1
|
Pan Y, Zhang L, Fu B, Zhuo J, Zhao P, Xi J, Yang D, Yao L, Wang J. Integrated self-assembly and cross-linking technology engineered photodynamic antimicrobial film for efficient preservation of perishable foods. Food Chem 2024; 460:140543. [PMID: 39053268 DOI: 10.1016/j.foodchem.2024.140543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
A new antibacterial film was constructed to combat the severe spoilage of fruits and vegetables caused by microorganisms. Specifically, photoresponsive cinnamaldehyde-tannic‑iron acetate nanospheres (CTF NPs) were prepared using ultrasonic-triggered irreversible equilibrium self-assembly and ionic cross-linking co-driven processes and were integrated into the matrix of κ-carrageenan (KC) (CTF-KC films) as functional fillers. The CTF0.4-KC film (KC film doped with 0.4 mg/mL CTF NPs) showed a 99.99% bactericidal rate against both E. coli and S. aureus, extended the storage period of cherry tomatoes from 20 to 32 days. The introduction of CTF enhanced the barrier, thermal stability, and mechanical strength properties, albeit with a slight compromise on transparency. Furthermore, the biosafety of the CTF0.4-KC film was confirmed through hemolysis and cytotoxicity tests. Together, the aforementioned results demonstrated the outstanding antibacterial and fresh-keeping properties of CTF0.4-KC. These desirable properties highlight the potential use of CTF0.4-KC films in food preservation applications.
Collapse
Affiliation(s)
- Yifan Pan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bangfeng Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiafeng Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Di Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lenan Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Abd-Elhamed EY, El-Bassiony TAER, Elsherif WM, Shaker EM. Enhancing Ras cheese safety: antifungal effects of nisin and its nanoparticles against Aspergillus flavus. BMC Vet Res 2024; 20:493. [PMID: 39472862 PMCID: PMC11520377 DOI: 10.1186/s12917-024-04323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Due to the adverse effects of industrial chemicals and their carcinogenicity and toxicity for humans, the debates have increased on using natural preservatives. This study was conducted to investigate the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against Aspergillus flavus in vivo by inoculation in laboratory-manufactured Ras cheese. A novel, safe, and natural approach of nanoprecipitation using acetic acid was employed to prepare nisin nanoparticles. The prepared NPs were characterized using zeta-sizer, FTIR, and transmission electron microscopy (TEM). Furthermore, the cytotoxicity of nisin NPs on Vero cells was assessed. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined in vitro against A. flavus isolates using the agar well-diffusion method. The sensory evaluation of manufactured Ras cheese was conducted over a 60-day storage period. RESULTS The obtained results showed a strong antifungal activity of nisin NPs (0.0625 mg/mL) against A. flavus strain in comparison with pure nisin (0.5 mg/mL). Notably, the count decreased gradually by time from 2 × 108 at zero time and could not be detected at the 7th week. The count with pure nisin decreased from 2 × 108 at zero time and could not be detected at the 10th week where it's enough time to produce aflatoxins in cheese. The MICs of nisin and nisin NPs were 0.25 and 0.0313 mg/mL, respectively. Nisin NPs used in our experiment had good biocompatibility and safety for food preservation. Additionally, the sensory parameters of the manufactured Ras cheese inoculated with nisin and nisin NPs were of high overall acceptability (OAA). CONCLUSIONS Overall, the results of this study suggested that adding more concentration (˃0.0625 mg/mL) from nisin nanoparticles during the production of Ras cheese may be a helpful strategy for food preservation against A. flavus in the dairy industry.
Collapse
Affiliation(s)
- Esraa Y Abd-Elhamed
- Department of Food Hygiene, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt.
| | | | - Wallaa M Elsherif
- Nanotechnology Research and Synthesis Unit, Animal Health Research Institute, Agriculture Research Center & Faculty of Health Sciences Technology, Assiut, Egypt
| | - Eman M Shaker
- Department of Food Hygiene, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
3
|
Mujtaba AG, Toprak Ö, Karakeçili A. A grafting approach for nisin-chitosan bio-based antibacterial films: preparation and characterization. Biomed Mater 2024; 19:055029. [PMID: 39079550 DOI: 10.1088/1748-605x/ad6965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Nisin is a bacteriocin produced by Gram-positive lactic acid bacterium,Lactococcus lactisand currently recognized in the Generally Recognızed as Safe (GRAS) category due to its non-toxicity. Herein, nisin has been grafted to chitosan structure to obtain natural bio-active films with enhanced antibacterial activity. Grafting was performed using ethyl ester lysine diisocyanate and dimer fatty acid-based diisocyanate (DDI); two different close to fully bio-based diisocyanates and Disuccinimidyl suberate; a homo-bifunctional molecule acting as a crosslinker between amino groups. The grafting process allowed the chemical immobilization of nisin to chitosan structure. Physicochemical characterization studies showed the successful grafting of nisin. The antibacterial activity againstStaphylococcus aureuswas evident for all nisin modified chitosan films and best pronounced when DDI was used as a crosslinker with a maximum zone of inhibition of ∼13 mm. All nisin grafted chitosan films were cytocompatible and the cell viability of L929 fibroblasts were >80% pointing out the non-toxic structure. Considering the results of the presented study, bio-based diisocyanates and homo-bifunctional crosslinkers are effective molecules in synthesis of nisin grafted chitosan structures and the new chitosan based antibacterial biopolymers obtained after nisin modification come forward as promising non-toxic and bioactive candidates to be applied in medical devices, implants, and various food coating products.
Collapse
Affiliation(s)
- Ayse Gunyakti Mujtaba
- Institute of Biotechnology, Ankara University, Gümüşdere 60. Yıl Yerleşkesi, Keçiören, 06135 Ankara, Turkey
| | - Özge Toprak
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandoğan, 06100 Ankara, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Dışkapı, 06110 Ankara, Turkey
| | - Ayşe Karakeçili
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandoğan, 06100 Ankara, Turkey
| |
Collapse
|
4
|
Shi S, Shi W, Zhou B, Qiu S. Research and Application of Chitosan Nanoparticles in Orthopedic Infections. Int J Nanomedicine 2024; 19:6589-6602. [PMID: 38979535 PMCID: PMC11228078 DOI: 10.2147/ijn.s468848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Orthopedic infection is one of the most intractable orthopedic problems. Bacteria resistant to antibiotics also develop gradually. Chitosan is widely used in the Biomedical field because of its high biocompatibility, biodegradability, and antibacterial activity. Chitosan-based drug delivery systems are frequently utilized to produce controlled medication release. When combined with antibiotics, synergistic antibacterial effects can be achieved. Chitosan-based nanoparticles are one of the most widely used applications in drug delivery systems. The focus of this review is to provide information on new methods being developed for chitosan-based nanoparticles in the field of bone infection treatment, including chitosan nanoparticles for antibacterial purposes, Ch-loaded with antibiotics, Ch-loaded with metal, and used as immune adjuvants. It may Provide ideas for the fundamental research and the prospects of future clinical applications of orthopedic infections.
Collapse
Affiliation(s)
- Sifeng Shi
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Weiran Shi
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Bing Zhou
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Shang Qiu
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
5
|
da Silva Oliveira W, Teixeira CRV, Mantovani HC, Dolabella SS, Jain S, Barbosa AAT. Nisin variants: What makes them different and unique? Peptides 2024; 177:171220. [PMID: 38636811 DOI: 10.1016/j.peptides.2024.171220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Nisin A is a lantibiotic bacteriocin typically produced by strains of Lactococcus lactis. This bacteriocin has been approved as a natural food preservative since the late 1980 s and shows antimicrobial activity against a range of food-borne spoilage and pathogenic microorganisms. The therapeutic potential of nisin A has also been explored increasingly both in human and veterinary medicine. Nisin has been shown to be effective in treating bovine mastitis, dental caries, cancer, and skin infections. Recently, it was demonstrated that nisin has an affinity for the same receptor used by SARS-CoV-2 to enter human cells and was proposed as a blocker of the viral infection. Several nisin variants produced by distinct bacterial strains or modified by bioengineering have been described since the discovery of nisin A. These variants present modifications in the peptide structure, biosynthesis, mode of action, and spectrum of activity. Given the importance of nisin for industrial and therapeutic applications, the objective of this study was to describe the characteristics of the nisin variants, highlighting the main differences between these molecules and their potential applications. This review will be useful to researchers interested in studying the specifics of nisin A and its variants.
Collapse
Affiliation(s)
| | | | | | - Silvio Santana Dolabella
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Sona Jain
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Ana Andréa Teixeira Barbosa
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
6
|
Elsherif WM, Hassanien AA, Zayed GM, Kamal SM. Natural approach of using nisin and its nanoform as food bio-preservatives against methicillin resistant Staphylococcus aureus and E.coli O157:H7 in yoghurt. BMC Vet Res 2024; 20:192. [PMID: 38734600 PMCID: PMC11088153 DOI: 10.1186/s12917-024-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 106 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry.
Collapse
Affiliation(s)
- Walaa M Elsherif
- Certified Food Lab, Nanotechnology Research and Synthesis Unit, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Assiut,, Egypt
- Faculty of Health Sciences Technology, New Assiut Technological University (NATU), Assiut, Egypt
| | - Alshimaa A Hassanien
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Gamal M Zayed
- Faculty of Health Sciences Technology, New Assiut Technological University (NATU), Assiut, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Al-Azhar University, Assiut, Egypt
| | - Sahar M Kamal
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
7
|
Antropenko A, Caruso F, Fernandez-Trillo P. Stimuli-Responsive Delivery of Antimicrobial Peptides Using Polyelectrolyte Complexes. Macromol Biosci 2023; 23:e2300123. [PMID: 37449448 DOI: 10.1002/mabi.202300123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Antimicrobial peptides (AMPs) are antibiotics with the potential to address antimicrobial resistance. However, their translation to the clinic is hampered by issues such as off-target toxicity and low stability in biological media. Stimuli-responsive delivery from polyelectrolyte complexes offers a simple avenue to address these limitations, wherein delivery is triggered by changes occurring during microbial infection. The review first provides an overview of pH-responsive delivery, which exploits the intrinsic pH-responsive nature of polyelectrolytes as a mechanism to deliver these antimicrobials. The examples included illustrate the challenges faced when developing these systems, in particular balancing antimicrobial efficacy and stability, and the potential of this approach to prepare switchable surfaces or nanoparticles for intracellular delivery. The review subsequently highlights the use of other stimuli associated with microbial infection, such as the expression of degrading enzymes or changes in temperature. Polyelectrolyte complexes with dual stimuli-response based on pH and temperature are also discussed. Finally, the review presents a summary and an outlook of the challenges and opportunities faced by this field. This review is expected to encourage researchers to develop stimuli-responsive polyelectrolyte complexes that increase the stability of AMPs while providing targeted delivery, and thereby facilitate the translation of these antimicrobials.
Collapse
Affiliation(s)
- Alexander Antropenko
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paco Fernandez-Trillo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Departamento de Química, Facultade de Ciencias and Centro de Investigacións Cientı́ficas Avanzadas (CICA), Universidade da Coruña, A Coruña, 15071, Spain
| |
Collapse
|
8
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
9
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
10
|
Leena Panigrahi L, Shekhar S, Sahoo B, Arakha M. Adsorption of antimicrobial peptide onto chitosan-coated iron oxide nanoparticles fosters oxidative stress triggering bacterial cell death. RSC Adv 2023; 13:25497-25507. [PMID: 37636508 PMCID: PMC10450573 DOI: 10.1039/d3ra04070d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
In the prevailing environmental status quo, bacterial resistance has made antibiotics and antimicrobial peptides (AMPs) ineffective, imparting a serious threat and putting a much greater financial burden on the biomedical and food industries. For this reason, the present study investigates the potential of iron oxide nanoparticles (IONPs) coated with chitosan (CS-IONP) as a platform for augmenting the antimicrobial activity of antimicrobial peptides like nisin. Hence, the nisin is allowed to be adsorbed onto chitosan-coated IONPs to formulate nisin-loaded CS-IONP nanoconjugates. The nanoconjugates were characterized by various optical techniques, such as XRD, FTIR, SEM, zeta and DLS. Remarkably, lower concentrations of N-CS-IONP nanoconjugate exhibited significant and broad-spectrum antibacterial potency compared to bare IONPs and nisin against both Gram-positive and Gram-negative bacteria. Biofilm production was also found to be drastically reduced in the presence of nanoconjugates. Further investigation established a relationship between an increase in antibacterial activity and the enhanced generation of reactive oxygen species (ROS). Oxidative stress exhibited due to enhanced ROS generation is a conclusive reason for the rupturing of bacterial membranes and leakage of cytoplasmic contents, eventually leading to the death of the bacteria. Thus, the current study emphasizes the formulation of a novel antimicrobial agent which exploits magnetic nanoparticles modulated with chitosan for enhanced remediation of resistant bacteria due to oxidative stress imparted by the nanoconjugates upon interaction with the bacteria, leading to cell death.
Collapse
Affiliation(s)
- Lipsa Leena Panigrahi
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| | | | - Banishree Sahoo
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| | - Manoranjan Arakha
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| |
Collapse
|
11
|
Kang L, Liang Q, Chen H, Zhou Q, Chi Z, Rashid A, Ma H, Ren X. Insights into ultrasonic treatment on the properties of pullulan/oat protein/nisin composite film:mechanical, structural and physicochemical properties. Food Chem 2023; 402:134237. [DOI: 10.1016/j.foodchem.2022.134237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
|
12
|
Gourkhede DP, Dani Nishanth MA, Ram VP, Abishad P, Yasur J, Pollumahanti N, Vergis J, Singh Malik SV, Barbuddhe SB, Rawool DB. Antimicrobial efficacy of chitosan encapsulated Cecropin- A (1–7)- melittin-cell-penetrating peptide against multi-drug-resistant Salmonella Enteritidis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Zhao J, Zhou Z, Bai X, Zhang D, Zhang L, Wang J, Wu B, Zhu J, Yang Z. A novel of new class II bacteriocin from Bacillus velezensis HN-Q-8 and its antibacterial activity on Streptomyces scabies. Front Microbiol 2022; 13:943232. [PMID: 35966655 PMCID: PMC9372549 DOI: 10.3389/fmicb.2022.943232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Potato common scab is a main soil-borne disease of potato that can significantly reduce its quality. At present, it is still a challenge to control potato common scab in the field. To address this problem, the 972 family lactococcin (Lcn972) was screened from Bacillus velezensis HN-Q-8 in this study, and an Escherichia coli overexpression system was used to obtain Lcn972, which showed a significant inhibitory effect on Streptomyces scabies, with a minimum inhibitory concentration of 10.58 μg/mL. The stability test showed that Lcn972 is stable against UV radiation and high temperature. In addition, long-term storage at room temperature and 4°C had limited effects on its activity level. The antibacterial activity of Lcn972 was enhanced by Cu2+ and Ca2+, but decreased by protease K. The protein was completely inactivated by Fe2+. Cell membrane staining showed that Lcn972 damaged the cell membrane integrity of S. scabies. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations revealed that the hyphae of S. scabies treated with Lcn972 were deformed and adhered, the cell membrane was incomplete, the cytoplasm distribution was uneven, and the cell appeared hollow inside, which led to the death of S. scabies. In conclusion, we used bacteriocin for controlling potato common scab for the first time in this study, and it provides theoretical support for the further application of bacteriocin in the control of plant diseases.
Collapse
Affiliation(s)
- Jing Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Zhijun Zhou
- Experimental Training Center of Hebei Agricultural University, Baoding, China
| | - Xuefei Bai
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Likui Zhang
- College of Environmental Science, Yangzhou University, Yangzhou, China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Beibei Wu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
- *Correspondence: Jiehua Zhu,
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
- Zhihui Yang,
| |
Collapse
|
14
|
Verma DK, Thakur M, Singh S, Tripathy S, Gupta AK, Baranwal D, Patel AR, Shah N, Utama GL, Niamah AK, Chávez-González ML, Gallegos CF, Aguilar CN, Srivastav PP. Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101594] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Potaś J, Winnicka K. The Potential of Polyelectrolyte Multilayer Films as Drug Delivery Materials. Int J Mol Sci 2022; 23:ijms23073496. [PMID: 35408857 PMCID: PMC8998809 DOI: 10.3390/ijms23073496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Polyelectrolyte multilayers (PEMs) represent a group of polyelectrolyte complex (PEC)–based materials widely investigated in the biomedical and pharmaceutical sciences. Despite the unflagging popularity of the aforementioned systems in tissue engineering, only a few updated scientific reports concerning PEM potential in drug administration can be found. In fact, PEM coatings are currently recognized as important tools for functionalizing implantable scaffolds; however, only a small amount of attention has been given to PEMs as drug delivery materials. Scientific reports on PEMs reveal two dominant reasons for the limited usability of multilayers in pharmaceutical technology: complex and expensive preparation techniques as well as high sensitivity of interacting polyelectrolytes to the varieties of internal and external factors. The aim of this work was to analyze the latest approaches, concerning the potential of PEMs in pharmacy, chemical technology, and (primarily) tissue engineering, with special attention given to possible polymer combinations, technological parameters, and physicochemical characteristics, such as hydrophilicity, adhesive and swelling properties, and internal/external structures of the systems formed. Careful recognition of the above factors is crucial in the development of PEM-based drug delivery materials.
Collapse
|
16
|
Joshi J, Homburg SV, Ehrmann A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications-Possibilities and Limits. Polymers (Basel) 2022; 14:1267. [PMID: 35335597 PMCID: PMC8949482 DOI: 10.3390/polym14061267] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Atomic force microscopy (AFM) is one of the microscopic techniques with the highest lateral resolution. It can usually be applied in air or even in liquids, enabling the investigation of a broader range of samples than scanning electron microscopy (SEM), which is mostly performed in vacuum. Since it works by following the sample surface based on the force between the scanning tip and the sample, interactions have to be taken into account, making the AFM of irregular samples complicated, but on the other hand it allows measurements of more physical parameters than pure topography. This is especially important for biopolymers and hydrogels used in tissue engineering and other biotechnological applications, where elastic properties, surface charges and other parameters influence mammalian cell adhesion and growth as well as many other effects. This review gives an overview of AFM modes relevant for the investigations of biopolymers and hydrogels and shows several examples of recent applications, focusing on the polysaccharides chitosan, alginate, carrageenan and different hydrogels, but depicting also a broader spectrum of materials on which different AFM measurements are reported in the literature.
Collapse
Affiliation(s)
- Jnanada Joshi
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Sarah Vanessa Homburg
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
17
|
Bangar SP, Chaudhary V, Singh TP, Özogul F. Retrospecting the concept and industrial significance of LAB bacteriocins. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Jančič U, Gorgieva S. Bromelain and Nisin: The Natural Antimicrobials with High Potential in Biomedicine. Pharmaceutics 2021; 14:76. [PMID: 35056972 PMCID: PMC8778819 DOI: 10.3390/pharmaceutics14010076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases along with various cancer types are among the most significant public health problems and the leading cause of death worldwide. The situation has become even more complex with the rapid development of multidrug-resistant microorganisms. New drugs are urgently needed to curb the increasing spread of diseases in humans and livestock. Promising candidates are natural antimicrobial peptides produced by bacteria, and therapeutic enzymes, extracted from medicinal plants. This review highlights the structure and properties of plant origin bromelain and antimicrobial peptide nisin, along with their mechanism of action, the immobilization strategies, and recent applications in the field of biomedicine. Future perspectives towards the commercialization of new biomedical products, including these important bioactive compounds, have been highlighted.
Collapse
Affiliation(s)
- Urška Jančič
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | - Selestina Gorgieva
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia
| |
Collapse
|
19
|
Rani A, Saini KC, Bast F, Varjani S, Mehariya S, Bhatia SK, Sharma N, Funk C. A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules 2021; 11:biom11121860. [PMID: 34944505 PMCID: PMC8699383 DOI: 10.3390/biom11121860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Microorganisms including actinomycetes, archaea, bacteria, fungi, yeast, and microalgae are an auspicious source of vital bioactive compounds. In this review, the existing research regarding antimicrobial molecules from microorganisms is summarized. The potential antimicrobial compounds from actinomycetes, particularly Streptomyces spp.; archaea; fungi including endophytic, filamentous, and marine-derived fungi, mushroom; and microalgae are briefly described. Furthermore, this review briefly summarizes bacteriocins, halocins, sulfolobicin, etc., that target multiple-drug resistant pathogens and considers next-generation antibiotics. This review highlights the possibility of using microorganisms as an antimicrobial resource for biotechnological, nutraceutical, and pharmaceutical applications. However, more investigations are required to isolate, separate, purify, and characterize these bioactive compounds and transfer these primary drugs into clinically approved antibiotics.
Collapse
Affiliation(s)
- Alka Rani
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
| | - Khem Chand Saini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
| | - Felix Bast
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, India;
| | - Sanjeet Mehariya
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Neeta Sharma
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability-CR Trisaia, SS Jonica 106, km 419 + 500, 75026 Rotondella, Italy;
| | - Christiane Funk
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
20
|
Chanachai S, Chaichana W, Insee K, Benjakul S, Aupaphong V, Panpisut P. Physical/Mechanical and Antibacterial Properties of Orthodontic Adhesives Containing Calcium Phosphate and Nisin. J Funct Biomater 2021; 12:jfb12040073. [PMID: 34940552 PMCID: PMC8706961 DOI: 10.3390/jfb12040073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Enamel demineralization around orthodontic adhesive is a common esthetic concern during orthodontic treatment. The aim of this study was to prepare orthodontic adhesives containing monocalcium phosphate monohydrate (MCPM) and nisin to enable mineralizing and antibacterial actions. The physicomechanical properties and the inhibition of S. mutans growth of the adhesives with added MCPM (5, 10 wt %) and nisin (5, 10 wt %) were examined. Transbond XT (Trans) was used as the commercial comparison. The adhesive containing a low level of MCPM showed significantly higher monomer conversion (42–62%) than Trans (38%) (p < 0.05). Materials with additives showed lower monomer conversion (p < 0.05), biaxial flexural strength (p < 0.05), and shear bond strength to enamel than those of a control. Additives increased water sorption and solubility of the experimental materials. The addition of MCPM encouraged Ca and P ion release, and the precipitation of calcium phosphate at the bonding interface. The growth of S. mutans in all the groups was comparable (p > 0.05). In conclusion, experimental orthodontic adhesives with additives showed comparable conversion but lesser mechanical properties than the commercial material. The materials showed no antibacterial action, but exhibited ion release and calcium phosphate precipitation. These properties may promote remineralization of the demineralized enamel.
Collapse
Affiliation(s)
- Supachai Chanachai
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Wirinrat Chaichana
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Kanlaya Insee
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Sutiwa Benjakul
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Visakha Aupaphong
- Division of Oral Biology, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand;
| | - Piyaphong Panpisut
- Division of Restorative Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
- Correspondence:
| |
Collapse
|
21
|
Roupie C, Labat B, Morin-Grognet S, Echalard A, Ladam G, Thébault P. Dual-functional antibacterial and osteogenic nisin-based layer-by-layer coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112479. [PMID: 34857265 DOI: 10.1016/j.msec.2021.112479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
Implanted biomaterials can be regarded in a cornerstone in the domain of bone surgery. Their surfaces are expected to fulfil two particular requirements: preventing the settlement and the development of bacteria, and stimulating bone cells in view to foster osseointegration. Therefore, a modern approach consists in the design of dual functional coatings with both antibacterial and osteogenic features. To this end, we developed ultrathin Layer-by-Layer (LbL) coatings composed of biocompatible polyelectrolytes, namely chondroitin sulfate A (CSA) and poly-l-lysine (PLL). The coatings were crosslinked with genipin (GnP), a natural and biocompatible crosslinking agent, to increase their resistance against environmental changes, and to confer them adequate mechanical properties with regards to bone cell behaviors. Antibacterial activity was obtained with nisin Z, an antimicrobial peptide (AMP), which is active against gram-positive bacteria. The coatings had a significant bactericidal impact upon Staphylococcus aureus, with fully maintained bone cell adhesion, proliferation and osteogenic differentiation.
Collapse
Affiliation(s)
- Charlotte Roupie
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, Bd Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France; Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Béatrice Labat
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Sandrine Morin-Grognet
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Aline Echalard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Guy Ladam
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Pascal Thébault
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, Bd Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France.
| |
Collapse
|
22
|
Nasri N, Rusli A, Teramoto N, Jaafar M, Ku Ishak KM, Shafiq MD, Abdul Hamid ZA. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review. Polymers (Basel) 2021; 13:4234. [PMID: 34883737 PMCID: PMC8659939 DOI: 10.3390/polym13234234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days. Thus, the possibility of virus transmission increases after touching or being in contact with contaminated surfaces. Herein, we aim to provide overviews of various types of antiviral and antimicrobial coating agents, such as antimicrobial polymer-based coating, metal-based coating, functional nanomaterial, and nanocomposite-based coating. The action mode for each type of antimicrobial agent against pathogens is elaborated. In addition, surface properties of the designed antiviral and antimicrobial polymer coating with their influencing factors are discussed in this review. This paper also exhibits several techniques on surface modification to improve surface properties. Various developed research on the development of antiviral/antimicrobial polymer coating to curb the COVID-19 pandemic are also presented in this review.
Collapse
Affiliation(s)
- Nazihah Nasri
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Chiba, Japan;
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Ku Marsilla Ku Ishak
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| |
Collapse
|
23
|
Webber JL, Bradshaw-Hajek BH, Krasowska M, Beattie DA. Polyelectrolyte multilayer formation on protein layer supports. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Sultana A, Zare M, Luo H, Ramakrishna S. Surface Engineering Strategies to Enhance the In Situ Performance of Medical Devices Including Atomic Scale Engineering. Int J Mol Sci 2021; 22:11788. [PMID: 34769219 PMCID: PMC8583812 DOI: 10.3390/ijms222111788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Decades of intense scientific research investigations clearly suggest that only a subset of a large number of metals, ceramics, polymers, composites, and nanomaterials are suitable as biomaterials for a growing number of biomedical devices and biomedical uses. However, biomaterials are prone to microbial infection due to Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), hepatitis, tuberculosis, human immunodeficiency virus (HIV), and many more. Hence, a range of surface engineering strategies are devised in order to achieve desired biocompatibility and antimicrobial performance in situ. Surface engineering strategies are a group of techniques that alter or modify the surface properties of the material in order to obtain a product with desired functionalities. There are two categories of surface engineering methods: conventional surface engineering methods (such as coating, bioactive coating, plasma spray coating, hydrothermal, lithography, shot peening, and electrophoretic deposition) and emerging surface engineering methods (laser treatment, robot laser treatment, electrospinning, electrospray, additive manufacturing, and radio frequency magnetron sputtering technique). Atomic-scale engineering, such as chemical vapor deposition, atomic layer etching, plasma immersion ion deposition, and atomic layer deposition, is a subsection of emerging technology that has demonstrated improved control and flexibility at finer length scales than compared to the conventional methods. With the advancements in technologies and the demand for even better control of biomaterial surfaces, research efforts in recent years are aimed at the atomic scale and molecular scale while incorporating functional agents in order to elicit optimal in situ performance. The functional agents include synthetic materials (monolithic ZnO, quaternary ammonium salts, silver nano-clusters, titanium dioxide, and graphene) and natural materials (chitosan, totarol, botanical extracts, and nisin). This review highlights the various strategies of surface engineering of biomaterial including their functional mechanism, applications, and shortcomings. Additionally, this review article emphasizes atomic scale engineering of biomaterials for fabricating antimicrobial biomaterials and explores their challenges.
Collapse
Affiliation(s)
- Afreen Sultana
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Mina Zare
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| |
Collapse
|
25
|
Punia Bangar S, Chaudhary V, Thakur N, Kajla P, Kumar M, Trif M. Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review. Foods 2021; 10:2282. [PMID: 34681331 PMCID: PMC8534497 DOI: 10.3390/foods10102282] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc., and other consumable constituents extracted from various non-conventional sources are used alone or imbibed together. Edible packaging with antimicrobial components had led to the development of the hypothesis of active packaging which safeguards the quality of foods as well as health of consumers. Natural antimicrobial agents (NAMAs) like essential oils from spices, bioactive compounds derived from vegetables and fruits, animal and microorganism derived compounds having antimicrobial properties can be potentially used in edible films as superior replcement for synthetic compounds, thus serving the purpose of quality and heath. Most of the natural antimicrobial agents enjoy GRAS status and are safer than their synthetic counterparts. This review focuses on updated literature on the sources, properties and potential applications of NAMAs in the food industry. This review also analyzes the biodegradability and biocompatibility and edibility properties of NAMAs enriched films and it can be concluded that NAMAs are better substitutes but affect the organoleptic as well as the mechanical properties of the films. Despite many advantages, the inclusion of NAMAs into the films needs to be investigated more to quantify the inhibitory concentration without affecting the properties of films and exerting potential antimicrobial action to ensure food safety.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125001, India
| | - Neha Thakur
- Department of Livestock Product Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125001, India;
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton 10 Technology, Mumbai 400019, India;
| | - Monica Trif
- CENCIRA Agrofood Research and Innovation Centre, Research and Development Department, Ion Meșter, 6, 400650 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Sultana A, Luo H, Ramakrishna S. Antimicrobial Peptides and Their Applications in Biomedical Sector. Antibiotics (Basel) 2021; 10:1094. [PMID: 34572676 PMCID: PMC8465024 DOI: 10.3390/antibiotics10091094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
In a report by WHO (2014), it was stated that antimicrobial resistance is an arising challenge that needs to be resolved. This resistance is a critical issue in terms of disease or infection treatment and is usually caused due to mutation, gene transfer, long-term usage or inadequate use of antimicrobials, survival of microbes after consumption of antimicrobials, and the presence of antimicrobials in agricultural feeds. One of the solutions to this problem is antimicrobial peptides (AMPs), which are ubiquitously present in the environment. These peptides are of concern due to their special mode of action against a wide spectrum of infections and health-related problems. The biomedical field has the highest need of AMPs as it possesses prominent desirable activity against HIV-1, skin cancer, breast cancer, in Behcet's disease treatment, as well as in reducing the release of inflammatory cells such as TNFα, IL-8, and IL-1β, enhancing the production of anti-inflammatory cytokines such as IL-10 and GM-CSF, and in wound healing properties. This review has highlighted all the major functions and applications of AMPs in the biomedical field and concludes the future potential of AMPs.
Collapse
Affiliation(s)
- Afreen Sultana
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| |
Collapse
|
27
|
Qian J, Chen Y, Wang Q, Zhao X, Yang H, Gong F, Guo H. Preparation and antimicrobial activity of pectin-chitosan embedding nisin microcapsules. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110676] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Luo H, Yin XQ, Tan PF, Gu ZP, Liu ZM, Tan L. Polymeric antibacterial materials: design, platforms and applications. J Mater Chem B 2021; 9:2802-2815. [PMID: 33710247 DOI: 10.1039/d1tb00109d] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the past decades, the morbidity and mortality caused by pathogen invasion remain stubbornly high even though medical care has increasingly improved worldwide. Besides, impacted by the ever-growing multidrug-resistant bacterial strains, the crisis owing to the abuse and misuse of antibiotics has been further exacerbated. Among the wide range of antibacterial strategies, polymeric antibacterial materials with diversified synthetic strategies exhibit unique advantages (e.g., their flexible structural design, processability and recyclability, tuneable platform construction, and safety) for extensive antibacterial fields as compared to low molecular weight organic or inorganic antibacterial materials. In this review, polymeric antibacterial materials are summarized in terms of four structure styles and the most representative material platforms to achieve specific antibacterial applications. The superiority and defects exhibited by various polymeric antibacterial materials are elucidated, and the design of various platforms to elevate their efficacy is also described. Moreover, the application scope of polymeric antibacterial materials is summarized with regard to tissue engineering, personal protection, and environmental security. In the last section, the subsequent challenges and direction of polymeric antibacterial materials are discussed. It is highly expected that this critical review will present an insight into the prospective development of antibacterial functional materials.
Collapse
Affiliation(s)
- Hao Luo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | | | | | | | | | | |
Collapse
|