1
|
Rani J, Kumari S, Paul B. Extraction and chemical characterization of humic acid produced from lignite coals of arid region of Gujarat, Western India. Sci Rep 2024; 14:30923. [PMID: 39730551 DOI: 10.1038/s41598-024-81861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
In the current study, extraction of humic acid (HAs) from lignite fines of kutch basin of Gujarat (western India) were reported. The extraction was done by International Humic Substances Society (IHSS) method. Several analytical and spectroscopic techniques were used to characterize of extracted HAs. The gravimetric analysis showed (28.5% and 26.4%) of humic acid extraction from panandhro mines (PM) and mata-No-Madh mines (MNMM) respectively. UV-Vis spectroscopy revealed a high degree of humification, higher stability and aromatic nature. FTIR peaks demonstrated the presence of carboxylic, alcoholic, and phenolic functional groups. SEM/EDX analysis revealed that surface were smooth, non-porous and like loose sponge that showed the presence of major elements like C, O, F, Al, Na, S, Si, Ca, Ti and Fe. The combination of results gives a better and improved understanding of the nature of lignite coals of western India. It may be helpful in choosing suitable coals for the extraction of humic acid and using it for enhancing plant growth condition, soil enrichment and creating green energy solution. This study not only helps in the research related to extraction of humic acid from lignite but also creates a new avenue for the efficient and clean use of lignite.
Collapse
Affiliation(s)
- Juhi Rani
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Sushmita Kumari
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Biswajit Paul
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
2
|
Chen M, Nan J, Breider F. A comparative study on the stability and coagulation removal of aged vs. nonaged nanoplastics in surface water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136490. [PMID: 39547043 DOI: 10.1016/j.jhazmat.2024.136490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Nanoplastics (NPs) are released into surface water due to the widespread use of plastics, undergoing aging from environmental and human factors that alter their physical and chemical characteristics. However, detecting NPs remains challenging, resulting in limited research on their behavior in surface water and their removal efficiency by drinking water treatment. This study utilizes palladium-doped polystyrene nanoplastics (PSNPs) as tracers to enable precise detection and quantification through ICP-MS, thereby overcoming the limitations of conventional detection methods. PSNPs are aged using solar irradiation and ozone to simulate both natural and artificial aging processes, affecting the physical and chemical properties of NPs, which in turn influence their behavior in water treatment systems. Moreover, the study investigates the impact of various coagulation conditions, including different coagulants (AlCl3 and PACl), pH levels (4-9), and humic acid (HA) concentrations (0-10 mg/L), on the of both aged and nonaged NPs. The results demonstrate solar aging triggers significant morphological changes in PSNPs, while ozone aging induces more oxygen functional groups on PSNPs (CIozone=20.99; CIsolar=0.70), increasing sensitivity to HA concentrations and resulting in reduced removal efficiencies for ozone aged PSNPs by AlCl3 (68.68 %) and PACl (74.74 %). In addition, PACl achieves higher PSNPs removal efficiencies (REmin=88.59 %) than that of AlCl3 (REmin=85.57 %) under varied pH levels. This research fills a gap in understanding aged NPs behavior in surface water and offers practical solutions for optimizing coagulation for NPs removal, enhancing our ability to predict NPs environmental fate and manage NPs pollution to ensure drinking water safety.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China; Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Sharmeen S, Kyei I, Hatch A, Suh K, Podder S, Iftekhar S, Snow DD, Hage DS. Analysis of interactions between pharmaceuticals and humic acid: Characterization using entrapment and high-performance affinity microcolumns. J Chromatogr A 2024; 1737:465427. [PMID: 39426259 DOI: 10.1016/j.chroma.2024.465427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
The presence of pharmaceuticals as microcontaminants in the environment has become of particular concern given the growing increase in water reuse and recycling to promote global sustainability of this resource. Pharmaceuticals can often undergo reversible interactions with soluble dissolved organic material such as humic acid, which may be an important factor in determining the bioavailability and effects of these compounds in the environment. In this study, high-performance affinity microcolumns containing non-covalently entrapped and immobilized humic acid are used to examine the binding strength and interactions of this agent for tetracycline, carbamazepine, ciprofloxacin, and norfloxacin, all common pharmaceutical microcontaminants known to bind humic acid. The binding constants, as measured with Aldrich humic acid, have good agreement with values reported in the literature. In addition, the effects of temperature, ionic strength, and pH on these interactions are examined with the humic acid microcolumns. This technique makes it possible to determine the relative importance of electrostatic interactions vs non-polar interactions or hydrogen bonding on these binding processes. This study illustrates how affinity microcolumns can be used to screen and uniformly quantify binding by pharmaceuticals with humic acid, as well as to study the mechanisms of these interactions, with this information often being acquired in minutes and with small amounts of binding agent (∼10 mg per microcolumn, which could be used over 200-300 experiments). Use of entrapment and affinity microcolumns can support similar research for a wide range of other microcontaminants with humic acid or alternative binding agents found in water and the environment.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Arden Hatch
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Saumen Podder
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sazia Iftekhar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel D Snow
- Water Science Laboratory and Nebraska Water Center, Daugherty Water for Food Global Institute, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
4
|
Lee JM, Lee YJ, Jeong YJ, Cho IS, Jho EH, Park SJ, Lee CG. Graphitic-carbon-nitride-hydrophilicity-dependent photocatalytic degradation of antibiotics with different log K ow. CHEMOSPHERE 2024; 352:141511. [PMID: 38401862 DOI: 10.1016/j.chemosphere.2024.141511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The surface hydrophilicity of a photocatalyst is an important factor that directly influences its interactions with organic pollutants and significantly impacts its degradation. In this study, we investigated the impact of increased hydrophilicity of g-C3N4 (CN) by alkaline solvothermal treatment on the degradations of three antibiotics (oxytetracycline (OTC), oxolinic acid (OA), and sulfamethoxazole (SMX)) with different log Kow values. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and Fourier-transform infrared (FT-IR) spectroscopy showed no significant differences in the morphology, crystalline structure, and surface functional groups of CN after alkaline solvothermal treatment (Nv-HPCN). However, contact angle analysis revealed that Nv-HPCN (31.8°) was more hydrophilic than CN (61.1°). To assess the hydrophilicity of the antibiotics, the log Kow values of SMX (0.77), OA (0.43), and OTC (-0.34) were measured. Nv-HPCN showed faster OTC degradation than CN, whereas the opposite pattern was observed for the degradation of OA. Scavenger tests showed that O2•- and h+ mainly contributed to the degradation of these antibiotics. Furthermore, the influences of NOM and coexisting anions on antibiotic degradation were investigated. This study thus offers perspectives on the impact of surface hydrophilicity of photocatalysts on the degradation of antibiotics.
Collapse
Affiliation(s)
- Jong-Min Lee
- Dept. of Environmental and Safety Engineering, Ajou University, Suwon, 16419, Republic of Korea
| | - Youn-Jun Lee
- Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea
| | - Yoo Jae Jeong
- Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea; Dept. of Materials Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - In Sun Cho
- Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea; Dept. of Materials Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Eun Hea Jho
- Dept. of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seong-Jik Park
- Dept. of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Chang-Gu Lee
- Dept. of Environmental and Safety Engineering, Ajou University, Suwon, 16419, Republic of Korea; Dept. of Energy Systems Research, Ajou University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Gonzalez JM, Santana MM, Gomez EJ, Delgado JA. Soil Thermophiles and Their Extracellular Enzymes: A Set of Capabilities Able to Provide Significant Services and Risks. Microorganisms 2023; 11:1650. [PMID: 37512823 PMCID: PMC10386326 DOI: 10.3390/microorganisms11071650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
During this century, a number of reports have described the potential roles of thermophiles in the upper soil layers during high-temperature periods. This study evaluates the capabilities of these microorganisms and proposes some potential consequences and risks associated with the activity of soil thermophiles. They are active in organic matter mineralization, releasing inorganic nutrients (C, S, N, P) that otherwise remain trapped in the organic complexity of soil. To process complex organic compounds in soils, these thermophiles require extracellular enzymes to break down large polymers into simple compounds, which can be incorporated into the cells and processed. Soil thermophiles are able to adapt their extracellular enzyme activities to environmental conditions. These enzymes can present optimum activity under high temperatures and reduced water content. Consequently, these microorganisms have been shown to actively process and decompose substances (including pollutants) under extreme conditions (i.e., desiccation and heat) in soils. While nutrient cycling is a highly beneficial process to maintain soil service quality, progressive warming can lead to excessive activity of soil thermophiles and their extracellular enzymes. If this activity is too high, it may lead to reduction in soil organic matter, nutrient impoverishment and to an increased risk of aridity. This is a clear example of a potential effect of future predicted climate warming directly caused by soil microorganisms with major consequences for our understanding of ecosystem functioning, soil health and the risk of soil aridity.
Collapse
Affiliation(s)
- Juan M Gonzalez
- Institute of Natural Resources and Agrobiology, IRNAS-CSIC, Avda. Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Margarida M Santana
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Enrique J Gomez
- Institute of Natural Resources and Agrobiology, IRNAS-CSIC, Avda. Reina Mercedes 10, E-41012 Sevilla, Spain
| | - José A Delgado
- Department of Engineering, University of Loyola, Avda. de las Universidades, E-41704 Dos Hermanas, Spain
| |
Collapse
|
6
|
Ore OT, Adeola AO, Fapohunda O, Adedipe DT, Bayode AA, Adebiyi FM. Humic substances derived from unconventional resources: extraction, properties, environmental impacts, and prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59106-59127. [PMID: 37022547 DOI: 10.1007/s11356-023-26809-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Humic substances comprise up to 70% of the total organic matter in soils, between 50 and 80% of the dissolved organic matter in water, and about 25% of dissolved organic matter in groundwater. Elucidation of the complex structure and properties of humic substances requires advanced analytical tools; however, they are of fundamental importance in medicine, agriculture, technology, and the environment, at large. Although they are naturally occurring, significant efforts are now being directed into their extraction owing to their relevance in improving soil properties and other environmental applications. In the present review, the different fractions of humic substances were elucidated, underlying the mechanisms by which they function in soils. Furthermore, the extraction processes of humic substances from various feedstock were illustrated, with the alkali extraction technique being the most widely used. In addition, the functional group and elemental composition of humic substances were discussed. The similarities and/or variations in the properties of humic substances as influenced by the source and origin of feedstock were highlighted. Finally, the environmental impacts of humic substances were discussed while highlighting prospects of humic acid production. This review offers enormous potential in identifying these knowledge gaps while recommending the need for inter- and multidisciplinary studies in making extensive efforts toward the sustainable production of humic substances.
Collapse
Affiliation(s)
- Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria.
| | - Adedapo O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, 001, Ondo State, Nigeria
| | - Oluwaseun Fapohunda
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Demilade T Adedipe
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ajibola A Bayode
- Department of Chemical Science, Faculty of Natural Sciences, Redeemer's University, Ede, PMB 230, Osun State, Nigeria
| | - Festus M Adebiyi
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria
- Management and Toxicology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, 002, Nigeria
| |
Collapse
|
7
|
Sutradhar S, Fatehi P. Latest development in the fabrication and use of lignin-derived humic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:38. [PMID: 36882875 PMCID: PMC9989592 DOI: 10.1186/s13068-023-02278-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Humic substances (HS) are originated from naturally decaying biomass. The main products of HS are humic acids, fulvic acids, and humins. HS are extracted from natural origins (e.g., coals, lignite, forest, and river sediments). However, the production of HS from these resources is not environmentally friendly, potentially impacting ecological systems. Earlier theories claimed that the HS might be transformed from lignin by enzymatic or aerobic oxidation. On the other hand, lignin is a by-product of pulp and paper production processes and is available commercially. However, it is still under-utilized. To address the challenges of producing environmentally friendly HS and accommodating lignin in valorized processes, the production of lignin-derived HS has attracted attention. Currently, several chemical modification pathways can be followed to convert lignin into HS-like materials, such as alkaline aerobic oxidation, alkaline oxidative digestion, and oxidative ammonolysis of lignin. This review paper discusses the fundamental aspects of lignin transformation to HS comprehensively. The applications of natural HS and lignin-derived HS in various fields, such as soil enrichment, fertilizers, wastewater treatment, water decontamination, and medicines, were comprehensively discussed. Furthermore, the current challenges associated with the production and use of HS from lignin were described.
Collapse
Affiliation(s)
- Shrikanta Sutradhar
- Biorefining Research Institute, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
8
|
Iftekhar S, Poddar S, Rauhauser M, Snow DD, Hage DS. Preparation of entrapment-based microcolumns for analysis of drug-humic acid interactions by high-performance affinity chromatography. Anal Chim Acta 2023; 1239:340629. [PMID: 36628740 DOI: 10.1016/j.aca.2022.340629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Reversible interactions between drugs and humic acid in water can be an important factor in determining the bioavailability and effects of these pharmaceuticals as micropollutants in the environment. In this study, microcolumns containing entrapped humic acid were used in high-performance affinity chromatography (HPAC) to examine the binding of this agent with the drugs tetracycline, carbamazepine, ciprofloxacin, and norfloxacin. Parameters that were varied to optimize the entrapment of humic acid within HPLC-grade porous silica included the starting concentration of humic acid, the mass ratio of humic acid vs silica, and the method of mixing the reagents with the support for the entrapment process. The highest retention for the tested drugs was obtained when using supports that were prepared using an initial humic acid concentration of 80 mg mL-1 and a humic acid vs silica mass ratio of 600 mg per g silica, along with preincubation of the humic acid with hydrazide-activated silica before the addition of a capping agent (i.e., oxidized glycogen). Characterization of the humic acid support was also carried out by means of TGA, FTIR, SEM, and energy-dispersive X-ray spectroscopy. The binding constants measured by HPAC for the given drugs with entrapped Aldrich humic acid gave good agreement with values reported in the literature under similar pH and temperature conditions for this and other forms of humic acid. Besides providing valuable data on the binding strength of various drugs with humic acid, this work illustrates how HPAC may be used as an analytical tool for screening and characterizing the interactions of drugs and man-made contaminants with humic acid or related binding agents in water and the environment.
Collapse
Affiliation(s)
- Sazia Iftekhar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Madeleine Rauhauser
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA; Water Science Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel D Snow
- Water Science Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
9
|
Klein OI, Kulikova NA, Konstantinov AI, Zykova MV, Perminova IV. A Systematic Study of the Antioxidant Capacity of Humic Substances against Peroxyl Radicals: Relation to Structure. Polymers (Basel) 2021; 13:3262. [PMID: 34641078 PMCID: PMC8512611 DOI: 10.3390/polym13193262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/11/2023] Open
Abstract
Humic substances (HS) are natural supramolecular systems of high- and low-molecular-weight compounds with distinct immunomodulatory and protective properties. The key beneficial biological activity of HS is their antioxidant activity. However, systematic studies of the antioxidant activity of HS against biologically relevant peroxyl radicals are still scarce. The main objective of this work was to estimate the antioxidant capacity (AOC) of a broad set of HS widely differing in structure using an oxygen radical absorption capacity (ORAC) assay. For this purpose, 25 samples of soil, peat, coal, and aquatic HS and humic-like substances were characterized using elemental analysis and quantitative 13C solution-state NMR. The Folin-Ciocalteu method was used to quantify total phenol (TP) content in HS. The determined AOC values varied in the range of 0.31-2.56 μmol Trolox eqv. mg-1, which is close to the values for ascorbic acid and vitamin E. Forward stepwise regression was used to reveal the four main factors contributing to the AOC value of HS: atomic C/N ratio, content of O-substituted methine and methoxyl groups, and TP. The results obtained clearly demonstrate the dependence of the AOC of HS on both phenolic and non-phenolic moieties in their structure, including carbohydrate fragments.
Collapse
Affiliation(s)
- Olga I. Klein
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, pr. Leninskiy 33, 119071 Moscow, Russia;
| | - Natalia A. Kulikova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, pr. Leninskiy 33, 119071 Moscow, Russia;
- Department of Soil Science, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119991 Moscow, Russia
| | - Andrey I. Konstantinov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.I.K.); (I.V.P.)
| | - Maria V. Zykova
- Department of Chemistry, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Irina V. Perminova
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.I.K.); (I.V.P.)
| |
Collapse
|