1
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
2
|
Rini DM, Xu W, Suzuki T. Current Research on the Role of Isomaltooligosaccharides in Gastrointestinal Health and Metabolic Diseases. Prev Nutr Food Sci 2024; 29:93-105. [PMID: 38974594 PMCID: PMC11223922 DOI: 10.3746/pnf.2024.29.2.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 07/09/2024] Open
Abstract
The intestinal epithelium plays an important role in maintaining the intestinal barrier and facilitating nutrient absorption. It also serves as a critical physical barrier against the infiltration of foreign substances from the intestinal lumen into the circulation. Intestinal barrier dysfunction has been implicated in the development of several diseases. Isomaltooligosaccharides (IMOs), which are a type of dietary fiber, possess multiple health benefits. However, there is limited information regarding their efficacy against gastrointestinal diseases. This review explores the therapeutic potential of IMOs in obesity, diabetes mellitus, inflammatory bowel disease (IBD), hyperlipidemia, and constipation. High-fat diet (HFD)-induced obesity models have shown that IMOs, administered alone or in combination with other compounds, exhibit potent antiobesity effects, making them promising agents in the treatment of obesity and its associated complications. Moreover, IMOs exhibit preventive effects against HFD-induced metabolic dysfunction by modulating gut microbiota and short-chain fatty acid levels, thereby ameliorating symptoms. Furthermore, IMOs can reduce IBD and alleviate hyperlipidemia, as indicated by the reduced histological colitis scores and improved lipid profiles observed in clinical trials and animal studies. This review highlights IMOs as a versatile intervention strategy that can improve gastrointestinal health by modulating gut microbiota, immune responses, and metabolic parameters, providing a multifaceted approach to address the complex nature of gastrointestinal disorders.
Collapse
Affiliation(s)
- Dina Mustika Rini
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
| | - Wenxi Xu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
3
|
Chen C, Gao K, Chen Z, Zhang Q, Ke X, Mao B, Fan Q, Li Y, Chen S. The supplementation of the multi-strain probiotics WHHPRO™ alleviates high-fat diet-induced metabolic symptoms in rats via gut-liver axis. Front Nutr 2024; 10:1324691. [PMID: 38274203 PMCID: PMC10808617 DOI: 10.3389/fnut.2023.1324691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Metabolic syndrome (MS) has emerged as one of the major global health concerns, accompanied by a series of related complications, such as obesity and type-2 diabetes. The gut-liver axis (GLA) is a bidirectional communication between the gut and the liver. The GLA alterations have been revealed to be closely associated with the development of MS. Probiotics within Lactobacillus and Bifidobacterium confer beneficial effects on improving MS symptoms. WHHPRO™ is a mixture of four probiotic strains, with potential MS-improving abilities. This study aimed to investigate the effects of WHHPRO™ on MS symptoms using a high-fat diet (HFD) rat model. Oral administration of WHHPRO™ for 12 weeks improved glucose tolerance, blood lipid, body weight, and liver index in HFD rats. WHHPRO™ shaped the gut microbiome composition by increasing the abundance of Lactobacillus and Akkermansia and normalized the reduced SCFA levels in HFD rats. Besides, WHHPRO™ modulated the fecal bile acids (BAs) profile, with decreased levels of T-b-MCA and 12-KDCA and increased levels of LCA and ILCA. Meanwhile, WHHPRO™ increased total unconjugated BAs in feces and liver and reduced the accumulation of total hepatic BA pool size in HFD rats. Moreover, WHHPRO™ reversed the expression of genes associated with impaired BA metabolism signaling in the ileum and liver. Our findings suggest that WHHPRO™ exerted beneficial effects on improving MS symptoms, involving the modulation of the gut microbiome composition, SCFAs, and the FXR-FGF15 signaling along the GLA. Supplementation of WHHPRO™ may serve as a novel strategy for improving MS symptoms.
Collapse
Affiliation(s)
- Cailing Chen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Kan Gao
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Zuoguo Chen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Qiwen Zhang
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Xueqin Ke
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Bingyong Mao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuling Fan
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Yanjun Li
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Su Chen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| |
Collapse
|
4
|
Wang J, Liu A, Li A, Song H, Luo P, Zhan M, Zhou X, Chen L, Zhang J, Wang R. Lactobacillus fermentum CKCC1858 alleviates hyperlipidemia in golden hamsters on a high-fat diet via modulating gut microbiota. Food Funct 2023; 14:9580-9590. [PMID: 37823897 DOI: 10.1039/d3fo02618c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
To investigate the effect of probiotic Lactobacillus fermentum CKCC1858, LF on the prevention of hyperlipidemia and its correlation with gut microbiota, golden hamsters were fed a high-fat diet alone or in combination with the probiotic for 6 weeks. The results showed that the LF intervention alleviated HFD-induced hyperlipidemia and liver damage, as evidenced by the reduced serum lipid profile levels and liver function markers. More importantly, the LF intervention attenuated HFD-induced microbiota dysbiosis by enhancing the abundance of SCFA-producing bacteria and reshaping the metabolic functions of the gut microbiota, likely contributing to its pronounced preventive effects on hyperlipidemia. This study elucidated the mechanism of the preventive effect of probiotics on hyperlipidemia in terms of regulating gut microbiota, and provided suggestions for regulating gut microbiota through probiotic interventions to improve lipid metabolism.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Aijie Liu
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Ao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hainan Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | | | - Meng Zhan
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | | | - Lihao Chen
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Ruimin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
The combination of isomalto-oligosaccharides (IMO)-based dietary fiber and hypocaloric high-protein diet could improve the anthropometric profile and fasting plasma glucose of healthy adults: A repeated single-arm clinical trial. Contemp Clin Trials Commun 2022; 30:101049. [PMID: 36506824 PMCID: PMC9731841 DOI: 10.1016/j.conctc.2022.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Background and aims Meals with high protein and fiber could reduce weight and improve diabetes risk factors. Isomalto-oligosaccharide (IMO), a form of dietary fiber, could induce the afferent signal that causes appetite suppression. However, the direct effect of fiber supplementation in the form of IMO combined with a high-protein diet (HPF) on those parameters is still unknown. This study aims to investigate the effect of HPF on anthropometric parameters and blood glucose regulation of healthy subjects.
. Methods Thirteen healthy subjects were given a hypocaloric high protein diet (HPD) mixed with their prepared meals for two weeks. Followed by the HPF diet for another two weeks. Their anthropometric parameters, such as body composition (total body weight, body fat percentage, and fat-free mass), BMI and waist circumference, and fasting plasma glucose, were measured. Results Compared to pre-intervention, HPF could significantly (p ≤ 0.004) reduce the anthropometric parameters and fasting plasma glucose. Compared to HPD, HPF could significantly (p ≤ 0.005) reduce more total body weight, body fat percentage, and BMI. In addition, HPF could induce more satiety than HPD (higher VAS score). Conclusion HPF could improve the subject's anthropometric parameters which is obviously beneficial in preventing the risk of developing diabetes.
Collapse
|
6
|
Jamshidi S, Masoumi SJ, Abiri B, Sarbakhsh P, Sarrafzadeh J, Nasimi N, Vafa M. The effect of synbiotic and vitamin D co-supplementation on body composition and quality of life in middle-aged overweight and obese women: A randomized controlled trial. Clin Nutr ESPEN 2022; 52:270-276. [PMID: 36513465 DOI: 10.1016/j.clnesp.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Obesity is a worldwide problem which has involved large populations. Since some dietary factors might modify obesity through various signaling pathways, the aim of this study was to investigate the effect of synbiotic plus vitamin D co-supplementation on body composition parameters and quality of life, in middle-aged overweight and obese women. METHODS A randomized, controlled, double-blinded trial was performed and 88 overweight and obese women were assigned to 4 groups (22 per group), receiving synbiotic plus vitamin D, synbiotic, vitamin D and placebo for 8 weeks. At the beginning and at the end of the trial, anthropometric indices, body composition indicators, physical activity level, dietary intake, and quality of life score were measured by trained nutritionists. Statistical analysis was performed with SPSS version 22. RESULTS The results showed significant difference between 4 groups in waist circumference (WC), fat mass (FM), body fat percentage (BFP) and visceral fat area (VFA) values after 8 weeks of treatment (P = 0.005, P = 0.007, P = 0.003, and P = 0.009, respectively), with the greatest reduction in synbiotic plus vitamin D group compare to placebo. No significant results were demonstrated between groups in relation to other body composition variables. In addition, there were no significant differences between the 4 groups regarding physical, mental and total aspects of life quality over time. CONCLUSIONS Our study demonstrated that synbiotic and vitamin D co-supplementation for 8 weeks, had favorable effect on various anthropometric indices and body composition indicators, but no desirable change in life quality score. CLINICAL TRIAL REGISTRY IRCT (registration no. IRCT20090822002365N25).
Collapse
Affiliation(s)
- Sanaz Jamshidi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Sarrafzadeh
- Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Nasimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Hammond TC, Powell E, Green SJ, Chlipala G, Frank J, Yackzan AT, Yanckello LM, Chang YH, Xing X, Heil S, Springer JE, Pennypacker K, Stromberg A, Sawaki L, Lin AL. Functional recovery outcomes following acute stroke is associated with abundance of gut microbiota related to inflammation, butyrate and secondary bile acid. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1017180. [PMID: 36386777 PMCID: PMC9644110 DOI: 10.3389/fresc.2022.1017180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that gut microbes modulate brain plasticity via the bidirectional gut-brain axis and play a role in stroke rehabilitation. However, the microbial species alterations associated with stroke and their correlation with functional outcome measures following acute stroke remain unknown. Here we measure post-stroke gut dysbiosis and how it correlates with gut permeability and cognitive functions in 12 stroke participants, 18 controls with risk factors for stroke, and 12 controls without risk factors. Stool samples were used to measure the microbiome with whole genome shotgun sequencing and leaky gut markers. We genotyped APOE status and measured diet composition and motor, cognitive, and emotional status using NIH Toolbox. We used linear regression methods to identify gut microbial associations with cognitive and emotional assessments. We did not find significance differences between the two control groups. In contrast, the bacteria populations of the Stroke group were statistically dissimilar from the control groups. Relative abundance analysis revealed notable decreases in butyrate-producing microbial taxa, secondary bile acid-producing taxa, and equol-producing taxa. The Stroke group had higher levels of the leaky gut marker alpha-1-antitrypsin in the stool than either of the groups and several taxa including Roseburia species (a butyrate producer) were negatively correlated with alpha-1-antitrypsin. Stroke participants scored lower on memory testing than those in the two control groups. Stroke participants with more Roseburia performed better on the picture vocabulary task; more Bacteroides uniformis (a butyrate producer) and less Escherichia coli (a pro-inflammatory species) reported higher levels of self-efficacy. Intakes of fiber, fruit and vegetable were lower, but sweetened beverages were higher, in the Stroke group compared with controls. Vegetable consumption was correlated with many bacterial changes among the participants, but only the species Clostridium bolteae, a pro-inflammatory species, was significantly associated with stroke. Our findings indicate that stroke is associated with a higher abundance of proinflammatory species and a lower abundance of butyrate producers and secondary bile acid producers. These altered microbial communities are associated with poorer functional performances. Future studies targeting the gut microbiome should be developed to elucidate whether its manipulation could optimize rehabilitation and boost recovery.
Collapse
Affiliation(s)
- Tyler C. Hammond
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Elizabeth Powell
- Department of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, United States
| | - George Chlipala
- Research Informatics Core, University of Illinois Chicago, Chicago, IL, United States
| | - Jacqueline Frank
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Center for Advanced Stroke Science, Department of Neurology, University of Kentucky, Lexington, KY, United States
| | - Andrew T. Yackzan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Lucille M. Yanckello
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Ya-Hsuan Chang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Xin Xing
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Computer Science, University of Kentucky, Lexington, KY, United States
| | - Sally Heil
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Joe E. Springer
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Keith Pennypacker
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Center for Advanced Stroke Science, Department of Neurology, University of Kentucky, Lexington, KY, United States
| | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Lumy Sawaki
- Department of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY, United States
| | - Ai-Ling Lin
- Department of Radiology, University of Missouri, Columbia, MO, United States
- Institute for Data Science & Informatics, University of Missouri, Columbia, MOUnited States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Jian T, Zhou L, Chen Y, Tian Y, Wu R, Tong B, Niu G, Gai Y, Li W, Chen J. Total Sesquiterpenoids of Loquat Leaves Alleviated High-Fat Diet-Induced Obesity by Targeting Fecal Metabolic Profiling and Gut Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13279-13288. [PMID: 36198678 DOI: 10.1021/acs.jafc.2c04900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the present study, we demonstrated that whether the gut microbiota and related metabolites contribute to the therapeutic effect of total sesquiterpenoids (TSs) from loquat leaves on obesity. A 4-week high fat diet was used to induce obesity which was then treated with TSs for another 4 weeks. TSs remarkedly reduced the weight of body and white adipose and the levels of total cholesterol (TC) and triglyceride (TG) in serum. We also found that TSs restored the diversity and richness of gut microbiota. In addition, TSs administration affected the relative abundance of seven key genera. Meanwhile, TSs were determined to affect the metabolism of the host through detecting the metabolites in feces. By applying KEGG and the correlation analysis with gut microbiota, 10 differential metabolites were identified to be the key. The results in this work proved that TSs inhibited obesity by remodeling gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lina Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuwen Tian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruoyun Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guanting Niu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yanan Gai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
9
|
Jiang T, Leng W, Zhong S. Angiopoietin-Like Protein 2 Is Increased in Obese Mouse Models of Lung Injury. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8297046. [PMID: 36176743 PMCID: PMC9514934 DOI: 10.1155/2022/8297046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/14/2023]
Abstract
Objective To investigate the regulatory role of angiopoietin-1ike protein 2 (Angptl 2) in the pathogenesis of acute respiratory distress syndrome (ARDS). Methods A high-fat diet (HFD) and tail vein injection of 0.1 ml/kg oleic acid were used to induce acute lung injury (ALI) and ARDS models, and male Kunming mice were randomly divided into four groups: control group (injected with normal saline), ALI group (injected with oleic acid), HFD group (injection of normal saline), and ARDS group (HFD+injection of oleic acid). The degree of lung injury was assessed by lung histopathology score and lung injury index. At the same time, the mRNA and protein expression levels of Angptl 2 in lung tissue were also detected to determine the relationship between Angptl 2 and ARDS. Results Lee's index of the HFD group and ARDS group was significantly higher than that of the control group and ALI group (P < 0.05), and the lung injury index of the ARDS group was significantly higher than that of the ALI group. The expression of Angptl 2 in the lung tissue of the ALI group and ARDS group was significantly different, and the Angptl 2 mRNA level was the highest in the ARDS group. Immunohistochemistry showed that the alveolar walls of the ALI group and ARDS group were severely collapsed, and the ARDS group had the greatest Angptl 2 aggregation at the site of edema exudation. Conclusion Collectively, obesity might be mediated by Angptl 2 and promotes lung injury. Immunohistochemistry analysis showed that the expression of the receptor on alveolar walls was correlated with Angptl 2, which increased alveolar wall permeability, edema fluid exudation, and alveolar wall collapse. Thus, Angptl 2 might be a target for improving the treatment of ARDS.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, China
- Department of Infectious Disease, Chengdu First People's Hospital, Chengdu, Sichun, China
| | - Wenying Leng
- Department of Emergency, Chengdu First People's Hospital, Chengdu, Sichun, China
| | - Sen Zhong
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, China
| |
Collapse
|
10
|
Zhao L, Shen Y, Wang Y, Wang L, Zhang L, Zhao Z, Li S. Lactobacillus plantarum S9 alleviates lipid profile, insulin resistance, and inflammation in high-fat diet-induced metabolic syndrome rats. Sci Rep 2022; 12:15490. [PMID: 36109620 PMCID: PMC9478128 DOI: 10.1038/s41598-022-19839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Probiotics are considered to play an crucial role in the treatment of high-fat diet (HFD)-induced lipid metabolic diseases, including metabolic syndrome (MS). This study aimed to investigate the effects of Lactobacillus plantarum S9 on MS in HFD-fed rats, and to explore the underlying role of probiotics in the treatment of MS. Sprague-Dawley rats were fed with HFD for 8 weeks, followed by the treatment of L. plantarum S9 for 6 weeks, and The body weight and blood glucose level of rats were detected on time. The results showed that L. plantarum S9 significantly decreased the body weight gain, Lee’s index, and liver index. Additionally, L. plantarum S9 reduced the levels of serum lipids and insulin resistance. L. plantarum S9 also decreased the levels of alanine aminotransferase (ALT) and aspartate transaminase (AST) in liver. Moreover, the serum levels of MS-related inflammatory signaling molecules, including lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α), were significantly elevated. Western blot analysis showed that L. plantarum S9 inhibited the activation of nuclear factor-κB (NF-κB) pathway, decreased the expression level of Toll-like receptor 4 (TLR4), suppressed the activation of inflammatory signaling pathways, and reduced the expression levels of inflammatory factors in HFD-fed rats. Moreover, it further decreased the ratios of p-IκBα/IκBα, p-p65/NF-κB p65, and p-p38/p38. In summary, L. plantarum S9, as a potential functional strain, prevents or can prevent onset of MS.
Collapse
|
11
|
Akter S, Akhter H, Chaudhury HS, Rahman MH, Gorski A, Hasan MN, Shin Y, Rahman MA, Nguyen MN, Choi TG, Kim SS. Dietary carbohydrates: Pathogenesis and potential therapeutic targets to obesity-associated metabolic syndrome. Biofactors 2022; 48:1036-1059. [PMID: 36102254 DOI: 10.1002/biof.1886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS) is a common feature in obesity, comprising a cluster of abnormalities including abdominal fat accumulation, hyperglycemia, hyperinsulinemia, dyslipidemia, and hypertension, leading to diabetes and cardiovascular diseases (CVD). Intake of carbohydrates (CHO), particularly a sugary diet that rapidly increases blood glucose, triglycerides, and blood pressure levels is the predominant determining factor of MetS. Complex CHO, on the other hand, are a stable source of energy taking a longer time to digest. In particular, resistant starch (RS) or soluble fiber is an excellent source of prebiotics, which alter the gut microbial composition, which in turn improves metabolic control. Altering maternal CHO intake during pregnancy may result in the child developing MetS. Furthermore, lifestyle factors such as physical inactivity in combination with dietary habits may synergistically influence gene expression by modulating genetic and epigenetic regulators transforming childhood obesity into adolescent metabolic disorders. This review summarizes the common pathophysiology of MetS in connection with the nature of CHO, intrauterine nutrition, genetic predisposition, lifestyle factors, and advanced treatment approaches; it also emphasizes how dietary CHO may act as a key element in the pathogenesis and future therapeutic targets of obesity and MetS.
Collapse
Affiliation(s)
- Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Biotechnology, Bangladesh University of Health Sciences, Dhaka 1216, Bangladesh
| | - Hajara Akhter
- Biomedical and Toxicological Research Institute, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Habib Sadat Chaudhury
- Department of Biochemistry, International Medical College Hospital, Tongi 1711, Bangladesh
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Andrew Gorski
- Department of Philosophy in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | | | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Minh Nam Nguyen
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Pristine Pharmaceuticals, Patuakhali 8600, Bangladesh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Méndez-Albiñana P, Martínez-González Á, Camacho-Rodríguez L, Ferreira-Lazarte Á, Villamiel M, Rodrigues-Díez R, Balfagón G, García-Redondo AB, Prieto-Nieto MI, Blanco-Rivero J. Supplementation with the Symbiotic Formulation Prodefen® Increases Neuronal Nitric Oxide Synthase and Decreases Oxidative Stress in Superior Mesenteric Artery from Spontaneously Hypertensive Rats. Antioxidants (Basel) 2022; 11:antiox11040680. [PMID: 35453365 PMCID: PMC9029967 DOI: 10.3390/antiox11040680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, gut dysbiosis has been related to some peripheral vascular alterations linked to hypertension. In this work, we explore whether gut dysbiosis is related to vascular innervation dysfunction and altered nitric oxide (NO) production in the superior mesenteric artery, one of the main vascular beds involved in peripheral vascular resistance. For this purpose, we used spontaneously hypertensive rats, either treated or not with the commercial synbiotic formulation Prodefen® (108 colony forming units/day, 4 weeks). Prodefen® diminished systolic blood pressure and serum endotoxin, as well as the vasoconstriction elicited by electrical field stimulation (EFS), and enhanced acetic and butyric acid in fecal samples, and the vasodilation induced by the exogenous NO donor DEA-NO. Unspecific nitric oxide synthase (NOS) inhibitor L-NAME increased EFS-induced vasoconstriction more markedly in rats supplemented with Prodefen®. Both neuronal NO release and neuronal NOS activity were enhanced by Prodefen®, through a hyperactivation of protein kinase (PK)A, PKC and phosphatidylinositol 3 kinase-AKT signaling pathways. The superoxide anion scavenger tempol increased both NO release and DEA-NO vasodilation only in control animals. Prodefen® caused an increase in both nuclear erythroid related factor 2 and superoxide dismutase activities, consequently reducing both superoxide anion and peroxynitrite releases. In summary, Prodefen® could be an interesting non-pharmacological approach to ameliorate hypertension.
Collapse
Affiliation(s)
- Pablo Méndez-Albiñana
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Food Science Research Institute (CIAL) (CSIC-UAM), 28049 Madrid, Spain; (Á.F.-L.); (M.V.)
| | - Ángel Martínez-González
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
| | - Laura Camacho-Rodríguez
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
| | - Álvaro Ferreira-Lazarte
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Food Science Research Institute (CIAL) (CSIC-UAM), 28049 Madrid, Spain; (Á.F.-L.); (M.V.)
| | - Mar Villamiel
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Food Science Research Institute (CIAL) (CSIC-UAM), 28049 Madrid, Spain; (Á.F.-L.); (M.V.)
| | - Raquel Rodrigues-Díez
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Research Institute University Hospital la Paz (IdIPaz), 28029 Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, 28029 Madrid, Spain
| | - Gloria Balfagón
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
- Research Institute University Hospital la Paz (IdIPaz), 28029 Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, 28029 Madrid, Spain
| | - Ana B. García-Redondo
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
- Research Institute University Hospital la Paz (IdIPaz), 28029 Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, 28029 Madrid, Spain
| | - Mª Isabel Prieto-Nieto
- Research Institute University Hospital la Paz (IdIPaz), 28029 Madrid, Spain
- Department of General and Digestive Surgery, Hospital Universitario la Paz, 28046 Madrid, Spain
- Correspondence: (M.I.P.-N.); (J.B.-R.); Tel.: +34-91-497-5446 (J.B.-R.)
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
- Research Institute University Hospital la Paz (IdIPaz), 28029 Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, 28029 Madrid, Spain
- Correspondence: (M.I.P.-N.); (J.B.-R.); Tel.: +34-91-497-5446 (J.B.-R.)
| |
Collapse
|