1
|
Caturano A, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Iadicicco I, Donnarumma M, Galiero R, Acierno C, Sardu C, Russo V, Vetrano E, Conte C, Marfella R, Rinaldi L, Sasso FC. Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes: From Pathophysiology to Lifestyle Modifications. Antioxidants (Basel) 2025; 14:72. [PMID: 39857406 PMCID: PMC11759781 DOI: 10.3390/antiox14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly increases the risk of cardiovascular disease, which is the leading cause of morbidity and mortality among diabetic patients. A central pathophysiological mechanism linking T2DM to cardiovascular complications is oxidative stress, defined as an imbalance between reactive oxygen species (ROS) production and the body's antioxidant defenses. Hyperglycemia in T2DM promotes oxidative stress through various pathways, including the formation of advanced glycation end products, the activation of protein kinase C, mitochondrial dysfunction, and the polyol pathway. These processes enhance ROS generation, leading to endothelial dysfunction, vascular inflammation, and the exacerbation of cardiovascular damage. Additionally, oxidative stress disrupts nitric oxide signaling, impairing vasodilation and promoting vasoconstriction, which contributes to vascular complications. This review explores the molecular mechanisms by which oxidative stress contributes to the pathogenesis of cardiovascular disease in T2DM. It also examines the potential of lifestyle modifications, such as dietary changes and physical activity, in reducing oxidative stress and mitigating cardiovascular risks in this high-risk population. Understanding these mechanisms is critical for developing targeted therapeutic strategies to improve cardiovascular outcomes in diabetic patients.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Mariarosaria Donnarumma
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Carlo Acierno
- Azienda Ospedaliera Regionale San Carlo, 85100 Potenza, Italy;
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Vincenzo Russo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099 Milan, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
2
|
Briançon-Marjollet A, Netchitaïlo M, Fabre F, Belaidi E, Arnaud C, Borel AL, Levy P, Pépin JL, Tamisier R. Intermittent hypoxia increases lipid insulin resistance in healthy humans: A randomized crossover trial. J Sleep Res 2024:e14243. [PMID: 38866393 DOI: 10.1111/jsr.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 06/14/2024]
Abstract
Sympathetic overactivity caused by chronic intermittent hypoxia is a hallmark of obstructive sleep apnea. A high sympathetic tone elicits increases in plasma free fatty acid and insulin. Our objective was to assess the impact of 14 nights of chronic intermittent hypoxia exposure on sympathetic activity, glucose control, lipid profile and subcutaneous fat tissue remodelling in non-obese healthy humans. In this prospective, double-blinded crossover study, 12 healthy subjects were randomized, among them only nine underwent the two phases of exposures of 14 nights chronic intermittent hypoxia versus air. Sympathetic activity was measured by peroneal microneurography (muscle sympathetic nerve activity) before and after each exposure. Fasting glucose, insulin, C-peptide and free fatty acid were assessed at rest and during a multisampling oral glucose tolerance test. We assessed histological remodelling, adrenergic receptors, lipolysis and lipogenesis genes expression and functional changes of the adipose tissue. Two weeks of exposure of chronic intermittent hypoxia versus ambient air significantly increased sympathetic activity (p = 0.04). Muscle sympathetic nerve activity increased from 24.5 [18.9; 26.8] before to 21.7 [13.8; 25.7] after ambient air exposure, and from 20.6 [17.4; 23.9] before to 28.0 [24.4; 31.5] bursts per min after exposure to chronic intermittent hypoxia. After chronic intermittent hypoxia, post-oral glucose tolerance test circulating free fatty acid area under the curve increased (p = 0.05) and free fatty acid sensitivity to insulin decreased (p = 0.028). In adipocyte tissue, intermittent hypoxia increased expression of lipolysis genes (adipocyte triglyceride lipase and hormone-sensitive lipase) and lipogenesis genes (fatty acid synthase; p < 0.05). In this unique experimental setting in healthy humans, chronic intermittent hypoxia induced high sympathetic tone, lipolysis and decreased free fatty acid sensitivity to insulin. This might participate in the trajectory to systemic insulin resistance and diabetes for patients with obstructive sleep apnea.
Collapse
Affiliation(s)
| | - Marie Netchitaïlo
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- Service de physiologie respiratoire et de l'exercice, CHU Rouen Normandie, Rouen, France
| | - Fanny Fabre
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- Service anesthésie, Centre Hospitalier de Mayotte (Pôle BACS), Mamoudzou, France
| | - Elise Belaidi
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique UMR5305, Lyon, France
| | - Claire Arnaud
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
| | - Anne-Laure Borel
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Endocrinology, Diabetology, Nutrition, Grenoble, France
| | - Patrick Levy
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Clinique Universitaire de Pneumologie et Physiologie, Pole Thorax et Vaisseaux, Grenoble, France
| | - Jean-Louis Pépin
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Clinique Universitaire de Pneumologie et Physiologie, Pole Thorax et Vaisseaux, Grenoble, France
| | - Renaud Tamisier
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Clinique Universitaire de Pneumologie et Physiologie, Pole Thorax et Vaisseaux, Grenoble, France
| |
Collapse
|
3
|
Adeva-Andany MM, Domínguez-Montero A, Castro-Quintela E, Funcasta-Calderón R, Fernández-Fernández C. Hypoxia-Induced Insulin Resistance Mediates the Elevated Cardiovascular Risk in Patients with Obstructive Sleep Apnea: A Comprehensive Review. Rev Cardiovasc Med 2024; 25:231. [PMID: 39076340 PMCID: PMC11270082 DOI: 10.31083/j.rcm2506231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 07/31/2024] Open
Abstract
Patients with obstructive sleep apnea (OSA) experience insulin resistance and its clinical consequences, including hypertriglyceridemia, reduced high density lipoprotein-associated cholesterol (HDL-c), visceral adiposity, hepatic steatosis, increased epicardial fat thickness, essential hypertension, glucose intolerance, increased risk for type 2 diabetes, chronic kidney disease, subclinical vascular damage, and increased risk for cardiovascular events. Obesity is a major contributor to OSA. The prevalence of OSA is almost universal among patients with severe obesity undergoing bariatric surgery. However, insulin resistance and its clinical complications occur in OSA patients irrespective of general obesity (body mass index). In OSA patients, apnea episodes during sleep induce oxyhemoglobin desaturation and tissue hypoxia. Insulin resistance is an adaptive response to tissue hypoxia and develops in conditions with limited tissue oxygen supply, including healthy subjects exposed to hypobaric hypoxia (high altitude) and OSA patients. Indicators of oxyhemoglobin desaturation have been robustly and independently linked to insulin resistance and its clinical manifestations in patients with OSA. Insulin resistance mediates the elevated rate of type 2 diabetes, chronic kidney disease, and cardiovascular disease unexplained with traditional cardiovascular risk factors present in OSA patients. Pathophysiological processes underlying hypoxia-induced insulin resistance involve hypoxia inducible factor-1 upregulation and peroxisome proliferator-activated receptor-gamma (PPAR- γ ) downregulation. In human adipose tissue, PPAR- γ activity promotes glucose transport into adipocytes, lipid droplet biogenesis, and whole-body insulin sensitivity. Silencing of PPAR- γ in the adipose tissue reduces glucose uptake and fat accumulation into adipocytes and promotes insulin resistance. In conclusion, tissue hypoxia drives insulin resistance and its clinical consequences in patients with OSA, regardless of body mass index.
Collapse
|
4
|
Meyer EJ, Wittert GA. Approach the Patient With Obstructive Sleep Apnea and Obesity. J Clin Endocrinol Metab 2024; 109:e1267-e1279. [PMID: 37758218 PMCID: PMC10876414 DOI: 10.1210/clinem/dgad572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Obstructive sleep apnea (OSA) and obesity are highly prevalent and bidirectionally associated. OSA is underrecognized, however, particularly in women. By mechanisms that overlap with those of obesity, OSA increases the risk of developing, or having poor outcomes from, comorbid chronic disorders and impairs quality of life. Using 2 illustrative cases, we discuss the relationships between OSA and obesity with type 2 diabetes, dyslipidemia, cardiovascular disease, cognitive disturbance, mood disorders, lower urinary tract symptoms, sexual function, and reproductive disorders. The differences in OSA between men and women, the phenotypic variability of OSA, and comorbid sleep disorders are highlighted. When the probability of OSA is high due to consistent symptoms, comorbidities, or both, a diagnostic sleep study is advisable. Continuous positive airway pressure or mandibular advancement splints improve symptoms. Benefits for comorbidities are variable depending on nightly duration of use. By contrast, weight loss and optimization of lifestyle behaviors are consistently beneficial.
Collapse
Affiliation(s)
- Emily Jane Meyer
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Gary Allen Wittert
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Freemasons Centre for Male Health and Wellbeing, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Chang JL, Goldberg AN, Alt JA, Alzoubaidi M, Ashbrook L, Auckley D, Ayappa I, Bakhtiar H, Barrera JE, Bartley BL, Billings ME, Boon MS, Bosschieter P, Braverman I, Brodie K, Cabrera-Muffly C, Caesar R, Cahali MB, Cai Y, Cao M, Capasso R, Caples SM, Chahine LM, Chang CP, Chang KW, Chaudhary N, Cheong CSJ, Chowdhuri S, Cistulli PA, Claman D, Collen J, Coughlin KC, Creamer J, Davis EM, Dupuy-McCauley KL, Durr ML, Dutt M, Ali ME, Elkassabany NM, Epstein LJ, Fiala JA, Freedman N, Gill K, Boyd Gillespie M, Golisch L, Gooneratne N, Gottlieb DJ, Green KK, Gulati A, Gurubhagavatula I, Hayward N, Hoff PT, Hoffmann OM, Holfinger SJ, Hsia J, Huntley C, Huoh KC, Huyett P, Inala S, Ishman SL, Jella TK, Jobanputra AM, Johnson AP, Junna MR, Kado JT, Kaffenberger TM, Kapur VK, Kezirian EJ, Khan M, Kirsch DB, Kominsky A, Kryger M, Krystal AD, Kushida CA, Kuzniar TJ, Lam DJ, Lettieri CJ, Lim DC, Lin HC, Liu SY, MacKay SG, Magalang UJ, Malhotra A, Mansukhani MP, Maurer JT, May AM, Mitchell RB, Mokhlesi B, Mullins AE, Nada EM, Naik S, Nokes B, Olson MD, Pack AI, Pang EB, Pang KP, Patil SP, Van de Perck E, Piccirillo JF, Pien GW, Piper AJ, Plawecki A, Quigg M, Ravesloot MJ, Redline S, Rotenberg BW, Ryden A, Sarmiento KF, Sbeih F, Schell AE, Schmickl CN, Schotland HM, Schwab RJ, Seo J, Shah N, Shelgikar AV, Shochat I, Soose RJ, Steele TO, Stephens E, Stepnowsky C, Strohl KP, Sutherland K, Suurna MV, Thaler E, Thapa S, Vanderveken OM, de Vries N, Weaver EM, Weir ID, Wolfe LF, Tucker Woodson B, Won CH, Xu J, Yalamanchi P, Yaremchuk K, Yeghiazarians Y, Yu JL, Zeidler M, Rosen IM. International Consensus Statement on Obstructive Sleep Apnea. Int Forum Allergy Rhinol 2023; 13:1061-1482. [PMID: 36068685 PMCID: PMC10359192 DOI: 10.1002/alr.23079] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Evaluation and interpretation of the literature on obstructive sleep apnea (OSA) allows for consolidation and determination of the key factors important for clinical management of the adult OSA patient. Toward this goal, an international collaborative of multidisciplinary experts in sleep apnea evaluation and treatment have produced the International Consensus statement on Obstructive Sleep Apnea (ICS:OSA). METHODS Using previously defined methodology, focal topics in OSA were assigned as literature review (LR), evidence-based review (EBR), or evidence-based review with recommendations (EBR-R) formats. Each topic incorporated the available and relevant evidence which was summarized and graded on study quality. Each topic and section underwent iterative review and the ICS:OSA was created and reviewed by all authors for consensus. RESULTS The ICS:OSA addresses OSA syndrome definitions, pathophysiology, epidemiology, risk factors for disease, screening methods, diagnostic testing types, multiple treatment modalities, and effects of OSA treatment on multiple OSA-associated comorbidities. Specific focus on outcomes with positive airway pressure (PAP) and surgical treatments were evaluated. CONCLUSION This review of the literature consolidates the available knowledge and identifies the limitations of the current evidence on OSA. This effort aims to create a resource for OSA evidence-based practice and identify future research needs. Knowledge gaps and research opportunities include improving the metrics of OSA disease, determining the optimal OSA screening paradigms, developing strategies for PAP adherence and longitudinal care, enhancing selection of PAP alternatives and surgery, understanding health risk outcomes, and translating evidence into individualized approaches to therapy.
Collapse
Affiliation(s)
- Jolie L. Chang
- University of California, San Francisco, California, USA
| | | | | | | | - Liza Ashbrook
- University of California, San Francisco, California, USA
| | | | - Indu Ayappa
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | - Maurits S. Boon
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Pien Bosschieter
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Itzhak Braverman
- Hillel Yaffe Medical Center, Hadera Technion, Faculty of Medicine, Hadera, Israel
| | - Kara Brodie
- University of California, San Francisco, California, USA
| | | | - Ray Caesar
- Stone Oak Orthodontics, San Antonio, Texas, USA
| | | | - Yi Cai
- University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | - Susmita Chowdhuri
- Wayne State University and John D. Dingell VA Medical Center, Detroit, Michigan, USA
| | - Peter A. Cistulli
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David Claman
- University of California, San Francisco, California, USA
| | - Jacob Collen
- Uniformed Services University, Bethesda, Maryland, USA
| | | | | | - Eric M. Davis
- University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Mohan Dutt
- University of Michigan, Ann Arbor, Michigan, USA
| | - Mazen El Ali
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | - Kirat Gill
- Stanford University, Palo Alto, California, USA
| | | | - Lea Golisch
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | | | | - Arushi Gulati
- University of California, San Francisco, California, USA
| | | | | | - Paul T. Hoff
- University of Michigan, Ann Arbor, Michigan, USA
| | - Oliver M.G. Hoffmann
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | - Jennifer Hsia
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Colin Huntley
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | - Sanjana Inala
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | - Meena Khan
- Ohio State University, Columbus, Ohio, USA
| | | | - Alan Kominsky
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | - Meir Kryger
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Derek J. Lam
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | - Atul Malhotra
- University of California, San Diego, California, USA
| | | | - Joachim T. Maurer
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Anna M. May
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Ron B. Mitchell
- University of Texas, Southwestern and Children’s Medical Center Dallas, Texas, USA
| | | | | | | | | | - Brandon Nokes
- University of California, San Diego, California, USA
| | | | - Allan I. Pack
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | - Mark Quigg
- University of Virginia, Charlottesville, Virginia, USA
| | | | - Susan Redline
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Armand Ryden
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | | | - Firas Sbeih
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | | | | | | | | | - Jiyeon Seo
- University of California, Los Angeles, California, USA
| | - Neomi Shah
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Ryan J. Soose
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Erika Stephens
- University of California, San Francisco, California, USA
| | | | | | | | | | - Erica Thaler
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sritika Thapa
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Nico de Vries
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | | | - Ian D. Weir
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Josie Xu
- University of Toronto, Ontario, Canada
| | | | | | | | | | | | - Ilene M. Rosen
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Muscle Lipid Oxidation Is Not Affected by Obstructive Sleep Apnea in Diabetes and Healthy Subjects. Int J Mol Sci 2023; 24:ijms24065308. [PMID: 36982383 PMCID: PMC10048979 DOI: 10.3390/ijms24065308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The molecular mechanisms linking obstructive sleep apnea (OSA) with type 2 diabetes mellitus (T2DM) remain unclear. This study investigated the effect of OSA on skeletal muscle lipid oxidation in nondiabetic controls and in type 2 diabetes (T2DM) patients. Forty-four participants matched for age and adiposity were enrolled: nondiabetic controls (control, n = 14), nondiabetic patients with severe OSA (OSA, n = 9), T2DM patients with no OSA (T2DM, n = 10), and T2DM patients with severe OSA (T2DM + OSA, n = 11). A skeletal muscle biopsy was performed; gene and protein expressions were determined and lipid oxidation was analyzed. An intravenous glucose tolerance test was performed to investigate glucose homeostasis. No differences in lipid oxidation (178.2 ± 57.1, 161.7 ± 22.4, 169.3 ± 50.9, and 140.0 ± 24.1 pmol/min/mg for control, OSA, T2DM, and T2DM+OSA, respectively; p > 0.05) or gene and protein expressions were observed between the groups. The disposition index, acute insulin response to glucose, insulin resistance, plasma insulin, glucose, and HBA1C progressively worsened in the following order: control, OSA, T2DM, and T2DM + OSA (p for trend <0.05). No association was observed between the muscle lipid oxidation and the glucose metabolism variables. We conclude that severe OSA is not associated with reduced muscle lipid oxidation and that metabolic derangements in OSA are not mediated through impaired muscle lipid oxidation.
Collapse
|
7
|
El Amin Ali AM, Osman HM, Zaki AM, Shaker O, Elsayed AM, Abdelwahed MY, Mohammed RA. Reno-protective effects of GLP-1 receptor agonist and anti-platelets in experimentally induced diabetic kidney disease in male albino rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1487-1497. [PMID: 36544522 PMCID: PMC9742563 DOI: 10.22038/ijbms.2022.65061.14494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022]
Abstract
Objectives The prevalence of chronic kidney disease in diabetics is progressively increasing with an increased risk of fatal complications. Materials and Methods Sixty male albino rats were used in the study, and type 2 diabetes mellitus were induced. Diabetic rats were divided randomly into 5 groups, the control diabetic group and 4 treated groups were treated with metformin (group3), dulaglutide (group 4), metformin & cilostazol (group 5), and the last group was treated with dulaglutide & cilostazol (group 6). At the end of the experiment, the weight of rats and systolic blood pressure were estimated. After overnight fasting, the serum levels of blood glucose, lipid profile, and kidney function were measured. After scarification, gene expression of eNOS and NFKB in kidney tissue were estimated and kidney tissues were examined for histopathology. Results Diabetic rats showed a significant increase in body weight, blood pressure, serum blood glucose, lipid profile, and impaired kidney function. Metformin and dulaglutide are associated with a significant decrease in blood pressure, blood glucose level, serum lipid profile, and improved kidney function. These changes are associated with a significant increase in anti-oxidative markers, and decreased inflammatory and fibrotic markers, especially with the addition of cilostazol. Conclusion Metformin and dulaglutide have been shown to ameliorate kidney damage in diabetics by stimulating the anti-oxidant defense system, normalizing kidney functional parameters, and improving histopathological changes. The addition of cilostazol to metformin or dulaglutide increased some of their anti-oxidants and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Hamed M. Osman
- Professor of Physiology, Physiology Department, Faculty of Medicine, Azhar University, Cairo, Egypt
| | - Azaa M. Zaki
- Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Olfat Shaker
- Professor of Biochemistry, Biochemistry and Molecular Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | - Rahab Ahmed Mohammed
- Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt. ,Corresponding author: Rahab Ahmed Mohammed. Physiology department, Faculty of Medicine, Fayoum University, Fayoum. Egypt. Tel: 01005446843;
| |
Collapse
|
8
|
Roy B, Runa SA. SARS-CoV-2 infection and diabetes: Pathophysiological mechanism of multi-system organ failure. World J Virol 2022; 11:252-274. [PMID: 36188734 PMCID: PMC9523319 DOI: 10.5501/wjv.v11.i5.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Since the discovery of the coronavirus disease 2019 outbreak, a vast majority of studies have been carried out that confirmed the worst outcome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in people with preexisting health conditions, including diabetes, obesity, hypertension, cancer, and cardiovascular diseases. Likewise, diabetes itself is one of the leading causes of global public health concerns that impose a heavy global burden on public health as well as socio-economic development. Both diabetes and SARS-CoV-2 infection have their independent ability to induce the pathogenesis and severity of multi-system organ failure, while the co-existence of these two culprits can accelerate the rate of disease progression and magnify the severity of the disease. However, the exact pathophysiology of multi-system organ failure in diabetic patients after SARS-CoV-2 infection is still obscure. This review summarized the organ-specific possible molecular mechanisms of SARS-CoV-2 and diabetes-induced pathophysiology of several diseases of multiple organs, including the lungs, heart, kidneys, brain, eyes, gastrointestinal system, and bones, and sub-sequent manifestation of multi-system organ failure.
Collapse
Affiliation(s)
- Bipradas Roy
- Department of Physiology, Wayne State University, Detroit, MI 48201, United States
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Sadia Afrin Runa
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
9
|
Protasiewicz Timofticiuc DC, Vladu IM, Ștefan AG, Clenciu D, Mitrea A, Pădureanu V, Efrem IC, Diaconu ID, Turcu A, Țenea-Cojan TȘ, Hâncu AM, Forțofoiu M, Mirea Munteanu O, Moța M. Associations of Chronic Diabetes Complications and Cardiovascular Risk with the Risk of Obstructive Sleep Apnea in Patients with Type 2 Diabetes. J Clin Med 2022; 11:jcm11154403. [PMID: 35956020 PMCID: PMC9368962 DOI: 10.3390/jcm11154403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is associated with increased mortality and morbidity, including cardiovascular diseases and obstructive sleep apnea (OSA). The aim of this study was to assess the associations between cardiovascular risk, chronic diabetes complications and the risk of OSA in adult patients with T2DM. Methods: The study included 529 patients with T2DM in whom moderate-to-severe OSA risk was assessed using the STOP-Bang questionnaire, dividing the subjects into two groups: group 1: STOP-Bang score <5, and group 2: STOP-Bang score ≥5, respectively. In all the subjects, cardiovascular risk was assessed using the UKPDS risk engine. Statistical analysis was performed using SPSS 26.0, the results being statistically significant if p value was <0.05. Results: 59% of the subjects scored ≥5 on the STOP-Bang questionnaire. We recorded statistically significant differences between the two groups regarding diabetes duration, HbA1c, HOMA-IR, albuminuria, as well as cardiovascular risk at 10 years for both coronary heart disease (CHD) and stroke (p < 0.05). Furthermore, through logistic regression, adjusting for confounding factors, we demonstrated that the STOP-Bang score ≥ 5 is a risk factor for 10-year fatal and nonfatal CHD risk. Conclusions: It is extremely important to screen and diagnose OSA in patients with T2DM, in order to improve the primary and secondary prevention of cardiovascular events in these patients.
Collapse
Affiliation(s)
- Diana Cristina Protasiewicz Timofticiuc
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.C.P.T.); (I.-D.D.); (M.M.)
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Correspondence: (I.M.V.); (A.M.); (M.F.); Tel.: +40-76367-0811 (I.M.V.); +40-72787-8853 (A.M.); +40-73586-4289 (M.F.)
| | | | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Diabetes, Nutrition and Metabolic Diseases, Clinical Municipal Hospital “Philanthropy” of Craiova, 200143 Craiova, Romania
| | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Diabetes, Nutrition and Metabolic Diseases, Clinical Municipal Hospital “Philanthropy” of Craiova, 200143 Craiova, Romania
- Correspondence: (I.M.V.); (A.M.); (M.F.); Tel.: +40-76367-0811 (I.M.V.); +40-72787-8853 (A.M.); +40-73586-4289 (M.F.)
| | - Vlad Pădureanu
- Department of Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Internal Medicine, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Ion Cristian Efrem
- Department of Internal Medicine and Medical Semiology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Internal Medicine, Clinical Municipal Hospital “Philanthropy” of Craiova, 200143 Craiova, Romania
| | - Ileana-Diana Diaconu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.C.P.T.); (I.-D.D.); (M.M.)
- Department of Pediatric Pneumology, “Marius Nasta” National Institute of Pneumophtisiology, 050159 Bucharest, Romania
| | - Adina Turcu
- Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Infectious Diseases Hospital “Victor Babes”, 200515 Craiova, Romania
| | - Tiberiu Ștefăniță Țenea-Cojan
- Department of General Surgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of General Surgery, C.F. Clinical Hospital, 200374 Craiova, Romania
| | | | - Maria Forțofoiu
- Department of Emergency Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Emergency Medicine, Clinical Municipal Hospital “Philanthropy” of Craiova, 200143 Craiova, Romania
- Correspondence: (I.M.V.); (A.M.); (M.F.); Tel.: +40-76367-0811 (I.M.V.); +40-72787-8853 (A.M.); +40-73586-4289 (M.F.)
| | - Oana Mirea Munteanu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Cardiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Maria Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.C.P.T.); (I.-D.D.); (M.M.)
| |
Collapse
|
10
|
Abstract
Obstructive sleep apnea (OSA) is characterized by upper airway collapse during sleep. Chronic intermittent hypoxia, sleep fragmentation, and inflammatory activation are the main pathophysiological mechanisms of OSA. OSA is highly prevalent in obese patients and may contribute to cardiometabolic risk by exerting detrimental effects on adipose tissue metabolism and potentiating the adipose tissue dysfunction typically found in obesity. This chapter will provide an update on: (a) the epidemiological studies linking obesity and OSA; (b) the studies exploring the effects of intermittent hypoxia and sleep fragmentation on the adipose tissue; (c) the effects of OSA treatment with continuous positive airway pressure (CPAP) on metabolic derangements; and (d) current research on new anti-diabetic drugs that could be useful in the treatment of obese OSA patients.
Collapse
Affiliation(s)
- Maria R Bonsignore
- Sleep Disordered Breathing and Chronic Respiratory Failure Clinic, PROMISE Department, University of Palermo, Palermo, Italy.
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy.
| |
Collapse
|
11
|
Vacek L, Dvorak A, Bechynska K, Kosek V, Elkalaf M, Trinh MD, Fiserova I, Pospisilova K, Slovakova L, Vitek L, Hajslova J, Polak J. Hypoxia Induces Saturated Fatty Acids Accumulation and Reduces Unsaturated Fatty Acids Independently of Reverse Tricarboxylic Acid Cycle in L6 Myotubes. Front Endocrinol (Lausanne) 2022; 13:663625. [PMID: 35360057 PMCID: PMC8963465 DOI: 10.3389/fendo.2022.663625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Obstructive sleep apnea syndrome, characterized by repetitive episodes of tissue hypoxia, is associated with several metabolic impairments. Role of fatty acids and lipids attracts attention in its pathogenesis for their metabolic effects. Parallelly, hypoxia-induced activation of reverse tricarboxylic acid cycle (rTCA) with reductive glutamine metabolism provides precursor molecules for de novo lipogenesis. Gas-permeable cultureware was used to culture L6-myotubes in chronic hypoxia (12%, 4% and 1% O2) with 13C labelled glutamine and inhibitors of glutamine uptake or rTCA-mediated lipogenesis. We investigated changes in lipidomic profile, 13C appearance in rTCA-related metabolites, gene and protein expression of rTCA-related proteins and glutamine transporters, glucose uptake and lactate production. Lipid content increased by 308% at 1% O2, predominantly composed of saturated fatty acids, while triacylglyceroles containing unsaturated fatty acids and membrane lipids (phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositol) decreased by 20-70%. rTCA labelling of malate, citrate and 2-hydroxyglutarate increased by 4.7-fold, 2.2-fold and 1.9-fold in 1% O2, respectively. ATP-dependent citrate lyase inhibition in 1% O2 decreased lipid amount by 23% and increased intensity of triacylglyceroles containing unsaturated fatty acids by 56-80%. Lactate production increased with hypoxia. Glucose uptake dropped by 75% with progression of hypoxia from 4% to 1% O2. Protein expression remained unchanged. Altogether, hypoxia modified cell metabolism leading to lipid composition alteration and rTCA activation.
Collapse
Affiliation(s)
- Lukas Vacek
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Ales Dvorak
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Kamila Bechynska
- Institute of Food and Nutrition Analysis, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Vit Kosek
- Institute of Food and Nutrition Analysis, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Moustafa Elkalaf
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czechia
| | - Minh Duc Trinh
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Ivana Fiserova
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Katerina Pospisilova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lucie Slovakova
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czechia
- 4 Department of Internal Medicine, Faculty General Hospital and 1Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Hajslova
- Institute of Food and Nutrition Analysis, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Jan Polak
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Jan Polak,
| |
Collapse
|
12
|
Su X, Li JH, Gao Y, Chen K, Gao Y, Guo JJ, Shi M, Zou X, Xu W, Zhao LB, Wang H, Wang Y, Liu J, Xu H, Kong X, Lin J, Qian X, Han J, Liu L. Impact of obstructive sleep apnea complicated with type 2 diabetes on long-term cardiovascular risks and all-cause mortality in elderly patients. BMC Geriatr 2021; 21:508. [PMID: 34563134 PMCID: PMC8466658 DOI: 10.1186/s12877-021-02461-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The prognostic significance of obstructive sleep apnea (OSA) in elderly patients with type 2 diabetes is unclear. The aim of this study was to determine the risk of cardiovascular disease (CVD) and mortality in elderly patients with OSA complicated with type 2 diabetes compared to patients with OSA without type 2 diabetes. METHODS From January 2015 to October 2017, 1113 eligible elderly patients with OSA, no history of cardiovascular, ≥60 years of age, and complete follow-up records were enrolled in this consecutive multicentre prospective cohort study. All patients had completed polysomnography (PSG) examinations. An apnoea-hypopnoea index of ≥5 events per hour recorded by polysomnography was defined as the diagnostic criterion for OSA. We collected baseline demographics, clinical characteristics, sleep parameters and follow-up outcomes. The primary aim of this study was to identify the risk of incident major adverse cardiovascular events (MACE). Secondary outcomes were all-cause mortality, components of MACE and a composite of all events. Kaplan-Meier survival analysis and Cox proportional hazards models were used to evaluate whether type 2 diabetes was associated with incident events. RESULTS A total of 266 (23.9%) patients had OSA complicated with type 2 diabetes. MACE occurred in 97 patients during the median 42-month follow-up. Kaplan-Meier survival curves indicated a significant relationship between type 2 diabetes and MACE (log-rank P = 0.003). Multivariable Cox regression analysis showed that type 2 diabetes increased the risk of MACE (HR = 1.64, 95% CI:1.08-2.47, P = 0.019), hospitalisation for unstable angina (HR = 2.11, 95% CI:1.23-3.64, P = 0.007) and a composite of all events in elderly patients with OSA (HR = 1.70, 95% CI:1.17-2.49, P = 0.007). However, there were no significant differences in the incidence of cardiovascular death, all-cause mortality, MI and hospitalisation for heart failure between patients with and without diabetes (P > 0.05). The subgroup analysis demonstrated that females (AHR = 2.46, 95% CI:1.17-5.19, P = 0.018), ≥ 70 years (AHR = 1.95, 95% CI:1.08-3.52, P = 0.027), overweight and obese (AHR = 2.04, 95% CI:1.29-3.33, P = 0.002) with mild OSA (AHR = 2.42, 95% CI: 1.03-5.71, P = 0.044) were at a higher risk for MACE by diabetes. CONCLUSION OSA and type 2 diabetes are interrelated and synergistic with MACE, hospitalisation for unstable angina and a composite of all events development. Overweight and obese females, ≥ 70 years with mild OSA combined with type 2 diabetes presented a significantly high MACE risk.
Collapse
Affiliation(s)
- Xiaofeng Su
- Medical College, Yan'an University, Yan'an, Shanxi Province, China
| | - Jian Hua Li
- Cardiology Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yinghui Gao
- PKU-UPenn Sleep Center, Peking University International Hospital, Beijing, China
| | - Kaibing Chen
- Sleep Center, The Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Yan Gao
- Department of General Practice, 960th Hospital of PLA, Jinan, Shandong Province, China
| | - Jing Jing Guo
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Min Shi
- Department of Respiratory and Critical Care Medicine of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China
| | - Xiao Zou
- Cardiology Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weihao Xu
- Cardiology Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Li Bo Zhao
- Cardiology Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Huanhuan Wang
- Medical College, Yan'an University, Yan'an, Shanxi Province, China
| | - Yabin Wang
- Cardiology Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Juan Liu
- Cardiology Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hu Xu
- Cardiology Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaoxuan Kong
- Cardiology Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Junling Lin
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiaoshun Qian
- Department of Respiratory and Critical Care Medicine of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China.
| | - Jiming Han
- Medical College, Yan'an University, Yan'an, Shanxi Province, China.
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China.
| |
Collapse
|