1
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India.
| |
Collapse
|
2
|
Gopakumar ST, Ramachandra KSS, Gangadharan S, Nair AV, Sachidanandan S, Prasad V, Purakal LV, Chakkalakkal GJ, Patil PK. In vitro efficacy of aquaculture antimicrobials and genetic determinants of resistance in bacterial isolates from tropical aquaculture disease outbreaks. Lett Appl Microbiol 2024; 77:ovae088. [PMID: 39271450 DOI: 10.1093/lambio/ovae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Understanding the efficacy of antimicrobials against pathogens from clinical samples is critical for their responsible use. The manuscript presents in vitro efficacy and antimicrobial resistance (AMR) genes in seven species of fish pathogens from the disease outbreaks of Indian aquaculture against oxytetracycline, florfenicol, oxolinic acid, and enrofloxacin. In vitro efficacy was evaluated by minimum inhibitory concentration and minimum bactericidal concentration. The gene-specific PCR screened AMR genes against quinolones (qnrA, qnrB, and qnrS) and tetracyclines (tetM, tetS, tetA, tetC, tetB, tetD, tetE, tetH, tetJ, tetG, and tetY). The results showed that Aeromonas veronii (45%) showed the maximum resistance phenotype, followed by Streptococcus agalactiae (40%), Photobacterium damselae (15%), Vibrio parahaemolyticus (10%), and Vibrio vulnificus (5%). There was no resistance among Vibrio harveyi and Vibrio alginolyticus against the tested antimicrobials. The positive association between tetA, tetB, tetC, tetM, or a combination of these genes to oxytetracycline resistance and qnrS to quinolone resistance indicated their potential in surveillance studies. The prevalence of resistance phenotypes (16.43%) and evaluated AMR genes (2.65%) against aquaculture antimicrobials was low. The resistance phenotype pattern abundance was 0.143. All the isolates showed susceptibility to florfenicol. The results help with the appropriate drug selection against each species in aquaculture practices.
Collapse
Affiliation(s)
- Sumithra T Gopakumar
- Fish Health Section, Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, Kerala, India
| | - Krupesha Sharma S Ramachandra
- Fish Health Section, Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, Kerala, India
| | - Suja Gangadharan
- Fish Health Section, Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, Kerala, India
| | - Anusree V Nair
- Fish Health Section, Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, Kerala, India
| | - Suryagayathri Sachidanandan
- Fish Health Section, Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, Kerala, India
| | - Vishnu Prasad
- Fish Health Section, Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, Kerala, India
| | - Lailaja V Purakal
- Fish Health Section, Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, Kerala, India
| | - George J Chakkalakkal
- Fish Health Section, Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi 682018, Kerala, India
| | - Prasanna K Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai 600028, Tamil Nadu, India
| |
Collapse
|
3
|
Shan X, Yin B, Liao X, Xiao B, He J, Li C. Exploration and Characterization of Antimicrobial Peptides from Shrimp Litopenaeus Vannamei by A Genomic and Transcriptomic Approach. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:975-990. [PMID: 39138702 DOI: 10.1007/s10126-024-10358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Antimicrobial peptides (AMPs) are crucial in the humoral immunity aspect of invertebrates' innate immune systems. However, studies on AMP discovery in the Pacific white shrimp (Litopenaeus vannamei) using omics data have been limited. Addressing the growing concern of antibiotic resistance in aquaculture, this study focused on the identification and characterization of AMPs in L. vannamei using advanced genomic and transcriptomic techniques. The genome of L. vannamei was performed to predict and identify a total of 754 AMP-derived genes, distributed across most chromosomes and spanning 24 distinct AMP families, and further identified 236 AMP-derived genes at the mRNA level in hemocytes. A subset of 20 chemically synthesized peptides, derived from these genes, exhibited significant antimicrobial activity, with over 85% showing effectiveness against key bacterial strains such as Staphylococcus aureus and Vibrio parahaemolyticus. The expression patterns of these AMPs were also investigated in different shrimp tissues and at various infection stages, revealing dynamic responses to pathogenic challenges. These findings highlight the significant potential of AMPs in L. vannamei as novel, effective alternatives to traditional antibiotics in aquaculture, offering insights into their diverse structural properties and biological functions. Together, this comprehensive characterization of the AMP repertoire in L. vannamei demonstrates the efficacy of using omics data for AMP discovery and lays the groundwork for their potential applications.
Collapse
Affiliation(s)
- Xinxin Shan
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Bin Yin
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangzhou, P. R. China
| | - Xuzheng Liao
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Bang Xiao
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jianguo He
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangzhou, P. R. China.
| | - Chaozheng Li
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangzhou, P. R. China.
| |
Collapse
|
4
|
Dinh-Hung N, Mwamburi SM, Dong HT, Rodkhum C, Meemetta W, Linh NV, Mai HN, Dhar AK, Hirono I, Senapin S, Chatchaiphan S. Unveiling Insights into the Whole Genome Sequencing of Mycobacterium spp. Isolated from Siamese Fighting Fish ( Betta splendens). Animals (Basel) 2024; 14:2833. [PMID: 39409782 PMCID: PMC11476334 DOI: 10.3390/ani14192833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
This study aims to genomically elucidate six isolates of rapidly growing non-tuberculous mycobacteria (RGM) derived from Siamese fighting fish (Betta splendens). These isolates had previously undergone phenotypic and biochemical characterization, antibiotic susceptibility testing, and in vivo virulence assessment. Initial DNA barcoding using the 16S rRNA sequence assigned these six isolates to five different species, namely Mycobacterium chelonae (BN1983), M. cosmeticum (BN1984 and N041), M. farcinogenes (SNSK5), M. mucogenicum (BN1956), and M. senegalense (BN1985). However, the identification relied solely on the highest percent identity of the 16S rRNA gene, raising concerns about the taxonomic ambiguity of these species. Comprehensive whole genome sequencing (WGS) and extended genomic comparisons using multilocus sequence typing (MLST), average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH) led to the reclassification of BN1985 and SNSK5 as M. conceptionense while confirming BN1983 as M. chelonae and BN1984 and N041 as M. cosmeticum. Notably, the analysis of the BN1956 isolate revealed a potential new species that is proposed here as M. mucogenicum subsp. phocaicum sp. nov. Common genes encoding "mycobacterial" virulence proteins, such as PE and PPE family proteins, MCE, and YrbE proteins, were detected in all six isolates. Two species, namely M. chelonae and M. cosmeticum, appear to have horizontally acquired T6SS-II (clpB), catalase (katA), GroEL (groel), and capsule (rmlb) from distantly related environmental bacteria such as Klebsiella sp., Neisseria sp., Clostridium sp., and Streptococcus sp. This study provides the first draft genome sequence of RGM isolates currently circulating in B. splendens and underscores the necessity of WGS for the identification and classification of mycobacterial species.
Collapse
Affiliation(s)
- Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA; (N.D.-H.); (H.N.M.); (A.K.D.)
| | - Samuel Mwakisha Mwamburi
- Kenya Marine and Fisheries Research Institute, Mombasa 80100, Kenya;
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan;
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management (AARM), School of Environment, Resources and Development, Asian Institute of Technology (AIT), Pathum Thani 12120, Thailand;
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Watcharachai Meemetta
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Hung N. Mai
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA; (N.D.-H.); (H.N.M.); (A.K.D.)
| | - Arun K. Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA; (N.D.-H.); (H.N.M.); (A.K.D.)
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan;
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
5
|
Li Y, Bi S, Guan W, Iddrisu L, Wei S, Chen Y, Sun L, Deng Q, Jiang Y, Fang Z, Gooneratne R. Antibiotic susceptibility of Vibrio parahaemolyticus isolated from prawns and oysters marketed in Zhanjiang, China. MARINE POLLUTION BULLETIN 2024; 206:116712. [PMID: 39018820 DOI: 10.1016/j.marpolbul.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
To evaluate the antibiotic susceptibility of Vibrio parahaemolyticus from prawns and oysters marketed in Zhanjiang, Guangdong, China. 84 strains of V. parahaemolyticus were isolated from prawns and oysters sampled from 9 major markets. The results showed that 84 V. parahaemolyticus strains had the highest rate of antibiotic resistance to oxytetracycline (69.05 %, 58/84) and the lowest rate of antibiotic resistance to enrofloxacin (1.19 %, 1/84), ciprofloxacin (4.76 %, 4/84) and norfloxacin (7.14 %, 6/84) in quinolone. Meanwhile, 96.42 % of the strains showed multiple antibiotic resistance (MAR). PCR results showed that the resistance phenotype was closely related to the antibiotic resistance genes and efflux pump genes (p < 0.01), and the efflux pump gene was the key causing MAR. The combination of antibiotics significantly eliminated multidrug resistance. In addition, efflux pump inhibitors also reduce MAR. This study may provide information on antibiotic susceptibility, antibiotic resistance and strategies for the control of V. parahaemolyticus.
Collapse
Affiliation(s)
- Yongbin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siyuan Bi
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
| | - Wenhao Guan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lukman Iddrisu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinyan Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongqing Jiang
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China; Shenzhen Lvshiyuan Biotechnology Co., Ltd., Shenzhen 510100, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| |
Collapse
|
6
|
Milijasevic M, Veskovic-Moracanin S, Babic Milijasevic J, Petrovic J, Nastasijevic I. Antimicrobial Resistance in Aquaculture: Risk Mitigation within the One Health Context. Foods 2024; 13:2448. [PMID: 39123639 PMCID: PMC11311770 DOI: 10.3390/foods13152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The application of antimicrobials in aquaculture primarily aims to prevent and treat bacterial infections in fish, but their inappropriate use may result in the emergence of zoonotic antibiotic-resistant bacteria and the subsequent transmission of resistant strains to humans via food consumption. The aquatic environment serves as a potential reservoir for resistant bacteria, providing an ideal breeding ground for development of antimicrobial resistance (AMR). The mutual inter-connection of intensive fish-farming systems with terrestrial environments, the food processing industry and human population creates pathways for the transmission of resistant bacteria, exacerbating the problem further. The aim of this study was to provide an overview of the most effective and available risk mitigation strategies to tackle AMR in aquaculture, based on the One Health (OH) concept. The stringent antimicrobial use guidelines, promoting disease control methods like enhanced farm biosecurity measures and vaccinations, alternatives to antibiotics (ABs) (prebiotics, probiotics, immunostimulants, essential oils (EOs), peptides and phage therapy), feeding practices, genetics, monitoring water quality, and improving wastewater treatment, rather than applying excessive use of antimicrobials, can effectively prevent the development of AMR and release of resistant bacteria into the environment and food. The contribution of the environment to AMR development traditionally receives less attention, and, therefore, environmental aspects should be included more prominently in OH efforts to predict, detect and prevent the risks to health. This is of particular importance for low and middle-income countries with a lack of integration of the national AMR action plans (NAPs) with the aquaculture-producing environment. Integrated control of AMR in fisheries based on the OH approach can contribute to substantial decrease in resistance, and such is the case in Asia, where in aquaculture, the percentage of antimicrobial compounds with resistance exceeding 50% (P50) decreased from 52% to 22% within the period of the previous two decades.
Collapse
Affiliation(s)
- Milan Milijasevic
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Serbia; (M.M.); (S.V.-M.); (J.B.M.)
| | | | | | - Jelena Petrovic
- Scientific Veterinary Institute ‘Novi Sad’, 21113 Novi Sad, Serbia;
| | - Ivan Nastasijevic
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Serbia; (M.M.); (S.V.-M.); (J.B.M.)
| |
Collapse
|
7
|
Ren Y, Kong M, Sun H, Zhao B, Wu H, Chen Z, Qi J, Liu J, Zhang Q. Genome-wide identification, characterization and expression profiling of TLR family genes in Chromileptesaltivelis. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109720. [PMID: 38945413 DOI: 10.1016/j.fsi.2024.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Toll-like receptors (TLRs) represent a prominent category of pattern recognition receptors that have been extensively investigated for their pivotal role in combating pathogen incursions. Despite this, there has been a notable absence of comprehensive identification and exploration of the immune response associated with the TLR family genes in C. altivelis. This study successfully identified and named fourteen genes as Catlr1-1, Catlr1-2, Catlr2-1, Catlr2-2, Catlr3, Catlr5, Catlr7, Catlr8, Catlr9, Catlr13-1, Catlr13-2, Catlr18, Catlr21, and Catlr22. A series of bioinformatic analysis were performed, encompassing analysis of protein properties, examination of gene structures, evolutionary assessments, and prediction of protein tertiary structures. The expression patterns of Catlr genes were analyzed in five immune tissues: liver, spleen, kidney, gill, and intestine, in both healthy and bacterial stimulated-fish. The results showed that different tissue and different genes showed differed expression patterns after V. harveyi infection, indicating the involvement of all Catlr members in mounting immune responses following infection in various tissues. Additionally, histological evaluations of immune tissues unveiled varying levels of damage. In conclusion, this investigation into the TLR gene family offers novel information that contribute to a more profound comprehension of the immune response mechanisms in C. altivelis.
Collapse
Affiliation(s)
- Yanjie Ren
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China.
| | - Miao Kong
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China.
| | - Huibang Sun
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China.
| | - Benqi Zhao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China.
| | - Hanwei Wu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China.
| | - Zhennian Chen
- Hainan Chenhai Aquatic Co., Ltd, Sanya, 572025, China.
| | - Jie Qi
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Jinxiang Liu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Quanqi Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China.
| |
Collapse
|
8
|
Bosi E, Taviani E, Avesani A, Doni L, Auguste M, Oliveri C, Leonessi M, Martinez-Urtaza J, Vetriani C, Vezzulli L. Pan-Genome Provides Insights into Vibrio Evolution and Adaptation to Deep-Sea Hydrothermal Vents. Genome Biol Evol 2024; 16:evae131. [PMID: 39007295 PMCID: PMC11247349 DOI: 10.1093/gbe/evae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2024] [Indexed: 07/16/2024] Open
Abstract
This study delves into the genomic features of 10 Vibrio strains collected from deep-sea hydrothermal vents in the Pacific Ocean, providing insights into their evolutionary history and ecological adaptations. Through sequencing and pan-genome analysis involving 141 Vibrio species, we found that deep-sea strains exhibit larger genomes with unique gene distributions, suggesting adaptation to the vent environment. The phylogenomic reconstruction of the investigated isolates revealed the presence of 2 main clades: The first is monophyletic, consisting exclusively of Vibrio alginolyticus, while the second forms a monophyletic clade comprising both Vibrio antiquarius and Vibrio diabolicus species, which were previously isolated from deep-sea vents. All strains carry virulence and antibiotic resistance genes related to those found in human pathogenic Vibrio species which may play a wider ecological role other than host infection in these environments. In addition, functional genomic analysis identified genes potentially related to deep-sea survival and stress response, alongside candidate genes encoding for novel antimicrobial agents. Ultimately, the pan-genome we generated represents a valuable resource for future studies investigating the taxonomy, evolution, and ecology of Vibrio species.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Elisa Taviani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Alessia Avesani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
| | - Lapo Doni
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
| | - Martina Leonessi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Jaime Martinez-Urtaza
- Facultat de Biociéncies, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Spain
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
9
|
Priya TS, Chen TW, Chen SM, Kokulnathan T, Akilarasan M, Liou WC, Al-Mohaimeed AM, Ali MA, Elshikh MS, Yu J. In-situ growth of MOF-derived Co 3S 4@MoS 2 heterostructured electrocatalyst for the detection of furazolidone. CHEMOSPHERE 2024; 356:141895. [PMID: 38579947 DOI: 10.1016/j.chemosphere.2024.141895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The over-exploitation of antibiotics in food and farming industries ruined the environmental and human health. Consequently, electrochemical sensors offer significant advantages in monitoring these compounds with high accuracy. Herein, MOF-derived hollow Co3S4@MoS2 (CS@MS) heterostructure has been prepared hydrothermally and applied to fabricate an electrochemical sensor to monitor nitrofuran class antibiotic drug. Various spectroscopic methodologies have been employed to elucidate the structural and morphological information. Our prepared electrocatalyst has better electrocatalytic performance than bare and other modified glassy carbon electrodes (GCE). Our CS@MS/GCE sensor exhibited a highly sensitive detection by offering a low limit of detection, good sensitivity, repeatability, reproducibility, and stability results. In addition, our sensor has shown a good selectivity towards the target analyte among other potential interferons. The practical reliability of the sensor was measured by analyzing various real-time environmental and biological samples and obtaining good recovery values. From the results, our fabricated CS@MS could be an active electrocatalyst material for an efficient electrochemical sensing application.
Collapse
Affiliation(s)
- Thangavelu Sakthi Priya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Thangavelu Kokulnathan
- National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Muthumariappan Akilarasan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Wen-Chin Liou
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jaysan Yu
- Well Fore Special Wire Corporation, 10, Tzu-Chiang 7th., Chung-Li Industrial Park, Taoyuan, Taiwan
| |
Collapse
|
10
|
Ferri G, Olivieri V, Olivastri A, Pennisi L, Vergara A. Multidrug resistant Vibrio spp. identified from mussels farmed for human consumption in Central Italy. J Appl Microbiol 2024; 135:lxae098. [PMID: 38609347 DOI: 10.1093/jambio/lxae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/14/2024]
Abstract
AIMS This study investigated phenotypic and genotypic antimicrobial resistance profiles of Vibrio strains identified from Mytilus galloprovincialis farmed for human consumption in the Adriatic Sea Central Italy. METHODS AND RESULTS A total of 475 mussels (M. galloprovincialis) were involved in the present study, and culture-dependent microbiological methods permitted to identify a total of 50 Vibrio strains that were tested for antibiotic susceptibility followed by the genetic determinant detections. Antibiograms showed resistance against ampicillin (36.0%), amoxicillin-clavulanic acid (30.0%), gentamycin (14.0%), and imipenem (18.0%). Biomolecular assays amplified a total of 264 antibiotic resistance genes harbored by both susceptible and resistant Vibrio species. Among resistance genes, aacC2 (62.0%) and aadA (58.0%) for aminoglycosides, blaTEM (54.0%) for beta-lactams, qnrS (24.0%) for quinolones, tetD (66.0%) for tetracyclines, and vanB (60.0%) for glycopeptides were mainly amplified by PCR assays. CONCLUSIONS Vibrio genus is involved in the antibiotic resistance phenomenon diffusion in the aquatic environments, as demonstrated by the harboring of many genetic determinants representing a kind of genetic "dark world".
Collapse
Affiliation(s)
- Gianluigi Ferri
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| | - Vincenzo Olivieri
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| | | | - Luca Pennisi
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| | - Alberto Vergara
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| |
Collapse
|
11
|
Patel ZZ, Joshi H, Puvar A, Pandit R, Joshi C, Joshi M, Tipre DR. A study into the diversity of coral-associated bacteria using culture-dependent and culture-independent approaches in coral Dipsastraea favus from the Gulf of Kutch. MARINE POLLUTION BULLETIN 2024; 201:116172. [PMID: 38394797 DOI: 10.1016/j.marpolbul.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/03/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Corals harbour ~25 % of the marine diversity referring to biodiversity hotspots in marine ecosystems. Global efforts to find ways to restore the coral reef ecosystem from various threats can be complemented by studying coral-associated bacteria. Coral-associated bacteria are vital components of overall coral wellbeing. We explored the bacterial diversity associated with coral Dipsastraea favus (D. favus) collected from the Gulf of Kutch, India, using both culture-dependent and metagenomic approaches. In both approaches, phylum Proteobacteria, Firmicutes, and Actinobacteria predominated, comprising the genera Vibrio, Bacillus, Shewanella, Pseudoalteromonas, Exiguobacterium and Streptomyces. Moreover, the majority of culturable isolates showed multiple antibiotic resistance index ≥0.2. In this study, specific bacterial diversity associated with coral sp. D. favus and its possible role in managing coral health was established. Almost 43 strains from the samples were successfully cultured, creating a base for exploring these microbes for their potential use in coral conservation methods.
Collapse
Affiliation(s)
- Zarna Z Patel
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India; Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Himanshu Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Apurvasinh Puvar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India.
| | - Devayani R Tipre
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India.
| |
Collapse
|
12
|
Akinduti PA, Izevbigie OO, Akinduti OA, Enwose EO, Amoo EO. Fecal Carriage of Colibactin-Encoding Escherichia coli Associated With Colorectal Cancer Among a Student Populace. Open Forum Infect Dis 2024; 11:ofae106. [PMID: 38560611 PMCID: PMC10981395 DOI: 10.1093/ofid/ofae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Fecal carriage of the colibactin (clb) gene in Escherichia coli is described as a source that could promote carcinogenesis, progressing to colorectal cancer. The present study investigated the demographic, dietary, and antibiotic consumption variables as correlates for fecal carriage of clb+/E coli among the student populace. In a randomized cross-sectional survey, E coli (N = 136) from the fecal samples of eligible students were characterized and evaluated for antibiotic resistance, β-lactamase (blm), biofilm, virulence factor production, and strain tryptophan reverse mutagenic activity. The encoded clb+/E coli were analyzed for correlates with principal component analysis. Of all the E coli strains, a low rate of 2 clb+/E coli (1.5%) and higher rates of biofilm (13.2%) and blm producers (11.8%) were recorded among the mutant strains as compared with the nonmutant types. All the clb+/E coli showed complete resistance to amoxicillin, Augmentin (amoxicillin and clavulanate), gentamicin, and trimethoprim/sulfamethoxazole. The fecal clb-encoded E coli (1.5%) were not associated with demographic status, fiber-based food (odds ratio [OR], 1.03; 95% CI, 56.74-138.7; P = .213), alcohol (OR, 1.27; 95% CI, 61.74-147.1; P = .221), antibiotic consumptions (OR, 1.11; 95% CI, 61.29-145.3; P = .222), and handwashing (OR, 1.17; 95% CI, 60.19-145.5; P = .216). The hierarchical cluster of blm+/E coli revealed high-level resistance with a multiantibiotic resistance index ≥0.2 (P < .05). Only 12% of all strains were tryptophan mutant/blm+, and 1.5% of clb+/ECblm+ were observed in fecal samples with a 452-base pair size. Trimethoprim/sulfamethoxazole and biofilm production positively regressed with clb expression (P > .05). Principal component analysis score plot indicated an association of clb+/ECblm+ with dietary pattern, alcohol, blm, and hemolysin production. The combined activity of blm and biofilm production in the gut microbiota could promote clb+/E coli colonization, facilitating genotoxin production and possible colorectal cancer induction.
Collapse
Affiliation(s)
- Paul A Akinduti
- Microbiology Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Ovbiosa O Izevbigie
- Microbiology Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria
| | | | - Ezekiel O Enwose
- Department of Medical Laboratory Sciences, Neuropsychiatric Hospital, Aro Abeokuta, Nigeria
| | - Emmanuel O Amoo
- Demography and Social Statistics, Covenant University, Ota, Nigeria
| |
Collapse
|
13
|
Lawal OU, Bryan N, Soni M, Chen Y, Precious M, Parreira VR, Goodridge L. Whole genome sequence of Vibrio cholerae NB-183 isolated from freshwater in Ontario, Canada harbors a unique gene repertoire. BMC Genom Data 2024; 25:18. [PMID: 38360573 PMCID: PMC10870635 DOI: 10.1186/s12863-024-01204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Vibrio cholerae is an enteric pathogen that poses a significant threat to global health. It causes severe dehydrating diarrheal disease cholera in humans. V. cholerae could be acquired either from consuming contaminated seafood or direct contact with polluted waters. As part of a larger program that assesses the microbial community profile in aquatic systems, V. cholerae strain NB-183 was isolated and characterized using a combination of culture- and whole-genome sequencing-based approaches. DATA DESCRIPTION Here we report the assembled and annotated whole-genome sequence of a V. cholerae strain NB-183 isolated from a recreational freshwater lake in Ontario, Canada. The genome was sequenced using short-read Illumina systems. The whole-genome sequencing yielded 4,112,549 bp genome size with 99 contigs with an average genome coverage of 96× and 47.42% G + C content. The whole genome-based comparison, phylogenomic and gene repertoire indicates that this strain harbors multiple virulence genes and biosynthetic gene clusters. This genome sequence and its associated datasets provided in this study will be an indispensable resource to enhance the understanding of the functional, ecological, and evolutionary dynamics of V. cholerae.
Collapse
Affiliation(s)
- Opeyemi U Lawal
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Noah Bryan
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, ON, N1G 2W1, Canada
- Bayview Secondary School, 10077 Bayview Ave, Richmond Hill, ON, L4C 2L4, Canada
| | - Mitra Soni
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yanhong Chen
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Melinda Precious
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
14
|
Kuang SF, Xiang J, Chen YT, Peng XX, Li H, Peng B. Exogenous pyruvate promotes gentamicin uptake to kill antibiotic-resistant Vibrio alginolyticus. Int J Antimicrob Agents 2024; 63:107036. [PMID: 37981076 DOI: 10.1016/j.ijantimicag.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Elucidating antibiotic resistance mechanisms is necessary for developing novel therapeutic strategies. The increasing incidence of antibiotic-resistant Vibrio alginolyticus infection threatens both human health and aquaculture, but the mechanism has not been fully elucidated. METHODS Here, an isobaric tags for relative and absolute quantification (iTRAQ) functional proteomics analysis was performed on gentamicin-resistant V. alginolyticus (VA-RGEN) and a gentamicin-sensitive strain in order to characterize the global protein expression changes upon gentamicin resistance. Then, the bacterial killing assay and bacterial gentamicin pharmacokinetics were performed. RESULTS Proteomics analysis demonstrated a global metabolic downshift in VA-RGEN, where the pyruvate cycle (the P cycle) was severely compromised. Exogenous pyruvate restored the P cycle activity, disrupting the redox state and increasing the membrane potential. It thereby potentiated gentamicin-mediated killing by approximately 3000- and 150-fold in vitro and in vivo, respectively. More importantly, bacterial gentamicin pharmacokinetics indicated that pyruvate enhanced gentamicin influx to a degree that exceeded the gentamicin expelled by the bacteria, increasing the intracellular gentamicin. CONCLUSION Thus, our study suggests a metabolism-based approach to combating gentamicin-resistant V. algonolyticus, which paves the way for combating other types of antibiotic-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Su-Fang Kuang
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology & Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; School of Health, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Jiao Xiang
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Yue-Tao Chen
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology & Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology & Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology & Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
15
|
Salgueiro V, Manageiro V, Rosado T, Bandarra NM, Botelho MJ, Dias E, Caniça M. Snapshot of resistome, virulome and mobilome in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166351. [PMID: 37604365 DOI: 10.1016/j.scitotenv.2023.166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Aquaculture environments can be hotspots for resistance genes through the surrounding environment. Our objective was to study the resistome, virulome and mobilome of Gram-negative bacteria isolated in seabream and bivalve molluscs, using a WGS approach. Sixty-six Gram-negative strains (Aeromonadaceae, Enterobacteriaceae, Hafniaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Vibrionaceae, and Yersiniaceae families) were selected for genomic characterization. The species and MLST were determined, and antibiotic/disinfectants/heavy metals resistance genes, virulence determinants, MGE, and pathogenicity to humans were investigated. Our study revealed new sequence-types (e.g. Aeromonas spp. ST879, ST880, ST881, ST882, ST883, ST887, ST888; Shewanella spp. ST40, ST57, ST58, ST60, ST61, ST62; Vibrio spp. ST206, ST205). >140 different genes were identified in the resistome of seabream and bivalve molluscs, encompassing genes associated with β-lactams, tetracyclines, aminoglycosides, quinolones, sulfonamides, trimethoprim, phenicols, macrolides and fosfomycin resistance. Disinfectant resistance genes qacE-type, sitABCD-type and formA-type were found. Heavy metals resistance genes mdt, acr and sil stood out as the most frequent. Most resistance genes were associated with antibiotics/disinfectants/heavy metals commonly used in aquaculture settings. We also identified 25 different genes related with increased virulence, namely associated with adherence, colonization, toxins production, red blood cell lysis, iron metabolism, escape from the immune system of the host. Furthermore, 74.2 % of the strains analysed were considered pathogenic to humans. We investigated the genetic environment of several antibiotic resistance genes, including blaTEM-1B, blaFOX-18, aph(3″)-Ib, dfrA-type, aadA1, catA1-type, tet(A)/(E), qnrB19 and sul1/2. Our analysis also focused on identifying MGE in proximity to these genes (e.g. IntI1, plasmids and TnAs), which could potentially facilitate the spread of resistance among bacteria across different environments. This study provides a comprehensive examination of the diversity of resistance genes that can be transferred to both humans and the environment, with the recognition that aquaculture and the broader environment play crucial roles as intermediaries within this complex transmission network.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Tânia Rosado
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal
| | - Maria João Botelho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal; Division of Oceanography and Marine Environment, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Elsa Dias
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
16
|
Fukuda A, Tsunashima R, Usui M. Antimicrobial Resistant Bacteria Monitoring in Raw Seafood Retailed: a Pilot Study Focused on Vibrio and Aeromonas. Food Saf (Tokyo) 2023; 11:65-77. [PMID: 38144894 PMCID: PMC10739313 DOI: 10.14252/foodsafetyfscj.d-23-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/08/2023] [Indexed: 12/26/2023] Open
Abstract
In aquaculture, bacterial infections in sea animals are treated using antimicrobials. As seafood is frequently consumed in its raw form, seafood contaminated with water-borne antimicrobial-resistant bacteria presents a potential transmission route to humans and can influence food safety. In this study, we aimed to determine the abundance of water-borne bacteria in retail raw seafood and to characterize their antimicrobial resistance profiles. In total, 85 retail raw seafood samples (32 fish, 26 shellfish, 25 mollusks, and two crustaceans) were purchased from supermarkets in Japan, and water-borne bacteria were isolated. The isolated bacterial species predominantly included Vibrio spp. (54.1%) and Aeromonas spp. (34.1%). Vibrio or Aeromonas spp. were isolated from more than 70% of the seafood samples. Tetracycline-, sulfamethoxazole-, and/or trimethoprim/sulfamethoxazole-resistant Vibrio or Aeromonas spp. isolates were detected in seven (21.9%) fish samples (two wild-caught and five farm-raised) harboring tet, sul, and/or dfr genes. Sulfamethoxazole- and trimethoprim/sulfamethoxazole-resistant isolates were only detected in farm-raised fish. Tetracycline and sulfamethoxazole are commonly used in aquaculture. These results suggest that water-borne bacteria like Vibrio and Aeromonas spp. should be the primary focus of antimicrobial-resistant bacteria monitoring to effectively elucidate their spread of bacteria via seafood.
Collapse
Affiliation(s)
- Akira Fukuda
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary
Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai
Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Ryu Tsunashima
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary
Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai
Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary
Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai
Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
17
|
Yilmaz S, Karataş S, Steinum TM, Gürkan M, Yilmaz DK, Abdel-Latif HMR. Isolation, Identification, and Pathogenicity of Vibrio gigantis Retrieved from European Seabass ( Dicentrarchus labrax) Farmed in Türkiye. Animals (Basel) 2023; 13:3580. [PMID: 38003197 PMCID: PMC10668765 DOI: 10.3390/ani13223580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
In this study, V. gigantis strain C24 was isolated from cases of winter mortalities of hatchery-reared European seabass (Dicentrarchus labrax) broodstock in Türkiye. The first mortalities were reported in September 2016 and occurred annually in early autumn/late winter until the end of February 2019, when 15% of accumulated mortality was recorded. Diseased moribund fish exhibited general septicemic signs, including dermal ulcerations with hemorrhagic margins, distended abdomens, and hemorrhages below the pectorals, pelvic fins, and at the operculum. Postmortem findings showed congestion in several internal organs, hemorrhagic ascitic fluid, and congested prolapsed anal openings. The representative bacterial isolate V. gigantis strain C24 was characterized as Gram-negative, motile, nitrite-producing, and as vibrio static agent O/129-sensitive. The full-length 16S rRNA sequence (Accession No. ON778781) and gyrB gene sequence (Accession No. ON792326) of the C24 strain showed high similarity to V. gigantis strains. Moreover, the whole-genome average nucleotide identity (ANI) values (ANI > 97.7%) against four V. gigantis strains above the species demarcation limit unambiguously identified the C24 isolate as a member of this species. A preliminary virulence-gene analysis showed that the V. gigantis isolate C24 encoded at least three exotoxins, including two aerolysins and a thermolabile hemolysin. The experimental infection showed that the C24 isolate exhibited low to moderate virulence in experimentally infected European seabass juveniles. Interestingly, antimicrobial susceptibility testing revealed that the C24 isolate was susceptible to nalidixic acid, ciprofloxacin, and several other antibiotics but resistant to tilmicosin, kanamycin, streptomycin, and ampicillin. To our knowledge, this study is the first to report that V. gigantis could be considered an emerging bacterial pathogen in Türkiye, and it may threaten the international European seabass production.
Collapse
Affiliation(s)
- Sevdan Yilmaz
- Department of Aquaculture, Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| | - Süheyla Karataş
- Department of Aquaculture and Fish Diseases, Faculty of Aquatic Sciences, Istanbul University, Istanbul 34134, Turkey;
| | - Terje Marken Steinum
- Department of Molecular Biology and Genetics, Faculty of Sciences, Istanbul University, Istanbul 34134, Turkey;
| | - Mert Gürkan
- Department of Biology, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - Dilek Kahraman Yilmaz
- Department of Marine Biology, Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - Hany M. R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| |
Collapse
|
18
|
Mohan K, Rajan DK, Ganesan AR, Divya D, Johansen J, Zhang S. Chitin, chitosan and chitooligosaccharides as potential growth promoters and immunostimulants in aquaculture: A comprehensive review. Int J Biol Macromol 2023; 251:126285. [PMID: 37582433 DOI: 10.1016/j.ijbiomac.2023.126285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
There is a stable growth in aquaculture production to avoid seafood scarcity. The usage of eco-friendly feed additives is not only associated with aquatic animal health but also reduces the risk of deleterious effects to the environment and consumers. Aquaculture researchers are seeking dietary solutions to improve the growth performance and yield of target organisms. A wide range of naturally derived compounds such as probiotics, prebiotics, synbiotics, complex carbohydrates, nutritional factors, herbs, hormones, vitamins, and cytokines was utilized as immunostimulants in aquaculture. The use of polysaccharides derived from natural resources, such as alginate, agar, laminarin, carrageenan, fucoidan, chitin, and chitosan, as supplementary feed in aquaculture species has been reported. Polysaccharides are prebiotic substances which are enhancing the immunity, disease resistance and growth of aquatic animals. Further, chitin (CT), chitosan (CTS) and chitooligosaccharides (COS) were recognized for their biodegradable properties and unique biological functions. The dietary effects of CT, CTS and COS at different inclusion levels on growth performance, immune response and gut microbiota in aquaculture species has been reviewed. The safety regulations, challenges and future outlooks of CT, CTS and COS in aquatic animals have been discussed in this review.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India.
| | - Durairaj Karthick Rajan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway
| | - Dharmaraj Divya
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Johan Johansen
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| |
Collapse
|
19
|
Hegde A, Kabra S, Basawa RM, Khile DA, Abbu RUF, Thomas NA, Manickam NB, Raval R. Bacterial diseases in marine fish species: current trends and future prospects in disease management. World J Microbiol Biotechnol 2023; 39:317. [PMID: 37743401 PMCID: PMC10518295 DOI: 10.1007/s11274-023-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
The fisheries sub-sector of aquaculture-i.e., the pisciculture industry, contributes significantly to a country's economy, employing a sizable proportion of the population. It also makes important contributions to household food security because the current demand for animal protein cannot be fulfilled by harvesting wild fish from riverines, lakes, dams, and oceans. For good pond management techniques and sustaining fish health, the fisherfolk, and the industry require well-established regulatory structures, efficient disease management strategies, and other extended services. In rearing marine fish, infections resulting from disease outbreaks are a weighty concern because they can cause considerable economic loss due to morbidity and mortality. Consequently, to find effective solutions for the prevention and control of the major diseases limiting fish production in aquaculture, multidisciplinary studies on the traits of potential fish pathogens, the biology of the fish as hosts, and an adequate understanding of the global environmental factors are fundamental. This review highlights the various bacterial diseases and their causative pathogens prevalent in the pisciculture industry and the current solutions while emphasising marine fish species. Given that preexisting methods are known to have several disadvantages, other sustainable alternatives like antimicrobial peptides, synthetic peptides, probiotics, and medicinal treatments have emerged to be an enormous potential solution to these challenges.
Collapse
Affiliation(s)
- Avani Hegde
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Suhani Kabra
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Renuka Manjunath Basawa
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Dnyanada Anil Khile
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Rahil Ummar Faruk Abbu
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Naomi Ann Thomas
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nava Bharati Manickam
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
20
|
Abioye OE, Nontongana N, Osunla CA, Okoh AI. Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS One 2023; 18:e0290356. [PMID: 37616193 PMCID: PMC10449182 DOI: 10.1371/journal.pone.0290356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The current study determines the density of Vibrio spp. and isolates V. cholerae and Vibrio mimicus from fish-anatomical-sites, prawn, crab and mussel samples recovered from fish markets, freshwater and brackish water. Virulence and antibiotic resistance profiling of isolates were carried out using standard molecular and microbiology techniques. Vibrio spp. was detected in more than 90% of samples [134/144] and its density was significantly more in fish than in other samples. Vibrio. cholerae and V. mimicus were isolated in at least one sample of each sample type with higher isolation frequency in fish samples. All the V. cholerae isolates belong to non-O1/non-O139 serogroup. One or more V. cholerae isolates exhibited intermediate or resistance against each of the eighteen panels of antibiotics used but 100% of the V. mimicus were susceptible to amikacin, gentamycin and chloramphenicol. Vibrio cholerae exhibited relatively high resistance against polymyxin, ampicillin and amoxicillin/clavulanate while V. mimicus isolates exhibited relatively high resistance against nitrofurantoin, ampicillin and polymixin. The multiple-antibiotic-resistance-index [MARI] for isolates ranges between 0 and 0.67 and 48% of the isolates have MARI that is >0.2 while 55% of the isolates exhibit MultiDrug Resistance Phenotypes. The percentage detection of acc, ant, drf18, sul1, mcr-1, blasvh, blaoxa, blatem, blaoxa48, gyrA, gyrB and parC resistance-associated genes were 2%, 9%, 14%, 7%, 2%, 25%, 7%, 2%, 2%, 32%, 25% and 27% respectively while that for virulence-associated genes in increasing other was ace [2%], tcp [11%], vpi [16%], ompU [34%], toxR [43%], rtxC [70%], rtxA [73%] and hyla [77%]. The study confirmed the potential of environmental non-O1/non-O139 V. cholerae and V. mimicus to cause cholera-like infection and other vibriosis which could be difficult to manage with commonly recommended antibiotics. Thus, regular monitoring of the environment to create necessary awareness for this kind of pathogens is important in the interest of public health.
Collapse
Affiliation(s)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Charles A. Osunla
- Department of Microbiology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
21
|
Xu W, Lv Z, Guo Q, Deng Z, Yang C, Cao Z, Li Y, Huang C, Wu Z, Chen S, He Y, Sun J, Liu Y, Gan L. Selective Antagonism of Lactiplantibacillus plantarum and Pediococcus acidilactici against Vibrio and Aeromonas in the Bacterial Community of Artemia nauplii. Microbiol Spectr 2023; 11:e0053323. [PMID: 37428079 PMCID: PMC10434253 DOI: 10.1128/spectrum.00533-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
Empiric probiotics are commonly consumed by healthy individuals as a means of disease prevention, pathogen control, etc. However, controversy has existed for a long time regarding the safety and benefits of probiotics. Here, two candidate probiotics, Lactiplantibacillus plantarum and Pediococcus acidilactici, which are antagonistic to Vibrio and Aeromonas species in vitro, were tested on Artemia under in vivo conditions. In the bacterial community of Artemia nauplii, L. plantarum reduced the abundance of the genera Vibrio and Aeromonas and P. acidilactici significantly increased the abundance of Vibrio species in a positive dosage-dependent manner, while higher and lower dosages of P. acidilactici increased and decreased the abundance of the genus Aeromonas, respectively. Based on the liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses of the metabolite of L. plantarum and P. acidilactici, pyruvic acid was used in an in vitro test to explain such selective antagonism; the results showed that pyruvic acid was conducive or suppressive to V. parahaemolyticus and beneficial to A. hydrophila. Collectively, the results of this study demonstrate the selective antagonism of probiotics on the bacterial community composition of aquatic organisms and the associated pathogens. IMPORTANCE Over the last decade, the common preventive method for controlling potential pathogens in aquaculture has been the use of probiotics. However, the mechanisms of probiotics are complicated and mostly undefined. At present, less attention has been paid to the potential risks of probiotic use in aquaculture. Here, we investigated the effects of two candidate probiotics, L. plantarum and P. acidilactici, on the bacterial community of Artemia nauplii and the in vitro interactions between these two candidate probiotics and two pathogens, Vibrio and Aeromonas species. The results demonstrated the selective antagonism of probiotics on the bacterial community composition of an aquatic organism and its associated pathogens. This research contributes to providing a basis and reference for the long-term rational use of probiotics and to reducing the inappropriate use of probiotics in aquaculture.
Collapse
Affiliation(s)
- Weihua Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaolin Lv
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Qingqi Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaojie Deng
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Canmin Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaozhao Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Cuifen Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zizhan Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Shijun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yuhui He
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Jijia Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yiying Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Lian Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
22
|
Agboola TD, Nmema EE, Odetoyin BW. Distribution and antibiogram of Vibrio species from hospital wastewater in Southwest, Nigeria. Pan Afr Med J 2023; 45:80. [PMID: 37663624 PMCID: PMC10474800 DOI: 10.11604/pamj.2023.45.80.35773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction the continuous generation of wastewater and its release into the environment with little or no treatment remains a threat to the environment and public health. We examined the prevalence and antibiotic susceptibility profiles of Vibrio species isolated from untreated wastewater samples from Ondo State Specialist Hospital Okitipupa, Nigeria, as part of the global efforts to provide information for containing the spread of resistant infections. Methods twelve hospital wastewater samples were collected aseptically and transported to the laboratory for analysis. The samples were processed on thiosulphate citrate bile salt sucrose agar and colonies typical of Vibrio species were selected for further identification. All isolates were confirmed by polymerase chain reaction (PCR) using Vibrio-specific primers and the PCR products were sequenced for species identification. The susceptibility profiles of the isolates were determined by the Kirby-Bauer disc diffusion method. Results twenty-nine (58%) of 38 presumptive isolates were confirmed as Vibrio by PCR, while 23 (60.5%) isolates were screened up to species level by sequencing. Six different species following the trend: 26.1% V. fortis and V. algivorus, 17.4% V. cholerae, 13.0% V. panuliri, 8.7% V. stylophorae and V. parahaemolyticus were identified. The isolates were commonly resistant (73.9%-91.3%) to doxycycline, tetracycline, erythromycin and meropenem. The least resistance rate (17.4%) was observed against amikacin and cotrimoxazole. All isolates were multidrug-resistant, with multiple antibiotic resistance (MAR) indices exceeding the 0.2 recommended limit. Conclusion this study has shown that untreated hospital wastewater is a reservoir for diverse strains of multiply resistant Vibrio species. Therefore, it is essential to adequately treat hospital wastewater to eliminate these emerging pollutants and set up a monitoring scheme to evaluate the treatment plants' effectiveness to reduce the pollutants' impact on the environment and the population.
Collapse
Affiliation(s)
- Temitope Deborah Agboola
- Department of Biological Sciences, Olusegun Agagu University of Science and Technology, Okitipupa, Ondo State, Nigeria
| | - Eucharia Ezenwanyi Nmema
- Department of Biological Sciences, Olusegun Agagu University of Science and Technology, Okitipupa, Ondo State, Nigeria
| | - Babatunde Wumi Odetoyin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Osun State, Nigeria
| |
Collapse
|
23
|
Raju T, Manchanayake T, Danial A, Zamri-Saad M, Azmai MNA, Md Yasin IS, Mohd Nor N, Salleh A. Evaluating the Intestinal Immunity of Asian Seabass (Lates calcarifer, Bloch 1790) following Field Vaccination Using a Feed-Based Oral Vaccine. Vaccines (Basel) 2023; 11:vaccines11030602. [PMID: 36992186 DOI: 10.3390/vaccines11030602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
This study describes the levels of gut lysozyme and IgM, the number, size and density of gut-associated lymphoid tissue (GALT) regions, and the lymphocyte population in Asian seabass following field oral administration of a feed-based vaccine. Fish in a grow-out farm were selected and divided into two groups; Group 1 was vaccinated at week 0, 2, and 6, while Group 2 was not vaccinated. Samplings were done at 2-week intervals when the fish were observed for clinical signs, and gross lesions were recorded. The intestinal tissue and gut lavage fluid were collected. GALT regions (numbers, size, density and population of lymphocytes) were analyzed. Clinical signs such as abnormal swimming pattern and death, and gross lesions including scale loss, ocular opacity, and skin ulceration were observed in both groups. At the end of the study, the incidence rate between both groups were significantly different (p < 0.05). The gut IgM level and lysozyme activity, lymphocyte population, number, size and density of GALT regions of Group 1 were significantly (p < 0.05) higher than Group 2. Therefore, this study concludes that the feed-based vaccine reduces the incidence of vibriosis by stimulating the gut immunity of the vaccinated fish with an enhanced GALT region, specific IgM production against Vibrio harveyi, and lysozyme responses.
Collapse
Affiliation(s)
- Thanusha Raju
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Tilusha Manchanayake
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Amir Danial
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Zamri-Saad
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ina Salwany Md Yasin
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhariani Mohd Nor
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Annas Salleh
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
24
|
Kumarage PM, Majeed S, De Silva LADS, Heo GJ. Detection of virulence, antimicrobial resistance, and heavy metal resistance properties in Vibrio anguillarum isolated from mullet (Mugil cephalus) cultured in Korea. Braz J Microbiol 2023; 54:415-425. [PMID: 36735199 PMCID: PMC9944176 DOI: 10.1007/s42770-023-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
In the present study, we identified and characterized 22 strains of V. anguillarum from 145 samples of mullets (Mugill cephallus) cultured in several fish farms in South Korea. They were subjected to pathogenicity tests, antimicrobial susceptibility test, and broth dilution test to detect virulence markers, antimicrobial resistance, and heavy metal resistance properties. All the isolates showed amylase and caseinase activity, followed by gelatinase (90.9%), DNase (45.5%), and hemolysis activities (α = 81.1% and β = 18.2%). The PCR assay revealed that isolates were positive for VAC, ctxAB, AtoxR, tdh, tlh, trh, Vfh, hupO, VPI, and FtoxR virulence genes at different percentages. All the isolates showed multi-drug resistance properties (MAR index ≥ 0.2), while 100% of the isolates were resistant to oxacillin, ticarcillin, streptomycin, and ciprofloxacin. Antimicrobial resistance genes, qnrS (95.5%), qnrB (86.4%), and StrAB (27.3%), were reported. In addition, 40.9% of the isolates were cadmium-tolerant, with the presence of CzcA (86.4%) heavy metal resistance gene. The results revealed potential pathogenicity associated with V. anguillarum in aquaculture and potential health risk associated with consumer health.
Collapse
Affiliation(s)
- P M Kumarage
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Sana Majeed
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - L A D S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea.
| |
Collapse
|
25
|
Yu Y, Tang M, Wang Y, Liao M, Wang C, Rong X, Li B, Ge J, Gao Y, Dong X, Zhang Z. Virulence and antimicrobial resistance characteristics assessment of Vibrio isolated from shrimp (Penaeus vannamei) breeding system in south China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114615. [PMID: 36773438 DOI: 10.1016/j.ecoenv.2023.114615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The diseases caused by Vibrio during shrimp breeding program have the risk of spreading in different aquatic areas through larvae transportation between different regions. Therefore, the population distribution and the virulence and antibiotic resistance risk of 5 pathogenic Vibrio in shrimp (Penaeus vannamei) breeding system in China were evaluated for the first time. A total of 418 isolates were recovered from shrimp, breeding water and biological baits samples, and 312 isolates were identified as Vibrio genus based on 16s rDNA, among which V. alginolyticus, V. harveyi, V. parahaemolyticus, V. cholerae and V. campbellii were the dominant species. And 10/20 kinds of virulence genes (chiA, luxR, vhh, tlh, chxA, sepro, flaA, vch, VAC and rpoS) were detected among the 5 Vibrio species. Multiple antibiotic resistance (MAR) index of the 5 dominant Vibrio isolates were 0.13-0.88 %, and 36.5 % isolates with MAR < 0.2. But the antibiotic resistance pattern abundance (ARPA) index ranged from 0.25 to 0.56, which indicated the antibiotic phenotypes of Vibrio species in the shrimp breeding system in China were homogeneity. Furthermore, resistance quotients (RQs) calculation results displayed that the dominant Vibrio species in the shrimp breeding system in China showed no or low selection pressure for resistance to cefoperazone/sulbactam, enrofloxacin, ciprofloxacin, fluoroquine, florfenicol, tetracycline and doxycycline. But only 5 resistance genes were detected, which were strA (43.8 %), strB (11.7 %), QnrVC (2.9 %), sul2 (8.8 %) and Int4 (8.8 %), respectively, and the antimicrobial resistance genotypes were not previously correlated with their phenotypes. The relevant research results provide theoretical basis for epizootic tracking in aquatic system in China, and targeting its final risk in aquatic ecosystem and public health perspectives.
Collapse
Affiliation(s)
- Yongxiang Yu
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Miaomiao Tang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yingeng Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Meijie Liao
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chunyuan Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaojun Rong
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bin Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jianlong Ge
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yingli Gao
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuan Dong
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zheng Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
26
|
Wu J, Ye F, Qu J, Dai Z. Insight into the Antibiotic Resistance of Bacteria Isolated from Popular Aquatic Products Collected in Zhejiang, China. Pol J Microbiol 2023; 72:61-67. [PMID: 36929890 DOI: 10.33073/pjm-2023-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
The present study was aimed to obtain a close insight into the distribution and diversity of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) among the aquatic products collected in Zhejiang, China. A total of 136 presumptive ARB picked up from six aquatic samples were classified into 22 genera and 49 species based on the 16S rDNA sequencing. Aeromonas spp., Shewanella spp., Acinetobacter spp., Myroides spp., Pseudomonas spp., and Citrobacter spp. accounted for 80% of the ARB. Among them, 109 isolates (80.15%) exhibited resistance to at least one antibiotic. Most isolates showed resistance to not only the originally selected drug but also to one to three other tested drugs. The diversity of ARB distributed in different aquatic products was significant. Furthermore, the resistance data obtained from genotypic tests were not entirely consistent with the results of the phenotypic evaluation. The genes qnrS, tetA, floR, and cmlA were frequently detected in their corresponding phenotypic resistant isolates. In contrast, the genes sul2, aac(6')-Ib, and bla PSE were less frequently found in the corresponding phenotypically resistant strains. The high diversity and detection rate of ARB and ARGs in aquaculture might be a significant threat to the food chains closely related to human health.
Collapse
Affiliation(s)
- Jiajia Wu
- 1Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- 3The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Hangzhou, China
| | - Fan Ye
- 1Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | | | - Zhiyuan Dai
- 1Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- 3The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Hangzhou, China
| |
Collapse
|
27
|
Rocha MFG, Diógenes EM, Carvalho VL, Marmontel M, da Costa MO, da Silva VMF, de Souza Amaral R, Gravena W, do Carmo NAS, Marigo J, Ocadaque CJ, Freitas AS, Pinheiro RM, de Lima-Neto RG, de Aguiar Cordeiro R, de Aquino Pereira-Neto W, de Melo Guedes GM, Sidrim JJC, de Souza Collares Maia Castelo-Branco D. Virulence factors of Gram-negative bacteria from free-ranging Amazon river dolphins (Inia geoffrensis). Antonie Van Leeuwenhoek 2023; 116:447-462. [PMID: 36841923 DOI: 10.1007/s10482-023-01812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/19/2023] [Indexed: 02/27/2023]
Abstract
Freshwater cetaceans play a significant role as sentinel animals, providing important data on animal species and aquatic ecosystem health. They also may serve as potential reservoirs of emerging pathogens and host virulence genes in their microbiota. In this study, we evaluated virulence factors produced by Gram-negative bacteria recovered from individuals belonging to two populations of free-ranging Amazon river dolphins (Inia geoffrensis). A total of 132 isolates recovered from the oral cavity, blowhole, genital opening and rectum of 21 river dolphins, 13 from Negro River and 8 from Tapajós River, Brazil, were evaluated for the production of virulence factors, such as biofilms and exoproducts (proteases, hemolysins and siderophores), in planktonic and biofilm forms. In planktonic form, 81.1% (107/132) of the tested bacteria of free-ranging Amazon river dolphins were able to produce virulence factors, with 44/132 (33.4%), 65/132 (49,2%) and 54/132 (40,9%) positive for protease, hemolysin and siderophore production, respectively. Overall, 57/132 (43.2%) of the isolates produced biofilms and, under this form of growth, 66/132 (50%), 88/132 (66.7%) and 80/132 (60.6%) of the isolates were positive for protease, hemolysin and siderophore production. In general, the isolates showed a higher release of exoproducts in biofilm than in planktonic form (P < 0.001). The present findings show that Amazon river dolphins harbor potentially pathogenic bacteria in their microbiota, highlighting the importance of monitoring the micro-organisms from wild animals, as they may emerge as pathogens for humans and other animals.
Collapse
Affiliation(s)
- Marcos Fábio Gadelha Rocha
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Expedito Maia Diógenes
- Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Vitor Luz Carvalho
- Associação de Pesquisa E Preservação de Ecossistemas Aquáticos (AQUASIS), Av. José Alencar, 150. Praia de Iparana, CEP. 61.627-210, Caucaia, Ceará, Brasil.
| | - Miriam Marmontel
- Mamirauá Sustainable Development Institute, Tefé, Amazonas, Brazil
| | | | - Vera M F da Silva
- National Institute of Amazon Research-Inpa/Aquatic Mammals Laboratory, Manaus, Amazon, Brazil
| | - Rodrigo de Souza Amaral
- Federal Institute of Education, Science and Technology of the Amazonas - IFAM, Amazonas, Brazil
| | - Waleska Gravena
- Federal University of Amazonas-UFAM, Campus Coari, Amazonas, Brazil
| | - Nívia A S do Carmo
- Federal University of Pará-UFPA, Belém, Pará, Brazil.,Brazilian Agricultural Research Corporation Eastern Amazon-EMBRAPA, Belém, Pará, Brazil
| | - Juliana Marigo
- Laboratory of Comparative Pathology of Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo (LAPCOM, FMVZ-USP), São Paulo, Brazil
| | - Crister José Ocadaque
- Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Alyne Soares Freitas
- Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Rodrigo Machado Pinheiro
- Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | | | - Rossana de Aguiar Cordeiro
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Waldemiro de Aquino Pereira-Neto
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Glaucia Morgana de Melo Guedes
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil. .,Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil.
| | - José Júlio Costa Sidrim
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil.,Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| |
Collapse
|
28
|
Stratev D, Fasulkova R, Krumova-Valcheva G. Incidence, virulence genes and antimicrobial resistance of Vibrio parahaemolyticus isolated from seafood. Microb Pathog 2023; 177:106050. [PMID: 36842516 DOI: 10.1016/j.micpath.2023.106050] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/28/2023]
Abstract
The objective of the study was to establish the incidence, pathogenic factors and antimicrobial resistance of Vibrio parahaemolyticus in seafood from retail shops in Bulgaria. A hundred and eighty samples of sea fish, mussels, oysters, veined rapa whelks, shrimps and squids were included in the study. PCR methods were used to identify V. parahaemolyticus and prove tdh and trh genes. Antimicrobial resistance was established by disc diffusion method, and MAR index was calculated. The results proved the presence of V. parahaemolyticus in 24% (44/180) of the seafood samples. tdh-positive V. parahaemolyticus was not found, while the trh gene was detected in one veined rapa whelk isolate. All isolates were susceptible to Sulfamethoxazole/trimethoprim, Tetracycline, Gentamycin, Amoxicillin-clavulanic acid, Amikacin, Ciprofloxacin, and Levofloxacin. Intermediate resistance was found to Ampicillin (25%; 11/44), Cefepime (16%; 7/44), and Ceftazidime (2%; 1/44). The results showed that 16% (7/44) of the isolates were resistant to Cefepime, 9% (4/44) to Ampicillin, and 5% (2/44) to Ceftazidime. MAR-index values ranged from 0.10 to 0.30. The incidence of pathogenic and multidrug-resistant V. parahaemolyticus strains in seafood offered on the market poses a risk to consumer health.
Collapse
Affiliation(s)
- Deyan Stratev
- Department of Food Quality and Safety and Veterinary Legislation, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria.
| | - Rumyana Fasulkova
- Department of Food Quality and Safety and Veterinary Legislation, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Gergana Krumova-Valcheva
- National Diagnostic Research Veterinary Institute, Bulgarian Food Safety Agency, Sofia, Bulgaria
| |
Collapse
|
29
|
Almagro-Moreno S, Martinez-Urtaza J, Pukatzki S. Vibrio Infections and the Twenty-First Century. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:1-16. [PMID: 36792868 DOI: 10.1007/978-3-031-22997-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The Vibrionaceae is a highly diverse family of aquatic bacteria. Some members of this ubiquitous group can cause a variety of diseases in humans ranging from cholera caused by Vibrio cholerae, severe septicemia caused by Vibrio vulnificus, to acute gastroenteritis by Vibrio parahaemolyticus. Planet Earth is experiencing unprecedented changes of planetary scale associated with climate change. These environmental perturbations paired with overpopulation and pollution are increasing the distribution of pathogenic Vibrios and exacerbating the risk of causing infections. In this chapter, we discuss various aspects of Vibrio infections within the context of the twenty-first century with a major emphasis on the aforementioned pathogenic species. Overall, we believe that the twenty-first century is posed to be both one full of challenges due to the rise of these pathogens, and also a catalyst for innovative and groundbreaking discoveries.
Collapse
Affiliation(s)
- Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA. .,National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA.
| | - Jaime Martinez-Urtaza
- Department de Genetica I de Microbiologia, Facultat de Biociencies, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Stefan Pukatzki
- Department of Biology, The City College of New York, New York, NY, USA
| |
Collapse
|
30
|
Sudan P, Tyagi A, Dar RA, Sharma C, Singh P, B T NK, Chandra M, Arora AK. Prevalence and antimicrobial resistance of food safety related Vibrio species in inland saline water shrimp culture farms. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023:10.1007/s10123-023-00323-7. [PMID: 36609954 DOI: 10.1007/s10123-023-00323-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
This study evaluated the potential pathogenicity and antimicrobial resistance (AMR) of Vibrio species isolated from inland saline shrimp culture farms. Out of 200 Vibrio isolates obtained from 166 shrimp/water samples, 105 isolates were identified as V. parahaemolyticus and 31 isolates were identified as V. alginolyticus and V. cholerae, respectively. During PCR screening of virulence-associated genes, the presence of the tlh gene was confirmed in 70 and 19 isolates of V. parahaemolyticus and V. alginolyticus, respectively. Besides, 10 isolates of V. parahaemolyticus were also found positive for trh gene. During antibiotic susceptibility testing (AST), very high resistance to cefotaxime (93.0%), amoxiclav (90.3%), ampicillin (88.2%), and ceftazidime (73.7%) was observed in all Vibrio species. Multiple antibiotic resistance (MAR) index values of Vibrio isolates ranged from 0.00 to 0.75, with 90.1% of isolates showing resistance to ≥ 3 antibiotics. The AST and MAR patterns did not significantly vary sample-wise or Vibrio species-wise. During the minimum inhibitory concentration (MIC) testing of various antibiotics against Vibrio isolates, the highest MIC values were recorded for amoxiclav followed by kanamycin. These results indicated that multi-drug resistant Vibrio species could act as the reservoirs of antibiotic resistance genes in the shrimp culture environment. The limited host range of 12 previously isolated V. parahaemolyticus phages against V. parahaemolyticus isolates from this study indicated that multiple strains of V. parahaemolyticus were prevalent in inland saline shrimp culture farms. The findings of the current study emphasize that routine monitoring of emerging aquaculture areas is critical for AMR pathogen risk assessment.
Collapse
Affiliation(s)
- Prapti Sudan
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India.
| | - Rouf Ahmad Dar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Chetna Sharma
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Prabjeet Singh
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Naveen Kumar B T
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Mudit Chandra
- College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - A K Arora
- College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
31
|
Changsen C, Likhitrattanapisal S, Lunha K, Chumpol W, Jiemsup S, Prachumwat A, Kongkasuriyachai D, Ingsriswang S, Chaturongakul S, Lamalee A, Yongkiettrakul S, Buates S. Incidence, genetic diversity, and antimicrobial resistance profiles of Vibrio parahaemolyticus in seafood in Bangkok and eastern Thailand. PeerJ 2023; 11:e15283. [PMID: 37193031 PMCID: PMC10183165 DOI: 10.7717/peerj.15283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/03/2023] [Indexed: 05/18/2023] Open
Abstract
Background Emergence of Vibrio parahaemolyticus pandemic strain O3:K6 was first documented in 1996. Since then it has been accounted for large outbreaks of diarrhea globally. In Thailand, prior studies on pandemic and non-pandemic V. parahaemolyticus had mostly been done in the south. The incidence and molecular characterization of pandemic and non-pandemic strains in other parts of Thailand have not been fully characterized. This study examined the incidence of V. parahaemolyticus in seafood samples purchased in Bangkok and collected in eastern Thailand and characterized V. parahaemolyticus isolates. Potential virulence genes, VPaI-7, T3SS2, and biofilm were examined. Antimicrobial resistance (AMR) profiles and AMR genes (ARGs) were determined. Methods V. parahaemolyticus was isolated from 190 marketed and farmed seafood samples by a culture method and confirmed by polymerase chain reaction (PCR). The incidence of pandemic and non-pandemic V. parahaemolyticus and VPaI-7, T3SS2, and biofilm genes was examined by PCR. AMR profiles were verified by a broth microdilution technique. The presence of ARGs was verified by genome analysis. V. parahaemolyticus characterization was done by multilocus sequence typing (MLST). A phylogenomic tree was built from nucleotide sequences by UBCG2.0 and RAxML softwares. Results All 50 V. parahaemolyticus isolates including 21 pathogenic and 29 non-pathogenic strains from 190 samples had the toxRS/old sequence, indicating non-pandemic strains. All isolates had biofilm genes (VP0950, VP0952, and VP0962). None carried T3SS2 genes (VP1346 and VP1367), while VPaI-7 gene (VP1321) was seen in two isolates. Antimicrobial susceptibility profiles obtained from 36 V. parahaemolyticus isolates revealed high frequency of resistance to colistin (100%, 36/36) and ampicillin (83%, 30/36), but susceptibility to amoxicillin/clavulanic acid and piperacillin/tazobactam (100%, 36/36). Multidrug resistance (MDR) was seen in 11 isolates (31%, 11/36). Genome analysis revealed ARGs including blaCARB (100%, 36/36), tet(34) (83%, 30/36), tet(35) (42%, 15/36), qnrC (6%, 2/36), dfrA6 (3%, 1/36), and blaCTX-M-55 (3%, 1/36). Phylogenomic and MLST analyses classified 36 V. parahaemolyticus isolates into 5 clades, with 12 known and 13 novel sequence types (STs), suggesting high genetic variation among the isolates. Conclusions Although none V. parahaemolyticus strains isolated from seafood samples purchased in Bangkok and collected in eastern Thailand were pandemic strains, around one third of isolates were MDR V. parahaemolyticus strains. The presence of resistance genes of the first-line antibiotics for V. parahaemolyticus infection raises a major concern for clinical treatment outcome since these resistance genes could be highly expressed under suitable circumstances.
Collapse
Affiliation(s)
- Chartchai Changsen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somsak Likhitrattanapisal
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kamonwan Lunha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wiyada Chumpol
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Surasak Jiemsup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anuphap Prachumwat
- AQHT, AAQG, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
- CENTEX SHRIMP, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Darin Kongkasuriyachai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Soraya Chaturongakul
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Aekarin Lamalee
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suganya Yongkiettrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sureemas Buates
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
32
|
Yu Y, Li H, Wang Y, Zhang Z, Liao M, Rong X, Li B, Wang C, Ge J, Zhang X. Antibiotic resistance, virulence and genetic characteristics of Vibrio alginolyticus isolates from aquatic environment in costal mariculture areas in China. MARINE POLLUTION BULLETIN 2022; 185:114219. [PMID: 36335689 DOI: 10.1016/j.marpolbul.2022.114219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Vibrio alginolyticus has been the second most common Vibrio species in the world and mainly grows in the ocean or estuary environment, which can induce epidemics outbreaks under marine organisms, and causing serious economic losses in aquaculture industry. In this study, the genetic populations and evolutionary relationship analysis of V. alginolyticus isolated from different geographical locations in China with typical interannual differences were exhibited originally genetic diversity. Then the virulence genes prevalence, antibiotic resistance phenotype, and antimicrobial resistance genes risk diversity of V. alginolyticus were analyzed by phenotypic and molecular typing methods. And they were complex correlations among antibiotic phenotypes, resistance and virulence genes under different genotype of V. alginolyticus. The results provide a theoretical foundation for further understanding the genetic and metabolic diversity among V. alginolyticus in China, and lay a theoretical foundation for the transmission risk assessment and regional diagnosis of Vibrio in aquatic animals.
Collapse
Affiliation(s)
- Yongxiang Yu
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Hao Li
- Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, PR China.
| | - Yingeng Wang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Zheng Zhang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Meijie Liao
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Xiaojun Rong
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Bin Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Chunyuan Wang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| | - Jianlong Ge
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| | - Xiaosong Zhang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| |
Collapse
|
33
|
Incidence of antibiotic resistance genotypes of Vibrio species recovered from selected freshwaters in Southwest Nigeria. Sci Rep 2022; 12:18912. [PMID: 36344620 PMCID: PMC9640555 DOI: 10.1038/s41598-022-23479-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio species are classified as potent hazards because of their tendency to effect serious diseases like cholera and other gastrointestinal ailments in humans, as well as vibriosis in fish. A total of 144 freshwater samples were aseptically collected monthly across four rivers (Asejire, Ona, Dandaru and Erinle rivers) over a 12-month period from which Vibrio spp. were isolated using culture procedures, confirmed by means of biochemical test as well as Polymerase Chain Reaction (PCR) assay and further characterized for their phenotypic antibiotic susceptibilities and relevant antimicrobial resistant determinants by PCR. Three hundred and fifteen (58%) isolates confirmed across the sampled sites (Asejire = 75, Dandaru = 87, Eleyele = 72, Erinle = 81) showed high resistance against erythromycin-95%, Sulphamethoxazole-94%, rifampicin-92%, doxycycline-82%, tetracycline-75%, amoxicillin-45%, cephalothin-43% and varied susceptibilities to other antibiotics. The multiple antibiotic resistance indices of 97% of the Vibrio isolates were above the 0.2 threshold limit with MAR phenotype pattern E-SUL-RF-TET-DOX (0.38) found to be the most prevalent pattern among the isolates. The distributions of resistance determinant of the tested antibiotics were revealed as follows: sulII 33%, sulI 19% (sulfonamides); blaOXA 27%, ampC 39%, blapse 11% (beta-lactams); tetA 28%, tetE 20%, tet39 8%, (tetracyclines) and strA 39%. aacC2 24%, aphA1 14% (aminoglycosides). Strong positive associations were observed among tetA, sulI, tetE and sulII. This study raises concerns as these selected rivers may contribute to the environmental spread of waterborne diseases and antibiotic resistance genes. Therefore, we recommend environmental context-tailored strategies for monitoring and surveillance of resistance genes so as to safeguard the environment from becoming reservoirs of virulent and infectious Vibrio species.
Collapse
|
34
|
Gao Q, Ma X, Wang Z, Chen H, Luo Y, Wu B, Qi S, Lin M, Tian J, Qiao Y, Grossart HP, Xu W, Huang L. Seasonal variation, virulence gene and antibiotic resistance of Vibrio in a semi-enclosed bay with mariculture (Dongshan Bay, Southern China). MARINE POLLUTION BULLETIN 2022; 184:114112. [PMID: 36113173 DOI: 10.1016/j.marpolbul.2022.114112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/09/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
In this study, the virulence genes, antibiotic resistance of culturable Vibrio and the environmental factors affecting Vibrio abundance were analyzed in four seasons in DongShan Bay with different intensity of aquaculture practice. A total of 253 bacteria isolates were obtained, of which 177 Vibrio strains belonged to 26 species. Annual Vibrio abundance in this region ranged from 20 to 11,600 CFU mL-1 and the most significant positive correlation occurred with temperature. Detection of 9 different Vibrio virulence genes revealed that most isolates contained atypical virulence genes in addition to the typical ones. In particular, virulence genes of hemolysin such as tdh, trh, and hlyA (6.32 %, 15.52 %, and 11.30 %) showed different degrees of horizontal gene transfer (HGT). In our antibiotic resistance test, the multiple antibiotic resistance (MAR) index of the isolates ranged from 0.01 to 0.03 in different seasons, and three MAR Vibrio strains were detected. Overall, our study sheds new light on the spatial distribution patterns and the occurrence of virulence genes and antibiotics resistance Vibrio isolated from a subtropical bay with intensive aquaculture. Our study provides a suitable microbial quality surveillance in a mariculture impacted coastal environment. It will help to establish effective disease prevention measures in this area and provide useful guidance and support for formulating local antibiotics use policies.
Collapse
Affiliation(s)
- Qiancheng Gao
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China
| | - Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Zhichao Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haisheng Chen
- Fishery Technology Promotion Station of Dongshan, Zhangzhou 363400, China
| | - Yu Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Bi Wu
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China
| | - Shanni Qi
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China
| | - Miaozhen Lin
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China
| | - Jing Tian
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China.
| | - Lixing Huang
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China.
| |
Collapse
|
35
|
Abdelaziz Gobarah DE, Helmy SM, Mahfouz NB, Fahmy HA, Abou Zeid MAEHM. Virulence genes and antibiotic resistance profile of Vibrio species isolated from fish in Egypt. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:315-321. [PMID: 36320310 PMCID: PMC9548226 DOI: 10.30466/vrf.2021.520767.3117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/20/2021] [Indexed: 06/16/2023]
Abstract
Vibrio species are significant pathogens affecting aquatic species. Around 12 species of Vibrio can cause a gastrointestinal illness (gastroenteritis) in humans resulting from eating contaminated food such as raw or undercooked shellfish. The indiscriminate use of antibiotics accelerates the development of resistance representing a severe challenge for controlling Vibrio outbreaks. In this study, the antibiotic resistance profile and the prevalence of pathogenic Vibrio species of apparently healthy and diseased fishes isolated from different types of fish in Kafr EL-Sheikh Governorate in Egypt during 2018 were determined. Samples obtained from fishes were inoculated onto a Vibrio-selective medium (TCBS) and phenotypically identified using the biochemical characteristics and representative cultures were checked by PCR to confirm the identified isolates. In the present study, V. alginolyticus (16.00%) was the predominant species followed by V. cholerae (7.33%) and V. parahaemolyticus (5.33%). The tested isolates were resistant to ampicillin (80.00%) and sensitive to ciprofloxacin and norfloxacin (100%). A total number of 15 Vibrio isolates (five Vibrio parahaemolyticus, five V. alginolyticus, and five V. cholerae) were screened for five housekeeping genes and pathogenic virulence markers by PCR. Results showed that 100% of the V. parahaemolyticus isolates carried the tlh gene and 60.00% carried the tdh gene. In V. alginolyticus, 100% of the isolates carried the collagenase gene 0.00% carry the tdh gene; and 80.00% of V. cholerae isolates carried the ctx gene. The results showed that many isolates in this study had virulence characteristics that might correspond with the potential of infections and diseases.
Collapse
Affiliation(s)
- Dalia Elsayed Abdelaziz Gobarah
- Department of Bacteriology, Animal Health Research Institute, Kafr El -Sheikh Branch, Agriculture Research Center, Giza, Egypt
| | - Salwa Mahmoud Helmy
- Department of Microbiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr EL-Sheikh, Egypt
| | - Nadia Bassiony Mahfouz
- Department of Fish Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr EL-Sheikh, Egypt
| | - Hanan Ali Fahmy
- Department of Biotechnology, Animal Health Research Institute, Dokki, Agriculture Research Center, Giza, Egypt
| | | |
Collapse
|
36
|
Wei SS, Yen CM, Marshall IPG, Hamid HA, Kamal SS, Nielsen DS, Ahmad HF. Gut microbiome and metabolome of sea cucumber (Stichopus ocellatus) as putative markers for monitoring the marine sediment pollution in Pahang, Malaysia. MARINE POLLUTION BULLETIN 2022; 182:114022. [PMID: 35963228 DOI: 10.1016/j.marpolbul.2022.114022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic contamination in the marine environment forms an emerging threat to marine ecosystems. This study aimed to compare the gut and coelomic microbiota of Stichopus ocellatus with sediments between two coastal districts of Pahang, which potentially conferring as putative biomarkers for sediment pollution monitoring. The composition of the bacteria communities was determined using 16S rRNA V3-region gene amplicon sequencing, while hybrid whole-genome sequencing was employed to analyze the genome of Vibrio parahaemolyticus. The trace elements and antibiotic compositions were access using high-throughput spectrometry. The alpha- and beta-diversity of bacteria in gut and sediment samples from Kuantan differed substantially within (p-value = 0.017604) and between samples (p-value <0.007), respectively. Vibrio genera predominated in Kuantan samples, while Flavobacterium and Synechococcus_E genera predominated in Pekan samples. Vibrio parahaemolyticus revealed the presence of tet(35) and blaCARB-33 genes that conceived resistance towards tetracycline and beta-lactam antibiotics, respectively, which were detected in sediment and gut samples.
Collapse
Affiliation(s)
- Siew Shing Wei
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
| | - Choo Mei Yen
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
| | - Ian P G Marshall
- Center for Electromicrobiology, Department of Biology, Ny Munkegade 116, 8000 Aarhus C, Denmark.
| | - Hazrulrizawati Abd Hamid
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia; Centre for Research in Advanced Tropical Bioscience (Biotropic Centre), Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia.
| | - Shamrulazhar Shamzir Kamal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | | | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia.
| |
Collapse
|
37
|
Sanches-Fernandes GMM, Sá-Correia I, Costa R. Vibriosis Outbreaks in Aquaculture: Addressing Environmental and Public Health Concerns and Preventive Therapies Using Gilthead Seabream Farming as a Model System. Front Microbiol 2022; 13:904815. [PMID: 35898915 PMCID: PMC9309886 DOI: 10.3389/fmicb.2022.904815] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial and viral diseases in aquaculture result in severe production and economic losses. Among pathogenic bacteria, species belonging to the Vibrio genus are one of the most common and widespread disease-causing agents. Vibrio infections play a leading role in constraining the sustainable growth of the aquaculture sector worldwide and, consequently, are the target of manifold disease prevention strategies. During the early, larval stages of development, Vibrio species are a common cause of high mortality rates in reared fish and shellfish, circumstances under which the host organisms might be highly susceptible to disease preventive or treatment strategies such as vaccines and antibiotics use, respectively. Regardless of host developmental stage, Vibrio infections may occur suddenly and can lead to the loss of the entire population reared in a given aquaculture system. Furthermore, the frequency of Vibrio-associated diseases in humans is increasing globally and has been linked to anthropic activities, in particular human-driven climate change and intensive livestock production. In this context, here we cover the current knowledge of Vibrio infections in fish aquaculture, with a focus on the model species gilthead seabream (Sparus aurata), a highly valuable reared fish in the Mediterranean climatic zone. Molecular methods currently used for fast detection and identification of Vibrio pathogens and their antibiotic resistance profiles are addressed. Targeted therapeutic approaches are critically examined. They include vaccination, phage therapy and probiotics supplementation, which bear promise in supressing vibriosis in land-based fish rearing and in mitigating possible threats to human health and the environment. This literature review suggests that antibiotic resistance is increasing among Vibrio species, with the use of probiotics constituting a promising, sustainable approach to prevent Vibrio infections in aquaculture.
Collapse
Affiliation(s)
- Gracinda M. M. Sanches-Fernandes
- Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
38
|
Future Climate Change Conditions May Compromise Metabolic Performance in Juveniles of the Mud Crab Scylla serrata. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Research characterising the effects of future climate change on the marine environment remains heavily focussed on that of temperate regions and organisms. Furthermore, little is known of these effects on the early life stages of many marine species. Tropical regions are already experiencing an increase in sea surface temperature and decrease in sea surface salinity, conditions favoured by pathogenic bacteria such as Vibrio spp. The early life stages of crabs are known to be particularly vulnerable to both the direct physiological effects of climate change and exposure to harmful microorganisms, yet there are limited data on these effects on juveniles of many tropical crustacean species. This study assessed the metabolic responses of mud crab (Scylla serrata) juveniles to warming and/or freshening in the presence or absence of pathogenic bacteria in southwest India. Juvenile crabs were exposed to either ambient (28 °C/30 PSU) or one of three projected climate change regimes (28 °C/20 PSU (freshening), 32 °C/30 PSU (warming), 32 °C/20 PSU (warming + freshening)) for 10 days, in either the presence or absence of the pathogenic bacteria Vibrio parahaemolyticus. Results show that simulated climate change conditions, especially freshening, caused a significant increase in oxygen consumption rates (MO2), and that these were further increased when juveniles were exposed to V. parahaemolyticus. These results suggest that the effects of future climate change conditions could have significant implications for the conservation of wild stocks and commercial farming of this species in South Asia.
Collapse
|
39
|
Liu XH, Song YP, Yin XL, Ji NY. Antimicrobial Terpenoids and Polyketides from the Algicolous Fungus Byssochlamys spectabilis RR-dl-2-13. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4658-4666. [PMID: 35384660 DOI: 10.1021/acs.jafc.2c00259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Four new carotane sesquiterpenoids, byssocarotins A-D (1-4), two new nor-sesquiterpenoids, byssofarnesin (5) and byssosesquicarin (6), and three new polyketides, byssoketides A and B (7 and 8) and (8R)-paecilocin A (9a), were obtained from a macroalga-associated strain (RR-dl-2-13) of the fungus Byssochlamys spectabilis. These isolates were identified by a combination of spectroscopic methods, including mass spectroscopy, nuclear magnetic resonance, electronic circular dichroism, and X-ray diffraction. Compounds 1-4 greatly contribute to the diversity of rarely occurring 2,15-epoxycarotane sesquiterpenoids, while 5 and 6 are degradation products of farnesane and sesquicarane precursors, respectively. Compound 7 is a structurally unique furan fatty acid derivative that possesses an aldehyde group and a large conjugated unit, and 8 features a hemiketal group. During antimicrobial assays, 8 showed antagonism against the phytopathogenic fungi Glomerella cingulata, Fusarium oxysporum f. sp. cucumerium, and F. oxysporum f. sp. cubense and the marine-derived bacteria Vibrio parahaemolyticus and V. harveyi with MIC values of 13 to 50 μg/mL.
Collapse
Affiliation(s)
- Xiang-Hong Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Xiu-Li Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| |
Collapse
|
40
|
Vibrio spp.: Life Strategies, Ecology, and Risks in a Changing Environment. DIVERSITY 2022. [DOI: 10.3390/d14020097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrios are ubiquitous bacteria in aquatic systems, especially marine ones, and belong to the Gammaproteobacteria class, the most diverse class of Gram-negative bacteria. The main objective of this review is to update the information regarding the ecology of Vibrio species, and contribute to the discussion of their potential risk in a changing environment. As heterotrophic organisms, Vibrio spp. live freely in aquatic environments, from marine depths to the surface of the water column, and frequently may be associated with micro- and macroalgae, invertebrates, and vertebrates such as fish, or live in symbiosis. Some Vibrio spp. are pathogenic to humans and animals, and there is evidence that infections caused by vibrios are increasing in the world. This rise may be related to global changes in human behavior (increases in tourism, maritime traffic, consumption of seafood, aquaculture production, water demand, pollution), and temperature. Most likely in the future, Vibrio spp. in water and in seafood will be monitored in order to safeguard human and animal health. Regulators of the microbiological quality of water (marine and freshwater) and food for human and animal consumption, professionals involved in marine and freshwater production chains, consumers and users of aquatic resources, and health professionals will be challenged to anticipate and mitigate new risks.
Collapse
|
41
|
Characterization of a novel Vibrio parahaemolyticus host-phage pair and antibacterial effect against the host. Arch Virol 2022; 167:531-544. [DOI: 10.1007/s00705-021-05278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
|
42
|
Yu X, Gao S, Xu J, Zhao Y, Lu Y, Deng N, Lin H, Zhang Y, Lu D. The flagellin of Vibrio parahaemolyticus induces the inflammatory response of Tetraodon nigroviridis through TLR5M. FISH & SHELLFISH IMMUNOLOGY 2022; 120:102-110. [PMID: 34737057 DOI: 10.1016/j.fsi.2021.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/22/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Vibrio parahaemolyticus is an important marine pathogen that cause inflammation even death in teleost. It has brought huge economic losses to aquaculture and serious threats to the sustainable development of marine fisheries. Here, we isolated the DNA, RNA, and total flagellin from V. parahaemolyticus, and obtained the primary spleen and head kidney cells (including leukocytes) from Tetraodon nigroviridis. V. parahaemolyticus DNA, RNA, and total flagellin were used to treat the T. nigroviridis primary cells described above. The results show that the nitric oxide (NO) production and respiratory burst response were significantly induced after stimulation with V. parahaemolyticus total flagellin in T. nigroviridis head kidney and spleen cells. And total flagellin could promote the gene expression and protein production of IL-1β in T. nigroviridis leukocytes. T. nigroviridis TLR5M (TnTLR5M) and TLR5S (TnTLR5S) ORF sequences were obtained as the main recognition receptor for flagellin. Real-time fluorescent quantitative PCR (qRT-PCR) was performed to detect the expression of pattern recognition receptor TnTLR5M and TnTLR5S, the important signal molecule of inflammatory system TnMyD88 and TnTRAF6, and inflammatory cytokines TnIL-1β and TnIFN-γ2. The results show that there were a significant upregulation after challenge with V. parahaemolyticus total flagellin. We further demonstrated that the total flagellin of V. parahaemolyticus could activate the luciferase activity of the NF-κB reporter gene mediated by TnTLR5M. Overall, our results suggest that V. parahaemolyticus total flagellin activated the NO production, respiratory burst response, and inflammatory cytokines expressions, such as TnIL-1β and TnIFN-γ2, through the TnTLR5M-NF-κB signaling pathway in T. nigroviridis.
Collapse
Affiliation(s)
- Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Songze Gao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yulin Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
43
|
Zhang Z, Han Z, Wu Y, Jiang S, Ma C, Zhang Y, Zhang J. Metagenomics assembled genome scale analysis revealed the microbial diversity and genetic polymorphism of Lactiplantibacillus plantarum in traditional fermented foods of Hainan, China. Food Res Int 2021; 150:110785. [PMID: 34865800 DOI: 10.1016/j.foodres.2021.110785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
Exploring the microbiome in fermented foods and their effects on food quality and sustainability is beneficial to provide data support for understanding how they affects human physiology. Here, metagenomic sequencing and metagenomic assembled genomes (MAGs) were applied to appraise the microbial diversity of fermented Yucha (FYC) and fermented vegetables (FVE). The antibiotic resistance genes (ARGs) enrichment and genetic polymorphism of Lactiplantibacillus plantarum in fermented foods of different regions were compared. The results showed that Lactiplantibacillus plantarum was the dominant species in FYC, while Lactiplantibacillus fermentum in FVE occupied the dominant position. From 32 high-quality MAGs, the central differential Lactic acid bacteria were higher in FVE. By comparing the Lactiplantibacillus plantarum MAGs in Hainan and Other regions, we found that the total Single Nucleotide Polymorphisms of Lactiplantibacillus plantarum in Hainan were significantly higher than other areas. Six non-synonymous mutations were included in the primary differential mutation, especially TrkA family potassium uptake protein and MerR family transcriptional regulator, which may be related to the hypersaline environment and highest ARGs enrichment in Hainan. This research provides valuable insight into our understanding of the microbiome of fermented food. Meanwhile, the analysis of Lactiplantibacillus plantarum genetic polymorphism based on MAGs helps us understand this strain's evolutionary history.
Collapse
Affiliation(s)
- Zeng Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Zhe Han
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Yuqing Wu
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Shuaiming Jiang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Chenchen Ma
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Yanjun Zhang
- Chinese Academy of Tropical Agricultural Science, Spice and Beverages Research Institute, Wanning, Hainan 571533, China.
| | - Jiachao Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
44
|
Lattos A, Chaligiannis I, Papadopoulos D, Giantsis IA, Petridou EI, Vafeas G, Staikou A, Michaelidis B. How Safe to Eat Are Raw Bivalves? Host Pathogenic and Public Health Concern Microbes within Mussels, Oysters, and Clams in Greek Markets. Foods 2021; 10:2793. [PMID: 34829074 PMCID: PMC8623680 DOI: 10.3390/foods10112793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
Raw-bivalves consumption is a wide trend in Mediterranean countries. Despite the unambiguous nutritional value of seafood, raw consumption of bivalves may involve risks that could pose a significant threat to consumers' health. Their filter-feeding behavior is responsible for the potential hosting of a wide variety of microorganisms, either pathogenic for the bivalves or public health threats. Under this prism, the current study was conducted in an effort to evaluate the risk of eating raw bivalves originating from the two biggest seafood markets in Thessaloniki, the largest production area of bivalves in Greece. Both microbiological and molecular methodologies were applied in order to assess the presence of various harmful microbes, including noroviruses, Bonamia, Marteilia, Esherichia coli, Salmonella, and Vibrio. Results indicated the presence of several Vibrio strains in the analyzed samples, of which the halophilic Vibrio harveyi was verified by 16S rRNA sequencing; other than this, no enteropathogenic Vibrio spp. was detected. Furthermore, although Esherichia coli was detected in several samples, it was mostly below the European Union (EU) legislation thresholds. Interestingly, the non-target Photobacterium damselae was also detected, which is associated with both wound infections in human and aquatic animals. Regarding host pathogenic microorganisms, apart from Vibrio harveyi, the protozoan parasite Marteilia refrigens was identified in oysters, highlighting the continuous infection of this bivalve in Greece. In conclusion, bivalves can be generally characterized as a safe-to-eat raw food, hosting more bivalve pathogenic microbes than those of public health concern.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| | - Ilias Chaligiannis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 57001 Thermi, Greece;
| | - Dimitrios Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| | - Ioannis A. Giantsis
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Evanthia I. Petridou
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Vafeas
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 57001 Thermi, Greece;
| | - Alexandra Staikou
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
- Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| |
Collapse
|
45
|
Adesiyan IM, Bisi-Johnson MA, Ogunfowokan AO, Okoh AI. Occurrence and antibiogram signatures of some Vibrio species recovered from selected rivers in South West Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42458-42476. [PMID: 33813704 DOI: 10.1007/s11356-021-13603-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Vibrio species, widely distributed in water environments, has emerged as a prominent cause of water and food-related disease outbreaks posing significant risk to human and animal health worldwide. About 40% of presumptive isolates recovered from four selected rivers in Southwest Nigeria and, established as Vibrio species genus through polymerase chain reaction techniques., were subjected to antibiotic susceptibility testing against a panel of 18 commonly used antibiotics. The relative prevalence of key Vibrio species (V. parahaemolyticus, V. vulnificus, V. mimicus, V. harveyi, and V. cholerae) was in the order 17%, 13.3%, 4.4%, 2.2%, and 2.2% respectively. Antibiotic resistance by all Vibrio species was mostly observed against doxycycline (71-89%), erythromycin (86-100%), tetracycline (71-89%), rifampicin (86-100%), and sulfamethoxazole (87-100%), though susceptibility to meropenem (86-100%), cephalothin (60-100%), norfloxacin (93-100%), ciprofloxacin (88-100%), amikacin (64-100%), gentamicin (57-74%), and trimethoprim/sulfamethoxazole (57-81%) was equally observed in all species. Vibrio mimicus expressed highest resistance against streptomycin and chloramphenicol (64%), while V. vulnificus (52%) and V. cholerae (57%) had the highest resistance against cephalothin. High resistance against ampicillin (57%) and amoxicillin (50%) was exhibited by V. cholerae and V. mimicus respectively. Indexes of multiple antibiotic resistances (MARI) among Vibrio species ranged between 0.11 and 0.72 with the highest MAR index of 0.72 observed in one isolate of V. vulnificus. This study reveals high prevalence of Vibrio species in the selected rivers as well as elevated resistance against some first-line antibiotics, which suggests possible inappropriate antimicrobial usage around study communities. We conclude that the freshwater resources investigated are unfit for domestic, industrial, and recreational uses without treatment prior to use and are potential reservoirs of antibiotic-resistant Vibrio species in this environment.
Collapse
Affiliation(s)
- Ibukun M Adesiyan
- Department of Biological Sciences, Achievers University, Owo, Ondo State, Nigeria.
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile Ife, Osun-State, 220005, Nigeria.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
| | | | - Aderemi O Ogunfowokan
- Department of Industrial Chemistry, The Technical University, Ibadan,, Oyo State, Nigeria
- Department of Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental Health Sciences College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
46
|
Dutta D, Kaushik A, Kumar D, Bag S. Foodborne Pathogenic Vibrios: Antimicrobial Resistance. Front Microbiol 2021; 12:638331. [PMID: 34276582 PMCID: PMC8278402 DOI: 10.3389/fmicb.2021.638331] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Foodborne illness caused by pathogenic Vibrios is generally associated with the consumption of raw or undercooked seafood. Fish and other seafood can be contaminated with Vibrio species, natural inhabitants of the marine, estuarine, and freshwater environment. Pathogenic Vibrios of major public health concerns are Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Common symptoms of foodborne Vibrio infection include watery diarrhea, stomach cramping, nausea, vomiting, fever, and chills. Administration of oral or intravenous rehydration salts solution is the mainstay for the management of cholera, and antibiotics are also used to shorten the duration of diarrhea and to limit further transmission of the disease. Currently, doxycycline, azithromycin, or ciprofloxacin are commonly used for V. cholerae, and doxycycline or quinolone are administered for V. parahaemolyticus, whereas doxycycline and a third-generation cephalosporin are recommended for V. vulnificus as initial treatment regimen. The emergence of antimicrobial resistance (AMR) in Vibrios is increasingly common across the globe and a decrease in the effectiveness of commonly available antibiotics poses a global threat to public health. Recent progress in comparative genomic studies suggests that the genomes of the drug-resistant Vibrios harbor mobile genetic elements like plasmids, integrating conjugative elements, superintegron, transposable elements, and insertion sequences, which are the major carriers of genetic determinants encoding antimicrobial resistance. These mobile genetic elements are highly dynamic and could potentially propagate to other bacteria through horizontal gene transfer (HGT). To combat the serious threat of rising AMR, it is crucial to develop strategies for robust surveillance, use of new/novel pharmaceuticals, and prevention of antibiotic misuse.
Collapse
Affiliation(s)
- Dipanjan Dutta
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Anupam Kaushik
- Department of Microbiology, National Centre for Disease Control, New Delhi, India
| | - Dhirendra Kumar
- Department of Microbiology, National Centre for Disease Control, New Delhi, India
| | | |
Collapse
|
47
|
Assessment and Antibiotic Resistance Profiling in Vibrio Species Isolated from Wild Birds Captured in Danube Delta Biosphere Reserve, Romania. Antibiotics (Basel) 2021; 10:antibiotics10030333. [PMID: 33809945 PMCID: PMC8004222 DOI: 10.3390/antibiotics10030333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial and multidrug-resistant bacteria are a major problem worldwide and, consequently, the surveillance of antibiotic-resistant bacteria and assessment of the dissemination routes are essential. We hypothesized that migratory birds, coming from various environments, would carry more numerous Vibrio strains than sedentary species, with increased risk to be passed to their contacts or environment in habitats they transit or nest in. Similarly, we presumed that strains from migratory birds will show multidrug resistance. A total of 170 oral and rectal swabs were collected from wild birds captured in different locations of the Danube Delta (Malic, Sfantu-Gheorghe, Letea Forest) and processed using standardized selective media. V. cholerae strains were confirmed by serology and molecular methods and, subsequently, their susceptibility was evaluated. The prevalence of Vibrio species by host species, habitat type, and location was interpreted. The isolated Vibrio species were identified as Vibrio cholerae 14.33%, V. fluvialis 13.33%, V. alginolyticus 12%, V. mimicus 17.33%, V. vulnificus 10.88%, with V. parahaemolyticus and V. metschnikovii (16%) also being prevalent. Of the 76 Vibrio spp. isolates, 18.42% were resistant towards at least three antimicrobials, and 81.57% demonstrated a multidrug resistance phenotype, including mainly penicillins, aminoglycosides, and macrolides. The results of the present study indicate higher numbers of Vibrio strains in migratory (74.66%) than in sedentary birds (25.33%), confirming our hypothesis. Furthermore, the increased pathogenicity of Vibrio spp. strains, isolated from wild migratory and sedentary birds, was confirmed by their increased multiple antibiotic resistance (MAR) index (0.09–0.81).
Collapse
|
48
|
Characterization of multidrug resistance in Vibrio species isolated from marine invertebrates from Andaman Sea. 3 Biotech 2020; 10:456. [PMID: 33088653 DOI: 10.1007/s13205-020-02445-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022] Open
Abstract
This study describes the abundance of multidrug-resistant Vibrios associated with marine invertebrate hosts from the Andaman Sea, India. Thirty-eight Vibrio strains were isolated from surface mucus layers of coral Porites, Goniastrea, Pocillopora, Fungia, and eggs of spiny lobster (Panulirus penicillatus). Phenotypically, the majority of strains exhibited growth at a wide range of temperatures, salt tolerance, and diverse nutritional requirements. All the strains had more than 97% 16S rRNA sequence similarity with type species of the genus Vibrio where Vibrio fortis, and Vibrio alginolyticus were predominant. Multilocus Sequence Analysis (MLSA) using eight housekeeping genes namely ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA distributed the strains into 6 reported clades i.e., Harveyi, Ponticus, Nereis, Orientalis, Splendidus, and Mediterranei where nearly half of the total strains represented the clade Harveyi, followed by the clade Splendidus. Likewise, the PFGE profile indicated genomic heterogeneity among the strains resulting in their distribution in five major clusters. Resistance to different antimicrobials was tested following the disc diffusion method where all strains were found susceptible to chloramphenicol (30 µg) and resistant to streptomycin (10 µg), vancomycin (30 µg), sulfamethoxazole-trimethoprim (25 µg). Moreover, the resistant phenotype to other antimicrobials confirmed the abundance of multidrug resistance strains in this marine environment.
Collapse
|