1
|
Arbi M, Khedhiri M, Ayouni K, Souiai O, Dhouib S, Ghanmi N, Benkahla A, Triki H, Haddad-Boubaker S. Recombination Events Among SARS-CoV-2 Omicron Subvariants: Impact on Spike Interaction With ACE2 Receptor and Neutralizing Antibodies. Evol Bioinform Online 2024; 20:11769343241272415. [PMID: 39149136 PMCID: PMC11325312 DOI: 10.1177/11769343241272415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
The recombination plays a key role in promoting evolution of RNA viruses and emergence of potentially epidemic variants. Some studies investigated the recombination occurrence among SARS-CoV-2, without exploring its impact on virus-host interaction. In the aim to investigate the burden of recombination in terms of frequency and distribution, the occurrence of recombination was first explored in 44 230 Omicron sequences among BQ subvariants and the under investigation "ML" (Multiple Lineages) denoted sequences, using 3seq software. Second, the recombination impact on interaction between the Spike protein and ACE2 receptor as well as neutralizing antibodies (nAbs), was analyzed using docking tools. Recombination was detected in 56.91% and 82.20% of BQ and ML strains, respectively. It took place mainly in spike and ORF1a genes. For BQ recombinant strains, the docking analysis showed that the spike interacted strongly with ACE2 and weakly with nAbs. The mutations S373P, S375F and T376A constitute a residue network that enhances the RBD interaction with ACE2. Thirteen mutations in RBD (S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, P494S, Q498R, N501Y, and Y505H) and NTD (Y240H) seem to be implicated in immune evasion of recombinants by altering spike interaction with nAbs. In conclusion, this "in silico" study demonstrated that the recombination mechanism is frequent among Omicron BQ and ML variants. It highlights new key mutations, that potentially implicated in enhancement of spike binding to ACE2 (F376A) and escape from nAbs (RBD: F376A, D405N, R408S, N440K, S477N, P494S, and Y505H; NTD: Y240H). Our findings present considerable insights for the elaboration of effective prophylaxis and therapeutic strategies against future SARS-CoV-2 waves.
Collapse
Affiliation(s)
- Marwa Arbi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Marwa Khedhiri
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Kaouther Ayouni
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Higher Institute of Medical Technologies of Tunis, Tunis Al Manar University, Tunis, Tunisia
| | - Samar Dhouib
- High School of Statistics and Analysis of Information (ESSAI), University of Carthage, Tunis, Tunisia
| | - Nidhal Ghanmi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sondes Haddad-Boubaker
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
2
|
Siragam V, Maltseva M, Castonguay N, Galipeau Y, Srinivasan MM, Soto JH, Dankar S, Langlois MA. Seasonal human coronaviruses OC43, 229E, and NL63 induce cell surface modulation of entry receptors and display host cell-specific viral replication kinetics. Microbiol Spectr 2024; 12:e0422023. [PMID: 38864599 PMCID: PMC11218498 DOI: 10.1128/spectrum.04220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
The emergence of the COVID-19 pandemic prompted an increased interest in seasonal human coronaviruses. OC43, 229E, NL63, and HKU1 are endemic seasonal coronaviruses that cause the common cold and are associated with generally mild respiratory symptoms. In this study, we identified cell lines that exhibited cytopathic effects (CPE) upon infection by three of these coronaviruses and characterized their viral replication kinetics and the effect of infection on host surface receptor expression. We found that NL63 produced CPE in LLC-MK2 cells, while OC43 produced CPE in MRC-5, HCT-8, and WI-38 cell lines, while 229E produced CPE in MRC-5 and WI-38 by day 3 post-infection. We observed a sharp increase in nucleocapsid and spike viral RNA (vRNA) from day 3 to day 5 post-infection for all viruses; however, the abundance and the proportion of vRNA copies measured in the supernatants and cell lysates of infected cells varied considerably depending on the virus-host cell pair. Importantly, we observed modulation of coronavirus entry and attachment receptors upon infection. Infection with 229E and OC43 led to a downregulation of CD13 and GD3, respectively. In contrast, infection with NL63 and OC43 leads to an increase in ACE2 expression. Attempts to block entry of NL63 using either soluble ACE2 or anti-ACE2 monoclonal antibodies demonstrated the potential of these strategies to greatly reduce infection. Overall, our results enable a better understanding of seasonal coronaviruses infection kinetics in permissive cell lines and reveal entry receptor modulation that may have implications in facilitating co-infections with multiple coronaviruses in humans.IMPORTANCESeasonal human coronavirus is an important cause of the common cold associated with generally mild upper respiratory tract infections that can result in respiratory complications for some individuals. There are no vaccines available for these viruses, with only limited antiviral therapeutic options to treat the most severe cases. A better understanding of how these viruses interact with host cells is essential to identify new strategies to prevent infection-related complications. By analyzing viral replication kinetics in different permissive cell lines, we find that cell-dependent host factors influence how viral genes are expressed and virus particles released. We also analyzed entry receptor expression on infected cells and found that these can be up- or down-modulated depending on the infecting coronavirus. Our findings raise concerns over the possibility of infection enhancement upon co-infection by some coronaviruses, which may facilitate genetic recombination and the emergence of new variants and strains.
Collapse
MESH Headings
- Humans
- Virus Replication
- Coronavirus NL63, Human/physiology
- Coronavirus NL63, Human/genetics
- Coronavirus 229E, Human/physiology
- Coronavirus 229E, Human/genetics
- Coronavirus OC43, Human/physiology
- Coronavirus OC43, Human/genetics
- Cell Line
- Virus Internalization
- Seasons
- Kinetics
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Common Cold/virology
- Common Cold/metabolism
- SARS-CoV-2/physiology
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- RNA, Viral/metabolism
- RNA, Viral/genetics
- Animals
- COVID-19/virology
- COVID-19/metabolism
- Coronavirus/physiology
- Coronavirus/genetics
Collapse
Affiliation(s)
- Vinayakumar Siragam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mrudhula Madapuji Srinivasan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Justino Hernandez Soto
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- The Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Alfonsi T, Bernasconi A, Chiara M, Ceri S. Data-driven recombination detection in viral genomes. Nat Commun 2024; 15:3313. [PMID: 38632281 PMCID: PMC11024102 DOI: 10.1038/s41467-024-47464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Recombination is a key molecular mechanism for the evolution and adaptation of viruses. The first recombinant SARS-CoV-2 genomes were recognized in 2021; as of today, more than ninety SARS-CoV-2 lineages are designated as recombinant. In the wake of the COVID-19 pandemic, several methods for detecting recombination in SARS-CoV-2 have been proposed; however, none could faithfully confirm manual analyses by experts in the field. We hereby present RecombinHunt, an original data-driven method for the identification of recombinant genomes, capable of recognizing recombinant SARS-CoV-2 genomes (or lineages) with one or two breakpoints with high accuracy and within reduced turn-around times. ReconbinHunt shows high specificity and sensitivity, compares favorably with other state-of-the-art methods, and faithfully confirms manual analyses by experts. RecombinHunt identifies recombinant viral genomes from the recent monkeypox epidemic in high concordance with manually curated analyses by experts, suggesting that our approach is robust and can be applied to any epidemic/pandemic virus.
Collapse
Affiliation(s)
- Tommaso Alfonsi
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy
| | - Anna Bernasconi
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy.
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Stefano Ceri
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy
| |
Collapse
|
4
|
Tolentino JE, Lytras S, Ito J, Sato K. Recombination analysis on the receptor switching event of MERS-CoV and its close relatives: implications for the emergence of MERS-CoV. Virol J 2024; 21:84. [PMID: 38600521 PMCID: PMC11008012 DOI: 10.1186/s12985-024-02358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND PlMERS-CoV is a coronavirus known to cause severe disease in humans, taxonomically classified under the subgenus Merbecovirus. Recent findings showed that the close relatives of MERS-CoV infecting vespertillionid bats (family Vespertillionidae), named NeoCoV and PDF-2180, use their hosts' ACE2 as their entry receptor, unlike the DPP4 receptor usage of MERS-CoV. Previous research suggests that this difference in receptor usage between these related viruses is a result of recombination. However, the precise location of the recombination breakpoints and the details of the recombination event leading to the change of receptor usage remain unclear. METHODS We used maximum likelihood-based phylogenetics and genetic similarity comparisons to characterise the evolutionary history of all complete Merbecovirus genome sequences. Recombination events were detected by multiple computational methods implemented in the recombination detection program. To verify the influence of recombination, we inferred the phylogenetic relation of the merbecovirus genomes excluding recombinant segments and that of the viruses' receptor binding domains and examined the level of congruency between the phylogenies. Finally, the geographic distribution of the genomes was inspected to identify the possible location where the recombination event occurred. RESULTS Similarity plot analysis and the recombination-partitioned phylogenetic inference showed that MERS-CoV is highly similar to NeoCoV (and PDF-2180) across its whole genome except for the spike-encoding region. This is confirmed to be due to recombination by confidently detecting a recombination event between the proximal ancestor of MERS-CoV and a currently unsampled merbecovirus clade. Notably, the upstream recombination breakpoint was detected in the N-terminal domain and the downstream breakpoint at the S2 subunit of spike, indicating that the acquired recombined fragment includes the receptor-binding domain. A tanglegram comparison further confirmed that the receptor binding domain-encoding region of MERS-CoV was acquired via recombination. Geographic mapping analysis on sampling sites suggests the possibility that the recombination event occurred in Africa. CONCLUSION Together, our results suggest that recombination can lead to receptor switching of merbecoviruses during circulation in bats. These results are useful for future epidemiological assessments and surveillance to understand the spillover risk of bat coronaviruses to the human population.
Collapse
Affiliation(s)
- Jarel Elgin Tolentino
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Spyros Lytras
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
5
|
Guo J, Lai Y, Yang Z, Song W, Zhou J, Li Z, Su W, Xiao S, Fang L. Coinfection and Nonrandom Recombination Drive the Evolution of Swine Enteric Coronaviruses. Emerg Microbes Infect 2024:2332653. [PMID: 38517703 DOI: 10.1080/22221751.2024.2332653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Coinfection with multiple viruses is a common phenomenon in clinical settings and is a crucial driver of viral evolution. Although numerous studies have demonstrated viral recombination arising from coinfections of different strains of a specific species, the role of coinfections of different species or genera during viral evolution is rarely investigated. Here, we analyzed coinfections of and recombination events between four different swine enteric coronaviruses that infect the jejunum and ileum in pigs, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), and a deltacoronavirus, porcine deltacoronavirus (PDCoV). Various coinfection patterns were observed in 4,468 fecal and intestinal tissue samples collected from pigs in a 4-year survey. PEDV/PDCoV was the most frequent coinfection. However, recombination analyses have only detected events involving PEDV/TGEV and SADS-CoV/TGEV, indicating that inter-species recombination among coronaviruses is most likely to occur within the same genus. We also analyzed recombination events within the newly identified genus Deltacoronavirus and found that sparrows have played a unique host role in the recombination history of the deltacoronaviruses. The emerging virus PDCoV, which can infect humans, has a different recombination history. In summary, our study demonstrates that swine enteric coronaviruses are a valuable model for investigating the relationship between viral coinfection and recombination, which provide new insights into both inter- and intraspecies recombination events among swine enteric coronaviruses, and extend our understanding of the relationship between coronavirus coinfection and recombination.
Collapse
Affiliation(s)
- Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Yinan Lai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wenbo Song
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wen Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| |
Collapse
|
6
|
George U, George O, Oguzie J, Osasona O, Motayo B, Kamani J, Eromon P, Folarin O, Happi A, Komolafe I, Happi C. Genomic characterization of Alphacoronavirus from Mops condylurus bats in Nigeria. Virus Res 2023; 334:199174. [PMID: 37467933 PMCID: PMC10392604 DOI: 10.1016/j.virusres.2023.199174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Coronaviruses (CoVs) are responsible for sporadic, epidemic and pandemic respiratory diseases worldwide. Bats have been identified as the reservoir for CoVs. To increase the number of complete coronavirus genomes in Africa and to comprehend the molecular epidemiology of bat Alphacoronaviruses (AlphaCoVs), we used deep metagenomics shotgun sequencing to obtain three (3) near-complete genomes of AlphaCoVs from Mops condylurus (Angolan free-tailed) bat in Nigeria. Phylogenetic and pairwise identity analysis of open reading frame 1ab (ORF1ab), spike (S), envelope (E), membrane (M) and nucleocapsid (N) genes of AlphaCoV in this study to previously described AlphaCoVs subgenera showed that the Nigerian AlphaCoVs may be members of potentially unique AlphaCoV subgenera circulating exclusively in bats in the Molossidae bat family. Recombination events were detected, suggesting the evolution of AlphaCoVs within the Molossidae family. The pairwise identity of the S gene in this study and previously published S gene sequences of other AlphaCoVs indicate that the Nigerian strains may have a genetically unique spike protein that is distantly related to other AlphaCoVs. Variations involving non-polar to polar amino acid substitution in both the Heptad Repeat (HR) regions 1 and 2 were observed. Further monitoring of bats to understand the host receptor use requirements of CoVs and interspecies CoV transmission in Africa is necessary to identify and prevent the potential danger that bat CoVs pose to public health.
Collapse
Affiliation(s)
- Uwem George
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | | | - Judith Oguzie
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Oluwadamilola Osasona
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Babatunde Motayo
- Department of Medical Microbiology, Federal Medical Centre, Abeokuta, Nigeria
| | - Joshua Kamani
- Parasitology Division National Veterinary Research Institute NVRI PMB 01, Vom, Plateau state Nigeria
| | - Philomena Eromon
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
| | - Onikepe Folarin
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Anise Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
| | - Isaac Komolafe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Christian Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
| |
Collapse
|
7
|
Wu F. Updated analysis to reject the laboratory-engineering hypothesis of SARS-CoV-2. ENVIRONMENTAL RESEARCH 2023; 224:115481. [PMID: 36804316 PMCID: PMC9937728 DOI: 10.1016/j.envres.2023.115481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
A clear understanding of the origin of SARS-CoV-2 is important for future pandemic preparedness. Here, I provided an updated analysis of the type IIS endonuclease maps in genomes of alphacoronavirus, betacoronavirus, and SARS-CoV-2. Scenarios to engineer SARS-CoV-2 in the laboratory and the associated workload was also discussed. The analysis clearly shows that the endonuclease fingerprint does not indicate a synthetic origin of SARS-CoV-2 and engineering a SARS-CoV-2 virus in the laboratory is extremely challenging both scientifically and financially. On the contrary, current scientific evidence does support the animal origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Fuqing Wu
- Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Texas, USA; Texas Epidemic Public Health Institute, TX, USA.
| |
Collapse
|
8
|
Lenguiya LH, Fritz M, De Fonclare DDR, Corbet S, Becquart P, Mbou C, Nguie RJ, Mouellet WS, Demboux JEL, Issamou Mayengue P, Koukouikila-Koussounda F, Ar Gouilh M, Leroy EM, Niama FR. Whole-Genome Characterization of SARS-CoV-2 Reveals Simultaneous Circulation of Three Variants and a Putative Recombination (20B/20H) in Pets, Brazzaville, Republic of the Congo. Viruses 2023; 15:v15040933. [PMID: 37112914 PMCID: PMC10142050 DOI: 10.3390/v15040933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Following the emergence of SARS-CoV-2, cases of pets infected with variants circulating among humans were reported. In order to evaluate the occurrence of SARS-CoV-2 circulation among pets in the Republic of the Congo, we conducted a ten-month study of dogs and cats living in COVID-19-positive households in Brazzaville and neighboring localities. Real-time PCR and the Luminex platform were used to detect SARS-CoV-2 RNA and antibodies to SARS-CoV-2 RBD and S proteins, respectively. Our results show for the first time the simultaneous circulation of several variants of SARS-CoV-2, including viruses from clades 20A and 20H and a putative recombinant variant between viruses from clades 20B and 20H. We found a high seroprevalence of 38.6%, with 14% of tested pets positive for SARS-CoV-2 RNA. Thirty-four percent of infected pets developed mild clinical signs, including respiratory and digestive signs, and shed the virus for about one day to two weeks. These results highlight the potential risk of SARS-CoV-2 interspecies transmission and the benefits of a "One Health" approach that includes SARS-CoV-2 diagnosis and surveillance of viral diversity in pets. This approach aims to prevent transmission to surrounding wildlife as well as spillback to humans.
Collapse
Affiliation(s)
| | - Matthieu Fritz
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Mivegec, BP34090 Montpellier, France
| | - Daphné de Riols De Fonclare
- UNICAEN, Department of Viroloy, University of Rouen Normandie, Inserm Dynamicure UMR 1311, BP14000 Caen, France
| | - Sandrine Corbet
- UNICAEN, Department of Viroloy, University of Rouen Normandie, Inserm Dynamicure UMR 1311, BP14000 Caen, France
| | - Pierre Becquart
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Mivegec, BP34090 Montpellier, France
| | | | | | | | | | - Pembe Issamou Mayengue
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP69, Congo
- Laboratoire National de Santé Publique, Brazzaville BP120, Congo
| | - Félix Koukouikila-Koussounda
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP69, Congo
- Laboratoire National de Santé Publique, Brazzaville BP120, Congo
| | - Meriadeg Ar Gouilh
- UNICAEN, Department of Viroloy, University of Rouen Normandie, Inserm Dynamicure UMR 1311, BP14000 Caen, France
| | - Eric M Leroy
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Mivegec, BP34090 Montpellier, France
| | - Fabien Roch Niama
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP69, Congo
- Laboratoire National de Santé Publique, Brazzaville BP120, Congo
| |
Collapse
|
9
|
Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, Katzourakis A. The evolution of SARS-CoV-2. Nat Rev Microbiol 2023; 21:361-379. [PMID: 37020110 DOI: 10.1038/s41579-023-00878-2] [Citation(s) in RCA: 397] [Impact Index Per Article: 397.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths and substantial morbidity worldwide. Intense scientific effort to understand the biology of SARS-CoV-2 has resulted in daunting numbers of genomic sequences. We witnessed evolutionary events that could mostly be inferred indirectly before, such as the emergence of variants with distinct phenotypes, for example transmissibility, severity and immune evasion. This Review explores the mechanisms that generate genetic variation in SARS-CoV-2, underlying the within-host and population-level processes that underpin these events. We examine the selective forces that likely drove the evolution of higher transmissibility and, in some cases, higher severity during the first year of the pandemic and the role of antigenic evolution during the second and third years, together with the implications of immune escape and reinfections, and the increasing evidence for and potential relevance of recombination. In order to understand how major lineages, such as variants of concern (VOCs), are generated, we contrast the evidence for the chronic infection model underlying the emergence of VOCs with the possibility of an animal reservoir playing a role in SARS-CoV-2 evolution, and conclude that the former is more likely. We evaluate uncertainties and outline scenarios for the possible future evolutionary trajectories of SARS-CoV-2.
Collapse
Affiliation(s)
- Peter V Markov
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
- London School of Hygiene & Tropical Medicine, University of London, London, UK.
| | - Mahan Ghafari
- Big Data Institute, University of Oxford, Oxford, UK
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | | | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nikolaos I Stilianakis
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- Department of Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
10
|
Cristina Diaconu C, Madalina Pitica I, Chivu-Economescu M, Georgiana Necula L, Botezatu A, Virginia Iancu I, Iulia Neagu A, L. Radu E, Matei L, Maria Ruta S, Bleotu C. SARS-CoV-2 Variant Surveillance in Genomic Medicine Era. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/26/2024] Open
Abstract
In the genomic medicine era, the emergence of SARS-CoV-2 was immediately followed by viral genome sequencing and world-wide sequences sharing. Almost in real-time, based on these sequences, resources were developed and applied around the world, such as molecular diagnostic tests, informed public health decisions, and vaccines. Molecular SARS-CoV-2 variant surveillance was a normal approach in this context yet, considering that the viral genome modification occurs commonly in viral replication process, the challenge is to identify the modifications that significantly affect virulence, transmissibility, reduced effectiveness of vaccines and therapeutics or failure of diagnostic tests. However, assessing the importance of the emergence of new mutations and linking them to epidemiological trend, is still a laborious process and faster phenotypic evaluation approaches, in conjunction with genomic data, are required in order to release timely and efficient control measures.
Collapse
|
11
|
Intragenomic rearrangements involving 5'-untranslated region segments in SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses. Virol J 2023; 20:36. [PMID: 36829234 PMCID: PMC9957694 DOI: 10.1186/s12985-023-01998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Variation of the betacoronavirus SARS-CoV-2 has been the bane of COVID-19 control. Documented variation includes point mutations, deletions, insertions, and recombination among closely or distantly related coronaviruses. Here, we describe yet another aspect of genome variation by beta- and alphacoronaviruses that was first documented in an infectious isolate of the betacoronavirus SARS-CoV-2, obtained from 3 patients in Hong Kong that had a 5'-untranslated region segment at the end of the ORF6 gene that in its new location translated into an ORF6 protein with a predicted modified carboxyl terminus. While comparing the amino acid sequences of translated ORF8 genes in the GenBank database, we found a subsegment of the same 5'-UTR-derived amino acid sequence modifying the distal end of ORF8 of an isolate from the United States and decided to carry out a systematic search. METHODS Using the nucleotide and in the case of SARS-CoV-2 also the translated amino acid sequence in three reading frames of the genomic termini of coronaviruses as query sequences, we searched for 5'-UTR sequences in regions other than the 5'-UTR in SARS-CoV-2 and reference strains of alpha-, beta-, gamma-, and delta-coronaviruses. RESULTS We here report numerous genomic insertions of 5'-untranslated region sequences into coding regions of SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses, but not delta- or gammacoronaviruses. To our knowledge this is the first systematic description of such insertions. In many cases, these insertions would change viral protein sequences and further foster genomic flexibility and viral adaptability through insertion of transcription regulatory sequences in novel positions within the genome. Among human Embecorivus betacoronaviruses, for instance, from 65% to all of the surveyed sequences in publicly available databases contain inserted 5'-UTR sequences. CONCLUSION The intragenomic rearrangements involving 5'-untranslated region sequences described here, which in several cases affect highly conserved genes with a low propensity for recombination, may underlie the generation of variants homotypic with those of concern or interest and with potentially differing pathogenic profiles. Intragenomic rearrangements thus add to our appreciation of how variants of SARS-CoV-2 and other beta- and alphacoronaviruses may arise.
Collapse
|
12
|
Duerr R, Zhou H, Tada T, Dimartino D, Marier C, Zappile P, Wang G, Plitnick J, Griesemer SB, Girardin R, Machowski J, Bialosuknia S, Lasek-Nesselquist E, Hong SL, Baele G, Dittmann M, Ortigoza MB, Prasad PJ, McDonough K, Landau NR, St George K, Heguy A. Delta-Omicron recombinant escapes therapeutic antibody neutralization. iScience 2023; 26:106075. [PMID: 36844451 PMCID: PMC9937133 DOI: 10.1016/j.isci.2023.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
The emergence of recombinant viruses is a threat to public health, as recombination may integrate variant-specific features that together result in escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. We identified a Delta-Omicron (AY.45-BA.1) recombinant in an immunosuppressed transplant recipient treated with monoclonal antibody Sotrovimab. The single recombination breakpoint is located in the spike N-terminal domain adjacent to the Sotrovimab binding site. While Delta and BA.1 are sensitive to Sotrovimab neutralization, the Delta-Omicron recombinant is highly resistant. To our knowledge, this is the first described instance of recombination between circulating SARS-CoV-2 variants as a functional mechanism of resistance to treatment and immune escape.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Vaccine Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hao Zhou
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Takuya Tada
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dacia Dimartino
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY 10016, USA
| | - Christian Marier
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY 10016, USA
| | - Paul Zappile
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY 10016, USA
| | - Guiqing Wang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan Plitnick
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Sara B Griesemer
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Roxanne Girardin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Jessica Machowski
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Sean Bialosuknia
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Erica Lasek-Nesselquist
- Bioinformatics Core, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
- Biomedical Sciences Department, School of Public Health, University at Albany, SUNY, Albany, NY 12144, USA
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Meike Dittmann
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mila B Ortigoza
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Prithiv J Prasad
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kathleen McDonough
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
- Biomedical Sciences Department, School of Public Health, University at Albany, SUNY, Albany, NY 12144, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kirsten St George
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
- Biomedical Sciences Department, School of Public Health, University at Albany, SUNY, Albany, NY 12144, USA
| | - Adriana Heguy
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
13
|
Shiraz R, Tripathi S. Enhanced recombination among Omicron subvariants of SARS-CoV-2 contributes to viral immune escape. J Med Virol 2023; 95:e28519. [PMID: 36691935 DOI: 10.1002/jmv.28519] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Genetic recombination is an important driver of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution, which requires the coinfection of a single host cell with different SARS-CoV-2 strains. To understand the emergence and prevalence of recombinant SARS-CoV-2 lineages through time and space, we analyzed SARS-CoV-2 genome sequences collected from November 2019 to July 2022. We observed an extraordinary increase in the emergence of SARS-CoV-2 recombinant lineages during the Omicron wave, particularly in Northern America and Europe. This phenomenon was independent of the sequencing frequency or genetic diversity of circulating SARS-CoV-2 strains. The recombination breakpoints were more prevalent in the 3'-untranslated region of the viral genome. Importantly, we noted the enrichment of certain amino acids in the Spike protein of recombinant lineages, which have been reported to confer immune escape from neutralizing antibodies and increase angiotensin-converting enzyme 2 receptor binding in some cases. We also observed I42V amino acid change genetically fixated in the NSP14 of the Omicron lineage, which needs further characterization for its potential role in enhanced recombination. Overall, we report the important and timely observation of accelerated recombination in the currently circulating SARS-CoV-2 Omicron variants and explore their potential contribution to viral fitness, particularly immune escape.
Collapse
Affiliation(s)
- Rishad Shiraz
- Microbiology and Cell Biology Department, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Microbiology and Cell Biology Department, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
14
|
Sargsyan K, Mazmanian K, Lim C. A strategy for evaluating potential antiviral resistance to small molecule drugs and application to SARS-CoV-2. Sci Rep 2023; 13:502. [PMID: 36627366 PMCID: PMC9831016 DOI: 10.1038/s41598-023-27649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Alterations in viral fitness cannot be inferred from only mutagenesis studies of an isolated viral protein. To-date, no systematic analysis has been performed to identify mutations that improve virus fitness and reduce drug efficacy. We present a generic strategy to evaluate which viral mutations might diminish drug efficacy and applied it to assess how SARS-CoV-2 evolution may affect the efficacy of current approved/candidate small-molecule antivirals for Mpro, PLpro, and RdRp. For each drug target, we determined the drug-interacting virus residues from available structures and the selection pressure of the virus residues from the SARS-CoV-2 genomes. This enabled the identification of promising drug target regions and small-molecule antivirals that the virus can develop resistance. Our strategy of utilizing sequence and structural information from genomic sequence and protein structure databanks can rapidly assess the fitness of any emerging virus variants and can aid antiviral drug design for future pathogens.
Collapse
Affiliation(s)
- Karen Sargsyan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| | - Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
15
|
Suardana IBK, Mahardika BK, Pharmawati M, Sudipa PH, Sari TK, Mahendra NB, Mahardika GN. Whole-Genome Comparison of Representatives of All Variants of SARS-CoV-2, Including Subvariant BA.2 and the GKA Clade. Adv Virol 2023; 2023:6476626. [PMID: 36938489 PMCID: PMC10019969 DOI: 10.1155/2023/6476626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/10/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Since its discovery at the end of 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved into many variants, including the subvariant BA.2 and the GKA clade. Genomic clarification is needed for better management of the current pandemic as well as the possible reemergence of novel variants. The sequence of the reference genome Wuhan-Hu-1 and approximately 20 representatives of each variant were downloaded from GenBank and GISAID. Two representatives with no track of in-definitive nucleotides were selected. The sequences were aligned using muscle. The location of insertion/deletion (indel) in the genome was mapped following the open reading frame (ORF) of Wuhan-Hu-1. The phylogeny of the spike protein coding region was constructed using the maximum likelihood method. Amino acid substitutions in all ORFs were analyzed separately. There are two indel sites in ORF1AB, eight in spike, and one each in ORF3A, matrix (MA), nucleoprotein (NP), and the 3'-untranslated regions (3'UTR). Some indel sites and residues/substitutions are not unique, and some are variant-specific. The phylogeny shows that Omicron, Deltacron, and BA2 are clustered together and separated from other variants with 100% bootstrap support. In conclusion, whole-genome comparison of representatives of all variants revealed indel patterns that are specific to SARS-CoV-2 variants or subvariants. Polymorphic amino acid comparison across all coding regions also showed amino acid residues shared by specific groups of variants. Finally, the higher transmissibility of BA.2 might be due at least in part to the 48 nucleotide deletions in the 3'UTR, while the seem-to-be extinction of GKA clade is due to the lack of genetic advantages as a consequence of amino acid substitutions in various genes.
Collapse
Affiliation(s)
- Ida B. K. Suardana
- 1Virology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Bayu K. Mahardika
- 2The Animal Biomedical and Molecular Biology Laboratory, Udayana University, Jl. Sesetan-Markisa 6A, Denpasar 80223, Bali, Indonesia
| | - Made Pharmawati
- 3The Biology Study Program, The Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Badung, Bali, Indonesia
| | - Putu H. Sudipa
- 4Veterinary Bacteriology and Mycology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Tri K. Sari
- 1Virology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Nyoman B. Mahendra
- 5The Department of Obstetrics and Genecology, The Faculty of Medicine, Udayana University, Kuta Selatan, Bali, Indonesia
| | - Gusti N. Mahardika
- 1Virology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
- 2The Animal Biomedical and Molecular Biology Laboratory, Udayana University, Jl. Sesetan-Markisa 6A, Denpasar 80223, Bali, Indonesia
| |
Collapse
|
16
|
Singh P, Sharma K, Shaw D, Bhargava A, Negi SS. Mosaic Recombination Inflicted Various SARS-CoV-2 Lineages to Emerge into Novel Virus Variants: a Review Update. Indian J Clin Biochem 2022; 38:1-8. [PMID: 36569378 PMCID: PMC9759274 DOI: 10.1007/s12291-022-01109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Human Coronaviruses (hCoVs) belongs to the enormous and dissimilar family of positive-sense, non-segmented, single-stranded RNA viruses. The RNA viruses are prone to high rates of mutational recombination resulting in emergence of evolutionary variant to alter various features including transmissibility and severity. The evolutionary changes affect the immune escape and reduce effectiveness of diagnostic and therapeutic measures by becoming undetectable by the currently available diagnostics and refractory to therapeutics and vaccines. Whole genome sequencing studies from various countries have adequately reported mosaic recombination between different lineage strain of SARS-CoV-2 whereby RNA dependent RNA polymerase (RdRp) gene reconnects with a homologous RNA strand at diverse position. This all lead to evolutionary emergence of new variant/ lineage as evident with the emergence of XBB in India at the time of writing this review. The continuous periodical genomic surveillance is utmost required for understanding the various lineages involved in recombination to emerge into hybrid variant. This may further help in assessing virus transmission dynamics, virulence and severity factor to help health authorities take appropriate timely action for prevention and control of any future COVID-19 outbreak.
Collapse
Affiliation(s)
- Pushpendra Singh
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Kuldeep Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Dipika Shaw
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Anudita Bhargava
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Sanjay Singh Negi
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| |
Collapse
|
17
|
Shao N, Zhang C, Dong J, Sun L, Chen X, Xie Z, Xu B, An S, Zhang T, Yang F. Molecular evolution of human coronavirus-NL63, -229E, -HKU1 and -OC43 in hospitalized children in China. Front Microbiol 2022; 13:1023847. [PMID: 36406425 PMCID: PMC9666422 DOI: 10.3389/fmicb.2022.1023847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
Human coronaviruses (HCoVs) HCoV-NL63, HCoV-229E, HCoV-HKU1 and HCoV-OC43 have been circulated in the human population worldwide, and they are associated with a broad range of respiratory diseases with varying severity. However, there are neither effective therapeutic drugs nor licensed vaccines available for the treatment and prevention of infections by the four HCoVs. In this study, we collected nasopharyngeal aspirates of children hospitalized for respiratory tract infection in China during 2014-2018 and conducted next-generation sequencing. Sequences of four HCoVs were then selected for an in-depth analysis. Genome sequences of 2 HCoV-NL63, 8 HCoV-229E, 2 HCoV-HKU1, and 6 HCoV-OC43 were obtained. Based on the full-length S gene, a strong temporal signal was found in HCoV-229E and the molecular evolutionary rate was 6 × 10-4 substitutions/site/year. Based on the maximum-likelihood (ML) phylogenetic tree of complete S gene, we designated H78 as a new sub-genotype C2 of HCoV-HKU1, and the obtained P43 sequence was grouped into the reported novel genotype K of HCoV-OC43 circulating in Guangzhou, China. Based on the complete genome, potential recombination events were found to occur as two phenomena, namely intraspecies and interspecies. Moreover, we observed two amino acid substitutions in the S1 subunit of obtained HCoV-NL63 (G534V) and HCoV-HKU1 (H512R), while residues 534 and 512 are important for the binding of angiotensin-converting enzyme 2 and neutralizing antibodies, respectively. Our findings might provide a clue for the molecular evolution of the four HCoVs and help in the early diagnosis, treatment and prevention of broad-spectrum HCoV infection.
Collapse
Affiliation(s)
- Nan Shao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Baoping Xu
- National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Respiratory department, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Shuhua An
- Hebei Province Children’s Hospital, Shijiazhuang, Hebei, China
| | - Ting Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,*Correspondence: Ting Zhang,
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Fan Yang,
| |
Collapse
|
18
|
Thommana A, Shakya M, Gandhi J, Fung CK, Chain PSG, Maljkovic Berry I, Conte MA. Intrahost SARS-CoV-2 k-mer Identification Method (iSKIM) for Rapid Detection of Mutations of Concern Reveals Emergence of Global Mutation Patterns. Viruses 2022; 14:2128. [PMID: 36298683 PMCID: PMC9609618 DOI: 10.3390/v14102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022] Open
Abstract
Despite unprecedented global sequencing and surveillance of SARS-CoV-2, timely identification of the emergence and spread of novel variants of concern (VoCs) remains a challenge. Several million raw genome sequencing runs are now publicly available. We sought to survey these datasets for intrahost variation to study emerging mutations of concern. We developed iSKIM ("intrahost SARS-CoV-2 k-mer identification method") to relatively quickly and efficiently screen the many SARS-CoV-2 datasets to identify intrahost mutations belonging to lineages of concern. Certain mutations surged in frequency as intrahost minor variants just prior to, or while lineages of concern arose. The Spike N501Y change common to several VoCs was found as a minor variant in 834 samples as early as October 2020. This coincides with the timing of the first detected samples with this mutation in the Alpha/B.1.1.7 and Beta/B.1.351 lineages. Using iSKIM, we also found that Spike L452R was detected as an intrahost minor variant as early as September 2020, prior to the observed rise of the Epsilon/B.1.429/B.1.427 lineages in late 2020. iSKIM rapidly screens for mutations of interest in raw data, prior to genome assembly, and can be used to detect increases in intrahost variants, potentially providing an early indication of novel variant spread.
Collapse
Affiliation(s)
- Ashley Thommana
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Montgomery Blair High School, Silver Spring, MD 20901, USA
| | - Migun Shakya
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jaykumar Gandhi
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Christian K. Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Patrick S. G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
19
|
Molecular Characterization of Whole-Genome SARS-CoV-2 from the First Suspected Cases of the XE Variant in the Lazio Region, Italy. Diagnostics (Basel) 2022; 12:diagnostics12092219. [PMID: 36140622 PMCID: PMC9497488 DOI: 10.3390/diagnostics12092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022] Open
Abstract
We report two cases of SARS-CoV-2 recombinant variant XE detected in nasopharyngeal swabs (NPS) of hospitalized patients with no evident epidemiological link in Lazio, Central Italy. Whole-Genome Sequencing (WGS) performed on an Ion Torrent GSS5 platform according to Italian flash surveys showed genomes corresponding to the PANGOLIN unclassified lineage and the Nextclade XE clade. Further analyses were then carried out to investigate more deeply the genetic characteristics of these XE-like sequences. When phylogenetic trees, by using IQ-TREE, were built splitting the genome into two regions according to the putative XE recombination site, the upstream and downstream regions were seen to be clustered near BA.1 and BA.2 sequences, respectively. However, our XE-like sequences clustered separately, with a significant bootstrap, from the classified European and Italian XE strains, although the recombination site between BA.1 and BA.2 was identified at the nucleotide site 11556 by RDP4 software, consistent with the putative XE breakpoint. These findings show the risk of the introduction of novel recombinant variants of SARS-CoV-2 and the existence of XE-like strains, phylogenetically separated, that could make their exact taxonomy difficult. It follows the need for continued SARS-CoV-2 surveillance by WGS.
Collapse
|
20
|
Thommana A, Shakya M, Gandhi J, Fung CK, Chain PSG, Berry IM, Conte MA. Intrahost SARS-CoV-2 k-mer identification method (iSKIM) for rapid detection of mutations of concern reveals emergence of global mutation patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.16.504117. [PMID: 36032969 PMCID: PMC9413717 DOI: 10.1101/2022.08.16.504117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite unprecedented global sequencing and surveillance of SARS-CoV-2, timely identification of the emergence and spread of novel variants of concern (VoCs) remains a challenge. Several million raw genome sequencing runs are now publicly available. We sought to survey these datasets for intrahost variation to study emerging mutations of concern. We developed iSKIM ("intrahost SARS-CoV-2 k-mer identification method") to relatively quickly and efficiently screen the many SARS-CoV-2 datasets to identify intrahost mutations belonging to lineages of concern. Certain mutations surged in frequency as intrahost minor variants just prior to, or while lineages of concern arose. The Spike N501Y change common to several VoCs was found as a minor variant in 834 samples as early as October 2020. This coincides with the timing of the first detected samples with this mutation in the Alpha/B.1.1.7 and Beta/B.1.351 lineages. Using iSKIM, we also found that Spike L452R was detected as an intrahost minor variant as early as September 2020, prior to the observed rise of the Epsilon/B.1.429/B.1.427 lineages in late 2020. iSKIM rapidly screens for mutations of interest in raw data, prior to genome assembly, and can be used to detect increases in intrahost variants, potentially providing an early indication of novel variant spread.
Collapse
Affiliation(s)
- Ashley Thommana
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Montgomery Blair High School, Silver Spring, MD, USA
| | - Migun Shakya
- Los Alamos National Laboratory, Biosecurity and Public Health Group, Bioscience Division, Los Alamos, NM, USA
| | - Jaykumar Gandhi
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christian K Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrick S G Chain
- Los Alamos National Laboratory, Biosecurity and Public Health Group, Bioscience Division, Los Alamos, NM, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
21
|
Duerr R, Zhou H, Tada T, Dimartino D, Marier C, Zappile P, Wang G, Plitnick J, Griesemer SB, Girardin R, Machowski J, Bialosuknia S, Lasek-Nesselquist E, Hong SL, Baele G, Dittmann M, Ortigoza MB, Prasad PJ, McDonough K, Landau NR, George KS, Heguy A. Delta-Omicron recombinant escapes therapeutic antibody neutralization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.06.487325. [PMID: 35411351 PMCID: PMC8996620 DOI: 10.1101/2022.04.06.487325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background The emergence of recombinant viruses is a threat to public health. Recombination of viral variants may combine variant-specific features that together catalyze viral escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. Methods Multi-method amplicon and metagenomic sequencing of a clinical swab and the in vitro grown virus allowed for high-confidence detection of a novel recombinant variant. Mutational, phylogeographic, and structural analyses determined features of the recombinant genome and spike protein. Neutralization assays using infectious as well as pseudotyped viruses and point mutants thereof defined the recombinant's sensitivity to a panel of monoclonal antibodies and sera from vaccinated and/or convalescent individuals. Results A novel Delta-Omicron SARS-CoV-2 recombinant was identified in an unvaccinated, immunosuppressed kidney transplant recipient treated with monoclonal antibody Sotrovimab. The recombination breakpoint is located in the spike N-terminal domain, adjacent to the Sotrovimab quaternary binding site, and results in a 5'-Delta AY.45 and a 3'-Omicron BA.1 mosaic spike protein. Delta and BA.1 are sensitive to Sotrovimab neutralization, whereas the Delta-Omicron recombinant is highly resistant to Sotrovimab, both with and without the RBD resistance mutation E340D. Conclusions Recombination between circulating SARS-CoV-2 variants can functionally contribute to immune escape. It is critical to validate phenotypes of mosaic viruses and monitor immunosuppressed COVID-19 patients treated with monoclonal antibodies for the selection of recombinant and immune escape variants. (Funded by NYU, the National Institutes of Health, and others).
Collapse
|
22
|
Role of the Pangolin in Origin of SARS-CoV-2: An Evolutionary Perspective. Int J Mol Sci 2022; 23:ijms23169115. [PMID: 36012377 PMCID: PMC9408936 DOI: 10.3390/ijms23169115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron.
Collapse
|
23
|
Gutierrez B, Castelán Sánchez HG, Candido DDS, Jackson B, Fleishon S, Houzet R, Ruis C, Delaye L, Faria NR, Rambaut A, Pybus OG, Escalera-Zamudio M. Emergence and widespread circulation of a recombinant SARS-CoV-2 lineage in North America. Cell Host Microbe 2022; 30:1112-1123.e3. [PMID: 35853454 PMCID: PMC9212848 DOI: 10.1016/j.chom.2022.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 06/16/2022] [Indexed: 02/09/2023]
Abstract
Although recombination is a feature of coronavirus evolution, previously detected recombinant lineages of SARS-CoV-2 have shown limited circulation thus far. Here, we present a detailed phylogenetic analysis of four SARS-CoV-2 lineages to investigate the possibility of virus recombination among them. Our analyses reveal well-supported phylogenetic differences between the Orf1ab region encoding viral non-structural proteins and the rest of the genome, including Spike (S) protein and remaining reading frames. By accounting for several deletions in NSP6, Orf3a, and S, we conclude that the B.1.628 major cluster, now designated as lineage XB, originated from a recombination event between viruses of B.1.631 and B.1.634 lineages. This scenario is supported by the spatiotemporal distribution of these lineages across the USA and Mexico during 2021, suggesting that the recombination event originated in this geographical region. This event raises important questions regarding the role and potential effects of recombination on SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Bernardo Gutierrez
- Department of Zoology, University of Oxford, Oxford, UK; Consorcio Mexicano de Vigilancia Genómica (CoViGen-Mex), México; Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| | - Hugo G Castelán Sánchez
- Consorcio Mexicano de Vigilancia Genómica (CoViGen-Mex), México; Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Darlan da Silva Candido
- Department of Zoology, University of Oxford, Oxford, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ben Jackson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | | | - Christopher Ruis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Luis Delaye
- Consorcio Mexicano de Vigilancia Genómica (CoViGen-Mex), México; Departamento de Ingeniería Genética, Unidad Irapuato, CINVESTAV, Irapuato, Mexico
| | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK; The Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, UK
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK; Department of Pathobiology, Royal Veterinary College, London, UK.
| | - Marina Escalera-Zamudio
- Department of Zoology, University of Oxford, Oxford, UK; Consorcio Mexicano de Vigilancia Genómica (CoViGen-Mex), México.
| |
Collapse
|
24
|
Mejía L, Prado B, Cárdenas P, Trueba G, González-Candelas F. The impact of genetic recombination on pathogenic Leptospira. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105313. [PMID: 35688386 DOI: 10.1016/j.meegid.2022.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Leptospirosis is the most common zoonosis worldwide, and is increasingly common in poor urban communities, where there is inadequate sewage disposal and abundance of domestic and peridomestic animals. There are many risk factors associated with the disease, such as contaminated water exposure, close contact with animals, floods, recreational activities related to water, wet agriculture. The symptoms of leptospirosis are common to other infectious diseases and, if not treated, it can lead to meningitis, liver failure, kidney damage and death. Leptospirosis is caused by 38 pathogenic species of Leptospira, which are divided in almost 30 serogroups and more than 300 serovars. The serological classification (serogroups and serovars) is based on the expression of distinct lipopolysaccharide (LPS) antigens. These antigens are also associated to protective immunity; antibodies against a serovar protect from any member of the same serovar. Serologic and phylogenetic analyses are not congruent probably due to genetic recombination of LPS genes among different leptospiral species. To analyze the importance of recombination in leptospiral evolution, we performed a gene-by-gene tree topology comparison on closed genomes available in public databases at two levels: among core genomes of pathogenic species (34 recombinant among 1213 core genes), and among core genomes of L. interrogans isolates (178/798). We found that most recombinant genes code for proteins involved in translation, ribosomal structure and biogenesis, but also for cell wall, membrane and envelope biogenesis. Besides, our final results showed that half of LPS genes are recombinant (18/36). This is relevant because serovar classification and vaccine development are based on these epitopes. The frequent recombination of LPS-associated genes suggests that natural selection is promoting the survival of recombinant lineages. These results may help understanding the factors that make Leptospira a successful pathogen.
Collapse
Affiliation(s)
- Lorena Mejía
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain
| | - Belén Prado
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Paúl Cárdenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain.
| |
Collapse
|
25
|
Robins WP, Mekalanos JJ. Covariance predicts conserved protein residue interactions important for the emergence and continued evolution of SARS-CoV-2 as a human pathogen. PLoS One 2022; 17:e0270276. [PMID: 35895734 PMCID: PMC9328546 DOI: 10.1371/journal.pone.0270276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
SARS-CoV-2 is one of three recognized coronaviruses (CoVs) that have caused epidemics or pandemics in the 21st century and that likely emerged from animal reservoirs. Differences in nucleotide and protein sequence composition within related β-coronaviruses are often used to better understand CoV evolution, host adaptation, and their emergence as human pathogens. Here we report the comprehensive analysis of amino acid residue changes that have occurred in lineage B β-coronaviruses that show covariance with each other. This analysis revealed patterns of covariance within conserved viral proteins that potentially define conserved interactions within and between core proteins encoded by SARS-CoV-2 related β-coronaviruses. We identified not only individual pairs but also networks of amino acid residues that exhibited statistically high frequencies of covariance with each other using an independent pair model followed by a tandem model approach. Using 149 different CoV genomes that vary in their relatedness, we identified networks of unique combinations of alleles that can be incrementally traced genome by genome within different phylogenic lineages. Remarkably, covariant residues and their respective regions most abundantly represented are implicated in the emergence of SARS-CoV-2 and are also enriched in dominant SARS-CoV-2 variants.
Collapse
Affiliation(s)
- William P. Robins
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John J. Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Maljkovic Berry I, Hang J, Fung C, Yang Y, Chibucos M, Pollio A, Gandhi J, Li T, Conte MA, Lidl GM, Johannigman JA, Friberg H. Genomic surveillance of SARS-CoV-2 in US military compounds in Afghanistan reveals multiple introductions and outbreaks of Alpha and Delta variants. BMC Genomics 2022; 23:513. [PMID: 35840884 PMCID: PMC9288047 DOI: 10.1186/s12864-022-08757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND With the emergence and spread of SARS-CoV-2 variants, genomic epidemiology and surveillance have proven invaluable tools for variant tracking. Here, we analyzed SARS-CoV-2 samples collected from personnel located at the US/NATO bases across Afghanistan. RESULTS Sequencing and phylogenetic analyses revealed at least 16 independent introductions of SARS-CoV-2 into four of these relatively isolated compounds during April and May 2021, including multiple introductions of Alpha and Delta variants. Four of the introductions resulted in sustained spread of the virus within, and in two cases between, the compounds. Three of these outbreaks, one Delta and two Alpha, occurred simultaneously. CONCLUSIONS Even in rigorously controlled and segregated environments, SARS-CoV-2 introduction and spread may occur frequently.
Collapse
Affiliation(s)
- Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Christian Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Yu Yang
- Viral Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Marcus Chibucos
- Viral Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Adam Pollio
- Viral Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Jay Gandhi
- Viral Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Grace M Lidl
- Viral Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Jay A Johannigman
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| |
Collapse
|
27
|
Markarian NM, Galli G, Patel D, Hemmings M, Nagpal P, Berghuis AM, Abrahamyan L, Vidal SM. Identifying Markers of Emerging SARS-CoV-2 Variants in Patients With Secondary Immunodeficiency. Front Microbiol 2022; 13:933983. [PMID: 35847101 PMCID: PMC9283111 DOI: 10.3389/fmicb.2022.933983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Since the end of 2019, the world has been challenged by the coronavirus disease 2019 (COVID-19) pandemic. With COVID-19 cases rising globally, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, resulting in the emergence of variants of interest (VOI) and of concern (VOC). Of the hundreds of millions infected, immunodeficient patients are one of the vulnerable cohorts that are most susceptible to this virus. These individuals include those with preexisting health conditions and/or those undergoing immunosuppressive treatment (secondary immunodeficiency). In these cases, several researchers have reported chronic infections in the presence of anti-COVID-19 treatments that may potentially lead to the evolution of the virus within the host. Such variations occurred in a variety of viral proteins, including key structural ones involved in pathogenesis such as spike proteins. Tracking and comparing such mutations with those arisen in the general population may provide information about functional sites within the SARS-CoV-2 genome. In this study, we reviewed the current literature regarding the specific features of SARS-CoV-2 evolution in immunocompromised patients and identified recurrent de novo amino acid changes in virus isolates of these patients that can potentially play an important role in SARS-CoV-2 pathogenesis and evolution.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Gaël Galli
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- CNRS, ImmunoConcEpT, UMR 5164, Université de Bordeaux, Bordeaux, France
- CHU de Bordeaux, FHU ACRONIM, Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares Est/Sud-Ouest, Bordeaux, France
| | - Dhanesh Patel
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| | - Mark Hemmings
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Priya Nagpal
- Department of Pharmacology, McGill University, Montréal, QC, Canada
| | | | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| |
Collapse
|
28
|
Balloux F, Tan C, Swadling L, Richard D, Jenner C, Maini M, van Dorp L. The past, current and future epidemiological dynamic of SARS-CoV-2. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac003. [PMID: 35872966 PMCID: PMC9278178 DOI: 10.1093/oxfimm/iqac003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, Delta and Omicron variants of concern (VoCs) sequentially sweeping through the world to reach high global prevalence. Neither Alpha nor Delta was characterized by strong immune escape, with their success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected to transition from a pandemic regime to an endemic one where seasonality and waning host immunization are anticipated to become the primary forces shaping future SARS-CoV-2 lineage dynamics. In this review, we consider a body of evidence on the origins, host tropism, epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 including an assessment of other coronaviruses infecting humans. Considering what is known so far, we conclude by delineating scenarios for the future dynamic of SARS-CoV-2, ranging from the good-circulation of a fifth endemic 'common cold' coronavirus of potentially low virulence, the bad-a situation roughly comparable with seasonal flu, and the ugly-extensive diversification into serotypes with long-term high-level endemicity.
Collapse
Affiliation(s)
- François Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Cedric Tan
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 138672 Singapore, Singapore
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Charlotte Jenner
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Mala Maini
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
29
|
de Klerk A, Swanepoel P, Lourens R, Zondo M, Abodunran I, Lytras S, MacLean OA, Robertson D, Kosakovsky Pond SL, Zehr JD, Kumar V, Stanhope MJ, Harkins G, Murrell B, Martin DP. Conserved recombination patterns across coronavirus subgenera. Virus Evol 2022; 8:veac054. [PMID: 35814334 PMCID: PMC9261289 DOI: 10.1093/ve/veac054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
Recombination contributes to the genetic diversity found in coronaviruses and is known to be a prominent mechanism whereby they evolve. It is apparent, both from controlled experiments and in genome sequences sampled from nature, that patterns of recombination in coronaviruses are non-random and that this is likely attributable to a combination of sequence features that favour the occurrence of recombination break points at specific genomic sites, and selection disfavouring the survival of recombinants within which favourable intra-genome interactions have been disrupted. Here we leverage available whole-genome sequence data for six coronavirus subgenera to identify specific patterns of recombination that are conserved between multiple subgenera and then identify the likely factors that underlie these conserved patterns. Specifically, we confirm the non-randomness of recombination break points across all six tested coronavirus subgenera, locate conserved recombination hot- and cold-spots, and determine that the locations of transcriptional regulatory sequences are likely major determinants of conserved recombination break-point hotspot locations. We find that while the locations of recombination break points are not uniformly associated with degrees of nucleotide sequence conservation, they display significant tendencies in multiple coronavirus subgenera to occur in low guanine-cytosine content genome regions, in non-coding regions, at the edges of genes, and at sites within the Spike gene that are predicted to be minimally disruptive of Spike protein folding. While it is apparent that sequence features such as transcriptional regulatory sequences are likely major determinants of where the template-switching events that yield recombination break points most commonly occur, it is evident that selection against misfolded recombinant proteins also strongly impacts observable recombination break-point distributions in coronavirus genomes sampled from nature.
Collapse
Affiliation(s)
- Arné de Klerk
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Phillip Swanepoel
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Rentia Lourens
- Division of Neurosurgery, Neuroscience Institute, Department of Surgery, University of Cape Town, Cape Town, 7701, South Africa
| | - Mpumelelo Zondo
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Isaac Abodunran
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - David Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jordan D Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Venkatesh Kumar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Michael J Stanhope
- Department of Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gordon Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, 7535, South Africa
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
30
|
Nunes DR, Braconi CT, Ludwig-Begall LF, Arns CW, Durães-Carvalho R. Deep phylogenetic-based clustering analysis uncovers new and shared mutations in SARS-CoV-2 variants as a result of directional and convergent evolution. PLoS One 2022; 17:e0268389. [PMID: 35609034 PMCID: PMC9129020 DOI: 10.1371/journal.pone.0268389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Nearly two decades after the last epidemic caused by a severe acute respiratory syndrome coronavirus (SARS-CoV), newly emerged SARS-CoV-2 quickly spread in 2020 and precipitated an ongoing global public health crisis. Both the continuous accumulation of point mutations, owed to the naturally imposed genomic plasticity of SARS-CoV-2 evolutionary processes, as well as viral spread over time, allow this RNA virus to gain new genetic identities, spawn novel variants and enhance its potential for immune evasion. Here, through an in-depth phylogenetic clustering analysis of upwards of 200,000 whole-genome sequences, we reveal the presence of previously unreported and hitherto unidentified mutations and recombination breakpoints in Variants of Concern (VOC) and Variants of Interest (VOI) from Brazil, India (Beta, Eta and Kappa) and the USA (Beta, Eta and Lambda). Additionally, we identify sites with shared mutations under directional evolution in the SARS-CoV-2 Spike-encoding protein of VOC and VOI, tracing a heretofore-undescribed correlation with viral spread in South America, India and the USA. Our evidence-based analysis provides well-supported evidence of similar pathways of evolution for such mutations in all SARS-CoV-2 variants and sub-lineages. This raises two pivotal points: (i) the co-circulation of variants and sub-lineages in close evolutionary environments, which sheds light onto their trajectories into convergent and directional evolution, and (ii) a linear perspective into the prospective vaccine efficacy against different SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Danilo Rosa Nunes
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Carla Torres Braconi
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- * E-mail: (CTB); (RDC)
| | - Louisa F. Ludwig-Begall
- Department of Infectious and Parasitic Diseases, Veterinary Virology and Animal Viral Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Clarice Weis Arns
- Laboratory of Virology, University of Campinas, Campinas, SP, Brazil
| | - Ricardo Durães-Carvalho
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- * E-mail: (CTB); (RDC)
| |
Collapse
|
31
|
Kozlakidis Z. Evidence for Recombination as an Evolutionary Mechanism in Coronaviruses: Is SARS-CoV-2 an Exception? Front Public Health 2022; 10:859900. [PMID: 35372203 PMCID: PMC8968083 DOI: 10.3389/fpubh.2022.859900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
32
|
Robins WP, Mekalanos JJ. Covariance predicts conserved protein residue interactions important to the emergence and continued evolution of SARS-CoV-2 as a human pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.13.476204. [PMID: 35169805 PMCID: PMC8845505 DOI: 10.1101/2022.01.13.476204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SARS-CoV-2 is one of three recognized coronaviruses (CoVs) that have caused epidemics or pandemics in the 21st century and that likely emerged from animal reservoirs. Differences in nucleotide and protein sequence composition within related β-coronaviruses are often used to better understand CoV evolution, host adaptation, and their emergence as human pathogens. Here we report the comprehensive analysis of amino acid residue changes that have occurred in lineage B β-coronaviruses that show covariance with each other. This analysis revealed patterns of covariance within conserved viral proteins that potentially define conserved interactions within and between core proteins encoded by SARS-CoV-2 related β-coranaviruses. We identified not only individual pairs but also networks of amino acid residues that exhibited statistically high frequencies of covariance with each other using an independent pair model followed by a tandem model approach. Using 149 different CoV genomes that vary in their relatedness, we identified networks of unique combinations of alleles that can be incrementally traced genome by genome within different phylogenic lineages. Remarkably, covariant residues and their respective regions most abundantly represented are implicated in the emergence of SARS-CoV-2 are also enriched in dominant SARS-CoV-2 variants.
Collapse
Affiliation(s)
- William P Robins
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - John J Mekalanos
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| |
Collapse
|
33
|
Amoutzias GD, Nikolaidis M, Tryfonopoulou E, Chlichlia K, Markoulatos P, Oliver SG. The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses 2022; 14:78. [PMID: 35062282 PMCID: PMC8778387 DOI: 10.3390/v14010078] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) constitute a large and diverse subfamily of positive-sense single-stranded RNA viruses. They are found in many mammals and birds and have great importance for the health of humans and farm animals. The current SARS-CoV-2 pandemic, as well as many previous epidemics in humans that were of zoonotic origin, highlights the importance of studying the evolution of the entire CoV subfamily in order to understand how novel strains emerge and which molecular processes affect their adaptation, transmissibility, host/tissue tropism, and patho non-homologous genicity. In this review, we focus on studies over the last two years that reveal the impact of point mutations, insertions/deletions, and intratypic/intertypic homologous and non-homologous recombination events on the evolution of CoVs. We discuss whether the next generations of CoV vaccines should be directed against other CoV proteins in addition to or instead of spike. Based on the observed patterns of molecular evolution for the entire subfamily, we discuss five scenarios for the future evolutionary path of SARS-CoV-2 and the COVID-19 pandemic. Finally, within this evolutionary context, we discuss the recently emerged Omicron (B.1.1.529) VoC.
Collapse
Affiliation(s)
- Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Eleni Tryfonopoulou
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Katerina Chlichlia
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Panayotis Markoulatos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
34
|
Host Manipulation Mechanisms of SARS-CoV-2. Acta Biotheor 2021; 70:4. [PMID: 34902063 PMCID: PMC8667538 DOI: 10.1007/s10441-021-09425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/16/2021] [Indexed: 10/28/2022]
Abstract
Viruses are the simplest of pathogens, but possess sophisticated molecular mechanisms to manipulate host behavior, frequently utilizing molecular mimicry. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to bind to the host receptor neuropilin-1 in order to gain entry into the cell. To do this, the virus utilizes its spike protein polybasic cleavage site (PCS), which mimics the CendR motif of neuropilin-1's endogenous ligands. In addition to facilitating cell entry, binding to neuropilin-1 has analgesic effects. We discuss the potential impact of neuropilin-1 binding by SARS-CoV-2 in ameliorating sickness behavior of the host, and identify a convergent evolutionary strategy of PCS cleavage and subsequent neuropilin binding in other human viruses. In addition, we discuss the evolutionary leap of the ancestor of SARS-COV-2, which involved acquisition of the PCS thus faciliting binding to the neuropilin-1 receptor. Acquisition of the PCS by the ancestor of SARS-CoV-2 appears to have led to pleiotropic beneficial effects including enhancement of cell entry via binding to ACE2, facilitation of cell entry via binding to neuropilin-1, promotion of analgesia, and potentially the formation of decoy epitopes via enhanced shedding of the S1 subunit. Lastly, other potential neuromanipulation strategies employed by SARS-CoV-2 are discussed, including interferon suppression and the resulting reduction in sickness behavior, enhanced transmission through neurally mediated cough induction, and reduction in sense of smell.
Collapse
|