1
|
Procès A, Gabriele S. Deciphering the mechanobiology of microglia in traumatic brain injury with advanced microsystems. Neural Regen Res 2025; 20:2304-2306. [PMID: 39359081 PMCID: PMC11759021 DOI: 10.4103/nrr.nrr-d-24-00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Anthony Procès
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials Group, CIRMAP, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
2
|
Osterman C, Hamlin D, Suter CM, Affleck AJ, Gloss BS, Turner CP, Faull RLM, Stein TD, McKee A, Buckland ME, Curtis MA, Murray HC. Perivascular glial reactivity is a feature of phosphorylated tau lesions in chronic traumatic encephalopathy. Acta Neuropathol 2025; 149:16. [PMID: 39921702 PMCID: PMC11807024 DOI: 10.1007/s00401-025-02854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with repetitive head injuries, is characterised by perivascular hyperphosphorylated tau (p-tau) accumulations within the depths of cortical sulci. Although the majority of CTE literature focuses on p-tau pathology, other pathological features such as glial reactivity, vascular damage, and axonal damage are relatively unexplored. In this study, we aimed to characterise these other pathological features, specifically in CTE p-tau lesion areas, to better understand the microenvironment surrounding the lesion. We utilised multiplex immunohistochemistry to investigate the distribution of 32 different markers of cytoarchitecture and pathology that are relevant to both traumatic brain injury and neurodegeneration. We qualitatively assessed the multiplex images and measured the percentage area of labelling for each marker in the lesion and non-lesion areas of CTE cases. We identified perivascular glial reactivity as a prominent feature of CTE p-tau lesions, largely driven by increases in astrocyte reactivity compared to non-lesion areas. Furthermore, we identified astrocytes labelled for both NAD(P)H quinone dehydrogenase 1 (NQO1) and L-ferritin, indicating that lesion-associated glial reactivity may be a compensatory response to iron-induced oxidative stress. Our findings demonstrate that perivascular inflammation is a consistent feature of the CTE pathognomonic lesion and may contribute to the pathogenesis of brain injury-related neurodegeneration.
Collapse
Affiliation(s)
- Chelsie Osterman
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Danica Hamlin
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Catherine M Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Andrew J Affleck
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Clinton P Turner
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
- Department of Anatomical Pathology, Pathology and Laboratory Medicine, Auckland City Hospital, 2 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Alzheimer's Disease and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Ann McKee
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Alzheimer's Disease and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand.
| |
Collapse
|
3
|
Wu C, Li M, Chen Z, Feng S, Deng Q, Duan R, Liu TCY, Yang L. Remote photobiomodulation ameliorates behavioral and neuropathological outcomes in a rat model of repeated closed head injury. Transl Psychiatry 2025; 15:8. [PMID: 39799140 PMCID: PMC11724958 DOI: 10.1038/s41398-025-03228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Repeated closed-head injuries (rCHI) from activities like contact sports, falls, military combat, and traffic accidents pose a serious risk due to their cumulative impact on the brain. Often, rCHI is not diagnosed until symptoms of irreversible brain damage appear, highlighting the need for preventive measures. This study assessed the prophylactic efficacy of remote photobiomodulation (PBM) targeted at the lungs against rCHI-induced brain injury and associated behavioral deficits. Utilizing the "Marmarou" weight-drop model, rCHI was induced in rats on days 0, 5, and 10. Remote PBM, employing an 808 nm continuous wave laser, was administered daily in 2-min sessions per lung side over 20 days. Behavioral deficits were assessed through three-chamber social interaction, forced swim, grip strength, open field, elevated plus maze, and Barnes maze tests. Immunofluorescence staining and 3D reconstruction evaluated neuronal damage, apoptosis, degeneration, and the morphology of microglia and astrocytes, as well as astrocyte and microglia-mediated excessive synapse elimination. Additionally, 16S rDNA amplicon sequencing analyzed changes in the lung microbiome following remote PBM treatment. Results demonstrated that remote PBM significantly improved depressive-like behaviors, motor dysfunction, and social interaction impairment while enhancing grip strength and reducing neuronal damage, apoptosis, and degeneration induced by rCHI. Analysis of lung microbiome changes revealed an enrichment of lipopolysaccharide (LPS) biosynthesis pathways, suggesting a potential link to neuroprotection. Furthermore, remote PBM mitigated hyperactivation of cortical microglia and astrocytes and significantly reduced excessive synaptic phagocytosis by these cells, highlighting its potential as a preventive strategy for rCHI with neuroprotective effects.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Meng Li
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Zhe Chen
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
4
|
Astakhova O, Ivanova A, Komoltsev I, Gulyaeva N, Enikolopov G, Lazutkin A. Traumatic Brain Injury Promotes Neurogenesis and Oligodendrogenesis in Subcortical Brain Regions of Mice. Cells 2025; 14:92. [PMID: 39851520 PMCID: PMC11764027 DOI: 10.3390/cells14020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention. Here, we investigated cell division and differentiation in non-neurogenic brain regions during the acute and delayed phases of TBI-induced neurodegeneration. We subjected mice to lateral fluid percussion injury (LFPI) to model TBI and analyzed them 1 or 7 weeks later. To assess cellular proliferation and differentiation, we administered 5-ethinyl-2'-deoxyuridine (EdU) and determined the number and identity of dividing cells 2 h later using markers of neuronal precursors and astro-, micro-, and oligodendroglia. Our results demonstrated a significant proliferative response in several brain regions at one week post-injury that notably diminished by seven weeks, except in the optic tract. In addition to active astro- and microgliosis, we detected oligodendrogenesis in the striatum and optic tract. Furthermore, we observed trauma-induced neurogenesis in the striatum. These findings suggest that subcortical structures, particularly the striatum and optic tract, may possess a potential for self-repair through neuronal regeneration and axon remyelination.
Collapse
Affiliation(s)
- Olga Astakhova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Anna Ivanova
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Ilia Komoltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Natalia Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Grigori Enikolopov
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alexander Lazutkin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Ghannam A, Hahn V, Fan J, Tasevski S, Moughni S, Li G, Zhang Z. Sex-specific and cell-specific regulation of ER stress and neuroinflammation after traumatic brain injury in juvenile mice. Exp Neurol 2024; 377:114806. [PMID: 38701941 DOI: 10.1016/j.expneurol.2024.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Endoplasmic reticulum (ER) stress and neuroinflammation play an important role in secondary brain damage after traumatic brain injury (TBI). Due to the complex brain cytoarchitecture, multiple cell types are affected by TBI. However, cell type-specific and sex-specific responses to ER stress and neuroinflammation remain unclear. Here we investigated differential regulation of ER stress and neuroinflammatory pathways in neurons and microglia during the acute phase post-injury in a mouse model of impact acceleration TBI in both males and females. We found that TBI resulted in significant weight loss only in males, and sensorimotor impairment and depressive-like behaviors in both males and females at the acute phase post-injury. By concurrently isolating neurons and microglia from the same brain sample of the same animal, we were able to evaluate the simultaneous responses in neurons and microglia towards ER stress and neuroinflammation in both males and females. We discovered that the ER stress and anti-inflammatory responses were significantly stronger in microglia, especially in female microglia, compared with the male and female neurons. Whereas the degree of phosphorylated-tau (pTau) accumulation was significantly higher in neurons, compared with the microglia. In conclusion, TBI resulted in behavioral deficits and cell type-specific and sex-specific responses to ER stress and neuroinflammation, and abnormal protein accumulation at the acute phase after TBI in immature mice.
Collapse
Affiliation(s)
- Amanda Ghannam
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Victoria Hahn
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Jie Fan
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Stefanie Tasevski
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Sara Moughni
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Gengxin Li
- Statistics, Department of Mathematics and Statistics, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| |
Collapse
|
6
|
Virtuoso A, Galanis C, Lenz M, Papa M, Vlachos A. Regional Microglial Response in Entorhino-Hippocampal Slice Cultures to Schaffer Collateral Lesion and Metalloproteinases Modulation. Int J Mol Sci 2024; 25:2346. [PMID: 38397023 PMCID: PMC10889226 DOI: 10.3390/ijms25042346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Microglia and astrocytes are essential in sustaining physiological networks in the central nervous system, with their ability to remodel the extracellular matrix, being pivotal for synapse plasticity. Recent findings have challenged the traditional view of homogenous glial populations in the brain, uncovering morphological, functional, and molecular heterogeneity among glial cells. This diversity has significant implications for both physiological and pathological brain states. In the present study, we mechanically induced a Schaffer collateral lesion (SCL) in mouse entorhino-hippocampal slice cultures to investigate glial behavior, i.e., microglia and astrocytes, under metalloproteinases (MMPs) modulation in the lesioned area, CA3, and the denervated region, CA1. We observed distinct response patterns in the microglia and astrocytes 3 days after the lesion. Notably, GFAP-expressing astrocytes showed no immediate changes post-SCL. Microglia responses varied depending on their anatomical location, underscoring the complexity of the hippocampal neuroglial network post-injury. The MMPs inhibitor GM6001 did not affect microglial reactions in CA3, while increasing the number of Iba1-expressing cells in CA1, leading to a withdrawal of their primary branches. These findings highlight the importance of understanding glial regionalization following neural injury and MMPs modulation and pave the way for further research into glia-targeted therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Neuronal Morphology Networks and Systems Biology Laboratory, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, 30625 Hannover, Germany
| | - Michele Papa
- Neuronal Morphology Networks and Systems Biology Laboratory, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks–BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|