses for these flavonoids against Streptomyces scabies were 2.0 ± 0.1 μM, 22.6 ± 0.5 μM, 52.9 ± 1.3 μM, and 37.8 ± 1.0 μM, respectively. A live/dead assay showed complete cell death in the presence of sophoraflavanone G indicative of a bactericidal mechanism for flavonoid action on Streptomyces scabies. Scanning electron and transmission electron microscopy imaging showed damaged cell membrane morphologies when Streptomyces scabies was exposed to these flavonoids. Mycelia appeared as flat and deflated structures with contents seen as spewing from branching hyphae with numerous holes and tears in the membrane structure indicative of cell death. Sophoraflavanone G showed the greatest potency and potential as a natural antibiotic from the library of tested flavonoids. These results suggest that these plant compounds act on the pathogen through a bactericidal mechanism involving cell membrane destabilization and disruption leading to cell death.
Collapse
|
43
|
Ding C, Shen H, Tian Z, Kang M, Ma J, He Q, Wang J, Zhang Y, Deng Y, Wang D. Protective effect of hawthorn vitexin on the ethanol-injured DNA of BRL-3A hepatocytes. Medicine (Baltimore) 2021; 100:e28228. [PMID: 34918685 PMCID: PMC10545377 DOI: 10.1097/md.0000000000028228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Vitexin is a natural active ingredient in hawthorn leaves, which has a wide range of anti-tumor effects. This study was conducted to assess the protective effect of hawthorn vitexin on the ethanol-injured DNA of hepatocytes in vitro and to explore its mechanism. The effect of different concentrations of hawthorn vitexin on ethanol-injured hepatocytes was detected via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method to study the protective effect of hawthorn vitexin on ethanol-injured DNA damage in hepatocytes. Single-cell gel electrophoresis was used to observe the effect of hawthorn vitexin on ethanol-induced DNA damage in hepatocytes, and the Olive tail moment was measured. Cell physiological and biochemical indexes, such as superoxide dismutase activity, malonaldehyde content, and glutathione peroxidase activity, were detected with kits. The mRNA expression of the superoxide dismutase gene was measured via real-time quantitative polymerase chain reaction. It was showed that 0.2, 0.4, and 0.8 mg mL-1 hawthorn vitexin could significantly repair hepatocyte growth and ethanol-induced DNA damage. This effect was closely related to the improvement in superoxide dismutase, malonaldehyde, and glutathione peroxidase. Hawthorn vitexin could be used to repair ethanol-injured hepatocytes through antioxidation effects, and showed potential for the treatment of liver injury.
Collapse
Affiliation(s)
- Chengshi Ding
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Henglun Shen
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Zhongjing Tian
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Meiling Kang
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Qing He
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Jinglong Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Yingxia Zhang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Yanmei Deng
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Deya Wang
- College of Life Science, Zaozhuang University, Zaozhuang, China
| |
Collapse
|
44
|
Yan B, Chen ZS, Hu Y, Yong Q. Insight in the Recent Application of Polyphenols From Biomass. Front Bioeng Biotechnol 2021; 9:753898. [PMID: 34589477 PMCID: PMC8473751 DOI: 10.3389/fbioe.2021.753898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Biomass polyphenols are bio-active macromolecules with distinct chemical structures in a variety of biomass. In recent years, the study of biomass polyphenols and their application in food and medicine fields has become a research hotspot, which predominantly focuses on the preparation, purification, structural identifications, and measurements of biological activities. Many studies describe methodologies for extraction and application of polyphenols, but comprehensive work to review its physiological activities like drugs and health products are lacking. This paper comprehensively unlocks the bioactivities of antioxidant, antibacterial, antitumor, anticancer, neuroprotection, control of blood sugar, regulation of blood fat, and promotion of gastrointestinal health functions of polyphenols from different biomass sources. This review will serve as an illuminating resource for the global scientific community, especially for those who are actively working to promote the advances of the polyphenols research field.
Collapse
Affiliation(s)
- Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhefan Stephen Chen
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Yingying Hu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
45
|
Burstein O, Simon N, Simchon-Tenenbaum Y, Rehavi M, Franko M, Shamir A, Doron R. Moderation of the transgenerational transference of antenatal stress-induced anxiety. Transl Psychiatry 2021; 11:268. [PMID: 33947833 PMCID: PMC8094124 DOI: 10.1038/s41398-021-01383-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Maternal stress has debilitating implications for both mother and child, including increased risk for anxiety. The current COVID-19 pandemic escalates these phenomena, thus, urging the need to further explore and validate feasible therapeutic options. Unlike the protracted nature of clinical studies, animal models could offer swift evidence. Prominent candidates for treatment are selective serotonin reuptake inhibitors (SSRIs) to the mother, that putatively accommodate maternal functioning, and, thereby, also protect the child. However, SSRIs might have deleterious effects. It is important to assess whether SSRIs and other pharmacotherapies can moderate the transference of anxiety by soothing maternal anxiety and to examine the extent of offspring's exposure to the drugs via lactation. To our knowledge, the possibility that antenatal stress exacerbates lactation-driven exposure to SSRIs has not been tested yet. Thirty ICR-outbred female mice were exposed to stress during gestation and subsequently administered with either the SSRI, escitalopram, or the novel herbal candidate, shan-zha, during lactation. Upon weaning, both dams' and pups' anxiety-like behavior and serum escitalopram levels were assessed. The major findings of the current study show that both agents moderated the antenatal stress-induced transgenerational transference of anxiety by ameliorating dams' anxiety. Interestingly though, pups' exposure to escitalopram via lactation was exacerbated by antenatal stress. The latter finding provides a significant insight into the mechanism of lactation-driven exposure to xenobiotics and calls for a further consideration vis-à-vis the administration of other drugs during breastfeeding.
Collapse
Affiliation(s)
- Or Burstein
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | - Noam Simon
- School of Behavioral Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv-Yaffo, Israel
| | - Yaarit Simchon-Tenenbaum
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel
| | - Moshe Rehavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel
| | - Motty Franko
- Department of Psychology, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Department of Education and Psychology, The Open University of Israel, Raanana, Israel
| | - Alon Shamir
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Mazor Mental Health Center, Akko, Israel
| | - Ravid Doron
- Department of Education and Psychology, The Open University of Israel, Raanana, Israel.
| |
Collapse
|
46
|
Arpornmaeklong P, Sareethammanuwat M, Apinyauppatham K, Boonyuen S. Characteristics and biologic effects of thermosensitive quercetin-chitosan/collagen hydrogel on human periodontal ligament stem cells. J Biomed Mater Res B Appl Biomater 2021; 109:1656-1670. [PMID: 33644957 DOI: 10.1002/jbm.b.34823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/05/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Thermosensitive hydrogels could function as scaffolds and delivery vehicle of natural flavonoids. The current study aimed to investigate effects of chitosan/collagen ratios on properties of thermosensitive beta-glycerophosphate (bGP) chitosan/collagen hydrogels as delivery vehicle of quercetin and then examined effects of quercetin-hydrogels on growth and cell viability of human periodontal ligament stem cells (hPDLSCs). Microstructure and physical, mechanical and antioxidant properties and quercetin release profiles of the hydrogels were investigated. Fourier transform infrared spectroscopy and X-ray powder diffraction analyses were performed to examine gelation process of the hydrogels. Antioxidant assays were conducted to measure antioxidant capacity of quercetin-hydrogels. It was found that bGP-chitosan/collagen hydrogels exhibited porous structures with interconnected pore architecture and could sustain quercetin release. Chitosan content improved well defined porous structure, increased porosity of the hydrogels and decreased releasing rate of quercetin from the hydrogels. The quercetin-bGP-2:1 (wt/wt) chitosan/collagen hydrogels exhibited antioxidant capacity and were able to promote growth of hPDLSCs in a dose dependent manner. In conclusion, the thermosensitive quercetin-bGP-2:1 (wt/wt) chitosan/collagen hydrogel demonstrated optimal properties of scaffolds for bone tissue engineering and sustained release of natural flavonoids. Incorporating quercetin in the chitosan/collagen hydrogel enhanced bioactive microenvironment that supported stem cell encapsulation.
Collapse
Affiliation(s)
- Premjit Arpornmaeklong
- Oral and Maxillofacial Surgery Division, Faculty of Dentistry, Thammasat University-Rangsit campus, Khlong Luang, Pathum Thani, Thailand
| | - Maytha Sareethammanuwat
- Master of Science Program in Dental Implantology, Faculty of Dentistry, Thammasat University-Rangsit campus, Khlong Luang, Pathum Thani, Thailand
| | - Komsan Apinyauppatham
- Oral and Maxillofacial Surgery Division, Faculty of Dentistry, Thammasat University-Rangsit campus, Khlong Luang, Pathum Thani, Thailand
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University-Rangsit campus, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
47
|
Tamkutė L, Vaicekauskaitė R, Gil BM, Rovira Carballido J, Venskutonis PR. Black chokeberry (
Aronia melanocarpa
L.) pomace extracts inhibit food pathogenic and spoilage bacteria and increase the microbiological safety of pork products. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Laura Tamkutė
- Department of Food Science and Technology Kaunas University of Technology Kaunas Lithuania
| | - Rūta Vaicekauskaitė
- Department of Food Science and Technology Kaunas University of Technology Kaunas Lithuania
| | - Beatriz M. Gil
- Department of Food Science and Technology Kaunas University of Technology Kaunas Lithuania
| | | | | |
Collapse
|
48
|
Yuan W, Wang J, An X, Dai M, Jiang Z, Zhang L, Yu S, Huang X. UPLC-MS/MS Method for the Determination of Hyperoside and Application to Pharmacokinetics Study in Rat After Different Administration Routes. Chromatographia 2021; 84:249-256. [PMID: 33487663 PMCID: PMC7810192 DOI: 10.1007/s10337-020-04002-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
A rapid and sensitive UPLC-MS/MS method was developed and fully validated for the quantification of hyperoside in rat plasma after intragastric, intraperitoneal and intravenous administration. Geniposide was used as an internal standard, and simple liquid–liquid extraction by ethyl acetate was utilized for to extracting the analytes from the rat plasma samples. Chromatographic separation was carried out on an InfinityLab Poroshell 120EC-C18column (2.1 mm × 50 mm, 1.9-Micro, Agilent technologies, USA). The mobile phase consisted of methanol (A) and water (B) (containing 0.1% acetic acid) at a flow rate of 0.4 mL/min. A run time of 3 min for each sample made it possible to analyze more than 300 plasma samples per day. The validated linear ranges of hyperoside were 2–1000 ng/mL in rat plasma. The intra-day and inter-day precision were within 2.6–9.3%, and accuracy were ± 8.6%. And the results of recovery and matrix interference studies were well within the accepted variability limits. Finally, this method was fully validated and successfully applied to the pharmacokinetic studies of hyperoside via different administration routes in rats.
Collapse
Affiliation(s)
- Wenjing Yuan
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Jingjing Wang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Xiaofei An
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210009 People's Republic of China
| | - Mingxin Dai
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Zhenzhou Jiang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Luyong Zhang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 People's Republic of China
| | - Sen Yu
- Mosim Co., Ltd, Nanjing, 210009 People's Republic of China
| | - Xin Huang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,National Nanjing Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| |
Collapse
|
49
|
Zielińska S, Dziągwa-Becker M, Piątczak E, Jezierska-Domaradzka A, Brożyna M, Junka A, Kucharski M, Çiçek SS, Zidorn C, Matkowski A. Phytochemical Composition and Antimicrobial Activity of Corydalis solida and Pseudofumaria lutea. Molecules 2020; 25:E3591. [PMID: 32784618 PMCID: PMC7464254 DOI: 10.3390/molecules25163591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Corydalis and Pseudofumaria are two closely related genera from the Papaveraceae subfamily Fumarioideae with Corydalis solida (C. solida) and Pseudofumaria lutea (P. lutea) as two representative species. Phytochemical analysis revealed significant differences in the quality and quantity of isoquinoline alkaloids, phenolic compounds and non-phenolic carboxylic acids between aerial and underground parts of both species. Using the Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) technique, 21 compounds were identified: five protoberberine derivatives, three protopine derivatives, four phenanthridine derivatives, as well as three carboxylic acids, two hydroxycinnamic acids, one chlorogenic acid, one phenolic aldehyde, and two flavonoids. Moroever, significant differences in the content of individual compounds were observed between the two studied species. The phytochemical profile of C. solida showed a higher variety of compounds that were present in lower amounts, whereas P. lutea extracts contained fewer compounds but in larger quantities. Protopine was one of the most abundant constituents in C. solida (440-1125 µg/g d.w.) and in P. lutea (1036-1934 µg/g d.w.). Moreover, considerable amounts of coptisine (1526 µg/g) and quercetin (3247 µg/g) were detected in the aerial parts of P. lutea. Extracts from aerial and underground parts of both species were also examined for the antimicrobial potential against S. aureus, P. aeruginosa and C. albicans. P. lutea herb extract was the most effective (MIC at 0.39 mg/L) against all three pathogens.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Department of Pharmaceutical Biology, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (A.J.-D.); (A.M.)
| | - Magdalena Dziągwa-Becker
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant, Cultivation State Research Institute, Orzechowa 61, 50-540 Wrocław, Poland; (M.D.-B.); (M.K.)
| | - Ewelina Piątczak
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
| | - Anna Jezierska-Domaradzka
- Department of Pharmaceutical Biology, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (A.J.-D.); (A.M.)
- Laboratory of Experimental Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-556 Wroclaw, Poland
| | - Malwina Brożyna
- Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland; (M.B.); (A.J.)
| | - Adam Junka
- Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland; (M.B.); (A.J.)
| | - Mariusz Kucharski
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant, Cultivation State Research Institute, Orzechowa 61, 50-540 Wrocław, Poland; (M.D.-B.); (M.K.)
| | - Serhat Sezai Çiçek
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany; (S.S.Ç.); (C.Z.)
| | - Christian Zidorn
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany; (S.S.Ç.); (C.Z.)
| | - Adam Matkowski
- Department of Pharmaceutical Biology, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (A.J.-D.); (A.M.)
- Laboratory of Experimental Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-556 Wroclaw, Poland
| |
Collapse
|