1
|
Li M, Wang L, Luo Y, Wang J, Liu X, Li S, Hao Z. RNA-seq analysis of the biological process and regulatory signal of TGF-β1-mediated changes in ovarian granulosa cells in small-tail Han sheep. Theriogenology 2025; 234:9-18. [PMID: 39631254 DOI: 10.1016/j.theriogenology.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Transforming growth factor beta-1 (TGF-β1) regulates the proliferation of ovarian granulosa cells and participates in follicular development in small-tail Han sheep via the SMAD pathway. However, which additional biological processes and regulatory mechanisms are involved in TGF-β1-mediated regulation of granulosa cell changes remains unknown. In this study, TGF-β1-treated (10 ng/mL) ovarian granulosa cells of small-tail Han sheep were used as the model, RNA-Seq was employed to screen differentially expressed genes (DEGs), and rescue experiments were used to verify selected key pathways. In total, 1179 upregulated and 873 downregulated DEGs were screened using RNA-Seq. Gene Ontology (GO) enrichment analysis showed that the DEGs were mainly involved in the biological processes of cell adhesion, cell migration, cell cycle, cell proliferation and apoptosis, and endocrine regulation. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the DEGs were primarily associated with pathways relating to ECM-receptor interaction, PI3K-AKT, focal adhesion, MAPK, TNF, and FOXO signaling, among others. The addition of doramapimod confirmed that the p38 pathway participates in the TGF-β1-induced proliferation and apoptosis of ovarian granulosa cells as well as the regulation of steroid hormone secretion. These results revealed a novel TGF-β1/p38 pathway-mediated mechanism that induces both the proliferation and apoptosis of ovarian granulosa cells. Our findings provide a basis for better understanding the genetic mechanism of TGF-β1 action in follicle development.
Collapse
Affiliation(s)
- Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Engineering Lab of Genetic Improvement in Ruminants, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Longbin Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Engineering Lab of Genetic Improvement in Ruminants, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Engineering Lab of Genetic Improvement in Ruminants, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Engineering Lab of Genetic Improvement in Ruminants, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Engineering Lab of Genetic Improvement in Ruminants, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Engineering Lab of Genetic Improvement in Ruminants, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Engineering Lab of Genetic Improvement in Ruminants, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
2
|
Lazarescu O, Ziv-Agam M, Haim Y, Hekselman I, Jubran J, Shneyour A, Muallem H, Zemer A, Rosengarten-Levin M, Kitsberg D, Levin L, Liberty IF, Yoel U, Dukhno O, Adam M, Braune J, Müller C, Raulien N, Gericke M, Körner A, Murphy R, Blüher M, Habib N, Rudich A, Yeger-Lotem E. Human subcutaneous and visceral adipocyte atlases uncover classical and nonclassical adipocytes and depot-specific patterns. Nat Genet 2025:10.1038/s41588-024-02048-3. [PMID: 39856219 DOI: 10.1038/s41588-024-02048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/25/2024] [Indexed: 01/27/2025]
Abstract
Human adipose depots are functionally distinct. Yet, recent single-nucleus RNA sequencing (snRNA-seq) analyses largely uncovered overlapping or similar cell-type landscapes. We hypothesized that adipocyte subtypes, differentiation trajectories and/or intercellular communication patterns could illuminate this depot similarity-difference gap. For this, we performed snRNA-seq of human subcutaneous or visceral adipose tissues (five or ten samples, respectively). Of 27,665 adipocyte nuclei in both depots, most were 'classical', namely enriched in lipid metabolism pathways. However, we also observed 'nonclassical' adipocyte subtypes, enriched in immune-related, extracellular matrix deposition (fibrosis), vascularization or angiogenesis or ribosomal and mitochondrial processes. Pseudo-temporal analysis showed a developmental trajectory from adipose progenitor cells to classical adipocytes via nonclassical adipocytes, suggesting that the classical state stems from loss, rather than gain, of specialized functions. Last, intercellular communication routes were consistent with the different inflammatory tone of the two depots. Jointly, these findings provide a high-resolution view into the contribution of cellular composition, differentiation and intercellular communication patterns to human fat depot differences.
Collapse
Affiliation(s)
- Or Lazarescu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maya Ziv-Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Idan Hekselman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Juman Jubran
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Shneyour
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Habib Muallem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Zemer
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marina Rosengarten-Levin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The Pathology Institute, Maccabi Healthcare Services, Rehovot, Israel
| | - Daniel Kitsberg
- Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Idit F Liberty
- Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Uri Yoel
- Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oleg Dukhno
- Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Miriam Adam
- Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia Braune
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Claudia Müller
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Nora Raulien
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
- German Center for Child and Adolescent Health, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Matthias Blüher
- German Center for Child and Adolescent Health, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
3
|
Peters H, Potla P, Rockel JS, Tockovska T, Pastrello C, Jurisica I, Delos Santos K, Vohra S, Fine N, Lively S, Perry K, Looby N, Li SH, Chandran V, Hueniken K, Kaur P, Perruccio AV, Mahomed NN, Rampersaud R, Syed K, Gracey E, Krawetz R, Buechler MB, Gandhi R, Kapoor M. Cell and transcriptomic diversity of infrapatellar fat pad during knee osteoarthritis. Ann Rheum Dis 2024:ard-2024-225928. [PMID: 39375009 DOI: 10.1136/ard-2024-225928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
OBJECTIVES In this study, we employ a multiomic approach to identify major cell types and subsets, and their transcriptomic profiles within the infrapatellar fat pad (IFP), and to determine differences in the IFP based on knee osteoarthritis (KOA), sex and obesity status. METHODS Single-nucleus RNA sequencing of 82 924 nuclei from 21 IFPs (n=6 healthy control and n=15 KOA donors), spatial transcriptomics and bioinformatic analyses were used to identify contributions of the IFP to KOA. We mapped cell subclusters from other white adipose tissues using publicly available literature. The diversity of fibroblasts within the IFP was investigated by bioinformatic analyses, comparing by KOA, sex and obesity status. Metabolomics was used to further explore differences in fibroblasts by obesity status. RESULTS We identified multiple subclusters of fibroblasts, macrophages, adipocytes and endothelial cells with unique transcriptomic profiles. Using spatial transcriptomics, we resolved distributions of cell types and their transcriptomic profiles and computationally identified putative cell-cell communication networks. Furthermore, we identified transcriptomic differences in fibroblasts from KOA versus healthy control donor IFPs, female versus male KOA-IFPs and obese versus normal body mass index (BMI) KOA-IFPs. Finally, using metabolomics, we defined differences in metabolite levels in supernatants of naïve, profibrotic stimuli-treated and proinflammatory stimuli-treated fibroblasts from obese compared to normal BMI KOA-IFPs. CONCLUSIONS Overall, by employing a multiomic approach, this study provides the first comprehensive map of the cellular and transcriptomic diversity of human IFP and identifies IFP fibroblasts as key cells contributing to transcriptomic and metabolic differences related to KOA disease, sex or obesity.
Collapse
Affiliation(s)
- Hayley Peters
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pratibha Potla
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jason S Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Teodora Tockovska
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Bioinformatics and HPC Core, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Keemo Delos Santos
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shabana Vohra
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Noah Fine
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kim Perry
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nikita Looby
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Sheng Han Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Vinod Chandran
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Katrina Hueniken
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paramvir Kaur
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anthony V Perruccio
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Nizar N Mahomed
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Khalid Syed
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Eric Gracey
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Rheumatology, University Hospital Ghent, Ghent, Belgium
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Matthew B Buechler
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Rajiv Gandhi
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Zhang L, Wu C, Liu T, Tian Y, Wang D, Wang B, Yin Y. Propofol Protects the Blood-Brain Barrier After Traumatic Brain Injury by Stabilizing the Extracellular Matrix via Prrx1: From Neuroglioma to Neurotrauma. Neurochem Res 2024; 49:2743-2762. [PMID: 38951281 DOI: 10.1007/s11064-024-04202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
The purpose of this study is to explore the shared molecular pathogenesis of traumatic brain injury (TBI) and high-grade glioma and investigate the mechanism of propofol (PF) as a potential protective agent. By analyzing the Chinese glioma genome atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases, we compared the transcriptomic data of high-grade glioma and TBI patients to identify common pathological mechanisms. Through bioinformatics analysis, in vitro experiments and in vivo TBI model, we investigated the regulatory effect of PF on extracellular matrix (ECM)-related genes through Prrx1 under oxidative stress. The impact of PF on BBB integrity under oxidative stress was investigated using a dual-layer BBB model, and we explored the protective effect of PF on tight junction proteins and ECM-related genes in mice after TBI. The study found that high-grade glioma and TBI share ECM instability as an important molecular pathological mechanism. PF stabilizes the ECM and protects the BBB by directly binding to Prrx1 or indirectly regulating Prrx1 through miRNAs. In addition, PF reduces intracellular calcium ions and ROS levels under oxidative stress, thereby preserving BBB integrity. In a TBI mouse model, PF protected BBB integrity through up-regulated tight junction proteins and stabilized the expression of ECM-related genes. Our study reveals the shared molecular pathogenesis between TBI and glioblastoma and demonstrate the potential of PF as a protective agent of BBB. This provides new targets and approaches for the development of novel neurotrauma therapeutic drugs.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Tian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Wang
- Department of Neurosurgery, Tianjin University Huanhu Hospital, Tianjin, China.
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
5
|
Xiong Z, Fang Y, Lu S, Sun Q, Sun Y, Yang P, Huang J. Exploring the Relevance of Disulfidptosis to the Pathophysiology of Ulcerative Colitis by Bioinformatics Analysis. J Inflamm Res 2024; 17:2757-2774. [PMID: 38737111 PMCID: PMC11088416 DOI: 10.2147/jir.s454668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Background Ulcerative colitis (UC) is a nonspecific inflammatory disease confined to the intestinal mucosa and submucosa, and its prevalence significantly increases each year. Disulfidptosis is a recently discovered new form of cell death that has been suggested to be involved in multiple diseases. The aim of this study was to explore the relevance of disulfidptosis in UC. Methods First, the UC datasets were downloaded from the Gene Expression Omnibus (GEO) database, and UC samples were typed based on upregulated disulfidptosis-related genes (DRGs). Then, weighted gene co-expression network analysis (WGCNA) was performed on the datasets and molecular subtypes of UC, respectively, to obtain candidate signature genes. After validation of the validation set and qRT-PCR, we constructed a nomogram model by signature genes to predict the risk of UC. Finally, single-cell sequencing analysis was used to study the heterogeneity of UC and to demonstrate the expression of DRGs and signature genes at the single-cell level. Results A total of 7 DRGs were significantly upregulated in the expression profiles of UC, and 180 UC samples were divided into two subtypes based on these DRGs. Five candidate signature genes were obtained by intersecting two key gene modules selected by WGCNA. After evaluation, four signature genes with diagnostic relevance (COL4A1, PRRX1, NNMT, and PECAM1) were eventually identified. The nomogram model showed excellent prediction ability. Finally, in the single-cell analysis, there were eight cell types (including B cells, T cells, monocyte, smooth muscle cells, epithelial cells, neutrophil, endothelial cells and NK cells) were identified. The signature genes were significantly expressed mainly in endothelial cells and smooth muscle cells. Conclusion In this study, subtypes related to disulfidptosis were identified, and single-cell analysis was performed to understand the pathogenesis of UC from a new perspective. Four signature genes were screened and a prediction model with high accuracy was established. This provides novel insights for early diagnosis and therapeutic targets in UC.
Collapse
Affiliation(s)
- Zhe Xiong
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ying Fang
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shuangshuang Lu
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Qiuyue Sun
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Yuhui Sun
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Pengcheng Yang
- Department of Gastroenterology, Hengshanqiao People’s Hospital, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jin Huang
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
6
|
Eisinger K, Girke P, Buechler C, Krautbauer S. Adipose tissue depot specific expression and regulation of fibrosis-related genes and proteins in experimental obesity. Mamm Genome 2024; 35:13-30. [PMID: 37884762 PMCID: PMC10884164 DOI: 10.1007/s00335-023-10022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Transforming growth factor beta (Tgfb) is a well-studied pro-fibrotic cytokine, which upregulates cellular communication network factor 2 (Ccn2), collagen, and actin alpha 2, smooth muscle (Acta2) expression. Obesity induces adipose tissue fibrosis, which contributes to metabolic diseases. This work aimed to analyze the expression of Tgfb, Ccn2, collagen1a1 (Col1a1), Acta2 and BMP and activin membrane-bound inhibitor (Bambi), which is a negative regulator of Tgfb signaling, in different adipose tissue depots of mice fed a standard chow, mice fed a high fat diet (HFD) and ob/ob mice. Principally, these genes were low expressed in brown adipose tissues and this difference was less evident for the ob/ob mice. Ccn2 and Bambi protein as well as mRNA expression, and collagen1a1 mRNA were not induced in the adipose tissues upon HFD feeding whereas Tgfb and Acta2 mRNA increased in the white fat depots. Immunoblot analysis showed that Acta2 protein was higher in subcutaneous and perirenal fat of these mice. In the ob/ob mice, Ccn2 mRNA and Ccn2 protein were upregulated in the fat depots. Here, Tgfb, Acta2 and Col1a1 mRNA levels and serum Tgfb protein were increased. Acta2 protein was, however, not higher in subcutaneous and perirenal fat of these mice. Col6a1 mRNA was shown before to be higher in obese fat tissues. Current analysis proved the Col6a1 protein was induced in subcutaneous fat of HFD fed mice. Notably, Col6a1 was reduced in perirenal fat of ob/ob mice in comparison to the respective controls. 3T3-L1 cells express Ccn2 and Bambi protein, whose levels were not changed by fatty acids, leptin, lipopolysaccharide, tumor necrosis factor and interleukin-6. All of these factors led to higher Tgfb in 3T3-L1 adipocyte media but did not increase its mRNA levels. Free fatty acids induced necrosis whereas apoptosis did not occur in any of the in vitro incubations excluding cell death as a main reason for higher Tgfb in cell media. In summary, Tgfb mRNA is consistently induced in white fat tissues in obesity but this is not paralleled by a clear increase of its target genes. Moreover, discrepancies between mRNA and protein expression of Acta2 were observed. Adipocytes seemingly do not contribute to higher Tgfb mRNA levels in obesity. These cells release more Tgfb protein when challenged with obesity-related metabolites connecting metabolic dysfunction and fibrosis.
Collapse
Affiliation(s)
- Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Philipp Girke
- Department of Genetics, University of Regensburg, 93040, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| |
Collapse
|
7
|
Moradi Tuchayi S, Khachatryan Y, Wang Y, Rox Anderson R, Wang JS, Wein MN, Garibyan L. Selective reduction of visceral adipose tissue with injectable ice slurry. Sci Rep 2023; 13:16350. [PMID: 37770553 PMCID: PMC10539385 DOI: 10.1038/s41598-023-43220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023] Open
Abstract
Reduction in visceral adipose tissue (VAT) mass reduces body weight and metabolic disease risk in obese patients. However surgical removal of VAT is highly invasive and thus not clinically feasible. We developed an injectable ice slurry for selective reduction of adipose tissue through cryolipolysis. The aim of this study was to investigate safety, feasibility and mechanism of ice slurry-induced cryolipolysis of VAT. Perigonadal VAT in diet-induced obese mice and rats was subjected to slurry or sham treatment. Body weight and blood chemistry were monitored for 56 days post-treatment. Histological analysis and molecular studies were performed to elucidate mechanisms of fat reduction. Treatment of VAT was well tolerated in all animals. Slurry induced adipocyte cell death via selective cryolipolysis; significant weight loss was noted at day 21 post-treatment. RNA sequencing from treated VAT samples showed increased expression of genes involved in inflammation, immune response, collagen biosynthesis and wound healing, and decreased expression of adipokines. This study demonstrates that slurry treatment is safe and effective in inducing cryolipolysis of VAT and subsequent weight loss in mice. Ice slurry is promising as a minimally-invasive treatment to reduce visceral adipose tissue.
Collapse
Affiliation(s)
- Sara Moradi Tuchayi
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street-Thier 2, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, USA
| | - Yeva Khachatryan
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street-Thier 2, Boston, MA, 02114, USA
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street-Thier 2, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street-Thier 2, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, USA
| | - Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Lilit Garibyan
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street-Thier 2, Boston, MA, 02114, USA.
- Department of Dermatology, Harvard Medical School, Boston, USA.
| |
Collapse
|
8
|
Osorio-Conles Ó, Olbeyra R, Vidal J, Ibarzabal A, Balibrea JM, de Hollanda A. Expression of Adipose Tissue Extracellular Matrix-Related Genes Predicts Weight Loss after Bariatric Surgery. Cells 2023; 12:cells12091262. [PMID: 37174662 PMCID: PMC10177079 DOI: 10.3390/cells12091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND We evaluated the association between white adipose tissue parameters before bariatric surgery (BS) and post-surgical weight loss, with an especial focus on extracellular matrix (ECM) gene expression. METHODS Paired samples from subcutaneous (SAT) and visceral adipose tissue (VAT) were obtained from 144 subjects undergoing BS. The association between total body weight loss (%TBWL) at 12 months after BS and the histological characteristics and gene expression of selected genes in SAT and VAT was analyzed. RESULTS Fat cell area, size-frequency distribution, and fibrosis in SAT or VAT prior to surgery were not associated with %TBWL. On the contrary, the SAT expression of COL5A1 and COL6A3 was associated with %TBWL after BS (both p < 0.001), even after adjusting for age, gender, baseline BMI, and type 2 diabetes status (T2D). Furthermore, in logistic regression analyses, the expression of these genes was significantly associated with insufficient WL (IWL = TBWL < 20%) after BS (respectively, p = 0.030 and p = 0.031). Indeed, in ROC analysis, the prediction of IWL based on sex, age, BMI, T2D, and the type of surgery (AUC = 0.71) was significantly improved with the addition of SAT-COL5A1 gene expression (AUC = 0.88, Z = 2.13, p = 0.032). CONCLUSIONS Our data suggest that the expression of SAT ECM-related genes may help explain the variability in TBWL following BS.
Collapse
Affiliation(s)
- Óscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos Ave. 3-5, 28029 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
| | - Romina Olbeyra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
| | - Josep Vidal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos Ave. 3-5, 28029 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
| | - José María Balibrea
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
| | - Ana de Hollanda
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos Ave. 3-5, 28029 Madrid, Spain
| |
Collapse
|
9
|
English J, Orofino J, Cederquist CT, Paul I, Li H, Auwerx J, Emili A, Belkina A, Cardamone D, Perissi V. GPS2-mediated regulation of the adipocyte secretome modulates adipose tissue remodeling at the onset of diet-induced obesity. Mol Metab 2023; 69:101682. [PMID: 36731652 PMCID: PMC9922684 DOI: 10.1016/j.molmet.2023.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Dysfunctional, unhealthy expansion of white adipose tissue due to excess dietary intake is a process at the root of obesity and Type 2 Diabetes development. The objective of this study is to contribute to a better understanding of the underlying mechanism(s) regulating the early stages of adipose tissue expansion and adaptation to dietary stress due to an acute, high-fat diet (HFD) challenge, with a focus on the communication between adipocytes and other stromal cells. METHODS We profiled the early response to high-fat diet exposure in wildtype and adipocyte-specific GPS2-KO (GPS2-AKO) mice at the cellular, tissue and organismal level. A multi-pronged approach was employed to disentangle the complex cellular interactions dictating tissue remodeling, via single-cell RNA sequencing and FACS profiling of the stromal fraction, and semi-quantitative proteomics of the adipocyte-derived exosomal cargo after 5 weeks of HFD feeding. RESULTS Our results indicate that loss of GPS2 in mature adipocytes leads to impaired adaptation to the metabolic stress imposed by HFD feeding. GPS2-AKO mice are significantly more inflamed, insulin resistant, and obese, compared to the WT counterparts. At the cellular level, lack of GPS2 in adipocytes impacts upon other stromal populations, with both the eWAT and scWAT depots exhibiting changes in the immune and non-immune compartments that contribute to an increase in inflammatory and anti-adipogenic cell types. Our studies also revealed that adipocyte to stromal cell communication is facilitated by exosomes, and that transcriptional rewiring of the exosomal cargo is crucial for tissue remodeling. Loss of GPS2 results in increased expression of secreted factors promoting a TGFβ-driven fibrotic microenvironment favoring unhealthy tissue remodeling and expansion. CONCLUSIONS Adipocytes serve as an intercellular signaling hub, communicating with the stromal compartment via paracrine signaling. Our study highlights the importance of proper regulation of the 'secretome' released by energetically stressed adipocytes at the onset of obesity. Altered transcriptional regulation of factors secreted via adipocyte-derived exosomes (AdExos), in the absence of GPS2, contributes to the establishment of an anti-adipogenic, pro-fibrotic adipose tissue environment, and to hastened progression towards a metabolically dysfunctional phenotype.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Joseph Orofino
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Carly T. Cederquist
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Indranil Paul
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Hao Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Anna Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Dafne Cardamone
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
10
|
Sun K, Li X, Scherer PE. Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr Physiol 2023; 13:4387-4407. [PMID: 36715281 PMCID: PMC9957663 DOI: 10.1002/cphy.c220020] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis in adipose tissue is a major driver of obesity-related metabolic dysregulation. It is characterized by an overaccumulation of extracellular matrix (ECM) during unhealthy expansion of adipose tissue in response to over nutrition. In obese adipose-depots, hypoxia stimulates multiple pro-fibrotic signaling pathways in different cell populations, thereby inducing the overproduction of the ECM components, including collagens, noncollagenous proteins, and additional enzymatic components of ECM synthesis. As a consequence, local fibrosis develops. The result of fibrosis-induced mechanical stress not only triggers cell necrosis and inflammation locally in adipose tissue but also leads to system-wide lipotoxicity and insulin resistance. A better understanding of the mechanisms underlying the obesity-induced fibrosis will help design therapeutic approaches to reduce or reverse the pathological changes associated with obese adipose tissue. Here, we aim to summarize the major advances in the field, which include newly identified fibrotic factors, cell populations that contribute to the fibrosis in adipose tissue, as well as novel mechanisms underlying the development of fibrosis. We further discuss the potential therapeutic strategies to target fibrosis in adipose tissue for the treatment of obesity-linked metabolic diseases and cancer. © 2023 American Physiological Society. Compr Physiol 13:4387-4407, 2023.
Collapse
Affiliation(s)
- Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
11
|
Liu L, Liu A, Liu X. PRRX2 predicts poor survival prognosis, and promotes malignant phenotype of lung adenocarcinoma via transcriptional activates PSMD1. Transl Oncol 2022; 27:101586. [PMID: 36379103 PMCID: PMC9661514 DOI: 10.1016/j.tranon.2022.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Paired-related homeobox transcription factor 2 (PRRX2) has been proved involves in the pathogenesis of tumors, but the role of PRRX2 in lung adenocarcinoma (LUAD) is basically not clear. MATERIALS AND METHODS LUAD datasets were obtained from Gene Expression Omnibus datasets. Functional enrichment analyses were performed based on R language. Several online analysis tools were used for PRRX2 expression, survival curves, and immune cell infiltration analyses. CCK-8, flow cytometry assays were used to detect the cell proliferation and apoptosis. Dual luciferase reporter system and chromatin immunoprecipitation were used to explore the interaction of PRRX2 and Proteasome 26S subunit, non-ATPases 1 (PSMD1). Xenograft in nude mice was used to assess the function of PRRX2 regulation in vivo. RESULTS AND DISCUSSION Bioinformatics analyses found that PRRX2 was highly expressed in LUAD tissues and the high PRRX2 expression had a poor prognostic value. PRRX2 was highly expressed in LUAD clinical samples and cell lines. PRRX2 acted as a positive regulator of cell proliferation and a negative regulator of apoptosis. PRRX2 could bind with the PSMD1 promoter and regulate PSMD1 expression, thereby affected LUAD cells' malignant phenotype. Result of xenografts in nude mice confirmed that PRRX2 promotes LUAD tumor growth in vivo. Summary, our study results reveal the crucial roles for PRRX2 in the proliferation and apoptosis of LUAD progression and suggest that PRRX2 may regulate PSMD1 expression by combining with the PSMD1 promoter, thereby participating in the malignant behavior of LUAD.
Collapse
Affiliation(s)
- Lihua Liu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China,Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Aihua Liu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xuezheng Liu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China,Corresponding author.
| |
Collapse
|
12
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
13
|
Tseng E, Underwood JG, Evans Hutzenbiler BD, Trojahn S, Kingham B, Shevchenko O, Bernberg E, Vierra M, Robbins CT, Jansen HT, Kelley JL. Long-read isoform sequencing reveals tissue-specific isoform expression between active and hibernating brown bears (Ursus arctos). G3 (BETHESDA, MD.) 2022; 12:6472356. [PMID: 35100340 PMCID: PMC9210309 DOI: 10.1093/g3journal/jkab422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022]
Abstract
Understanding hibernation in brown bears (Ursus arctos) can provide insight into some human diseases. During hibernation, brown bears experience periods of insulin resistance, physical inactivity, extreme bradycardia, obesity, and the absence of urine production. These states closely mimic aspects of human diseases such as type 2 diabetes, muscle atrophy, as well as renal and heart failure. The reversibility of these states from hibernation to active season enables the identification of mediators with possible therapeutic value for humans. Recent studies have identified genes and pathways that are differentially expressed between active and hibernation seasons in bears. However, little is known about the role of differential expression of gene isoforms on hibernation physiology. To identify both distinct and novel mRNA isoforms, full-length RNA-sequencing (Iso-Seq) was performed on adipose, skeletal muscle, and liver from three individual bears sampled during both active and hibernation seasons. The existing reference genome annotation was improved by combining it with the Iso-Seq data. Short-read RNA-sequencing data from six individuals were mapped to the new reference annotation to quantify differential isoform usage (DIU) between tissues and seasons. We identified differentially expressed isoforms in all three tissues, to varying degrees. Adipose had a high level of DIU with isoform switching, regardless of whether the genes were differentially expressed. Our analyses revealed that DIU, even in the absence of differential gene expression, is an important mechanism for modulating genes during hibernation. These findings demonstrate the value of isoform expression studies and will serve as the basis for deeper exploration into hibernation biology.
Collapse
Affiliation(s)
| | | | - Brandon D Evans Hutzenbiler
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.,School of the Environment, Washington State University, Pullman, WA 99164, USA
| | - Shawn Trojahn
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Brewster Kingham
- Sequencing & Genotyping Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Olga Shevchenko
- Sequencing & Genotyping Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Erin Bernberg
- Sequencing & Genotyping Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | | - Charles T Robbins
- School of the Environment, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
14
|
Sarsenbayeva A, Pereira MJ, Nandi Jui B, Ahmed F, Dipta P, Fanni G, Almby K, Kristófi R, Hetty S, Eriksson JW. Excess glucocorticoid exposure contributes to adipose tissue fibrosis which involves macrophage interaction with adipose precursor cells. Biochem Pharmacol 2022; 198:114976. [PMID: 35202577 DOI: 10.1016/j.bcp.2022.114976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Chronic exposure to elevated glucocorticoid levels, as seen in patients with Cushing's syndrome, can induce adipose tissue fibrosis. Macrophages play a pivotal role in adipose tissue remodelling. We used the synthetic glucocorticoid analogue dexamethasone to address glucocorticoid effects on adipose tissue fibrosis, in particular involving macrophage to preadipocyte communication. We analysed the direct effects of dexamethasone at a supra-physiological level, 0.3 µM, on gene expression of pro-fibrotic markers in human subcutaneous adipose tissue. The effects of dexamethasone on the differentiation of human SGBS preadipocytes were assessed in the presence or absence of THP1-macrophages or macrophage-conditioned medium. We measured the expression of different pro-fibrotic factors, including α-smooth muscle actin gene (ACTA2) and protein (α-SMA). Dexamethasone increased the expression of pro-fibrotic genes, e.g. CTGF, COL6A3, FN1, in adipose tissue. Macrophages abolished preadipocyte differentiation and increased the expression of the ACTA2 gene and α-SMA protein in preadipocytes after differentiation. Exposure to dexamethasone during differentiation reduced adipogenesis in preadipocytes, and elevated the expression of pro-fibrotic genes. Moreover, dexamethasone added together with macrophages further increased ACTA2 and α-SMA expression in preadipocytes, making them more myofibroblast-like. Cells differentiated in the presence of conditioned media from macrophages pretreated with or without dexamethasone had a higher expression of profibrotic genes compared to control cells. Our data suggest that macrophages promote adipose tissue fibrosis by directly interfering with preadipocyte differentiation and stimulating gene expression of pro-fibrotic factors. Excess glucocorticoid exposure also has pro-fibrotic effect on adipose tissue, but this requires the presence of macrophages.
Collapse
Affiliation(s)
- Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Bipasha Nandi Jui
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Priya Dipta
- Department of Pharmacology, Faculty of Medicine, Hadassah Medical Centre, Jerusalem, Israel
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Kristina Almby
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Robin Kristófi
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Meng Z, Chen Y, Wu W, Yan B, Meng Y, Liang Y, Yao X, Luo J. Exploring the Immune Infiltration Landscape and M2 Macrophage-Related Biomarkers of Proliferative Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:841813. [PMID: 35692390 PMCID: PMC9186015 DOI: 10.3389/fendo.2022.841813] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUNDS Diabetic retinopathy (DR), especially proliferative diabetic retinopathy (PDR), is the major cause of irreversible blindness in the working-age population. Increasing evidence indicates that immune cells and the inflammatory microenvironment play an important role during PDR development. Herein, we aim to explore the immune landscape of PDR and then identify potential biomarkers correlated with specific infiltrating immune cells. METHODS We mined and re-analyzed PDR-related datasets from the Gene Expression Omnibus (GEO) database. Using the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm, we investigated the infiltration of 22 types of immune cells in all selected samples; analyses of differences and correlations between infiltrating cells were used to reveal the immune landscape of PDR. Thereafter, weighted gene co-expression network analysis (WGCNA) and differential expression analysis were applied to identify the hub genes on M2 macrophages that may affect PDR progression. RESULTS Significant differences were found between infiltration levels of immune cells in fibrovascular membranes (FVMs) from PDR and normal retinas. The percentages of follicular helper T cells, M1 macrophages, and M2 macrophages were increased significantly in FVMs. Integrative analysis combining the differential expression and co-expression revealed the M2 macrophage-related hub genes in PDR. Among these, COL5A2, CALD1, COL6A3, CORO1C, and CALU showed increased expression in FVM and may be potential biomarkers for PDR. CONCLUSIONS Our findings provide novel insights into the immune mechanisms involved in PDR. COL5A2, CALD1, COL6A3, CORO1C, and CALU are M2 macrophage-related biomarkers, further study of these genes could inform novel ideas and basis for the understanding of disease progression and targeted treatment of PDR.
Collapse
Affiliation(s)
- Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanzhu Chen
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongan Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Youling Liang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxi Yao
- Shenzhen College of International Education, Shenzhen, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Luo,
| |
Collapse
|
16
|
Zhang X, Ma L, Shen Y, Zhang C, Hou B, Zhou Y. Transcription factor paired related homeobox 1 (PRRX1) activates matrix metalloproteinases (MMP)13, which promotes the dextran sulfate sodium-induced inflammation and barrier dysfunction of NCM460 cells. Bioengineered 2021; 13:645-654. [PMID: 34967278 PMCID: PMC8805821 DOI: 10.1080/21655979.2021.2012549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Paired related homeobox 1 (PRRX1) is a newly identified transcription factor that regulates the expression of various genes. We aimed to investigate the roles of PRRX1 and Matrix metalloproteinases (MMP)13 in dextran sulfate sodium (DSS)-induced inflammation and barrier dysfunction of NCM460 cells. PRRX1 expression in the mucosal tissues of patients with ulcerative colitis was analyzed using the GSE87466 microarray. PRRX1 and MMP13 expression was examined using Western blotting and RT-qPCR following the exposure of the NCM460 cells to DSS. The JASPAR database was used to predict the binding sites of PRRX1 to the MMP13 promoter, which was verified by luciferase reporter and chromatin immunoprecipitation assays. MMP13 expression was then detected following PRRX1 silencing or overexpression. The levels of inflammatory factors were determined using ELISA. Finally, the expression of intestinal barrier function-related proteins was evaluated using Western blotting and cellular permeability was detected by Transepithelial electrical resistance. PRRX1 was upregulated in the mucosal tissue samples of patients with UC. DSS induction upregulated PRRX1 and MMP13 expression. PRRX1 bound to the promoter of MMP13, which was further supported by the decreased expression of MMP13 observed following PRRX1 knockdown and its increased expression following PRRX1 overexpression. Furthermore, PRRX1 deletion decreased TNF-α, IL-1β and IL-6 levels in the DSS-challenged NCM460 cells, which were subjected to MMP13 overexpression. Moreover, PRRX1 silencing upregulated ZO-1, occludin and claudin-1 expression and elevated the TEER value, whereas MMP13 overexpression attenuated these effects. Collectively, PRRX1 activates MMP13, which in turn promotes the DSS-induced inflammation and barrier dysfunction of NCM460 cells.
Collapse
Affiliation(s)
- Xiujing Zhang
- Division of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Lizhuan Ma
- Division of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Ying Shen
- Department of Endoscopic Therapy, Tangshan People's Hospital, Tangshan, Hebei, China
| | - Chao Zhang
- Division of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Bingxu Hou
- Division of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Yanli Zhou
- Division of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| |
Collapse
|
17
|
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289:3603-3629. [PMID: 34109754 DOI: 10.1111/febs.16039] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| |
Collapse
|
18
|
Yasuzawa T, Nakamura T, Ueshima S, Mima A. Protective Effects of Eicosapentaenoic Acid on the Glomerular Endothelium via Inhibition of EndMT in Diabetes. J Diabetes Res 2021; 2021:2182225. [PMID: 34977254 PMCID: PMC8720008 DOI: 10.1155/2021/2182225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetes-induced endothelial pathologies are hypothesized to lead to the progression of diabetic kidney disease (DKD). The endothelial to mesenchymal transition (EndMT) possibly induces fibrosis, leading to glomerulosclerosis in the kidney. Furthermore, this could lead to albuminuria in diabetic nephropathy due to glomerular endothelial dysfunction. Eicosapentaenoic acid (EPA), purified from fish oil, decreases inflammatory cytokine levels in glomerulonephritis. Here, we aimed at finding whether ethyl eicosapentaenoate (EPA-E) exerts renal protective effects via EndMT inhibition. To find out whether EPA inhibits EndMT in vitro, the changes in CD31 expression were studied in cultured mouse endothelial cells. The addition of the conditioned medium from the adipocyte culture significantly decreased the protein levels of CD31, while the addition of EPA-E partially reversed this inhibition. Further, EndMT inhibition by EPA-E treatment might occur via the inhibition of the protein kinase Cβ (PKCβ)/transforming growth factor-β (TGF-β)/plasminogen activator inhibitor-1 (PAI-1) signaling and not via microRNAs. Streptozotocin-induced diabetic mice fed a high-fat diet (60% from fat) exhibited mesangial expansion and albuminuria. Induction of EPA-E ameliorated the mesangial expansion and decreased albuminuria without affecting blood pressure, triglyceride and free fatty acid levels, and intraperitoneal glucose. These findings suggest that EPA-E exerts renal protective effects on endothelial cells, by normalizing EndMT followed by the PKCβ/TGF-β/PAI-1 signaling. Thus, EPA-E has the potential for imparting renal protection by regulating EndMT in DKD.
Collapse
Affiliation(s)
- Toshinori Yasuzawa
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
- Department of Health and Nutrition, Faculty of Health Science, Kio University, Nara, Japan
| | - Tomomi Nakamura
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Shigeru Ueshima
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|