1
|
Maskur M, Prihanto AA, Firdaus M, Kobun R, Nurdiani R. Review of the potential of bioactive compounds in seaweed to reduce histamine formation in fish and fish products. Ital J Food Saf 2025. [PMID: 39882994 DOI: 10.4081/ijfs.2025.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025] Open
Abstract
The formation of histamine in food is influenced by temperature, and histamine growth can be inhibited by maintaining a cold chain. However, simply relying on temperature control is insufficient, as certain bacteria can produce the enzyme histidine decarboxylase even at temperatures below 5°C. To address this issue, various methods, such as modified atmosphere packaging, high hydrostatic pressure, and irradiation, have been developed to control histamine in fishery products. However, these methods often require significant investments. Therefore, there is a need for a cost-effective solution to overcome this problem. This review explores a cost-effective solution through the utilization of bioactive compounds derived from underexplored seaweeds. Seaweed bioactive compounds, either in their pure form or as extracts, offer a promising alternative method to regulate histamine generation in fishery products due to their antibacterial activity, and this review provides comprehensive insights into the potential of different seaweed-derived bioactive compounds as inhibitors of histamine production, detailing their diverse applications in fishery products. It also explores the mechanism by which bioactive compounds prevent histamine formation by bacteria, focusing on the potential of seaweed bioactive compounds to inhibit bacterial histidine decarboxylase. Future trends in the inhibition of histidine decarboxylation are also discussed. The bioactive compounds considered, such as flavonoids, alkaloids, terpenes, and phenolic acids, exhibit their antibacterial effects through various mechanisms, including the inhibition of DNA and RNA synthesis, disruption of cytoplasmic and cell membranes, and inhibition of enzymes by reacting with sulfhydryl groups on proteins. In conclusion, the integration of underexplored seaweeds in fishery product preservation represents a promising and innovative approach for future food safety and sustainability.
Collapse
Affiliation(s)
- Muhammad Maskur
- Doctoral Program, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java; Polytechnic of Marine and Fisheries Bone, Bone, South Sulawesi.
| | - Asep Awaludin Prihanto
- Department Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java.
| | - Muhamad Firdaus
- Department Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java.
| | - Rovina Kobun
- Food Security Research Lab, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah.
| | - Rahmi Nurdiani
- Department Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java.
| |
Collapse
|
2
|
Chen K, Najer A, Charchar P, Saunders C, Thanapongpibul C, Klöckner A, Chami M, Peeler DJ, Silva I, Panariello L, Karu K, Loynachan CN, Frenette LC, Potter M, Tregoning JS, Parkin IP, Edwards AM, Clarke TB, Yarovsky I, Stevens MM. Non-invasive in vivo sensing of bacterial implant infection using catalytically-optimised gold nanocluster-loaded liposomes for urinary readout. Nat Commun 2024; 15:10321. [PMID: 39609415 PMCID: PMC11605077 DOI: 10.1038/s41467-024-53537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Staphylococcus aureus is a leading cause of nosocomial implant-associated infections, causing significant morbidity and mortality, underscoring the need for rapid, non-invasive, and cost-effective diagnostics. Here, we optimise the synthesis of renal-clearable gold nanoclusters (AuNCs) for enhanced catalytic activity with the aim of developing a sensitive colourimetric diagnostic for bacterial infection. All-atom molecular dynamics (MD) simulations confirm the stability of glutathione-coated AuNCs and surface access for peroxidase-like activity in complex physiological environments. We subsequently develop a biosensor by encapsulating these optimised AuNCs in bacterial toxin-responsive liposomes, which is extensively studied by various single-particle techniques. Upon exposure to S. aureus toxins, the liposomes rupture, releasing AuNCs that generate a colourimetric signal after kidney-mimetic filtration. The biosensor is further validated in vitro and in vivo using a hyaluronic acid (HA) hydrogel implant infection model. Urine samples collected from mice with bacteria-infected HA hydrogel implants turn blue upon substrate addition, confirming the suitability of the sensor for non-invasive detection of implant-associated infections. This platform has significant potential as a versatile, cost-effective diagnostic tool.
Collapse
Affiliation(s)
- Kaili Chen
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
| | - Patrick Charchar
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Catherine Saunders
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chalaisorn Thanapongpibul
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Klöckner
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Mohamed Chami
- BioEM lab, Biozentrum, University of Basel, Mattenstrasse 26, Basel, 4058, Switzerland
| | - David J Peeler
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Inês Silva
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Luca Panariello
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Kersti Karu
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Colleen N Loynachan
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Leah C Frenette
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Michael Potter
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Ivan P Parkin
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Andrew M Edwards
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Thomas B Clarke
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden.
| |
Collapse
|
3
|
Venianakis T, Parisis N, Christou A, Goulas V, Nikoloudakis N, Botsaris G, Goričan T, Grdadolnik SG, Tzakos AG, Gerothanassis IP. Phytochemical Analysis and Biological Evaluation of Carob Leaf ( Ceratonia siliqua L.) Crude Extracts Using NMR and Mass Spectroscopic Techniques. Molecules 2024; 29:5273. [PMID: 39598662 PMCID: PMC11596379 DOI: 10.3390/molecules29225273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Carob leaves have gained attention for their bioactive properties and traditional medicinal uses, including as treatment for diabetes, digestive disorders, and microbial infections. The aim of this study was to explore the phytochemical composition of carob leaf acetone extracts using advanced spectroscopic techniques. The combined use of heteronuclear nuclear magnetic resonance (NMR) experiments with 1D selective nuclear Overhauser effect spectroscopy (NOESY) offers detailed structural insights and enables the direct identification and quantification of key bioactive constituents in carob leaf extract. In particular, the NMR and mass spectrometry techniques revealed the presence of myricitrin as a predominant flavonoid, as well as a variety of glycosylated derivatives of myricetin and quercetin, in acetone extract. Furthermore, siliquapyranone and related gallotannins are essential constituents of the extract. The potent inhibitory effects of the carob leaf extract on Staphylococcus aureus (MIC = 50 μg mL-1) and a-glucosidase enzyme (IC50 = 67.5 ± 2.4 μg mL-1) were also evaluated. Finally, the antibacterial potency of carob leaf constituents were calculated in silico; digalloyl-parasorboside and gallic acid 4-O-glucoside exert a stronger bactericidal activity than the well-known myricitrin and related flavonoids. In summary, our findings provide valuable insights into the bioactive composition and health-promoting properties of carob leaves and highlight their potential for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Themistoklis Venianakis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.V.); (N.P.); (A.G.T.); (I.P.G.)
| | - Nikolaos Parisis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.V.); (N.P.); (A.G.T.); (I.P.G.)
| | - Atalanti Christou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (A.C.); (N.N.); (G.B.)
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (A.C.); (N.N.); (G.B.)
| | - Nikolaos Nikoloudakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (A.C.); (N.N.); (G.B.)
| | - George Botsaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (A.C.); (N.N.); (G.B.)
| | - Tjaša Goričan
- Laboratory for Molecular Structural Dynamics, National Institute of Chemistry, Theory Department, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (T.G.); (S.G.G.)
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, National Institute of Chemistry, Theory Department, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (T.G.); (S.G.G.)
| | - Andreas G. Tzakos
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.V.); (N.P.); (A.G.T.); (I.P.G.)
| | - Ioannis P. Gerothanassis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.V.); (N.P.); (A.G.T.); (I.P.G.)
| |
Collapse
|
4
|
Olchowik-Grabarek E, Sekowski S, Mierzwinska I, Zukowska I, Abdulladjanova N, Shlyonsky V, Zamaraeva M. Cell Type-Specific Anti- and Pro-Oxidative Effects of Punica granatum L. Ellagitannins. MEMBRANES 2024; 14:218. [PMID: 39452830 PMCID: PMC11509261 DOI: 10.3390/membranes14100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Pomegranate and its by-products contain a broad spectrum of phytochemicals, such as flavonoids, phenolic acids and tannins, having pleiotropic preventive and prophylactic properties in health disorders related to oxidative stress and microbial contamination. Here, we examined the biological effects of a pomegranate peel ellagitannins-enriched (>90%) extract, PETE. In vitro studies revealed that PETE has a strong antiradical action towards synthetic radicals and biologically relevant ROS surpassing or comparable to that of Trolox. In cellular models, it showed concentration-dependent (25-100 µg/mL) yet opposing effects depending on the cell membrane type and exposure conditions. In erythrocytes, PETE protected membrane integrity in the presence of the strong oxidant HClO and restored reduced glutathione levels to up to 85% of the control value while having much weaker acute and long-term intrinsic effects. Such protection persisted even after the removal of the extract from cells, indicating strong membrane interaction. In HeLa cancer cells, and at concentrations lower than those used for red blood cells, PETE induced robust potentiation of ROS production and mitochondrial potential dissipation, leading to autophagy-like membrane morphology changes and cell death. In S. aureus, the growth arrest and bacterial death in the presence of PETE (with MIC = 31.25 µg/mL and MBC = 125 µg/mL, respectively) can be linked to the tripled ROS induction by the extract in the same concentration range. This study indicates a specificity of ROS production by the pomegranate extract depending on the type of cell, the concentration of the extract and the time of incubation. This specificity witnesses a strong potential of the extract components as candidates in antioxidant and pro-oxidant therapy.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Iga Mierzwinska
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Izabela Zukowska
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Nodira Abdulladjanova
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100125, Uzbekistan;
| | - Vadim Shlyonsky
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| |
Collapse
|
5
|
Elhassan E, Omolo CA, Gafar MA, Kiruri LW, Ibrahim UH, Ismail EA, Devnarain N, Govender T. Disease-Inspired Design of Biomimetic Tannic Acid-Based Hybrid Nanocarriers for Enhancing the Treatment of Bacterial-Induced Sepsis. Mol Pharm 2024; 21:4924-4946. [PMID: 39214595 DOI: 10.1021/acs.molpharmaceut.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study explored the development of novel biomimetic tannic acid-based hybrid nanocarriers (HNs) for targeted delivery of ciprofloxacin (CIP-loaded TAH-NPs) against bacterial-induced sepsis. The prepared CIP-loaded TAH-NPs exhibited appropriate physicochemical characteristics and demonstrated biocompatibility and nonhemolytic properties. Computational simulations and microscale thermophoresis studies validated the strong binding affinity of tannic acid (TA) and its nanoformulation to human Toll-like receptor 4, surpassing that of the natural substrate lipopolysaccharide (LPS), suggesting a potential competitive inhibition against LPS-induced inflammatory responses. CIP released from TAH-NPs displayed a sustained release profile over 72 h. The in vitro antibacterial activity studies revealed that CIP-loaded TAH-NPs exhibited enhanced antibacterial efficacy and efflux pump inhibitory activity. Specifically, they showed a 3-fold increase in biofilm eradication activity against MRSA and a 2-fold increase against P. aeruginosa compared to bare CIP. Time-killing assays demonstrated complete bacterial clearance within 8 h of treatment with CIP-loaded TAH-NPs. In vitro DPPH scavenging and anti-inflammatory investigations confirmed the ability of the prepared hybrid nanosystem to neutralize reactive oxygen species (ROS) and modulate LPS-induced inflammatory responses. Collectively, these results suggest that CIP-loaded TAH-NPs may serve as an innovative nanocarrier for the effective and targeted delivery of antibiotics against bacterial-induced sepsis.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P.O. Box 14634-00800, Nairobi 00800, Kenya
| | - Mohammed Ali Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4300, South Africa
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| |
Collapse
|
6
|
Mo Z, Yuan J, Guan X, Peng J. Advancements in Dermatological Applications of Curcumin: Clinical Efficacy and Mechanistic Insights in the Management of Skin Disorders. Clin Cosmet Investig Dermatol 2024; 17:1083-1092. [PMID: 38765192 PMCID: PMC11100965 DOI: 10.2147/ccid.s467442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Curcumin, derived from Curcuma longa (turmeric), exhibits significant potential in dermatology, addressing conditions like atopic dermatitis, psoriasis, chronic wounds, skin cancer, and infections through its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. This review synthesizes evidence on curcumin's mechanisms, including modulation of immune responses and promotion of wound healing, showcasing its efficacy in reducing inflammation, cytokine levels, and enhancing skin barrier functions. Studies highlight curcumin's ability to selectively target tumor cells, suggesting a multifaceted approach to cancer therapy with minimal side effects. Despite promising therapeutic benefits, challenges remain in bioavailability, potency, and targeted delivery, underscoring the need for further research to optimize dosages, delivery methods, and assess long-term safety. The integration of curcumin into dermatological practice requires a balanced consideration of evidence-based efficacy and safety. Curcumin's comprehensive utility in dermatology, coupled with the necessity for advanced scientific exploration, emphasizes the importance of combining traditional knowledge with contemporary research to improve patient care in dermatology. This approach could significantly enhance outcomes for individuals with skin-related conditions, marking curcumin as a versatile and promising agent in the field.
Collapse
Affiliation(s)
- Zhiming Mo
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Jiayi Yuan
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Xuelian Guan
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Jianhong Peng
- Department of Internal Medicine, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| |
Collapse
|
7
|
Czerkas K, Olchowik-Grabarek E, Łomanowska M, Abdulladjanova N, Sękowski S. Antibacterial Activity of Plant Polyphenols Belonging to the Tannins against Streptococcus mutans-Potential against Dental Caries. Molecules 2024; 29:879. [PMID: 38398630 PMCID: PMC10892310 DOI: 10.3390/molecules29040879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Dental caries (DC) is the most common oral pathology. The main bacteria responsible for DC is Streptococcus mutans. One of the strategies that can decrease or eliminate the risk of DC development is using compounds that will inhibit both the growth and virulence factors of S. mutans. Tannins are plant polyphenols that have strong antibacterial activity. The purpose of this study was to assess the antibacterial activity of three tannins against S. mutans. In this investigation, microbiological tests (MIC and MBC) and physicochemical techniques like the fluorescence measurements of tannins' interaction with S. mutans cell membrane and membrane proteins, zeta potential, and thermodynamic analyses were used to obtain knowledge about the antibacterial potential of the investigated compounds against S. mutans as well as about the mechanisms associated with antibacterial activity. The obtained results demonstrate that the used compounds exhibit high antibacterial activity against S. mutans. The mechanisms of their antibacterial activity are linked to the strong change in the S. mutans membrane fluidity and potential, and to their interaction with membrane proteins that can result in great disturbance of bacterial physiology and ultimately the inhibition of bacterial growth, triggering their death. Therefore, it can be concluded that the investigated compounds can be potentially used as natural factors in the prevention of dental caries.
Collapse
Affiliation(s)
- Krzysztof Czerkas
- Doctoral School of Exact and Natural Sciences, University of Bialystok, 15-254 Bialystok, Poland
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland; (M.Ł.); (S.S.)
| | - Magdalena Łomanowska
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland; (M.Ł.); (S.S.)
| | - Nodira Abdulladjanova
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan;
| | - Szymon Sękowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland; (M.Ł.); (S.S.)
| |
Collapse
|
8
|
Przybylska D, Kucharska AZ, Piórecki N, Sozański T. The Health-Promoting Quality Attributes, Polyphenols, Iridoids and Antioxidant Activity during the Development and Ripening of Cornelian Cherry ( Cornus mas L.). Antioxidants (Basel) 2024; 13:229. [PMID: 38397827 PMCID: PMC10885943 DOI: 10.3390/antiox13020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
This study defined the physicochemical attributes, composition, and antioxidant capacity of four Polish cultivars of cornelian cherry (CC) at six stages of development and ripening. A total of 52 metabolites were identified by UPLC-ESI-qTOF-MS/MS and quantified by HPLC-PDA. In general, phenolic acids, hydrolyzable tannins, flavonols, iridoids, antioxidant activity, organic acids, and vitamin C decreased, while anthocyanins, malic acid, sugars, and titratable acidity increased. For the first time, we determined the evolution of the CC chemical properties and the metabolic behavior and quantified the individual compounds, and groups of compounds during ripening, in particular gallotannins, ellagitannins, iridoids, and organic acids. The main novelty of our study is that CC is a valuable resource for utilization at different degrees of maturity. We showed that unripe fruits in particular deserve valorization, as they contained the highest content of total bioactive phytocompounds (5589.1-6779.6 mg/100 g dw)-primarily phenolic acids > iridoids > tannins-and the highest antioxidant capacity. The intermediate stages were the most abundant in vitamin C (341.1-495.6 mg/100 g dw), ellagic acid (5.9-31.6 mg/100 g dw), gallotannins (47.8-331.1 mg/100 g dw), and loganic acid (1393.0-2839.4 mg/100 g dw). The ripe fruits contained less bioactive phytocompounds (1403.7-1974.6 mg/100 g dw)-primarily iridoids > phenolic acids > tannins > anthocyanins-and the lowest antioxidant capacity. On the other hand, ripe fruits showed the highest content of anthocyanins (30.8-143.2 mg/100 g dw), sugars (36.4-78.9 g/100 g dw), malic acid (5.5-12.2 g/100 g dw), and, favorably for the nutritional applications, the highest sugar-to-acids ratio (3.0-6.4). Our work illustrates in detail that quality attributes and the content of health-promoting phytocompounds in CC depend on the ripening stage and on the cultivar. These results advance the scientific knowledge about CC. Our findings can be helpful to select the optimal properties of CC for the development of diverse functional foods and phytopharmaceuticals applied in the prevention of civilization diseases.
Collapse
Affiliation(s)
- Dominika Przybylska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Narcyz Piórecki
- Arboretum and Institute of Physiography in Bolestraszyce, 37-700 Przemyśl, Poland;
- Institute of Physical Culture Sciences, Medical College, University of Rzeszów, Cicha 2A, 35-326 Rzeszów, Poland
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| |
Collapse
|
9
|
Molino S, Pilar Francino M, Ángel Rufián Henares J. Why is it important to understand the nature and chemistry of tannins to exploit their potential as nutraceuticals? Food Res Int 2023; 173:113329. [PMID: 37803691 DOI: 10.1016/j.foodres.2023.113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/08/2023]
Abstract
Tannins comprise a large group of polyphenols that can differ widely in chemical composition and molecular weight. The use of tannins dates back to antiquity, but it is only in recent years that their potential use as nutraceuticals associated with the human diet is beginning to be exploited. Although the biological effects of these phytocomplexes have been studied for many years, there are still several open questions regarding their chemistry and biotransformation. The vastness of the molecules that make up the class of tannins has made their characterisation, as well as their nomenclature and classification, a daunting task. This review has been written with the aim of bringing order to the chemistry of tannins by including aspects that are sometimes still overlooked or should be updated with new research in order to understand the potential of these phytocomplexes as active ingredients or technological components for nutraceutical products. Future trends in tannin research should address many questions that are still open, such as determining the exact biosynthetic pathways of all classes of tannins, the actual biological effects determined by the interaction of tannins with other molecules, their metabolization, and the best extraction methods, but with a view to market requirements.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain; Silvateam Spa, R&D Unit, San Michele Mondovì, Italy
| | - M Pilar Francino
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain; CIBER en Epidemiología y Salud Pública, Madrid 28029, Spain.
| | - José Ángel Rufián Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.
| |
Collapse
|
10
|
Olchowik-Grabarek E, Czerkas K, Matchanov AD, Esanov RS, Matchanov UD, Zamaraeva M, Sekowski S. Antibacterial and Antihemolytic Activity of New Biomaterial Based on Glycyrrhizic Acid and Quercetin (GAQ) against Staphylococcus aureus. J Funct Biomater 2023; 14:368. [PMID: 37504863 PMCID: PMC10381813 DOI: 10.3390/jfb14070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
The goal of this study is to obtain and characterize the complex of quercetin with glycyrrhizic acid, which is known to serve as a drug delivery system. Quercetin is a flavonoid with a wide range of biological activities, including an antimicrobial effect. However, quercetin instability and low bioavailability that limits its use in medical practice makes it necessary to look for new nanoformulations of it. The formation of the GAQ complex (2:1) was confirmed by using UV and FT-IR spectroscopies. It was found that the GAQ exhibited antimicrobial and antihemolytical activities against S. aureus bacteria and its main virulent factor-α-hemolysin. The IC50 value for the antihemolytical effect of GAQ was 1.923 ± 0.255 µg/mL. Using a fluorescence method, we also showed that the GAQ bound tightly to the toxin that appears to underlie its antihemolytic activity. In addition, another mechanism of the antihemolytic activity of the GAQ against α-hemolysin was shown, namely, its ability to increase the rigidity of the outer layer of the erythrocyte membrane and thus inhibit the incorporation of α-hemolysin into the target cells, increasing their resistance to the toxin. Both of these effects of GAQ were observed at concentrations below the MIC value for S. aureus growth, indicating the potential of the complex as an antivirulence agent.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | - Krzysztof Czerkas
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | | | - Rahmat Sulton Esanov
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan
- National University of Uzbekistan, Tashkent 700174, Uzbekistan
| | | | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| |
Collapse
|
11
|
Sekowski S, Naziris N, Chountoulesi M, Olchowik-Grabarek E, Czerkas K, Veiko A, Abdulladjanova N, Demetzos C, Zamaraeva M. Interaction of Rhus typhina Tannin with Lipid Nanoparticles: Implication for the Formulation of a Tannin-Liposome Hybrid Biomaterial with Antibacterial Activity. J Funct Biomater 2023; 14:296. [PMID: 37367260 DOI: 10.3390/jfb14060296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Tannins are natural plant origin polyphenols that are promising compounds for pharmacological applications due to their strong and different biological activities, including antibacterial activity. Our previous studies demonstrated that sumac tannin, i.e., 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose (isolated from Rhus typhina L.), possesses strong antibacterial activity against different bacterial strains. One of the crucial factors of the pharmacological activity of tannins is their ability to interact with biomembranes, which may result in the penetration of these compounds into cells or the realization of their activity on the surface. The aim of the current work was to study the interactions of sumac tannin with liposomes as a simple model of the cellular membrane, which is widely used in studies focused on the explanation of the physicochemical nature of molecule-membrane interactions. Additionally, these lipid nanovesicles are very often investigated as nanocarriers for different types of biologically active molecules, such as antibiotics. In the frame of our study, using differential scanning calorimetry, zeta-potential, and fluorescence analysis, we have shown that 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose interacts strongly with liposomes and can be encapsulated inside them. A formulated sumac-liposome hybrid nanocomplex demonstrated much stronger antibacterial activity in comparison with pure tannin. Overall, by using the high affinity of sumac tannin to liposomes, new, functional nanobiomaterials with strong antibacterial activity against Gram-positive strains, such as S. aureus, S. epidermitis, and B. cereus, can be formulated.
Collapse
Affiliation(s)
- Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Krzysztof Czerkas
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Artem Veiko
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola, 5, 230030 Grodno, Belarus
| | - Nodira Abdulladjanova
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| |
Collapse
|
12
|
Electrophysiological and spectroscopic investigation of hydrolysable tannins interaction with α-hemolysin of S. aureus. Bioelectrochemistry 2023; 150:108318. [PMID: 36470005 DOI: 10.1016/j.bioelechem.2022.108318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
In this study, using bilayer lipid membrane technique, we report a novel facet of antihemolytic activity of two tannins (1,2,3,4,5-penta-O-galloyl-β-D-glucose (PGG) and 1,2-di-O-galloyl-4,6-valoneoyl-β-D-glucose (dGVG)), which consists in inhibiting the formation of α-hemolysin channels and blocking the conductivity of already formed channels. These effects were observed at tannin concentrations well below minimal inhibitory concentration values for S. aureus growth. Using spectroscopic methods, we show that these two tannins differing in molecular structure but having the same number of -OH groups and aromatic rings form firm complexes with hemolysin in aqueous solutions, which may underlie the disruption of its subsequent interaction with the membrane, thus preventing hemolysis of erythrocytes. In all experimental settings, PGG was the more active compound compared to dGVG, that indicates the important role of the flexibility of the tannin molecule in interaction with the toxin. In addition, we found that PGG, but not dGVG, was able to block the release of the toxin by bacterial cells. This toxin is a strong pathogenic factor causing a number of diseases and therefore is considered as a virulence target for treatment of S. aureus infection, so the data obtained suggest that PGG and possibly other tannins of similar structure have therapeutic potential in fighting the virulence of S. aureus.
Collapse
|
13
|
Inhibition of AGEs formation, antioxidative, and cytoprotective activity of Sumac (Rhus typhina L.) tannin under hyperglycemia: molecular and cellular study. Mol Cell Biochem 2023; 478:443-457. [PMID: 35861915 DOI: 10.1007/s11010-022-04522-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
It is well known that accumulation of advanced glycation ends products (AGEs) lead to various diseases such as diabetes and diabetic complications. In this study we showed that hydrolysable tannin from Sumac (Rhus typhina L.)-3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose (C55H40O34) inhibited generation of glycation markers in bovine serum albumin such as AGEs, dityrosine, N'-formylkynurenine and kynurenine under high glucose treatment. This effect was accompanied by stabilization of the protein structure, as was shown using ATR-FT-IR spectroscopy and fluorescence methods. C55H40O34 exhibited also a neuroprotective effect in high glucose-exposed Neuro2A cells suppressing ROS formation and expression of phospho NF-κβ and iNOS. At the same time C55H40O34 increased expression of heme oxygenase-1 and NAD(P)H: quinone oxidoreductase and mitochondrial complex I and V activities. Results from this study demonstrates a potent antiglycation activity of C55H40O34 in vitro and indicates its possible therapeutic application in glycation related diseases.
Collapse
|
14
|
Antimicrobial Activity of Quercetin, Naringenin and Catechin: Flavonoids Inhibit Staphylococcus aureus-Induced Hemolysis and Modify Membranes of Bacteria and Erythrocytes. Molecules 2023; 28:molecules28031252. [PMID: 36770917 PMCID: PMC9920354 DOI: 10.3390/molecules28031252] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Search for novel antimicrobial agents, including plant-derived flavonoids, and evaluation of the mechanisms of their antibacterial activities are pivotal objectives. The goal of this study was to compare the antihemolytic activity of flavonoids, quercetin, naringenin and catechin against sheep erythrocyte lysis induced by α-hemolysin (αHL) produced by the Staphylococcus aureus strain NCTC 5655. We also sought to investigate the membrane-modifying action of the flavonoids. Lipophilic quercetin, but not naringenin or catechin, effectively inhibited the hemolytic activity of αHL at concentrations (IC50 = 65 ± 5 µM) below minimal inhibitory concentration values for S. aureus growth. Quercetin increased the registered bacterial cell diameter, enhanced the fluidity of the inner and surface regions of bacterial cell membranes and raised the rigidity of the hydrophobic region and the fluidity of the surface region of erythrocyte membranes. Our findings provide evidence that the antibacterial activities of the flavonoids resulted from a disorder in the structural organization of bacterial cell membranes, and the antihemolytic effect of quercetin was related to the effect of the flavonoid on the organization of the erythrocyte membrane, which, in turn, increases the resistance of the target cells (erythrocytes) to αHL and inhibits αHL-induced osmotic hemolysis due to prevention of toxin incorporation into the target membrane. We confirmed that cell membrane disorder could be one of the direct modes of antibacterial action of the flavonoids.
Collapse
|
15
|
Olchowik-Grabarek E, Sękowski S, Kwiatek A, Płaczkiewicz J, Abdulladjanova N, Shlyonsky V, Swiecicka I, Zamaraeva M. The Structural Changes in the Membranes of Staphylococcus aureus Caused by Hydrolysable Tannins Witness Their Antibacterial Activity. MEMBRANES 2022; 12:1124. [PMID: 36363679 PMCID: PMC9698758 DOI: 10.3390/membranes12111124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Polyphenols, including tannins, are phytochemicals with pronounced antimicrobial properties. We studied the activity of two hydrolysable tannins, (i) gallotannin-1,2,3,4,5-penta-O-galloyl-β-D-glucose (PGG) and (ii) ellagitannin-1,2-di-O-galloyl-4,6-valoneoyl-β-D-glucose (dGVG), applied alone and in combination with antibiotics against Staphylococcus aureus strain 8324-4. We also evaluated the effect of these tannins on bacterial membrane integrity and fluidity and studied their interaction with membrane proteins and lipids. A correlation between the antimicrobial activity of the tannins and their membranotropic action depending on the tannin molecular structure has been demonstrated. We found that the antibacterial activity of PGG was stronger than dGVG, which can be associated with its larger flexibility, dipole moment, and hydrophobicity. In addition, we also noted the membrane effects of the tannins observed as an increase in the size of released bacterial membrane vesicles.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Szymon Sękowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Jagoda Płaczkiewicz
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Nodira Abdulladjanova
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan
| | - Vadim Shlyonsky
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Izabela Swiecicka
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| |
Collapse
|
16
|
Czajkowska-Szczykowska D, Olchowik-Grabarek E, Sękowski S, Żarkowski J, Morzycki JW. Concise synthesis of E/F ring spiroethers from tigogenin. Carbaanalogs of steroidal sapogenins and their biological activity. J Steroid Biochem Mol Biol 2022; 224:106174. [PMID: 36055516 DOI: 10.1016/j.jsbmb.2022.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 10/31/2022]
Abstract
A four-step synthesis of five- and six-membered E/F ring spiroethers from tigogenin has been developed. An efficient strategy that features bis-Grignard reaction of dinorcholanic lactone with appropriate bis(bromomagnesio)alkanes followed by acid-mediated spirocyclization was employed to construct a new class of steroid compounds having E and F ring junction as an oxa-carbacyclic system. The synthesized carbaanalogs interact with liposomes and albumin, and also exhibit antibacterial and antifungal activity, demonstrating their pharmacological potential.
Collapse
Affiliation(s)
- Dorota Czajkowska-Szczykowska
- Natural Products Chemistry Research Group, Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, Białystok 15-245, Poland.
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, K. Ciołkowskiego 1 J, Białystok 15-245, Poland
| | - Szymon Sękowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, K. Ciołkowskiego 1 J, Białystok 15-245, Poland
| | - Jacek Żarkowski
- Natural Products Chemistry Research Group, Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, Białystok 15-245, Poland
| | - Jacek W Morzycki
- Natural Products Chemistry Research Group, Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, Białystok 15-245, Poland
| |
Collapse
|
17
|
Byun H, Jang GN, Hong MH, Yeo J, Shin H, Kim WJ, Shin H. Biomimetic anti-inflammatory and osteogenic nanoparticles self-assembled with mineral ions and tannic acid for tissue engineering. NANO CONVERGENCE 2022; 9:47. [PMID: 36214916 PMCID: PMC9551158 DOI: 10.1186/s40580-022-00338-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Bone healing involves complex processes including inflammation, induction, and remodeling. In this context, anti-inflammatory and osteoconductive multi-functional nanoparticles have attracted considerable attention for application in improved bone tissue regeneration. In particular, nanoparticles that promote suppression of inflammatory response after injury and direction of desirable tissue regeneration events are of immense interest to researchers. We herein report a one-step method to prepare multi-functional nanoparticles using tannic acid (TA) and simulated body fluid (SBF) containing multiple mineral ions. Mineral-tannic acid nanoparticles (mTNs) were rapidly fabricated in 10 min, and their size (around 250-350 nm) and chemical composition were controlled through the TA concentration. In vitro analysis using human adipose derived stem cells (hADSCs) showed that mTNs effectively scavenged reactive oxygen species (ROS) and enhanced osteogenesis of hADSCs by inducing secretion of alkaline phosphatase. mTNs also increased osteogenic marker gene expression even in the presence of ROS, which can generally arrest osteogenesis (OPN: 1.74, RUNX2: 1.90, OCN: 1.47-fold changes relative to cells not treated with mTNs). In vivo analysis using a mouse peritonitis model revealed that mTNs showed anti-inflammatory effects by decreasing levels of pro-inflammatory cytokines in blood (IL-6: 73 ± 4, TNF-α: 42 ± 2%) and peritoneal fluid (IL-6: 78 ± 2, TNF-α: 21 ± 6%). We believe that this one-step method for fabrication of multi-functional nanoparticles has considerable potential in tissue engineering approaches that require control of complex microenvironments, as required for tissue regeneration.
Collapse
Affiliation(s)
- Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Gyu Nam Jang
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Min-Ho Hong
- Department of Dental Biomaterials and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Jiwon Yeo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyunjung Shin
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
18
|
Olchowik-Grabarek E, Mies F, Sekowski S, Dubis AT, Laurent P, Zamaraeva M, Swiecicka I, Shlyonsky V. Enzymatic synthesis and characterization of aryl iodides of some phenolic acids with enhanced antibacterial properties. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184011. [PMID: 35872033 DOI: 10.1016/j.bbamem.2022.184011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Phenolic acids represent a class of drugs with mild antibacterial properties. We have synthesized iodinated gallic and ferulic acids and together with commercially available iodinated forms of salicylic acids studied their cytotoxicity, bacteriostatic and anti-virulence action. Out of these, iodogallic acid had lowest minimal inhibitory concentration (MIC) against Staphylococcus aureus (MIC = 0.4 mM/118.8 μg/ml). Yet, it had strong effect on erythrocyte membrane lipid ordering and on α-hemolysin secretion by the bacteria at lower non-bacteriostatic and non-cytotoxic concentrations (<0.1 mM). Iodogallic acid formed static complexes with α-hemolysin in solutions (logKb = 4.69 ± 0.07) and inhibited its nano-pore conduction in artificial lipid bilayers (IC50 = 37.9 ± 5.3 μM). These effects of iodogallic acid converged on prevention of hemolysis induced by α-hemolysin (IC50 = 41.5 ± 4.2 μM) and pointed to enhanced and diverse anti-virulence properties of some aryl iodides. The analysis of molecular surface electrostatic charge distribution, molecular hydrophilicity, electronegativity, and dipole moment of studied compounds suggested the importance of the number of hydroxyl groups and their proximity to iodine in anti-virulence activity manifestation. In iodogallic acid, charge redistribution resulted in higher hydrophilicity without concomitant change in overall molecular electronegativity and dipole moment compared to non-iodinated gallic acid. This study shows new directions for the development of antibacterial/antivirulence therapeutics.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Poland
| | - Frédérique Mies
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université libre de Bruxelles, Belgium
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Poland
| | - Alina T Dubis
- Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, Poland
| | - Pascal Laurent
- Laboratory of Chemistry Instruction, Faculty of Medicine, Université libre de Bruxelles, Belgium
| | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Poland
| | - Izabela Swiecicka
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Poland
| | - Vadim Shlyonsky
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université libre de Bruxelles, Belgium.
| |
Collapse
|
19
|
Sharma A, Verma C, Mukhopadhyay S, Gupta A, Gupta B. Development of sodium alginate/glycerol/tannic acid coated cotton as antimicrobial system. Int J Biol Macromol 2022; 216:303-311. [PMID: 35777513 DOI: 10.1016/j.ijbiomac.2022.06.168] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 01/20/2023]
Abstract
Present study aims at developing antimicrobial cotton gauze by dip coating of sodium alginate (SA), glycerol (Gly) and tannic acid (TA) blend. SA blends were prepared with varying concentration of glycerol in the range of 10-40 %. Blended films were fabricated and characterized by Fourier transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD), tensile studies, and contact angle analysis. The mechanical behavior of films indicated significant decrease in the tensile strength and modulus with the increase in the glycerol content due to the plasticization effect. The hydrophilicity of the blend films increased with increase in the glycerol content. TA was added to the blend as an antimicrobial agent. These blends were coated on the cotton gauze by dip coating method and their characterizations were carried out by the scanning electron microscopy (SEM) which revealed a smooth coating of SA:Gly:TA blend on cotton gauze. Antimicrobial analysis of TA coated gauzes was carried out which showed >95 % viable colony reduction against E. coli and S. aureus. Cytocompatibility studies indicated excellent cell-compatible activity. These results implicated that such coated gauzes are promising candidate that hold the great potential to be utilized as infection-resistant material in the health care sector.
Collapse
Affiliation(s)
- Ankita Sharma
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Amlan Gupta
- Sikkim Manipal Institute of Medical Sciences, Tadong, Gangtok, Sikkim 737102, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
20
|
Vaillancourt K, Ben Lagha A, Grenier D. Effects of a Berry Polyphenolic Fraction on the Pathogenic Properties of Porphyromonas gingivalis. FRONTIERS IN ORAL HEALTH 2022; 3:923663. [PMID: 35784661 PMCID: PMC9245044 DOI: 10.3389/froh.2022.923663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis expresses a broad array of virulence factors that enable it to play a central role in the etiopathogenesis of periodontitis. The objective of the present study was to assess the effects of a berry polyphenolic fraction (Orophenol®) composed of extracts from cranberry, wild blueberry, and strawberry on the main pathogenic determinants of P. gingivalis. Orophenol® attenuated the growth of P. gingivalis and decreased its hemolytic activity, its adherence to a basement membrane matrix model, and its proteinase activities. The berry polyphenolic fraction also impaired the production of reactive oxygen species (ROS) by oral keratinocytes stimulated with P. gingivalis. Lastly, using an in vitro model of oral keratinocyte barrier, the fraction exerted a protective effect against the damages mediated by P. gingivalis. In conclusion, the berry polyphenolic fraction investigated in the present study attenuated several pathogenic properties of P. gingivalis. Although future clinical investigations are required, our study provided evidence that the polyphenols contained in this fraction may represent bioactive molecules of high interest for the prevention and/or treatment of periodontal disease.
Collapse
|
21
|
Wang L, Huang B, Duan X, Jiang G, Xiong Y, Zhong S, Wang J, Liao X. The development of three ruthenium-based antimicrobial metallodrugs: Design, synthesis, and activity evaluation against Staphylococcus aureus. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211055098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of new classes of antimicrobial is urgently needed due to the widespread occurrence of multi-resistant pathogens. In this study, three novel ruthenium complexes: [Ru(dmob)2(BTPIP)](PF6)2 (Ru(II)-1), [Ru(dbp)2(BTPIP)](PF6)2 (Ru(II)-2), and [Ru(dpa)2(BTPIP)](PF6)2 (Ru(II)-3) (dpa = 2,2’-dipyridylamine, dmob = 4,4’-dimethoxy-2,2’-bipyridyl, dbp = 4,4’-di- tert-butyl-2,2’-dipyridyl, BTPIP = 4-(benzo[ b]thiophen-2-yl)phenyl-1 H-imidazo[4,5- f][1,10]phenanthroline) are synthesized and investigated as antimicrobial metallodrugs. We demonstrate that all three complexes have significant antimicrobial activity against Staphylococcus aureus by testing their minimal inhibitory concentrations = 0.0015–0.0125 mg/mL. The antibacterial activity of the best active complex Ru(II)-3 is 13 times that of ofloxacin (minimal inhibitory concentration = 19.5 μg/mL). Importantly, Ru(II)-3 not only increases the susceptibility of Staphylococcus aureus to existing common antibiotics but also shows noticeably delayed and decreased resistance in Staphylococcus aureus since the minimal inhibitory concentration values of Ru(II)-3 only increased eightfold times after 20 passages. Furthermore, the biofilms formation and rabbit erythrocyte hemolysis assays verified that Ru(II)-3 also efficiently inhibit the biofilm formation and toxin secretion of Staphylococcus aureus.
Collapse
Affiliation(s)
- Liqiang Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Bin Huang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, P.R. China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Guijuan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Shengfei Zhong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| |
Collapse
|
22
|
Hydrolysable tannins change physicochemical parameters of lipid nano-vesicles and reduce DPPH radical - Experimental studies and quantum chemical analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183778. [PMID: 34537215 DOI: 10.1016/j.bbamem.2021.183778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/28/2021] [Accepted: 09/12/2021] [Indexed: 11/23/2022]
Abstract
Tannins belong to plant secondary metabolites exhibiting a wide range of biological activity. One of the important aspects of the realization of the biological effects of tannins is the interaction with lipids of cell membranes. In this work we studied the interaction of two hydrolysable tannins: 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T1) which had the same number of both aromatic rings (5) and hydroxyl groups (15) but differing in flexibility due to the presence of valoneoyl group in the T1 molecule with DMPC (dimyristoylphosphatidylcholine) lipid nano-vesicles (liposomes). Tannins-liposomes interactions were investigated using fluorescence spectroscopy, differential scanning calorimetry, laser Doppler velocimetry, dynamic light scattering and Fourier Transform Infra-Red spectroscopy. It was shown that more flexible PGG molecules stronger decreased the microviscosity of the liposomal membranes and increased the values of negative zeta potential in comparison with the more rigid T1. Both compounds diminished the phase transition temperature of DMPC membranes, interacted with liposomes via PO groups of head of phospholipids and their hydrophobic regions. These tannins neutralized DPPH free radicals with the stoichiometry of the reaction equal 1:1. The effects of the studied compounds on liposomes were discussed in relation to tannin quantum chemical parameters calculated by molecular modeling.
Collapse
|
23
|
Liao X, Wang J, Jiang G, Lingyu M, Jiang G, Wang J, Huang B. Identification of ruthenium (II) complexes with furan-substituted ligands as possible antibacterial agents against Staphylococcus aureus. Chem Biol Drug Des 2021; 98:885-893. [PMID: 34453495 DOI: 10.1111/cbdd.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022]
Abstract
The growing burden of antibiotic resistance worldwide calls for developing new classes of antimicrobial strategy. Recently years, the use of adjuvants that rescue antibiotics identified as a promising strategy for overcoming bacterial resistance. In this study, three ruthenium complexes functionalized with furan-substituted ligands([Ru(phen)2 (CAPIP)](ClO4 )2 (Ru(Ⅱ)-1), [Ru(dmp)2 (CAPIP)](ClO4 )2 (Ru(Ⅱ)-2) and [Ru(dmb)2 (CAPIP)](ClO4 )2 (Ru(Ⅱ)-3) (dmb=4,4'-dimethyl-2,2'-bipyridine, phen=1,10-phenanthroline, dmp=2,9-dimethyl-1,10-phenanthroline, CAPIP=(E)-2- (2-(furan-2-yl)vinyl)-1H-imidazo[4,5-f][1,10]phenanthroline)) were designed and synthesized. The antimicrobial activities of all compounds against S. aureus were assessed by growth inhibition assays. The MIC values of three complexes range from 0.015 to 0.050 mg/ml. Subsequently, the Ru(II)-2 complexes which exhibited strongest antibacterial activity were further tested against bacteria biofilms formation and toxin secretion. In addition, aimed to test whether ruthenium complexes have potential value as antimicrobial adjuvants, the synergism between Ru(Ⅱ)-2 and some antibiotics against S. aureus were examined through checkerboard method. Interestingly, Ru(Ⅱ)-2 could not only effectively inhibit biofilms formation of S. aureus and inhibit the hemolysin toxin secretion, but also selectivity show synergism with two common antibiotics. More importantly, mouse infection study also verified Ru(Ⅱ)-2 were highly effective against S. aureus in vivo.
Collapse
Affiliation(s)
- Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Jing Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Guijuan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Mao Lingyu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Bin Huang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
24
|
Identification and Characterization of Glucosyltransferase That Forms 1-Galloyl- β-d-Glucogallin in Canarium album L., a Functional Fruit Rich in Hydrolysable Tannins. Molecules 2021; 26:molecules26154650. [PMID: 34361803 PMCID: PMC8347697 DOI: 10.3390/molecules26154650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Hydrolysable tannins (HTs) are useful secondary metabolites that are responsible for pharmacological activities and astringent taste, flavor, and quality in fruits. They are also the main polyphenols in Canarium album L. (Chinese olive) fruit, an interesting and functional fruit that has been cultivated for over 2000 years. The HT content of C. album fruit was 2.3-13 times higher than that of berries with a higher content of HT. 1-galloyl-β-d-glucose (βG) is the first intermediate and the key metabolite in the HT biosynthesis pathway. It is catalyzed by UDP-glucosyltransferases (UGTs), which are responsible for the glycosylation of gallic acid (GA) to form βG. Here, we first reported 140 UGTs in C. album. Phylogenetic analysis clustered them into 14 phylogenetic groups (A, B, D-M, P, and Q), which are different from the 14 typical major groups (A~N) of Arabidopsis thaliana. Expression pattern and correlation analysis showed that UGT84A77 (Isoform0117852) was highly expressed and had a positive correlation with GA and βG content. Prokaryotic expression showed that UGT84A77 could catalyze GA to form βG. These results provide a theoretical basis on UGTs in C. album, which will be helpful for further functional research and availability on HTs and polyphenols.
Collapse
|
25
|
Gaudreault R, Hervé V, van de Ven TGM, Mousseau N, Ramassamy C. Polyphenol-Peptide Interactions in Mitigation of Alzheimer's Disease: Role of Biosurface-Induced Aggregation. J Alzheimers Dis 2021; 81:33-55. [PMID: 33749653 DOI: 10.3233/jad-201549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, responsible for nearly two-thirds of all dementia cases. In this review, we report the potential AD treatment strategies focusing on natural polyphenol molecules (green chemistry) and more specifically on the inhibition of polyphenol-induced amyloid aggregation/disaggregation pathways: in bulk and on biosurfaces. We discuss how these pathways can potentially alter the structure at the early stages of AD, hence delaying the aggregation of amyloid-β (Aβ) and tau. We also discuss multidisciplinary approaches, combining experimental and modelling methods, that can better characterize the biochemical and biophysical interactions between proteins and phenolic ligands. In addition to the surface-induced aggregation, which can occur on surfaces where protein can interact with other proteins and polyphenols, we suggest a new concept referred as "confinement stability". Here, on the contrary, the adsorption of Aβ and tau on biosurfaces other than Aβ- and tau-fibrils, e.g., red blood cells, can lead to confinement stability that minimizes the aggregation of Aβ and tau. Overall, these mechanisms may participate directly or indirectly in mitigating neurodegenerative diseases, by preventing protein self-association, slowing down the aggregation processes, and delaying the progression of AD.
Collapse
Affiliation(s)
- Roger Gaudreault
- Department of Physics, Université de Montréal, Montreal, QC, Canada
| | - Vincent Hervé
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | | | - Normand Mousseau
- Department of Physics, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
26
|
Huang CN, Tian XB, Jiang SM, Chang SH, Wang N, Liu MQ, Zhang QX, Li T, Zhang LJ, Yang L. Comparisons Between Infectious and Autoimmune Encephalitis: Clinical Signs, Biochemistry, Blood Counts, and Imaging Findings. Neuropsychiatr Dis Treat 2020; 16:2649-2660. [PMID: 33177828 PMCID: PMC7649224 DOI: 10.2147/ndt.s274487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Infectious encephalitis (IE) and autoimmune encephalitis (AE) are symptomatically similar in clinic, however essentially different in pathogenesis. Therefore, the objective of this study was to identify specific features to distinguish the two types of encephalitis for early effective diagnosis and treatments through a comparative analysis. METHODS Fifty-nine IE patients and 36 AE patients were enrolled. The patients with IE were divided into viral encephalitis (VE) and bacterial encephalitis (BE) according to the pathogens in cerebrospinal fluid (CSF). Patients with AE were categorized by with or without neural autoantibodies (NAAb). We further divided patients with NAAb into those with neural cell-surface antibodies (NSAbs) or intracellular antibodies (Abs). Clinical features, laboratory data, and imaging findings were compared between AE, IE, and subgroups. RESULTS Memory deficits, involuntary movement, and seizures were relatively more commonly presenting symptoms in AE patients (p < 0.05). The positive rate of Pandy test was higher in IE patients (p = 0.007). Decreased leukocyte, erythrocyte, and platelet counts in blood were found in IE patients (p < 0.05). Lower serum calcium level was found in VE compared to BE (p = 0.027). Meanwhile, higher serum calcium level was found in patients with NSAbs compared with intracellular Abs (p = 0.034). However, higher levels of LDH in CSF were found in patients with intracellular Abs (p = 0.009). In magnetic resonance imaging, hippocampus lesions were more commonly present in patients with AE (p = 0.042). Compared with AE patients, more IE patients displayed the background electroencephalogram rhythm of slow-frequency delta (p = 0.013). CONCLUSION Involuntary movement and memory deficits were more specifically present in AE patients. CSF Pandy, blood routine test and hippocampus lesions detections were potential markers for distinguishing AE and IE. Further, CSF LDH, and serum calcium levels were potentially useful to distinguish subgroups of encephalitis.
Collapse
Affiliation(s)
- Chen-Na Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Xiao-Bing Tian
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Shu-Min Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Sheng-Hui Chang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Nan Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Ming-Qi Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Ting Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Lin-Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| |
Collapse
|