1
|
Devi A, Harbertson JF, Waterhouse AL. Evolution of sulfonated tannins in red wines with ageing: A targeted metabolomic approach. Food Chem 2025; 465:142138. [PMID: 39581098 DOI: 10.1016/j.foodchem.2024.142138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
During wine ageing, tannins could react with sulfur dioxide to form sulfonated flavanols which are anticipated to alter tannin binding to proteins contributing to the reduction of astringency during ageing. Previous studies have identified or quantified monomeric and dimeric sulfonated flavanols in aged wines, but the evolution of sulfonated tannins has been lacking. Here, we quantified sulfonated tannins in three Washington state vineyards over a 20-year period, employing targeted LC-QToF analysis. Analysis of 24 wines revealed a systematic trajectory of sulfonated tannins over 20 years. Sulfonated monomers rose consistently with wine age, becoming the dominant form of sulfonated products in all samples at the 20-year mark. Concurrently, there was a decline in native tannins and sulfonated oligomers, suggesting a process of acid-catalyzed depolymerization of native tannins followed by sulfonation via reaction with sulfur dioxide. Future work is needed to understand the stability of sulfonated tannins and their impact on wine astringency.
Collapse
Affiliation(s)
- Apramita Devi
- Department of Viticulture and Enology, University of California, Davis, CA 95616, United States of America.
| | - James F Harbertson
- Department of Viticulture and Enology, Washington State University, Richland, WA 99352, United States of America.
| | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
2
|
Tachtalidou S, Arapitsas P, Penouilh MJ, Denat F, Schmitt-Kopplin P, Gougeon RD, Nikolantonaki M. Chemical Stability of Thiol and Flavanol Sulfonation Products during Wine Aging Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1885-1893. [PMID: 36724455 DOI: 10.1021/acs.jafc.2c06690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bisulfite (HSO3-) is the predominant form of sulfur dioxide, present as free and bound to wine relevant electrophiles under wine acidic pH. While sulfonation reactions of flavanols and thiols have been recently reported as key for wine preservation against oxidation, the transient mechanisms and physicochemical parameters responsible for that remain unknown. In the present study, sulfonation reaction kinetics of thiols and flavanols were monitored under simulated wine aging conditions. The reaction products were then characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and their chemical stability during time was determined by 1H NMR spectroscopy. Thiol and flavanol sulfonation reaction yields were both promoted by the presence of iron and oxygen, while their chemical stability was confirmed under the same conditions. The sulfonation derivatives of epicatechin and cysteine were synthesized and quantified in young and aged wines. Higher concentrations were reported for both metabolites in older wines, indicating their participation on the strongly bound sulfur dioxide fraction. These findings offer new prospects for more precise use of sulfur dioxide in winemaking.
Collapse
Affiliation(s)
- Sofia Tachtalidou
- UMR PAM Université de Bourgogne Franche-Comté/Institut Agro Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000Dijon, France
| | - Panagiotis Arapitsas
- Research and Innovation Centre, Fondazione Edmund Mach, 38010San Michele all'Adige, Italy
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Egaleo, 12243Athens, Greece
| | - Marie-Jose Penouilh
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université Bourgogne Franche-Comté, 21078Dijon, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université Bourgogne Franche-Comté, 21078Dijon, France
| | | | - Régis D Gougeon
- UMR PAM Université de Bourgogne Franche-Comté/Institut Agro Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000Dijon, France
| | - Maria Nikolantonaki
- UMR PAM Université de Bourgogne Franche-Comté/Institut Agro Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000Dijon, France
| |
Collapse
|
3
|
Garcia L, Deshaies S, Constantin T, Garcia F, Saucier C. Impact of phenolic composition and antioxidant parameters on the ageing potential of Syrah red wines measured by accelerated ageing tests. Food Chem 2023; 426:136613. [PMID: 37331141 DOI: 10.1016/j.foodchem.2023.136613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Fourteen Syrah red wines with different initial composition and antioxidant properties (polyphenols, antioxidant capacity, voltammetric behaviour, colour parameters and SO2) were selected. Three different accelerated ageing tests (AATs) were then performed on these wines: thermal test at 60 °C (60 °C-ATT), enzymatic test with laccase (Laccase-ATT) and chemical test with H2O2 (H2O2-ATT). The results showed high correlations between the initial phenolic composition and antioxidant properties of the samples. Partial least squares (PLS) regressions were used in order to establish some models that can predict the AATs test results based on their different initial composition and antioxidant properties. The PLS regression models had overall very good accuracy and involved different explaining variables for each test. The models taking into account all the measured parameters and the phenolic composition alone showed good predictive capacities with correlation coefficients (r2) > 0.89.
Collapse
Affiliation(s)
- Luca Garcia
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Stacy Deshaies
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | - François Garcia
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Cédric Saucier
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
4
|
Li Z, Huang J, Wang L, Li D, Chen Y, Xu Y, Li L, Xiao H, Luo Z. Novel insight into the role of sulfur dioxide in fruits and vegetables: Chemical interactions, biological activity, metabolism, applications, and safety. Crit Rev Food Sci Nutr 2023; 64:8741-8765. [PMID: 37128783 DOI: 10.1080/10408398.2023.2203737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sulfur dioxide (SO2) are a category of chemical compounds widely used as additives in food industry. So far, the use of SO2 in fruit and vegetable industry has been indispensable although its safety concerns have been controversial. This article comprehensively reviews the chemical interactions of SO2 with the components of fruit and vegetable products, elaborates its mechanism of antimicrobial, anti-browning, and antioxidation, discusses its roles in regulation of sulfur metabolism, reactive oxygen species (ROS)/redox, resistance induction, and quality maintenance in fruits and vegetables, summarizes the application technology of SO2 and its safety in human (absorption, metabolism, toxicity, regulation), and emphasizes the intrinsic metabolism of SO2 and its consequences for the postharvest physiology and safety of fresh fruits and vegetables. In order to fully understand the benefits and risks of SO2, more research is needed to evaluate the molecular mechanisms of SO2 metabolism in the cells and tissues of fruits and vegetables, and to uncover the interaction mechanisms between SO2 and the components of fruits and vegetables as well as the efficacy and safety of bound SO2. This review has important guiding significance for adjusting an applicable definition of maximum residue limit of SO2 in food.
Collapse
Affiliation(s)
- Zhenbiao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanpei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou, China
| |
Collapse
|
5
|
Decoding the Proanthocyanins Profile of Italian Red Wines. BEVERAGES 2022. [DOI: 10.3390/beverages8040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Italian wine appellations system is organized in hundreds of origin wines, with unique characteristics that are protected with many denominations of origin. The aim of this work was to analyze and compare the proanthocyanin profile of 12 single-cultivar and single-vintage Italian red wine groups (Aglianico from Campania, Cannonau from Sardinia, Corvina from Veneto, Montepulciano from Abruzzo, Nebbiolo from Piedmont, Nerello Mascalese from Sicily, Primitivo from Apulia, Raboso Piave from Veneto, Sagrantino from Umbria, Sangiovese from Tuscany and Romagna, and Teroldego from Trentino), each one produced in their terroirs under ad hoc legal frameworks to guarantee their quality and origin. All wines were analyzed with a protocol that combined the phloroglucinolysis reaction with an LC-MS/MS instrument. The results underlined Sagrantino wines as the richest in proanthocyanins. Sangiovese, Montepulciano, Nerello, and Teroldego were the richest in B-ring trihydroxylated flavan-3-ols, and especially Nerello was the richest in prodelphinidins. Cannonau, Raboso Piave, Nerello, and Corvina were characterized by C-ring trans conformation flavan-3-ols. Nebbiolo and Corvina had high percentages of galloylated flavan-3-ols. Aglianico and Primitivo had the lowest percentages of B-ring trihydroxylated and C-ring trans conformation flavan-3-ols. This information should be useful in better understanding the Italian red wines and valorize them.
Collapse
|
6
|
Sáez V, Schober D, González Á, Arapitsas P. LC-MS-Based Metabolomics Discriminates Premium from Standard Chilean cv. Cabernet Sauvignon Wines from Different Valleys. Metabolites 2021; 11:metabo11120829. [PMID: 34940587 PMCID: PMC8707972 DOI: 10.3390/metabo11120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Cabernet Sauvignon grapes in Chile, mainly grown between the 30° S and 36° S, account for more than 30% of Chilean wine production, and yield wines with different characteristics which influence their quality. The aim of this study was to apply a liquid chromatography – mass spectrometry (LC–MS)-based metabolomic protocol to investigate the quality differentiation in a sample set of monovarietal wines from eight valleys covering 679 km of the north-south extension. All samples were produced using a standardized red winemaking process and classified according to a company categorization in two major groups: premium and standard, and each group in two subcategories. The results pointed out that N-containing metabolites (mainly small peptides) are promising biomarkers for quality differentiation. Moreover, the premium wines were characterized by higher amounts of anthocyanins and other glycosylated and acetylated flavonoids, as well as phenolic acids; standard quality wines, on the other hand, presented stilbenoids and sulfonated catabolites of tryptophan and flavanols.
Collapse
Affiliation(s)
- Vania Sáez
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele All’Adige, Italy;
| | - Doreen Schober
- Center for Research and Innovation, Viña Concha y Toro, Ruta K-650 Km 10, Pencahue 3550000, Chile; (D.S.); (Á.G.)
| | - Álvaro González
- Center for Research and Innovation, Viña Concha y Toro, Ruta K-650 Km 10, Pencahue 3550000, Chile; (D.S.); (Á.G.)
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele All’Adige, Italy;
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos str, Egaleo, 12243 Athens, Greece
- Correspondence: or
| |
Collapse
|
7
|
Campbell JR, Grosnickel F, Kennedy JA, Waterhouse AL. Anthocyanin Addition Alters Tannin Extraction from Grape Skins in Model Solutions via Chemical Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7687-7697. [PMID: 34180657 DOI: 10.1021/acs.jafc.1c00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Condensed tannin extraction and stable color formation are two of the cornerstones of red wine production. Without condensed tannin, red wine would lack the tactile feeling of astringency, and without the formation of modified pigments, it would lack color stability for long-term aging. To understand how malvidin-3,5-diglucoside interacts with condensed tannin under nonoxidative conditions, an experiment was designed conducting model-wine skin extractions of Sauvignon blanc grapes harvested at various dates of maturity. Monomeric malvidin-3,5-diglucoside was isolated from color concentrate and added during these extractions. Following a 72 h extraction, solutions were evaluated for recovery of monomeric anthocyanins, skin tannin concentration, skin tannin extractability, and impact of anthocyanins on condensed tannin size. Anthocyanins showed a significant impact on the extraction of flavan-3-ol material in the early stages of ripening that declined in the latter stages of ripening. Furthermore, anthocyanins significantly decreased the size of the condensed tannin extracted. These results suggest that anthocyanins are not only enhancing the extractability of condensed tannin but also readily incorporating into the polymeric material, leading to a decrease in the average molecular mass of the condensed tannin polymer. The extent of reaction in 72 h suggests that the rate of interflavan bond cleavage may be higher than previously reported and merits closer scrutiny.
Collapse
Affiliation(s)
- James R Campbell
- Department of Viticulture and Enology, University of California, One Shields Ave., Davis, California 95616, United States
| | - Florian Grosnickel
- Université Bourgogne Franche-Comté, AgroSup Dijon, F-21000 Dijon, France
| | - James A Kennedy
- Functional Phenolics LLC, PO Box 1443, Corvallis, Oregon 97339, United States
| | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, One Shields Ave., Davis, California 95616, United States
| |
Collapse
|
8
|
Errichiello F, Picariello L, Guerriero A, Moio L, Forino M, Gambuti A. The Management of Dissolved Oxygen by a Polypropylene Hollow Fiber Membrane Contactor Affects Wine Aging. Molecules 2021; 26:molecules26123593. [PMID: 34208342 PMCID: PMC8231238 DOI: 10.3390/molecules26123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Numerous oenological practices can cause an excess of dissolved oxygen in wine, thus determining sensory and chromatic defects in the short- to long-term. Hence, it is necessary to manage the excess of oxygen before bottling. METHODS In this study, the management of the dissolved oxygen content by a polypropylene hollow fiber membrane contactor apparatus was performed in two wines from different grape varieties (Aglianico and Falanghina). The wines were analyzed after an 11-month aging. Anthocyanins and acetaldehyde content were evaluated by HPLC. In addition, other phenolic compounds and chromatic characteristics were analyzed by spectrophotometric methods. NMR and HR ESIMS analyses were conducted to evaluate the amount of pyranoanthocyanins and polymeric pigments. RESULTS After 11 months of aging, in both wines a decrease of free and total SO2 with respect to initial values was detected. In the wines with the highest dissolved oxygen levels, a more remarkable loss was observed. No significant differences in terms of color parameters were detected. In red wine with the highest oxygen content, a massive formation of polymeric pigments and BSA reactive tannins was observed, as opposed to wines with lower oxygen levels. CONCLUSION The study demonstrated that the membrane contactor can prove a successful tool to manage dissolved oxygen in wines as to prevent their oxidative spoilage.
Collapse
|
9
|
H/D Exchange Processes in Flavonoids: Kinetics and Mechanistic Investigations. Molecules 2021; 26:molecules26123544. [PMID: 34200677 PMCID: PMC8229540 DOI: 10.3390/molecules26123544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Several classes of flavonoids, such as anthocyanins, flavonols, flavanols, and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues. Even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D exchange processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.
Collapse
|
10
|
Arapitsas P, Perenzoni D, Guella G, Mattivi F. Improving the Phloroglucinolysis Protocol and Characterization of Sagrantino Wines Proanthocyanidins. Molecules 2021; 26:1087. [PMID: 33669538 PMCID: PMC7922431 DOI: 10.3390/molecules26041087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Proanthocyanidins are key metabolites that explain wine sensorial character (bitterness and astringency) and red wine color changes during aging. Therefore, a fast and accurate method to evaluate the degree of polymerization and the structural composition of the polymeric proanthocyanidins is a crucial analytical tool. Phloroglucinolysis is the most used method for this analysis but, unfortunately, the phloroglucinol adducts of the monomeric flavan-3-ols are not commercially available, making the results less accurate. The aim of this work was the isolation by semi-preparative high performance liquid chromatography (HPLC) of these non-commercial compounds and their use for the development of an accurate UHPLC-MS/MS protocol. The purity of each adduct was established via quantitative 1H-nuclear magnetic resonance (NMR) measurements with 3-trimethylsilyl-propionic-d4 acid sodium salt as the calibration standard. The developed method was applied to evaluate the proanthocyanidins profile of Sagrantino di Montefalco wines in comparison to other well-known tannic wines. Commercial, 6-8 years old Sagrantino wines were demonstrated to be very rich in epicatechin type B procyanidins, to have low galloylation %, and to have a high mean degree of polymerization of the proanthocyanidins with respect to the other analyzed wines.
Collapse
Affiliation(s)
- Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (P.A.); (D.P.)
| | - Daniele Perenzoni
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (P.A.); (D.P.)
| | - Graziano Guella
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo Trento, Italy;
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (P.A.); (D.P.)
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38098 San Michele all’Adige, Italy
| |
Collapse
|
11
|
Ontañón I, Sánchez D, Sáez V, Mattivi F, Ferreira V, Arapitsas P. Liquid Chromatography-Mass Spectrometry-Based Metabolomics for Understanding the Compositional Changes Induced by Oxidative or Anoxic Storage of Red Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13367-13379. [PMID: 33063507 DOI: 10.1021/acs.jafc.0c04118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study the physicochemical changes of eight red wines stored under conditions differing in O2 exposure and temperature and time under anoxia. The methods used to analyze the wines included the measurement of volatile sulfur compounds, color, tannin (T) polymerization, and liquid chromatography-mass spectrometry untargeted metabolomic fingerprint. After 3 months, the color of the oxidized samples evolved 4-5 times more intensively than in wines stored under anoxia. The major metabolomic differences between oxidative and anoxic conditions were linked to reactions of acetaldehyde (favored in oxidative) and SO2 (favored in anoxia). In the presence of oxygen, the C-4 carbocation of flavanols delivered ethyl-linked tannin-anthocyanin (T-A) and tannin-tannin (T-T) adducts, pyranoanthocyanins, and sulfonated indoles, while under reduction, the C-4 carbocation delivered direct linked T-A adducts, rearranged T-T adducts, and sulfonated tannins. Some of these last reactions could be related to the accumulation of reduced species, eventually ending with reductive off-odors.
Collapse
Affiliation(s)
- I Ontañón
- Laboratorio de Análisis del Aroma y Enología, Departamento de Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - D Sánchez
- Laboratorio de Análisis del Aroma y Enología, Departamento de Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - V Sáez
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy
| | - F Mattivi
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, Trento, Italy
| | - V Ferreira
- Laboratorio de Análisis del Aroma y Enología, Departamento de Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - P Arapitsas
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy
| |
Collapse
|
12
|
Exploring Olfactory-Oral Cross-Modal Interactions through Sensory and Chemical Characteristics of Italian Red Wines. Foods 2020; 9:foods9111530. [PMID: 33114385 PMCID: PMC7692166 DOI: 10.3390/foods9111530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
This work aimed at investigating red wine olfactory–oral cross-modal interactions, and at testing their impact on the correlations between sensory and chemical variables. Seventy-four Italian red whole wines (WWs) from 10 varieties, and corresponding deodorized wines (DWs), were evaluated by sensory descriptive assessment. Total phenols, proanthocyanidins, ethanol, reducing sugars, pH, titratable and volatile acidity were determined. PCA results highlighted different sensory features of the 10 wine types. ANOVAs (p < 0.05) showed that olfactory cues might play modulation effects on the perception of in-mouth sensations with 7 (harsh, unripe, dynamic, complex, surface smoothness, sweet, and bitter) out of 10 oral descriptors significantly affected by odours. Three weak but significant positive correlations (Pearson, p < 0.0001) were statistically found and supported in a cognitive dimension: spicy and complex; dehydrated fruits and drying; vegetal and unripe. In the absence of volatiles, correlation coefficients between sensory and chemical parameters mostly increased. Proanthocyanidins correlated well with drying and dynamic astringency, showing highest coefficients (r > 0.7) in absence of olfactory–oral interactions. Unripe astringency did not correlate with polyphenols supporting the idea that this sub-quality is a multisensory feeling greatly impacted by odorants. Results support the significance of cross-modal interactions during red wine tasting, confirming previous findings and adding new insights on astringency sub-qualities and their predictive parameters.
Collapse
|