1
|
Cheng C, Lu CF, Hsieh BY, Huang SH, Kao YCJ. Anisotropy component of DTI reveals long-term neuroinflammation following repetitive mild traumatic brain injury in rats. Eur Radiol Exp 2024; 8:82. [PMID: 39046630 PMCID: PMC11269550 DOI: 10.1186/s41747-024-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND This study aimed to investigate the long-term effects of repetitive mild traumatic brain injury (rmTBI) with varying inter-injury intervals by measuring diffusion tensor metrics, including mean diffusivity (MD), fractional anisotropy (FA), and diffusion magnitude (L) and pure anisotropy (q). METHODS Eighteen rats were randomly divided into three groups: short-interval rmTBI (n = 6), long-interval rmTBI (n = 6), and sham controls (n = 6). MD, FA, L, and q values were analyzed from longitudinal diffusion tensor imaging at days 50 and 90 after rmTBI. Immunohistochemical staining against neurons, astrocytes, microglia, and myelin was performed. Analysis of variance, Pearson correlation coefficient, and simple linear regression model were used. RESULTS At day 50 post-rmTBI, lower cortical FA and q values were shown in the short-interval group (p ≤ 0.038). In contrast, higher FA and q values were shown for the long-interval group (p ≤ 0.039) in the corpus callosum. In the ipsilesional external capsule and internal capsule, no significant changes were found in FA, while lower L and q values were shown in the short-interval group (p ≤ 0.028) at day 90. The q values in the external capsule and internal capsule were negatively correlated with the number of microglial cells and the total number of astroglial cells (p ≤ 0.035). CONCLUSION Tensor scalar measurements, such as L and q values, are sensitive to exacerbated chronic injury induced by rmTBI with shorter inter-injury intervals and reflect long-term astrogliosis induced by the cumulative injury. RELEVANCE STATEMENT Tensor scalar measurements, including L and q values, are potential DTI metrics for detecting long-term and subtle injury following rmTBI; in particular, q values may be used for quantifying remote white matter (WM) changes following rmTBI. KEY POINTS The alteration of L and q values was demonstrated after chronic repetitive mild traumatic brain injury. Changing q values were observed in the impact site and remote WM. The lower q values in the remote WM were associated with astrogliosis.
Collapse
Affiliation(s)
- Ching Cheng
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bao-Yu Hsieh
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shu-Hui Huang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chieh Jill Kao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake E. Repetitive mild closed-head injury induced synapse loss and increased local BOLD-fMRI signal homogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595651. [PMID: 38826468 PMCID: PMC11142233 DOI: 10.1101/2024.05.24.595651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
|
3
|
Boland R, Kokiko-Cochran ON. Deplete and repeat: microglial CSF1R inhibition and traumatic brain injury. Front Cell Neurosci 2024; 18:1352790. [PMID: 38450286 PMCID: PMC10915023 DOI: 10.3389/fncel.2024.1352790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Traumatic brain injury (TBI) is a public health burden affecting millions of people. Sustained neuroinflammation after TBI is often associated with poor outcome. As a result, increased attention has been placed on the role of immune cells in post-injury recovery. Microglia are highly dynamic after TBI and play a key role in the post-injury neuroinflammatory response. Therefore, microglia represent a malleable post-injury target that could substantially influence long-term outcome after TBI. This review highlights the cell specific role of microglia in TBI pathophysiology. Microglia have been manipulated via genetic deletion, drug inhibition, and pharmacological depletion in various pre-clinical TBI models. Notably, colony stimulating factor 1 (CSF1) and its receptor (CSF1R) have gained much traction in recent years as a pharmacological target on microglia. CSF1R is a transmembrane tyrosine kinase receptor that is essential for microglia proliferation, differentiation, and survival. Small molecule inhibitors targeting CSF1R result in a swift and effective depletion of microglia in rodents. Moreover, discontinuation of the inhibitors is sufficient for microglia repopulation. Attention is placed on summarizing studies that incorporate CSF1R inhibition of microglia. Indeed, microglia depletion affects multiple aspects of TBI pathophysiology, including neuroinflammation, oxidative stress, and functional recovery with measurable influence on astrocytes, peripheral immune cells, and neurons. Taken together, the data highlight an important role for microglia in sustaining neuroinflammation and increasing risk of oxidative stress, which lends to neuronal damage and behavioral deficits chronically after TBI. Ultimately, the insights gained from CSF1R depletion of microglia are critical for understanding the temporospatial role that microglia develop in mediating TBI pathophysiology and recovery.
Collapse
Affiliation(s)
- Rebecca Boland
- Department of Neuroscience, College of Medicine, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, College of Medicine, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Kommireddy RS, Mehra S, Pompilus M, Arja RD, Zhu T, Yang Z, Fu Y, Zhu J, Kobeissy F, Wang KKW, Febo M. Functional connectivity, tissue microstructure and T2 at 11.1 Tesla distinguishes neuroadaptive differences in two traumatic brain injury models in rats: A Translational Outcomes Project in NeuroTrauma (TOP-NT) UG3 phase study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.10.570975. [PMID: 38168381 PMCID: PMC10760004 DOI: 10.1101/2023.12.10.570975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The damage caused by contusive traumatic brain injuries (TBIs) is thought to involve breakdown in neuronal communication through focal and diffuse axonal injury along with alterations to the neuronal chemical environment, which adversely affects neuronal networks beyond the injury epicenter(s). In the present study, functional connectivity along with brain tissue microstructure coupled with T2 relaxometry were assessed in two experimental TBI models in rat, controlled cortical impact (CCI) and lateral fluid percussive injury (LFPI). Rats were scanned on an 11.1 Tesla scanner on days 2 and 30 following either CCI or LFPI. Naive controls were scanned once and used as a baseline comparison for both TBI groups. Scanning included functional magnetic resonance imaging (fMRI), diffusion weighted images (DWI), and multi-echo T2 images. fMRI scans were analyzed for functional connectivity across laterally and medially located region of interests (ROIs) across the cortical mantle, hippocampus, and dorsal striatum. DWI scans were processed to generate maps of fractional anisotropy, mean, axial, and radial diffusivities (FA, MD, AD, RD). The analyses focused on cortical and white matter (WM) regions at or near the TBI epicenter. Our results indicate that rats exposed to CCI and LFPI had significantly increased contralateral intra-cortical connectivity at 2 days post-injury. This was observed across similar areas of the cortex in both groups. The increased contralateral connectivity was still observed by day 30 in CCI, but not LFPI rats. Although both CCI and LFPI had changes in WM and cortical FA and diffusivities, WM changes were most predominant in CCI and cortical changes in LFPI. Our results provide support for the use of multimodal MR imaging for different types of contusive and skull-penetrating injury.
Collapse
|
5
|
To XV, Mohamed AZ, Cumming P, Nasrallah FA. Diffusion tensor imaging and plasma immunological biomarker panel in a rat traumatic brain injury (TBI) model and in human clinical TBI. Front Immunol 2024; 14:1293471. [PMID: 38259455 PMCID: PMC10800599 DOI: 10.3389/fimmu.2023.1293471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Neuroinflammatory reactions play a significant role in the pathology and long-term consequences of traumatic brain injury (TBI) and may mediate salutogenic processes that white matter integrity. This study aimed to investigate the relationship between inflammatory markers and white matter integrity following TBI in both a rat TBI model and clinical TBI cases. Methods In the rat model, blood samples were collected following a controlled cortical impact (CCI) to assess a panel of inflammatory markers; MR-based diffusion tensor imaging (DTI) was employed to evaluate white matter integrity 60 days post-injury. 15 clinical TBI patients were similarly assessed for a panel of inflammatory markers and DTI post-intensive care unit discharge. Blood samples from healthy controls were used for comparison of the inflammatory markers. Results Time-dependent elevations in immunological markers were observed in TBI rats, with a correlation to preserved fractional anisotropy (FA) in white matter. Specifically, TBI-induced increased plasma levels of IL-1β, IL-6, G-CSF, CCL3, CCL5, and TNF-α were associated with higher white matter integrity, as measured by FA. Clinical cases had similar findings: elevated inflammatory markers (relative to controls) were associated with preservation of FA in vulnerable white matter regions. Discussion Inflammatory markers in post-TBI plasma samples are ambivalent with respect to prediction of favourable outcome versus a progression to more pervasive pathology and morbidity.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Abdalla Z. Mohamed
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fatima A. Nasrallah
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
- The Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
| |
Collapse
|
6
|
Agrawal RR, Larrea D, Xu Y, Shi L, Zirpoli H, Cummins LG, Emmanuele V, Song D, Yun TD, Macaluso FP, Min W, Kernie SG, Deckelbaum RJ, Area-Gomez E. Alzheimer's-Associated Upregulation of Mitochondria-Associated ER Membranes After Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:2219-2241. [PMID: 36571634 PMCID: PMC10287820 DOI: 10.1007/s10571-022-01299-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 10/04/2022] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-β as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.
Collapse
Affiliation(s)
- Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Delfina Larrea
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Yimeng Xu
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Lingyan Shi
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
| | - Leslie G Cummins
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Valentina Emmanuele
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Donghui Song
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
| | - Taekyung D Yun
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Wei Min
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Steven G Kernie
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA.
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, C. Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Kn BP, Cs A, Mohammed A, Chitta KK, To XV, Srour H, Nasrallah F. An end-end deep learning framework for lesion segmentation on multi-contrast MR images-an exploratory study in a rat model of traumatic brain injury. Med Biol Eng Comput 2023; 61:847-865. [PMID: 36624356 DOI: 10.1007/s11517-022-02752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury (TBI) engenders traumatic necrosis and penumbra-areas of secondary neural injury which are crucial targets for therapeutic interventions. Segmenting manually areas of ongoing changes like necrosis, edema, hematoma, and inflammation is tedious, error-prone, and biased. Using the multi-parametric MR data from a rodent model study, we demonstrate the effectiveness of an end-end deep learning global-attention-based UNet (GA-UNet) framework for automatic segmentation and quantification of TBI lesions. Longitudinal MR scans (2 h, 1, 3, 7, 14, 30, and 60 days) were performed on eight Sprague-Dawley rats after controlled cortical injury was performed. TBI lesion and sub-regions segmentation was performed using 3D-UNet and GA-UNet. Dice statistics (DSI) and Hausdorff distance were calculated to assess the performance. MR scan variations-based (bias, noise, blur, ghosting) data augmentation was performed to develop a robust model.Training/validation median DSI for U-Net was 0.9368 with T2w and MPRAGE inputs, whereas GA-UNet had 0.9537 for the same. Testing accuracies were higher for GA-UNet than U-Net with a DSI of 0.8232 for the T2w-MPRAGE inputs.Longitudinally, necrosis remained constant while oligemia and penumbra decreased, and edema appearing around day 3 which increased with time. GA-UNet shows promise for multi-contrast MR image-based segmentation/quantification of TBI in large cohort studies.
Collapse
Affiliation(s)
- Bhanu Prakash Kn
- Clinical Data Analytics & Radiomics, Cellular Image Informatics, Bioinformatics Institute, A*STAR, 30 Biopolis St Matrix, Singapore, 138671, Singapore. .,Cellular Image Informatics, Bioinformatics Institute, A*STAR Horizontal Technology Centers, Singapore, Singapore.
| | - Arvind Cs
- Clinical Data Analytics & Radiomics, Cellular Image Informatics, Bioinformatics Institute, A*STAR, 30 Biopolis St Matrix, Singapore, 138671, Singapore
| | - Abdalla Mohammed
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia
| | - Krishna Kanth Chitta
- Signal and Image Processing Group, Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, A*STAR, 02-02 Helios 11, Biopolis Way, Singapore, 138667, Singapore
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia
| | - Hussein Srour
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
8
|
Chary K, Manninen E, Claessens J, Ramirez-Manzanares A, Gröhn O, Sierra A. Diffusion MRI approaches for investigating microstructural complexity in a rat model of traumatic brain injury. Sci Rep 2023; 13:2219. [PMID: 36755032 PMCID: PMC9908904 DOI: 10.1038/s41598-023-29010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Our study explores the potential of conventional and advanced diffusion MRI techniques including diffusion tensor imaging (DTI), and single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD) to investigate complex microstructural changes following severe traumatic brain injury in rats at a chronic phase. Rat brains after sham-operation or lateral fluid percussion (LFP) injury were scanned ex vivo in a 9.4 T scanner. Our region-of-interest-based approach of tensor-, and SS3T-CSD derived fixel-, 3-tissue signal fraction maps were sensitive to changes in both white matter (WM) and grey matter (GM) areas. Tensor-based measures, such as fractional anisotropy (FA) and radial diffusivity (RD), detected more changes in WM and GM areas as compared to fixel-based measures including apparent fiber density (AFD), peak FOD amplitude and primary fiber bundle density, while 3-tissue signal fraction maps revealed distinct changes in WM, GM, and phosphate-buffered saline (PBS) fractions highlighting the complex tissue microstructural alterations post-trauma. Track-weighted imaging demonstrated changes in track morphology including reduced curvature and average pathlength distal from the primary lesion in severe TBI rats. In histological analysis, changes in the diffusion MRI measures could be associated to decreased myelin density, loss of myelinated axons, and increased cellularity, revealing progressive microstructural alterations in these brain areas five months after injury. Overall, this study highlights the use of combined conventional and advanced diffusion MRI measures to obtain more precise insights into the complex tissue microstructural alterations in chronic phase of severe brain injury.
Collapse
Affiliation(s)
- Karthik Chary
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Eppu Manninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
| | - Jade Claessens
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
| | | | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland.
| |
Collapse
|
9
|
To XV, Mohamed AZ, Cumming P, Nasrallah FA. Association of sub-acute changes in plasma amino acid levels with long-term brain pathologies in a rat model of moderate-severe traumatic brain injury. Front Neurosci 2023; 16:1014081. [PMID: 36685246 PMCID: PMC9853432 DOI: 10.3389/fnins.2022.1014081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Traumatic brain injury (TBI) induces a cascade of cellular alterations that are responsible for evolving secondary brain injuries. Changes in brain structure and function after TBI may occur in concert with dysbiosis and altered amino acid fermentation in the gut. Therefore, we hypothesized that subacute plasma amino acid levels could predict long-term microstructural outcomes as quantified using neurite orientation dispersion and density imaging (NODDI). Methods Fourteen 8-10-week-old male rats were randomly assigned either to sham (n = 6) or a single moderate-severe TBI (n = 8) procedure targeting the primary somatosensory cortex. Venous blood samples were collected at days one, three, seven, and 60 post-procedure and NODDI imaging were carried out at day 60. Principal Component Regression analysis was used to identify time dependent plasma amino acid concentrations after in the subacute phase post-injury that predicted NODDI metric outcomes at day 60. Results The TBI group had significantly increased plasma levels of glutamine, arginine, alanine, proline, tyrosine, valine, isoleucine, leucine, and phenylalanine at days three-seven post-injury. Higher levels of several neuroprotective amino acids, especially the branched-chain amino acids (valine, isoleucine, leucine) and phenylalanine, as well as serine, arginine, and asparagine at days three-seven post-injury were also associated with lower isotropic diffusion volume fraction measures in the ventricles and thus lesser ventricular dilation at day 60. Discussion In the first such study, we examined the relationship between the long-term post-TBI microstructural outcomes across whole brain and the subacute changes in plasma amino acid concentrations. At days three to seven post-injury, we observed that increased plasma levels of several amino acids, particularly the branched-chain amino acids and phenylalanine, were associated with lesser degrees of ventriculomegaly and hydrocephalus TBI neuropathology at day 60 post-injury. The results imply that altered amino acid fermentation in the gut may mediate neuroprotection in the aftermath of TBI.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | - Abdalla Z. Mohamed
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia,Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland,School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Fatima A. Nasrallah
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia,Centre for Advanced Imaging, The University of Queensland, Saint Lucia, QLD, Australia,*Correspondence: Fatima A. Nasrallah,
| |
Collapse
|
10
|
Havlicek DF, Furhang R, Nikulina E, Smith-Salzberg B, Lawless S, Severin SA, Mallaboeva S, Nayab F, Seifert AC, Crary JF, Bergold PJ. A single closed head injury in male adult mice induces chronic, progressive white matter atrophy and increased phospho-tau expressing oligodendrocytes. Exp Neurol 2023; 359:114241. [PMID: 36240881 DOI: 10.1016/j.expneurol.2022.114241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Traumatic brain injury (TBI) acutely damages the brain; this injury can evolve into chronic neurodegeneration. While much is known about the chronic effects arising from multiple mild TBIs, far less is known about the long-term effects of a single moderate to severe TBI. We found that a single moderate closed head injury to mice induces diffuse axonal injury within 1-day post-injury (DPI). At 14 DPI, injured animals have atrophy of ipsilesional cortex, thalamus, and corpus callosum, with bilateral atrophy of the dorsal fornix. Atrophy of the ipsilesional corpus callosum is accompanied by decreased fractional anisotropy and increased mean and radial diffusivity that remains unchanged between 14 and 180 DPI. Injured animals show an increased density of phospho-tau immunoreactive (pTau+) cells in the ipsilesional cortex and thalamus, and bilaterally in corpus callosum. Between 14 and 180 DPI, atrophy occurs in the ipsilesional ventral fornix, contralesional corpus callosum, and bilateral internal capsule. Diffusion tensor MRI parameters remain unchanged in white matter regions with delayed atrophy. Between 14 and 180 DPI, pTau+ cell density increases bilaterally in corpus callosum, but decreases in cortex and thalamus. The location of pTau+ cells within the ipsilesional corpus callosum changes between 14 and 180 DPI; density of all cells increases including pTau+ or pTau- cells. >90% of the pTau+ cells are in the oligodendrocyte lineage in both gray and white matter. Density of thioflavin-S+ cells in thalamus increases by 180 DPI. These data suggest a single closed head impact produces multiple forms of chronic neurodegeneration. Gray and white matter regions proximal to the impact site undergo early atrophy. More distal white matter regions undergo chronic, progressive white matter atrophy with an increasing density of oligodendrocytes containing pTau. These data suggest a complex chronic neurodegenerative process arising from a single moderate closed head injury.
Collapse
Affiliation(s)
- David F Havlicek
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Rachel Furhang
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Elena Nikulina
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Bayle Smith-Salzberg
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Siobhán Lawless
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Sasha A Severin
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Sevara Mallaboeva
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Fizza Nayab
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Alan C Seifert
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Peter J Bergold
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America.
| |
Collapse
|
11
|
Mohamed AZ, Cumming P, Nasrallah FA. Escalation of Tau Accumulation after a Traumatic Brain Injury: Findings from Positron Emission Tomography. Brain Sci 2022; 12:876. [PMID: 35884683 PMCID: PMC9313362 DOI: 10.3390/brainsci12070876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury (TBI) has come to be recognized as a risk factor for Alzheimer's disease (AD), with poorly understood underlying mechanisms. We hypothesized that a history of TBI would be associated with greater tau deposition in elders with high-risk for dementia. A Groups of 20 participants with self-reported history of TBI and 100 without any such history were scanned using [18F]-AV1451 positron emission tomography as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Scans were stratified into four groups according to TBI history, and by clinical dementia rating scores into cognitively normal (CDR = 0) and those showing cognitive decline (CDR ≥ 0.5). We pursued voxel-based group comparison of [18F]-AV1451 uptake to identify the effect of TBI history on brain tau deposition, and for voxel-wise correlation analyses between [18F]-AV1451 uptake and different neuropsychological measures and cerebrospinal fluid (CSF) biomarkers. Compared to the TBI-/CDR ≥ 0.5 group, the TBI+/CDR ≥ 0.5 group showed increased tau deposition in the temporal pole, hippocampus, fusiform gyrus, and inferior and middle temporal gyri. Furthermore, the extent of tau deposition in the brain of those with TBI history positively correlated with the extent of cognitive decline, CSF-tau, and CSF-amyloid. This might suggest TBI to increase the risk for tauopathies and Alzheimer's disease later in life.
Collapse
Affiliation(s)
- Abdalla Z. Mohamed
- Thompson Institute, University of Sunshine Coast, Birtinya, QLD 4575, Australia;
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, 3010 Bern, Switzerland;
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Fatima A. Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
12
|
Vinh To X, Mohamed AZ, Cumming P, Nasrallah FA. Subacute cytokine changes after a traumatic brain injury predict chronic brain microstructural alterations on advanced diffusion imaging in the male rat. Brain Behav Immun 2022; 102:137-150. [PMID: 35183698 DOI: 10.1016/j.bbi.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The process of neuroinflammation occurring after traumatic brain injury (TBI) has received significant attention as a potential prognostic indicator and interventional target to improve patients' outcomes. Indeed, many of the secondary consequences of TBI have been attributed to neuroinflammation and peripheral inflammatory changes. However, inflammatory biomarkers in blood have not yet emerged as a clinical tool for diagnosis of TBI and predicting outcome. The controlled cortical impact model of TBI in the rodent gives reliable readouts of the dynamics of post-TBI neuroinflammation. We now extend this model to include a panel of plasma cytokine biomarkers measured at different time points post-injury, to test the hypothesis that these markers can predict brain microstructural outcome as quantified by advanced diffusion-weighted magnetic resonance imaging (MRI). METHODS Fourteen 8-10-week-old male rats were randomly assigned to sham surgery (n = 6) and TBI (n = 8) treatment with a single moderate-severe controlled cortical impact. We collected blood samples for cytokine analysis at days 1, 3, 7, and 60 post-surgery, and carried out standard structural and advanced diffusion-weighted MRI at day 60. We then utilized principal component regression to build an equation predicting different aspects of microstructural changes from the plasma inflammatory marker concentrations measured at different time points. RESULTS The TBI group had elevated plasma levels of IL-1β and several neuroprotective cytokines and chemokines (IL-7, CCL3, and GM-CSF) compared to the sham group from days 3 to 60 post-injury. The plasma marker panels obtained at day 7 were significantly associated with the outcome at day 60 of the trans-hemispheric cortical map transfer process that is a frequent finding in unilateral TBI models. DISCUSSION These results confirm and extend prior studies showing that day 7 post-injury is a critical temporal window for the reorganisation process following TBI. High plasma level of IL-1β and low plasma levels of the neuroprotective IL-7, CCL3, and GM-CSF of TBI animals at day 60 were associated with greater TBI pathology.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Abdalla Z Mohamed
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia; Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia; The Centre for Advanced Imaging, The University of Queensland, Queensland, Australia.
| |
Collapse
|