1
|
Caso M, Manuel LDB, Bachar C, Schafer MG, Lombardo NS, Alvarado GE, Komarenko A, Manoo K, Mehrnezhad A, Park K, McPeak KM. Capillary Wave-Assisted Colloidal Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3033-3041. [PMID: 39880803 PMCID: PMC11823604 DOI: 10.1021/acs.langmuir.4c02794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
The self-assembly of nanoparticle colloids into large-area monolayers with long-range order is a grand challenge in nanotechnology. Using acoustic energy, i.e., acoustic annealing, to improve the crystal quality of self-assembled colloidal monolayers is a new solution to this challenge, but the characterization of the capillary waves driving the annealing process is lacking. We use a laser Doppler vibrometer and optical diffraction to uncover the frequency-dependent effects of capillary waves on the real-time self-assembly of submicrometer diameter polystyrene nanospheres at an air-water interface. Our study unambiguously demonstrates that low-frequency, e.g., sub-100 Hz, capillary waves are key to improving the long-range order of colloidal monolayers on an air-water interface. Furthermore, we demonstrate how a simple immersion transducer can generate capillary waves and how transducer placement and design affect vibrational spectra. Lastly, we show that frequency-shift keying of a high-frequency focused transducer provides a straightforward method of exciting low-frequency capillary waves that are effective at forming colloidal monolayers with excellent crystal quality, exhibited by grains over 3.5 cm2.
Collapse
Affiliation(s)
- MaCayla
J. Caso
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
- Department
of Engineering and Industrial Professions, University of North Alabama, Florence, Alabama 35632, United States
| | - Luis D. B. Manuel
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Cameron Bachar
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Minerva G. Schafer
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Nicholas S. Lombardo
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Gloria E. Alvarado
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Alona Komarenko
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Kiana Manoo
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Ali Mehrnezhad
- Division
of Electrical and Computer Engineering, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Kidong Park
- Division
of Electrical and Computer Engineering, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Kevin M. McPeak
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
2
|
Liu T, Young CM, Moore TC, Glotzer SC, Solomon MJ. Defect Structures in Colloidal Crystals and Their Effect on Grating Diffraction Structural Color. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8171-8182. [PMID: 39841887 DOI: 10.1021/acsami.4c18558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Colloidal crystals of micrometer-sized colloids create prismatic structural colors through the grating diffraction of visible light. Here, we develop design rules to engineer such structural color by specifically accounting for the effect of crystal defects. The local quality and grain size of the colloidal structure are varied by performing self-assembly in the presence of a direct current (DC) electric field. The deposition, self-assembly, and crystallization of these colloids results in polycrystals of variable size, as controlled by the dissolved ion concentration (from 0.01 to 10 mM) and the applied electric current (from 1.6-310 μA/cm2). Under these operating conditions, the global 6-fold crystal bond order parameter (ψ6) of the self-assembled crystals varies from 0.45 ± 0.05 to 0.95 ± 0.01 and the crystal grain number density varies from about 5 to 100 per 0.01 mm2. We find that the grating diffraction structural color intensity of these self-assembled materials is strongly correlated with the crystal quality and grain number, with the diffraction efficiency varying by a factor of ∼2.5 over the range of ψ6 probed. Molecular dynamics (MD) simulation of the electrophoretic deposition reproduces the kinetics of the self-assembly as well as the final structures. It also extends the number and range of deposition conditions probed, thereby creating a library that can be used to study the relationship between defect properties and the grating diffraction structural color. Applying the finite-difference time domain (FDTD) method to solve for light-material interactions in the MD simulated structures yields calculated spectra that agree with experimental observations. The analysis also identifies a design trade-off between diffraction intensity and azimuthal uniformity as order parameter and grain density are varied, thereby demonstrating that the grating diffraction structural color of self-assembled crystals of micrometer-sized colloidal spheres may be controlled by means of their local crystal quality and polycrystallinity.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chih-Mei Young
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy C Moore
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Solomon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Di Franco C, Macchia E, Catacchio M, Caputo M, Scandurra C, Sarcina L, Bollella P, Tricase A, Innocenti M, Funari R, Piscitelli M, Scamarcio G, Torsi L. Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412347. [PMID: 39513396 PMCID: PMC11714235 DOI: 10.1002/advs.202412347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 11/15/2024]
Abstract
The electric dipoles of proteins in a biolayer determine their dielectric properties through the polarization density P. Hence, its reproducibility is crucial for applications, particularly in bioelectronics. Biolayers encompassing capturing antibodies covalently bound at a biosensing interface are generally preferred for their assumed higher stability. However, surface physisorption is shown to offer advantages like easily scalable fabrication processes and high stability. The present study investigates the effects of electric-field (EF)-cycling of anti-Immunoglobulin M (anti-IgM) biolayers physisorbed on Au. The impact of EF-cycling on the dielectric, optical, and mechanical properties of anti-IgM biolayer is investigated. A reduction of the dispersion (standard deviation over a set of 31 samples) of the measured P values is observed, while the set median stays almost constant. Hence, physisorption combined with EF cycling, results in a biolayer with highly reproducible bioelectronic properties. Additionally, the study provides important insights into the mechanisms of dielectric rearrangement of dipole moments in capturing biolayers after EF-cycling. Notably, EF-cycling acts as an annealing process, driving the proteins in the biolayer into a statistically more probable and stable conformational state. Understanding these phenomena enhances the knowledge of the properties of physisorbed biolayers and can inform design strategies for bioelectronic devices.
Collapse
Affiliation(s)
- Cinzia Di Franco
- Institituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari70126Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
- Centre for Colloid and Surface Science at Università degli Studi di Bari Aldo MoroBari20125Italy
| | - Michele Catacchio
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Angelo Tricase
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
- Centre for Colloid and Surface Science at Università degli Studi di Bari Aldo MoroBari20125Italy
| | - Massimo Innocenti
- Dipartimento di ChimicaUniversità degli Studi di FirenzeINSTM Consortium ℅ Dip. ChimicaVia della Lastruccia 3–13Sesto FiorentinoI‐50019FlorenceItaly
| | - Riccardo Funari
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
- Istituto di Intelligenza MeccanicaScuola Superiore Sant'Anna, Via G. Moruzzi, 1Pisa56124Italy
| | - Matteo Piscitelli
- Institituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari70126Italy
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | - Gaetano Scamarcio
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
- CNR‐ Istituto Nanoscienze c/o Scuola Normale SuperiorePisa56127Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| |
Collapse
|
4
|
Niblo JK, Swartley JR, Zhang Z, DuBay KH. 2D capsid formation within an oscillatory energy landscape: orderly self-assembly depends on the interplay between a dynamic potential and intrinsic relaxation times. SOFT MATTER 2024; 20:6702-6713. [PMID: 39046256 DOI: 10.1039/d4sm00455h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Multiple dissipative self-assembly protocols designed to create novel structures or to reduce kinetic traps have recently emerged. Specifically, temporal oscillations of particle interactions have been shown effective at both aims, but investigations thus far have focused on systems of simple colloids or their binary mixtures. In this work, we expand our understanding of the effect of temporally oscillating interactions to a two-dimensional coarse-grained viral capsid-like model that undergoes a self-limited assembly. This model includes multiple intrinsic relaxation times due to the internal structure of the capsid subunits and, under certain interaction regimes, proceeds via a two-step nucleation mechanism. We find that oscillations much faster than the local intrinsic relaxation times can be described via a time averaged inter-particle potential across a wide range of interaction strengths, while oscillations much slower than these relaxation times result in structures that adapt to the attraction strength of the current half-cycle. Interestingly, oscillation periods similar to these relaxation times shift the interaction window over which orderly assembly occurs by enabling error correction during the half-cycles with weaker attractions. Our results provide fundamental insights to non-equilibrium self-assembly on temporally variant energy landscapes.
Collapse
Affiliation(s)
- Jessica K Niblo
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA 22903-4319, USA.
| | - Jacob R Swartley
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA 22903-4319, USA.
| | - Zhongmin Zhang
- Department of Chemistry, University of North Carolina at Chapel Hill, Campus Box 3290, Chapel Hill, NC 27599-3290, USA
| | - Kateri H DuBay
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA 22903-4319, USA.
| |
Collapse
|
5
|
Martín-Roca J, Horcajo-Fernández M, Valeriani C, Gámez F, Martínez-Pedrero F. Field-Pulse-Induced Annealing of 2D Colloidal Polycrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:397. [PMID: 36770358 PMCID: PMC9921439 DOI: 10.3390/nano13030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional colloidal crystals are of considerable fundamental and practical importance. However, their quality is often low due to the widespread presence of domain walls and defects. In this work, we explored the annealing process undergone by monolayers of superparamagnetic colloids adsorbed onto fluid interfaces in the presence of magnetic field pulses. These systems present the extraordinary peculiarity that both the extent and the character of interparticle interactions can be adjusted at will by simply varying the strength and orientation of the applied field so that the application of field pulses results in a sudden input of energy. Specifically, we have studied the effect of polycrystal size, pulse duration, slope and frequency on the efficiency of the annealing process and found that (i) this strategy is only effective when the polycrystal consists of less than approximately 10 domains; (ii) that the pulse duration should be of the order of magnitude of the time required for the outer particles to travel one diameter during the heating step; (iii) that the quality of larger polycrystals can be slightly improved by applying tilted pulses. The experimental results were corroborated by Brownian dynamics simulations.
Collapse
Affiliation(s)
- José Martín-Roca
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- GISC-Grupo Interdisciplinar de Sistemas Complejos, 28040 Madrid, Spain
| | | | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- GISC-Grupo Interdisciplinar de Sistemas Complejos, 28040 Madrid, Spain
| | - Francisco Gámez
- Departamento de Química-Física, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
6
|
Menath J, Mohammadi R, Grauer JC, Deters C, Böhm M, Liebchen B, Janssen LMC, Löwen H, Vogel N. Acoustic Crystallization of 2D Colloidal Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206593. [PMID: 36281801 DOI: 10.1002/adma.202206593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
2D colloidal crystallization provides a simple strategy to produce defined nanostructure arrays over macroscopic areas. Regularity and long-range order of such crystals is essential to ensure functionality, but difficult to achieve in self-assembling systems. Here, a simple loudspeaker setup for the acoustic crystallization of 2D colloidal crystals (ACDC) of polystyrene, microgels, and core-shell particles at liquid interfaces is introduced. This setup anneals an interfacial colloidal monolayer and affords an increase in average grain size by almost two orders of magnitude. The order is characterized via the structural color of the colloidal crystal, the acoustic annealing process is optimized via the frequency and the amplitude of the applied sound wave, and its efficiency is rationalized via the surface coverage-dependent interactions within the interfacial colloidal monolayer. Computer simulations show that multiple rearrangement mechanisms at different length scales, from the local motion around voids to grain boundary movements via consecutive particle rotations around common centers, collude to remove defects. The experimentally simple ACDC process, paired with the demonstrated applicability toward complex particle systems, provides access to highly defined nanostructure arrays for a wide range of research communities.
Collapse
Affiliation(s)
- Johannes Menath
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Reza Mohammadi
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Jens Christian Grauer
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Claudius Deters
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Maike Böhm
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Benno Liebchen
- Institute of Physics: Theory of Soft Matter, Technical University of Darmstadt, Hochschulstraße 12, 64289, Darmstadt, Germany
| | - Liesbeth M C Janssen
- Soft Matter and Biological Physics, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Hartmut Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| |
Collapse
|
7
|
Harraq A, Choudhury BD, Bharti B. Field-Induced Assembly and Propulsion of Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3001-3016. [PMID: 35238204 PMCID: PMC8928473 DOI: 10.1021/acs.langmuir.1c02581] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/19/2022] [Indexed: 05/07/2023]
Abstract
Electric and magnetic fields have enabled both technological applications and fundamental discoveries in the areas of bottom-up material synthesis, dynamic phase transitions, and biophysics of living matter. Electric and magnetic fields are versatile external sources of energy that power the assembly and self-propulsion of colloidal particles. In this Invited Feature Article, we classify the mechanisms by which external fields impact the structure and dynamics in colloidal dispersions and augment their nonequilibrium behavior. The paper is purposely intended to highlight the similarities between electrically and magnetically actuated phenomena, providing a brief treatment of the origin of the two fields to understand the intrinsic analogies and differences. We survey the progress made in the static and dynamic assembly of colloids and the self-propulsion of active particles. Recent reports of assembly-driven propulsion and propulsion-driven assembly have blurred the conceptual boundaries and suggest an evolution in the research of nonequilibrium colloidal materials. We highlight the emergence of colloids powered by external fields as model systems to understand living matter and provide a perspective on future challenges in the area of field-induced colloidal phenomena.
Collapse
Affiliation(s)
- Ahmed
Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Brishty Deb Choudhury
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|