1
|
Hampton TH, Barnaby R, Roche C, Nymon A, Fukutani KF, MacKenzie TA, Charpentier LA, Stanton BA. Gene expression responses of CF airway epithelial cells exposed to elexacaftor/tezacaftor/ivacaftor suggest benefits beyond improved CFTR channel function. Am J Physiol Lung Cell Mol Physiol 2024; 327:L905-L916. [PMID: 39437760 DOI: 10.1152/ajplung.00272.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
The combination of elexacaftor/tezacaftor/ivacaftor (ETI, Trikafta) reverses the primary defect in cystic fibrosis (CF) by improving CFTR-mediated Cl- and HCO3- secretion by airway epithelial cells (AECs), leading to improved lung function and less frequent exacerbations and hospitalizations. However, studies have shown that CFTR modulators like ivacaftor, a component of ETI, have numerous effects on CF cells beyond improved CFTR channel function. Because little is known about the effect of ETI on CF AEC gene expression, we exposed primary human AEC to ETI for 48 h and interrogated the transcriptome by RNA-seq and qPCR. ETI increased CFTR Cl- secretion, and defensin gene expression (DEFB1), an observation consistent with reports of decreased bacterial burden in the lungs of people with CF (pwCF). ETI decreased MMP10 and MMP12 gene expression, suggesting that ETI may reduce proteolytic-induced lung destruction in CF. ETI also reduced the expression of the stress response gene heme oxygenase (HMOX1). qPCR analysis confirmed DEFB1, HMOX1, MMP10, and MMP12 gene expression results observed by RNA-seq. Gene pathway analysis revealed that ETI decreased inflammatory signaling, cellular proliferation, and MHC class II antigen presentation. Collectively, these findings suggest that the clinical observation that ETI reduces lung infections in pwCF is related in part to drug-induced increases in DEFB1 and that ETI may reduce lung damage by reducing MMP10 and MMP12 gene expression. Moreover, pathway analysis also identified several other genes responsible for the ETI-induced reduction in inflammation observed in pwCF.NEW & NOTEWORTHY Gene expression responses by CF AECs exposed to ETI suggest that in addition to improving CFTR channel function, ETI is likely to enhance resistance to bacterial infection by increasing levels of beta-defensin 1 (hBD-1). ETI may also reduce lung damage by suppressing MMP10 and MMP12 and reduce airway inflammation by repressing proinflammatory cytokine secretion by CF AECs.
Collapse
Affiliation(s)
- Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Carolyn Roche
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Kiyoshi Ferreira Fukutani
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Todd A MacKenzie
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States
| | - Lily A Charpentier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| |
Collapse
|
2
|
Hampton TH, Barnaby R, Roche C, Nymon A, Fukutani KF, MacKenzie TA, Stanton BA. Gene expression responses of CF airway epithelial cells exposed to elexacaftor/tezacaftor/ivacaftor (ETI) suggest benefits beyond improved CFTR channel function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610162. [PMID: 39257747 PMCID: PMC11383677 DOI: 10.1101/2024.08.28.610162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The combination of elexacaftor/tezacaftor/ivacaftor (ETI, Trikafta) reverses the primary defect in Cystic Fibrosis (CF) by improving CFTR mediated Cl - and HCO 3 - secretion by airway epithelial cells (AEC), leading to improved lung function and less frequent exacerbations and hospitalizations. However, studies have shown that CFTR modulators like ivacaftor, a component of ETI, has numerous effects on CF cells beyond improved CFTR channel function. Because little is known about the effect of ETI on CF AEC gene expression we exposed primary human AEC to ETI for 48 hours and interrogated the transcriptome by RNA-seq and qPCR. ETI increased defensin gene expression ( DEFB1 ) an observation consistent with reports of decreased bacterial burden in the lungs of people with CF (pwCF). ETI also decreased MMP10 and MMP12 gene expression, suggesting that ETI may reduce proteolytic induced lung destruction in CF. ETI also reduced the expression of the stress response gene heme oxygenase ( HMOX1 ). qPCR analysis confirmed DEFB1, HMOX1, MMP10 and MMP12 gene expression results observed by RNA-seq. Gene pathway analysis revealed that ETI decreased inflammatory signaling, cellular proliferation and MHC Class II antigen presentation. Collectively, these findings suggest that the clinical observation that ETI reduces lung infections in pwCF is related in part to drug induced increases in DEFB1 , and that ETI may reduce lung damage by reducing MMP10 and MMP12 gene expression, which is predicted to reduce matrix metalloprotease activity. Moreover, pathway analysis also identified several genes responsible for the ETI induced reduction in inflammation observed in people with CF. New and Noteworthy Gene expression responses by CF AEC exposed to ETI suggest that in addition to improving CFTR channel function, ETI is likely to increase resistance to bacterial infection by increasing levels of beta defensin 1 (hBD-1). ETI may also reduce lung damage by suppressing MMP10, and reduce airway inflammation by repressing proinflammatory cytokine secretion by AEC cells.
Collapse
|
3
|
McKinnon C, Thorat T, Craft A, Higgins M. Real-world impact of ivacaftor in people with cystic fibrosis and select ivacaftor-responsive mutations. BMJ Open Respir Res 2024; 11:e002033. [PMID: 39074961 PMCID: PMC11288149 DOI: 10.1136/bmjresp-2023-002033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Ivacaftor approval was extended to people with cystic fibrosis (CF) with ≥1 of 28 additional ivacaftor-responsive mutations in the USA in 2017 based on preclinical in vitro data. This retrospective, observational study assessed real-world clinical response to ivacaftor in people with CF with ≥1 of these mutations, using data from the US Cystic Fibrosis Foundation Patient Registry. METHODS Participants aged ≥2 years with ≥1 of 28 eligible mutations initiating ivacaftor between May 2017 and December 2018 were included. Clinical outcomes data were evaluated for ≤1 year before and ≤2 years after ivacaftor initiation. Participants initiating ivacaftor between May and December 2017 (2017 cohort) were used for the primary analysis because up to 2 years of post-ivacaftor-initiation data were available. Analyses were descriptive; key outcomes included percent predicted forced expiratory volume in 1 s (ppFEV1), body mass index (BMI) and BMI z-score, pulmonary exacerbations (PEx) and hospitalisations. RESULTS The study included 1004 eligible participants. In the 2017 cohort (n=613), mean absolute change in ppFEV1 from pre-ivacaftor initiation was 1.9 (95% CI 1.4, 2.4) and 1.8 (95% CI 1.0, 2.7) percentage points in years 1 and 2 post-ivacaftor initiation, respectively; mean absolute change in BMI was 0.6 (95% CI 0.5, 0.7) and 1.0 (95% CI 0.8, 1.2) kg/m2 in years 1 and 2, respectively; BMI z-score was unchanged. Annualised event rates of PEx and hospitalisations per patient-year were lower with ivacaftor (0.24 (95% CI 0.21, 0.26) and 0.28 (95% CI 0.25, 0.31), respectively) compared with pre-ivacaftor initiation (0.41 (95% CI 0.37, 0.46) and 0.45 (95% CI 0.41, 0.49), respectively). CONCLUSIONS These real-world observational study findings support the effectiveness of ivacaftor in people with CF aged ≥2 years with selected CFTR mutations.
Collapse
Affiliation(s)
- Craig McKinnon
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | - Teja Thorat
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | - Alexander Craft
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | - Mark Higgins
- Vertex Pharmaceuticals (Europe) Limited, London, UK
| |
Collapse
|
4
|
Das Gupta K, Curson JEB, Tarique AA, Kapetanovic R, Schembri MA, Fantino E, Sly PD, Sweet MJ. CFTR is required for zinc-mediated antibacterial defense in human macrophages. Proc Natl Acad Sci U S A 2024; 121:e2315190121. [PMID: 38363865 PMCID: PMC10895263 DOI: 10.1073/pnas.2315190121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/22/2023] [Indexed: 02/18/2024] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion transporter required for epithelial homeostasis in the lung and other organs, with CFTR mutations leading to the autosomal recessive genetic disease CF. Apart from excessive mucus accumulation and dysregulated inflammation in the airways, people with CF (pwCF) exhibit defective innate immune responses and are susceptible to bacterial respiratory pathogens such as Pseudomonas aeruginosa. Here, we investigated the role of CFTR in macrophage antimicrobial responses, including the zinc toxicity response that is used by these innate immune cells against intracellular bacteria. Using both pharmacological approaches, as well as cells derived from pwCF, we show that CFTR is required for uptake and clearance of pathogenic Escherichia coli by CSF-1-derived primary human macrophages. CFTR was also required for E. coli-induced zinc accumulation and zinc vesicle formation in these cells, and E. coli residing in macrophages exhibited reduced zinc stress in the absence of CFTR function. Accordingly, CFTR was essential for reducing the intramacrophage survival of a zinc-sensitive E. coli mutant compared to wild-type E. coli. Ectopic expression of the zinc transporter SLC30A1 or treatment with exogenous zinc was sufficient to restore antimicrobial responses against E. coli in human macrophages. Zinc supplementation also restored bacterial killing in GM-CSF-derived primary human macrophages responding to P. aeruginosa, used as an in vitro macrophage model relevant to CF. Thus, restoration of the zinc toxicity response could be pursued as a therapeutic strategy to restore innate immune function and effective host defense in pwCF.
Collapse
Affiliation(s)
- Kaustav Das Gupta
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - James E. B. Curson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Abdullah A. Tarique
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD4101, Australia
| | - Ronan Kapetanovic
- Friedrich Miescher Institute for Biomedical Research, Basel, BS4058, Switzerland
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly37380, France
| | - Mark A. Schembri
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Emmanuelle Fantino
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD4101, Australia
| | - Peter D. Sly
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD4101, Australia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
5
|
Wellems D, Hu Y, Jennings S, Wang G. Loss of CFTR function in macrophages alters the cell transcriptional program and delays lung resolution of inflammation. Front Immunol 2023; 14:1242381. [PMID: 38035088 PMCID: PMC10687418 DOI: 10.3389/fimmu.2023.1242381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator (CFTR) gene. The most severe pathologies of CF occur in the lung, manifesting as chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite increasing knowledge of the CF primary defect and the resulting clinical sequelae, the relationship between the CFTR loss of function and the neutrophilic inflammation remains incompletely understood. Here, we report that loss of CFTR function in macrophages causes extended lung inflammation. After intratracheal inoculation with Pseudomonas aeruginosa, mice with a macrophage-specific Cftr-knockout (Mac-CF) were able to mount an effective host defense to clear the bacterial infection. However, three days post-inoculation, Mac-CF lungs demonstrated significantly more neutrophil infiltration and higher levels of inflammatory cytokines, suggesting that Mac-CF mice had a slower resolution of inflammation. Single-cell RNA sequencing revealed that absence of CFTR in the macrophages altered the cell transcriptional program, affecting the cell inflammatory and immune responses, antioxidant system, and mitochondrial respiration. Thus, loss of CFTR function in macrophages influences cell homeostasis, leading to a dysregulated cellular response to infection that may exacerbate CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
6
|
Pinzaru AD, Mihai CM, Chisnoiu T, Pantazi AC, Lupu VV, Kassim MAK, Lupu A, Grosan E, Al Jumaili AZN, Ion I, Stoleriu G, Ion I. Oxidative Stress Biomarkers in Cystic Fibrosis and Cystic Fibrosis-Related Diabetes in Children: A Literature Review. Biomedicines 2023; 11:2671. [PMID: 37893045 PMCID: PMC10604378 DOI: 10.3390/biomedicines11102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The most common inherited condition that results in death, particularly in those of Caucasian heritage, is cystic fibrosis (CF). Of all the young adults diagnosed with cystic fibrosis, 20% will develop hyperglycemia as a complication, later classified as a disease associated with cystic fibrosis. Impaired insulin secretion and glucose intolerance represent the primary mechanisms associated with diabetes (type 1 or type 2) and cystic fibrosis. Oxidative stress represents the imbalance between oxygen-reactive species and antioxidant defense mechanisms. This pathogenic mechanism is vital in triggering other chronic diseases, including cystic fibrosis-related diabetes. It is essential to understand oxidative stress and the significant impact it has on CFRD. This way, therapies can be individually adjusted and tailored to each patient's needs. This review aims to understand the connection between CFRD and oxidative stress. As a subsidiary element, we analyzed the effects of glycemic balance on complications and their evolution over time, providing insights into their potential benefits in mitigating oxidative stress-associated complications.
Collapse
Affiliation(s)
- Anca Daniela Pinzaru
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Vasile Valeriu Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Ancuta Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Grosan
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ahmed Zaki Naji Al Jumaili
- National Institute of Diabetes, Nutrition and Metabolic Diseases “N.C. Paulescu”, 020475 Bucharest, Romania
| | - Irina Ion
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Gabriela Stoleriu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Ileana Ion
- Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
| |
Collapse
|
7
|
Aridgides DS, Mellinger DL, Gwilt LL, Hampton TH, Mould DL, Hogan DA, Ashare A. Comparative effects of CFTR modulators on phagocytic, metabolic and inflammatory profiles of CF and nonCF macrophages. Sci Rep 2023; 13:11995. [PMID: 37491532 PMCID: PMC10368712 DOI: 10.1038/s41598-023-38300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
Macrophage dysfunction has been well-described in Cystic Fibrosis (CF) and may contribute to bacterial persistence in the lung. Whether CF macrophage dysfunction is related directly to Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in macrophages or an indirect consequence of chronic inflammation and mucostasis is a subject of ongoing debate. CFTR modulators that restore CFTR function in epithelial cells improve global CF monocyte inflammatory responses but their direct effects on macrophages are less well understood. To address this knowledge gap, we measured phagocytosis, metabolism, and cytokine expression in response to a classical CF pathogen, Pseudomonas aeruginosa in monocyte-derived macrophages (MDM) isolated from CF F508del homozygous subjects and nonCF controls. Unexpectedly, we found that CFTR modulators enhanced phagocytosis in both CF and nonCF cohorts. CFTR triple modulators also inhibited MDM mitochondrial function, consistent with MDM activation. In contrast to studies in humans where CFTR modulators decreased serum inflammatory cytokine levels, modulators did not alter cytokine secretion in our system. Our studies therefore suggest modulator induced metabolic effects may promote bacterial clearance in both CF and nonCF monocyte-derived macrophages.
Collapse
Affiliation(s)
- Daniel S Aridgides
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Diane L Mellinger
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Lorraine L Gwilt
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Dallas L Mould
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Alix Ashare
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| |
Collapse
|
8
|
O'Carroll M. Advanced Cystic Fibrosis Lung Disease and Lung Transplantation in the Era of Cystic Fibrosis Transmembrane Conductance Regulator Modulators. Semin Respir Crit Care Med 2023; 44:260-268. [PMID: 36893762 DOI: 10.1055/s-0042-1758731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have changed the clinical landscape of cystic fibrosis (CF) by improving clinically significant outcome measures and quality of life of people with CF (pwCF). There are now long-term data showing improved 5-year survival with the use of ivacaftor, and the field continues to evolve at a rapid pace with the continued development of highly effective CFTR modulators. While the randomized controlled trials of CFTR modulators excluded patients with severe lung disease (forced expiratory volume in 1 second <40% predicted), observational data based on case reports and registry data show similar benefits in those with advanced lung disease. This has altered clinical practice particularly as it pertains to the role of lung transplantation in CF. This article describes the impact of highly effective modulator therapy (HEMT) on the natural history of CF and the influence on the timing of referral and consideration of listing for lung transplantation. CF clinicians play a pivotal role to ensure that the impetus of the CF foundation consensus guidelines to facilitate timely referral for lung transplantation is not lost among the excitement of anticipated sustained benefit from HEMT. While the widespread availability of elexacaftor/tezacaftor/ivacaftor over the past 2 years has been associated with a sharp drop in the number of people referred for consideration for lung transplantation and the number of people wait-listed for lung transplantation, it is difficult to accurately determine the true impact due to the confounding effect of the coronavirus disease 2019 pandemic. It is expected that lung transplantation will remain an important treatment for a smaller number of pwCF. Lung transplantation offers survival benefits in CF, and there remains an imperative to ensure timely consideration of lung transplantation in patients with advanced disease to further reduce the number of pwCF dying without consideration of lung transplant.
Collapse
Affiliation(s)
- Mark O'Carroll
- Respiratory Services, Auckland City Hospital, Te Toka Tumai, Te Whatu Ora - Health New Zealand, Auckland, New Zealand
| |
Collapse
|
9
|
Zhang S, Shrestha CL, Robledo-Avila F, Jaganathan D, Wisniewski BL, Brown N, Pham H, Carey K, Amer AO, Hall-Stoodley L, McCoy KS, Bai S, Partida-Sanchez S, Kopp BT. Cystic fibrosis macrophage function and clinical outcomes after elexacaftor/tezacaftor/ivacaftor. Eur Respir J 2023; 61:2102861. [PMID: 36265882 PMCID: PMC10066828 DOI: 10.1183/13993003.02861-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Abnormal macrophage function caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) is a critical contributor to chronic airway infections and inflammation in people with cystic fibrosis (PWCF). Elexacaftor/tezacaftor/ivacaftor (ETI) is a new CFTR modulator therapy for PWCF. Host-pathogen and clinical responses to CFTR modulators are poorly described. We sought to determine how ETI impacts macrophage CFTR function, resulting effector functions and relationships to clinical outcome changes. METHODS Clinical information and/or biospecimens were obtained at ETI initiation and 3, 6, 9 and 12 months post-ETI in 56 PWCF and compared with non-CF controls. Peripheral blood monocyte-derived macrophages (MDMs) were isolated and functional assays performed. RESULTS ETI treatment was associated with increased CF MDM CFTR expression, function and localisation to the plasma membrane. CF MDM phagocytosis, intracellular killing of CF pathogens and efferocytosis of apoptotic neutrophils were partially restored by ETI, but inflammatory cytokine production remained unchanged. Clinical outcomes including increased forced expiratory volume in 1 s (+10%) and body mass index (+1.0 kg·m-2) showed fluctuations over time and were highly individualised. Significant correlations between post-ETI MDM CFTR function and sweat chloride levels were observed. However, MDM CFTR function correlated with clinical outcomes better than sweat chloride. CONCLUSION ETI is associated with unique changes in innate immune function and clinical outcomes.
Collapse
Affiliation(s)
- Shuzhong Zhang
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin L Wisniewski
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Nevian Brown
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Hanh Pham
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine Carey
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Karen S McCoy
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin T Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Ribeiro CMP, Higgs MG, Muhlebach MS, Wolfgang MC, Borgatti M, Lampronti I, Cabrini G. Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. Int J Mol Sci 2023; 24:ijms24055010. [PMID: 36902441 PMCID: PMC10003689 DOI: 10.3390/ijms24055010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (C.M.P.R.); (G.C.)
| | - Matthew G. Higgs
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marianne S. Muhlebach
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (C.M.P.R.); (G.C.)
| |
Collapse
|
11
|
Januska MN, Walsh MJ. Single-Cell RNA Sequencing Reveals New Basic and Translational Insights in the Cystic Fibrosis Lung. Am J Respir Cell Mol Biol 2023; 68:131-139. [PMID: 36194688 PMCID: PMC9986558 DOI: 10.1165/rcmb.2022-0038tr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023] Open
Abstract
Cystic fibrosis (CF) is a multisystemic, autosomal recessive disorder caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene, with the majority of morbidity and mortality extending from lung disease. Single-cell RNA sequencing (scRNA-seq) has been leveraged in the lung and elsewhere in the body to articulate discrete cell populations, describing cell types, states, and lineages as well as their roles in health and disease. In this translational review, we provide an overview of the current applications of scRNA-seq to the study of the normal and CF lungs, allowing the beginning of a new cellular and molecular narrative of CF lung disease, and we highlight some of the future opportunities to further leverage scRNA-seq and complementary single-cell technologies in the study of CF as we bridge from scientific understanding to clinical application.
Collapse
Affiliation(s)
- Megan N. Januska
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
| | - Martin J. Walsh
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and
- Mount Sinai Center for RNA Biology and Medicine, New York, New York
| |
Collapse
|
12
|
Li X, Kolling FW, Aridgides D, Mellinger D, Ashare A, Jakubzick CV. ScRNA-seq expression of IFI27 and APOC2 identifies four alveolar macrophage superclusters in healthy BALF. Life Sci Alliance 2022; 5:e202201458. [PMID: 35820705 PMCID: PMC9275597 DOI: 10.26508/lsa.202201458] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Alveolar macrophages (AMs) reside on the luminal surface of the airways and alveoli, ensuring proper gas exchange by ingesting cellular debris and pathogens, and regulating inflammatory responses. Therefore, understanding the heterogeneity and diverse roles played by AMs, interstitial macrophages, and recruited monocytes is critical for treating airway diseases. We performed single-cell RNA sequencing on 113,213 bronchoalveolar lavage cells from four healthy and three uninflamed cystic fibrosis subjects and identified two MARCKS+LGMN+IMs, FOLR2+SELENOP+ and SPP1+PLA2G7+ IMs, monocyte subtypes, DC1, DC2, migDCs, plasmacytoid DCs, lymphocytes, epithelial cells, and four AM superclusters (families) based on the gene expression of IFI27 and APOC2 These four AM families have at least eight distinct functional members (subclusters) named after their differentially expressed gene(s): IGF1, CCL18, CXCL5, cholesterol, chemokine, metallothionein, interferon, and small-cluster AMs. Interestingly, the chemokine cluster further divides with each subcluster selectively expressing a unique combination of chemokines. One of the most striking observations, besides the heterogeneity, is the conservation of AM family members in relatively equal ratio across all AM superclusters and individuals. Transcriptional data and TotalSeq technology were used to investigate cell surface markers that distinguish resident AMs from recruited monocytes. Last, other AM datasets were projected onto our dataset. Similar AM superclusters and functional subclusters were observed, along with a significant increase in chemokine and IFN AM subclusters in individuals infected with COVID-19. Overall, functional specializations of the AM subclusters suggest that there are highly regulated AM niches with defined programming states, highlighting a clear division of labor.
Collapse
Affiliation(s)
- Xin Li
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Fred W Kolling
- Department of Biomedical Data Science, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Daniel Aridgides
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Diane Mellinger
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Alix Ashare
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| |
Collapse
|
13
|
Meoli A, Eickmeier O, Pisi G, Fainardi V, Zielen S, Esposito S. Impact of CFTR Modulators on the Impaired Function of Phagocytes in Cystic Fibrosis Lung Disease. Int J Mol Sci 2022; 23:12421. [PMID: 36293274 PMCID: PMC9604330 DOI: 10.3390/ijms232012421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches.
Collapse
Affiliation(s)
- Aniello Meoli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Olaf Eickmeier
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Giovanna Pisi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Stefan Zielen
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
14
|
Matthaiou EI, Chiu W, Conrad C, Hsu J. Macrophage Lysosomal Alkalinization Drives Invasive Aspergillosis in a Mouse Cystic Fibrosis Model of Airway Transplantation. J Fungi (Basel) 2022; 8:751. [PMID: 35887506 PMCID: PMC9321820 DOI: 10.3390/jof8070751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) lung transplant recipients (LTRs) exhibit a disproportionately high rate of life-threatening invasive aspergillosis (IA). Loss of the cystic fibrosis transmembrane conductance regulator (CFTR-/-) in macrophages (mφs) has been associated with lyosomal alkalinization. We hypothesize that this alkalinization would persist in the iron-laden post-transplant microenvironment increasing the risk of IA. To investigate our hypothesis, we developed a murine CF orthotopic tracheal transplant (OTT) model. Iron levels were detected by immunofluorescence staining and colorimetric assays. Aspergillus fumigatus (Af) invasion was evaluated by Grocott methenamine silver staining. Phagocytosis and killing of Af conidia were examined by flow cytometry and confocal microscopy. pH and lysosomal acidification were measured by LysoSensorTM and LysotrackerTM, respectively. Af was more invasive in the CF airway transplant recipient compared to the WT recipient (p < 0.05). CFTR-/- mφs were alkaline at baseline, a characteristic that was increased with iron-overload. These CFTR-/- mφs were unable to phagocytose and kill Af conidia (p < 0.001). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles acidified lysosomes, restoring the CFTR-/- mφs’ ability to clear conidia. Our results suggest that CFTR-/- mφs’ alkalinization interacts with the iron-loaded transplant microenvironment, decreasing the CF-mφs’ ability to kill Af conidia, which may explain the increased risk of IA. Therapeutic pH modulation after transplantation could decrease the risk of IA.
Collapse
Affiliation(s)
- Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| | - Wayland Chiu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Conrad
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Joe Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| |
Collapse
|
15
|
Jaganathan D, Bruscia EM, Kopp BT. Emerging Concepts in Defective Macrophage Phagocytosis in Cystic Fibrosis. Int J Mol Sci 2022; 23:7750. [PMID: 35887098 PMCID: PMC9319215 DOI: 10.3390/ijms23147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Chronic inflammation and decline in lung function are major reasons for morbidity in CF. Mutant CFTR expressed in phagocytic cells such as macrophages contributes to persistent infection, inflammation, and lung disease in CF. Macrophages play a central role in innate immunity by eliminating pathogenic microbes by a process called phagocytosis. Phagocytosis is required for tissue homeostasis, balancing inflammation, and crosstalk with the adaptive immune system for antigen presentation. This review focused on (1) current understandings of the signaling underlying phagocytic mechanisms; (2) existing evidence for phagocytic dysregulation in CF; and (3) the emerging role of CFTR modulators in influencing CF phagocytic function. Alterations in CF macrophages from receptor initiation to phagosome formation are linked to disease progression in CF. A deeper understanding of macrophages in the context of CFTR and phagocytosis proteins at each step of phagosome formation might contribute to the new therapeutic development of dysregulated innate immunity in CF. Therefore, the review also indicates future areas of research in the context of CFTR and macrophages.
Collapse
Affiliation(s)
- Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Benjamin T. Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| |
Collapse
|
16
|
A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages. Proc Natl Acad Sci U S A 2022; 119:e2121400119. [PMID: 35737834 PMCID: PMC9245668 DOI: 10.1073/pnas.2121400119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Iron misdistribution underlies various diseases, ranging from anemia to neurodegeneration, but approaches to addressing this general problem are lacking. We recently reported that a small molecule natural product, hinokitiol, is capable of restoring hemoglobinization in various animal models with missing iron transporters. We now show that hinokitiol is capable of redistributing iron systemically, which in turn restores iron homeostasis in ferroportin-deficient mice and in primary macrophages derived from patients with ferroportin disease. We also elucidated the stepwise mechanism of hinokitiol-mediated iron redistribution and physiological restoration. Together, these results provide foundational support for using a molecular prosthetics approach for better understanding and possibly treating iron misdistribution. Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor–dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution.
Collapse
|
17
|
Cabrini G, Rimessi A, Borgatti M, Pinton P, Gambari R. Overview of CF lung pathophysiology. Curr Opin Pharmacol 2022; 64:102214. [PMID: 35453033 DOI: 10.1016/j.coph.2022.102214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022]
Abstract
Defects of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein affect the homeostasis of chloride, bicarbonate, sodium, and water in the airway surface liquid, influencing the mucus composition and viscosity, which induces a severe condition of infection and inflammation along the whole life of CF patients. The introduction of CFTR modulators, novel drugs directly intervening to rescue the function of CFTR protein, opens a new era of experimental research. The review summarizes the most recent advancements to understand the characteristics of the infective and inflammatory pathology of CF lungs.
Collapse
Affiliation(s)
- Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Center of Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy.
| | - Alessandro Rimessi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy; Center of Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Center of Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy; Center of Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Center of Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, De Rose V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022; 11:cells11071243. [PMID: 35406809 PMCID: PMC8998122 DOI: 10.3390/cells11071243] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding for the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, expressed on the apical surface of epithelial cells. CFTR absence/dysfunction results in ion imbalance and airway surface dehydration that severely compromise the CF airway microenvironment, increasing infection susceptibility. Recently, novel therapies aimed at correcting the basic CFTR defect have become available, leading to substantial clinical improvement of CF patients. The restoration or increase of CFTR function affects the airway microenvironment, improving local defence mechanisms. CFTR modulator drugs might therefore affect the development of chronic airway infections and/or improve the status of existing infections in CF. Thus far, however, the full extent of these effects of CFTR-modulators, especially in the long-term remains still unknown. This review aims to provide an overview of current evidence on the potential impact of CFTR modulators on airway infections in CF. Their role in affecting CF microbiology, the susceptibility to infections as well as the potential efficacy of their use in preventing/decreasing the development of chronic lung infections and the recurrent acute exacerbations in CF will be critically analysed.
Collapse
Affiliation(s)
- Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy;
| | - Barbara Messore
- Adult Cystic Fibrosis Centre, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Nicola Ivan Loré
- WHO Collaborating Centre and TB Supranational Reference Laboratory, Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Irene Esposito
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Elisabetta Bignamini
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
19
|
Li S, Zhang H, Chang J, Li D, Cao P. Iron overload and mitochondrial dysfunction orchestrate pulmonary fibrosis. Eur J Pharmacol 2021; 912:174613. [PMID: 34740581 DOI: 10.1016/j.ejphar.2021.174613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/26/2022]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive heterogeneous disease of lung tissues with poor lung function caused by scar tissue. Due to our limited understanding of its mechanism, there is currently no treatment strategy that can prevent the development of PF. In recent years, iron accumulation and mitochondrial damage have been reported to participate in PF, and drugs that reduce iron content and improve mitochondrial function have shown significant efficacy in animal experimental models. Excessive iron leads to mitochondrial impairment, which may be the key cause that results in the dysfunction of various kinds of pulmonary cells and further promotes PF. As an emerging research hotspot, there are few targeted effective therapeutic strategies at present due to limited mechanistic understanding. In this review, the roles of iron homeostasis imbalance and mitochondrial damage in PF are summarized and discussed, highlighting a promising direction for finding truly effective therapeutics for PF.
Collapse
Affiliation(s)
- Shuxin Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China
| | - Hongmin Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China
| | - Jing Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China
| | - Dongming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China.
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China.
| |
Collapse
|
20
|
Gur M, Bar-Yoseph R, Toukan Y, Hanna M, Masarweh K, Bentur L. Twelve years of progressive Mycobacterium abscessus lung disease in CF-Response to Trikafta. Pediatr Pulmonol 2021; 56:4048-4050. [PMID: 34432957 DOI: 10.1002/ppul.25637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Michal Gur
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Bar-Yoseph
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yazeed Toukan
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Moneera Hanna
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Kamal Masarweh
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Lea Bentur
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
21
|
Harwood KH, McQuade RM, Jarnicki A, Schneider-Futschik EK. Anti-Inflammatory Influences of Cystic Fibrosis Transmembrane Conductance Regulator Drugs on Lung Inflammation in Cystic Fibrosis. Int J Mol Sci 2021; 22:7606. [PMID: 34299226 PMCID: PMC8306345 DOI: 10.3390/ijms22147606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is caused by a defect in the cystic fibrosis transmembrane conductance regulator protein (CFTR) which instigates a myriad of respiratory complications including increased vulnerability to lung infections and lung inflammation. The extensive influx of pro-inflammatory cells and production of mediators into the CF lung leading to lung tissue damage and increased susceptibility to microbial infections, creates a highly inflammatory environment. The CF inflammation is particularly driven by neutrophil infiltration, through the IL-23/17 pathway, and function, through NE, NETosis, and NLRP3-inflammasome formation. Better understanding of these pathways may uncover untapped therapeutic targets, potentially reducing disease burden experienced by CF patients. This review outlines the dysregulated lung inflammatory response in CF, explores the current understanding of CFTR modulators on lung inflammation, and provides context for their potential use as therapeutics for CF. Finally, we discuss the determinants that need to be taken into consideration to understand the exaggerated inflammatory response in the CF lung.
Collapse
Affiliation(s)
- Kiera H. Harwood
- Department of Biochemistry & Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Rachel M. McQuade
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, Melbourne University, Melbourne, VIC 3021, Australia;
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Andrew Jarnicki
- Lung Disease Research Laboratory, Department of Biochemistry & Pharmacology, Melbourne University, Melbourne, VIC 3021, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
22
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|
23
|
Ensinck M, Mottais A, Detry C, Leal T, Carlon MS. On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis. Front Pharmacol 2021; 12:662110. [PMID: 33986686 PMCID: PMC8111007 DOI: 10.3389/fphar.2021.662110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a severe genetic disease for which curative treatment is still lacking. Next generation biotechnologies and more efficient cell-based and in vivo disease models are accelerating the development of novel therapies for CF. Gene editing tools, like CRISPR-based systems, can be used to make targeted modifications in the genome, allowing to correct mutations directly in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Alternatively, with these tools more relevant disease models can be generated, which in turn will be invaluable to evaluate novel gene editing-based therapies for CF. This critical review offers a comprehensive description of currently available tools for genome editing, and the cell and animal models which are available to evaluate them. Next, we will give an extensive overview of proof-of-concept applications of gene editing in the field of CF. Finally, we will touch upon the challenges that need to be addressed before these proof-of-concept studies can be translated towards a therapy for people with CF.
Collapse
Affiliation(s)
- Marjolein Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Angélique Mottais
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Claire Detry
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Teresinha Leal
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Zhu Y, Chang J, Tan K, Huang SK, Liu X, Wang X, Cao M, Zhang H, Li S, Duan X, Chang Y, Fan Y, Cao P. Clioquinol Attenuates Pulmonary Fibrosis through Inactivation of Fibroblasts via Iron Chelation. Am J Respir Cell Mol Biol 2021; 65:189-200. [PMID: 33861690 DOI: 10.1165/rcmb.2020-0279oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Strict control of iron homeostasis is critical for the maintenance of normal lung function. Iron accumulates in the lungs of patients with idiopathic pulmonary fibrosis (PF), but the characteristics of iron metabolism in the pathogenesis of PF and related targeting therapeutics are not well studied. In this study, we investigated the cellular and molecular characteristics of iron metabolism in fibrotic lungs and further explored the efficacy of clioquinol (CQ) for the treatment of PF as well as its functional mechanism. Iron aggregates accumulated in the lungs of patients with idiopathic PF, and FTL (ferritin light chain) transcripts were increased in their pulmonary fibroblasts. In the bleomycin (BLM)-induced PF (BLM-PF) mouse model, pulmonary iron accumulation is a very early and concomitant event of PF. Labile iron pool levels in both fibroblasts and macrophages from the BLM-PF model were elevated, and iron metabolism was dysregulated. CQ attenuated PF induced by BLM and FITC, and iron-saturated CQ did not alleviate BLM-PF. Furthermore, CQ inhibited the activation of fibroblasts, including proliferation, fibrotic differentiation, proinflammatory cytokine secretion, and migration. In conclusion, our study demonstrated that CQ, acting as an iron chelator, attenuates experimental PF through inactivation of fibroblasts, providing support for targeting iron metabolism as a basis for PF treatment.
Collapse
Affiliation(s)
- Yumeng Zhu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Jing Chang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan; and
| | - Xin Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xiaofan Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Hongmin Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Shuxin Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xianglin Duan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yanzhong Chang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
25
|
Gammella E, Correnti M, Cairo G, Recalcati S. Iron Availability in Tissue Microenvironment: The Key Role of Ferroportin. Int J Mol Sci 2021; 22:ijms22062986. [PMID: 33804198 PMCID: PMC7999357 DOI: 10.3390/ijms22062986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Body iron levels are regulated by hepcidin, a liver-derived peptide that exerts its function by controlling the presence of ferroportin (FPN), the sole cellular iron exporter, on the cell surface. Hepcidin binding leads to FPN internalization and degradation, thereby inhibiting iron release, in particular from iron-absorbing duodenal cells and macrophages involved in iron recycling. Disruption in this regulatory mechanism results in a variety of disorders associated with iron-deficiency or overload. In recent years, increasing evidence has emerged to indicate that, in addition to its role in systemic iron metabolism, FPN may play an important function in local iron control, such that its dysregulation may lead to tissue damage despite unaltered systemic iron homeostasis. In this review, we focus on recent discoveries to discuss the role of FPN-mediated iron export in the microenvironment under both physiological and pathological conditions.
Collapse
|