1
|
Noguchi H. Spatiotemporal patterns in active four-state Potts models. Sci Rep 2025; 15:674. [PMID: 39753872 PMCID: PMC11699145 DOI: 10.1038/s41598-024-84819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Many types of spatiotemporal patterns have been observed under nonequilibrium conditions. Cycling through four or more states can provide specific dynamics, such as the spatial coexistence of multiple phases. However, transient dynamics have only been studied by previous theoretical models, since absorbing transition into a uniform phase covered by a single state occurs in the long-time limit. Here, we reported steady long-term dynamics using cyclic Potts models, wherein nucleation and growth play essential roles. Under the cyclic symmetry of the four states, the cyclic changes in the dominant phases and the spatial coexistence of the four phases are obtained at low and high flipping energies, respectively. Under asymmetric conditions, the spatial coexistence of two diagonal phases appears in addition to non-cyclic one-phase modes. The circular domains of the diagonal state are formed by the nucleation of other states, and they slowly shrink to reduce the domain boundary. When three-state cycling is added, competition between the two cycling modes changes the spatiotemporal patterns.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.
| |
Collapse
|
2
|
Wang BJ, Wu WL, Wei XL, Chen Q. Mechanical and electromechanical properties of 2D materials studied via in situ microscopy techniques. NANOSCALE 2024. [PMID: 39687944 DOI: 10.1039/d4nr03569k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Two-dimensional (2D) materials with van der Waals stacking have been reported to have extraordinary mechanical and electromechanical properties, which give them revolutionary potential in various fields. However, due to the atomic-scale thickness of these 2D materials, their fascinating properties cannot be effectively characterized in many cases using conventional measurement techniques. Based on typical microscopy techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), a range of in situ microscopy techniques have been developed to systematically quantify the mechanical and electromechanical properties of 2D materials. This review highlights the advancements of in situ microscopy techniques for studying elasticity and fracture, adhesion and separation, structural superlubricity, as well as c-axis piezoresistivity and rotation angle-related transport of 2D materials. The methods and results of various microscopy experiments, including nanoindentation using AFM, pressurized bubble tests, self-retraction experiments, pull-to-peel methods and so on, are compared, and their respective advantages and limitations are discussed. Finally, we summarize the current challenges in these microscopy techniques and outline development opportunities.
Collapse
Affiliation(s)
- Bing-Jie Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - Wei-Long Wu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - Xian-Long Wei
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Qian C, Hedman D, Li P, Kim SY, Ding F. The Reconstruction of Pt(001) Surface and the Shell-Like Reconstruction of the Vicinal Pt(001) Surfaces Revealed by Neural Network Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404274. [PMID: 38966895 DOI: 10.1002/smll.202404274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Indexed: 07/06/2024]
Abstract
In this work, a highly accurate neural network potential (NNP) is presented, named PtNNP, and the exploration of the reconstruction of the Pt(001) surface and its vicinal surfaces with it. Contrary to the most accepted understanding of the Pt(001) surface reconstruction, the study reveals that the main driving force behind Pt(001) quasi-hexagonal reconstruction is not the surface stress relaxation but the increased coordination number of the surface atoms resulting in stronger intralayer binding in the reconstructed surface layer. In agreement with experimental observations, the optimized supercell size of the reconstructed Pt(001) surface contains (5 × 20) unit cells. Surprisingly, the reconstruction of the vicinal Pt(001) surfaces leads to a smooth shell-like surface layer covering the whole surface and diminishing sharp step edges.
Collapse
Affiliation(s)
- Cheng Qian
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Daniel Hedman
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Pai Li
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Sung Youb Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Feng Ding
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| |
Collapse
|
4
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 PMCID: PMC11526435 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department
of Electricity and Electronics, University
of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM,
UdR Brescia, Via Branze
38, Brescia 25123, Italy
- Department
of Information Engineering (DII), University
of Brescia, Via Branze
38, Brescia 25123, Italy
- INO−CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24−25, D-14476 Potsdam, Germany
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | | | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Biomedical
Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J. Halas
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K. Jain
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Holger Lange
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
- The Hamburg
Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M. Liz-Marzán
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T. Lucas
- Nantes
Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J. Meixner
- Institute
of Physical and Theoretical Chemistry, University
of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J. Peveler
- School of
Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental Studies and Natural Resources
(i-UNAT), Universidad de Las Palmas de Gran
Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical
Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D. Schultz
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M. Weckhuysen
- Debye Institute
for Nanomaterials Science and Institute for Sustainable and Circular
Chemistry, Department of Chemistry, Utrecht
University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School
of
Chemical and Material Engineering, Jiangnan
University, Wuxi, 214122, People’s Republic
of China
- Lee Kong
Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute
for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key
Lab
of Nanodevices and Applications, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science
and Technology Institute, University of
Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| |
Collapse
|
5
|
Xu Y, Zhou Y, Li Y, Zheng Y. Bridging Materials and Analytics: A Comprehensive Review of Characterization Approaches in Metal-Based Solid-State Hydrogen Storage. Molecules 2024; 29:5014. [PMID: 39519655 PMCID: PMC11547599 DOI: 10.3390/molecules29215014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The advancement of solid-state hydrogen storage materials is critical for the realization of a sustainable hydrogen economy. This comprehensive review elucidates the state-of-the-art characterization techniques employed in solid-state hydrogen storage research, emphasizing their principles, advantages, limitations, and synergistic applications. We critically analyze conventional methods such as the Sieverts technique, gravimetric analysis, and secondary ion mass spectrometry (SIMS), alongside composite and structure approaches including Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). This review highlights the crucial role of in situ and operando characterization in unraveling the complex mechanisms of hydrogen sorption and desorption. We address the challenges associated with characterizing metal-based solid-state hydrogen storage materials discussing innovative strategies to overcome these obstacles. Furthermore, we explore the integration of advanced computational modeling and data-driven approaches with experimental techniques to enhance our understanding of hydrogen-material interactions at the atomic and molecular levels. This paper also provides a critical assessment of the practical considerations in characterization, including equipment accessibility, sample preparation protocols, and cost-effectiveness. By synthesizing recent advancements and identifying key research directions, this review aims to guide future efforts in the development and optimization of high-performance solid-state hydrogen storage materials, ultimately contributing to the broader goal of sustainable energy systems.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China
- Leshan West Silicon Materials Photovoltaic New Energy Industry Technology Research Institute, Leshan 614000, China
| | - Yang Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuting Li
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Yang Zheng
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
6
|
Boyes ED, Gai PL. Visualizing Dynamic Single Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314121. [PMID: 38757873 DOI: 10.1002/adma.202314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Many industrial chemical processes, including for producing fuels, foods, pharmaceuticals, chemicals and environmental controls, employ heterogeneous solid state catalysts at elevated temperatures in gas or liquid environments. Dynamic reactions at the atomic level play a critical role in catalyst stability and functionality. In situ visualization and analysis of atomic-scale processes in real time under controlled reaction environments can provide important insights into practical frameworks to improve catalytic processes and materials. This review focuses on innovative real time in situ electron microscopy (EM) methods, including recent progress in analytical in situ environmental (scanning) transmission EM (E(STEM), incorporating environmental scanning TEM (ESTEM) and environmental transmission EM (ETEM), with single atom resolution for visualizing and analysing dynamic single atom catalysis under controlled flowing gas reaction environments. ESTEM studies of single atom dynamics of reactions, and of sintering deactivation, contribute to a better-informed understanding of the yield and stability of catalyst operations. Advances in in situ technologies, including gas and liquid sample holders, nanotomography, and higher voltages, as well as challenges and opportunities in tracking reacting atoms, are highlighted. The findings show that the understanding and application of fundamental processes in catalysis can be improved, with valuable economic, environmental, and societal benefits.
Collapse
Affiliation(s)
- Edward D Boyes
- The York Nanocentre, Department of Physics, University of York, York, YO10 5DD, UK
| | - Pratibha L Gai
- The York Nanocentre, Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
7
|
Grimes M, Atlan C, Chatelier C, Bellec E, Olson K, Simonne D, Levi M, Schülli TU, Leake SJ, Rabkin E, Eymery J, Richard MI. Capturing Catalyst Strain Dynamics during Operando CO Oxidation. ACS NANO 2024. [PMID: 39009584 DOI: 10.1021/acsnano.4c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Understanding the strain dynamic behavior of catalysts is crucial for the development of cost-effective, efficient, stable, and long-lasting catalysts. Using time-resolved Bragg coherent diffraction imaging at the fourth generation Extremely Brilliant Source of the European Synchrotron (ESRF-EBS), we achieved subsecond time resolution during operando chemical reactions. Upon investigation of Pt nanoparticles during CO oxidation, the three-dimensional strain profile highlights significant changes in the surface and subsurface regions, where localized strain is probed along the [111] direction. Notably, a rapid increase in tensile strain was observed at the top and bottom Pt {111} facets during CO adsorption. Moreover, we detected oscillatory strain changes (6.4 s period) linked to CO adsorption during oxidation, where a time resolution of 0.25 s was achieved. This approach allows for the study of adsorption dynamics of catalytic nanomaterials at the single-particle level under operando conditions, which provides insight into nanoscale catalytic mechanisms.
Collapse
Affiliation(s)
- Michael Grimes
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Clément Atlan
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Corentin Chatelier
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Ewen Bellec
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Kyle Olson
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - David Simonne
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- SOLEIL, L'Orme des Merisiers Départementale 128, 91190 Saint-Aubin, France
| | - Mor Levi
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Tobias U Schülli
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Steven J Leake
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Eugen Rabkin
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Joël Eymery
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Marie-Ingrid Richard
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
8
|
Noguchi H, van Wijland F, Fournier JB. Cycling and spiral-wave modes in an active cyclic Potts model. J Chem Phys 2024; 161:025101. [PMID: 38973763 DOI: 10.1063/5.0221050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
We studied the nonequilibrium dynamics of a cycling three-state Potts model using simulations and theory. This model can be tuned from thermal-equilibrium to far-from-equilibrium conditions. At low cycling energy, the homogeneous dominant state cycles via nucleation and growth, while spiral waves are formed at high energy. For large systems, a discontinuous transition occurs from these cyclic homogeneous phases to spiral waves, while the opposite transition is absent. Conversely, these two modes can coexist for small systems. The waves can be reproduced by a continuum theory, and the transition can be understood from the competition between nucleation and growth.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Frédéric van Wijland
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité & CNRS, 75013 Paris, France
| | - Jean-Baptiste Fournier
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité & CNRS, 75013 Paris, France
| |
Collapse
|
9
|
Xin H, Li R, Lin L, Mu R, Li M, Li D, Fu Q, Bao X. Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface. Nat Commun 2024; 15:3100. [PMID: 38600159 PMCID: PMC11271606 DOI: 10.1038/s41467-024-47550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
In heterogeneous catalysis catalyst activation is often observed during the reaction process, which is mostly attributed to the induction by reactants. In this work we report that surface structure of molybdenum nitride (MoNx) catalyst exhibits a high dependency on the partial pressure or concentration of reaction products i.e., CO and H2O in reverse water gas-shift reaction (RWGS) (CO2:H2 = 1:3) but not reactants of CO2 and H2. Molybdenum oxide (MoOx) overlayers formed by oxidation with H2O are observed at reaction pressure below 10 mbar or with low partial pressure of CO/H2O products, while CO-induced surface carbonization happens at reaction pressure above 100 mbar and with high partial pressure of CO/H2O products. The reaction products induce restructuring of MoNx surface into more active molybdenum carbide (MoCx) to increase the reaction rate and make for higher partial pressure CO, which in turn promote further surface carbonization of MoNx. We refer to this as the positive feedback between catalytic activity and catalyst activation in RWGS, which should be widely present in heterogeneous catalysis.
Collapse
Affiliation(s)
- Hui Xin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
10
|
Pfaff S, Larsson A, Orlov D, Rämisch L, Gericke SM, Lundgren E, Zetterberg J. A Polycrystalline Pd Surface Studied by Two-Dimensional Surface Optical Reflectance during CO Oxidation: Bridging the Materials Gap. ACS APPLIED MATERIALS & INTERFACES 2024; 16:444-453. [PMID: 38109219 PMCID: PMC10788831 DOI: 10.1021/acsami.3c11341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Industrial catalysts are complex materials systems operating in harsh environments. The active parts of the catalysts are nanoparticles that expose different facets with different surface orientations at which the catalytic reactions occur. However, these facets are close to impossible to study in detail under industrially relevant operating conditions. Instead, simpler model systems, such as single crystals with a well-defined surface orientation, have been successfully used to study gas-surface interactions such as adsorption and desorption, surface oxidation, and oxidation/reduction reactions. To more closely mimic the many facets exhibited by nanoparticles and thereby close the so-called materials gap, there has also been a recent move toward using polycrystalline surfaces and curved crystals. However, these studies are limited either by the pressure or spatial resolution at realistic pressures or by the number of surfaces studied simultaneously. In this work, we demonstrate the use of reflectance microscopy to study a vast number of catalytically active surfaces simultaneously under realistic and identical reaction conditions. As a proof of concept, we have conducted an operando experiment to study CO oxidation over a Pd polycrystal, where the polycrystalline surface acts as a collection of many single-crystal surfaces. Finally, we visualized the resulting data by plotting the reflectivity as a function of surface orientation. We think the techniques and visualization methods introduced in this work will be key toward bridging the materials gap in catalysis.
Collapse
Affiliation(s)
- Sebastian Pfaff
- Combustion
Research Facility, Sandia National Laboratories, 7011 East Ave, Livermore, California 94550, United States
| | - Alfred Larsson
- Division
of Synchrotron Radiation Research, Lund
University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Dmytro Orlov
- Division
of Mechanics, Materials and Component Design, Lund University, Ole
Römers väg 1, S-22363 Lund, Sweden
| | - Lisa Rämisch
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Sabrina M. Gericke
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Edvin Lundgren
- Division
of Synchrotron Radiation Research, Lund
University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Johan Zetterberg
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| |
Collapse
|
11
|
Chee SW, Lunkenbein T, Schlögl R, Roldán Cuenya B. Operando Electron Microscopy of Catalysts: The Missing Cornerstone in Heterogeneous Catalysis Research? Chem Rev 2023; 123:13374-13418. [PMID: 37967448 PMCID: PMC10722467 DOI: 10.1021/acs.chemrev.3c00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023]
Abstract
Heterogeneous catalysis in thermal gas-phase and electrochemical liquid-phase chemical conversion plays an important role in our modern energy landscape. However, many of the structural features that drive efficient chemical energy conversion are still unknown. These features are, in general, highly distinct on the local scale and lack translational symmetry, and thus, they are difficult to capture without the required spatial and temporal resolution. Correlating these structures to their function will, conversely, allow us to disentangle irrelevant and relevant features, explore the entanglement of different local structures, and provide us with the necessary understanding to tailor novel catalyst systems with improved productivity. This critical review provides a summary of the still immature field of operando electron microscopy for thermal gas-phase and electrochemical liquid-phase reactions. It focuses on the complexity of investigating catalytic reactions and catalysts, progress in the field, and analysis. The forthcoming advances are discussed in view of correlative techniques, artificial intelligence in analysis, and novel reactor designs.
Collapse
Affiliation(s)
- See Wee Chee
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Thomas Lunkenbein
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Robert Schlögl
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldán Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
12
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
13
|
Visser N, Turner SJ, Stewart JA, Vandegehuchte BD, van der Hoeven JES, de Jongh PE. Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere. ACS NANO 2023; 17:14963-14973. [PMID: 37504574 PMCID: PMC10416566 DOI: 10.1021/acsnano.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
Understanding nanoparticle growth is crucial to increase the lifetime of supported metal catalysts. In this study, we employ in situ gas-phase transmission electron microscopy to visualize the movement and growth of ensembles of tens of nickel nanoparticles supported on carbon for CO2 hydrogenation at atmospheric pressure (H2:CO2 = 4:1) and relevant temperature (450 °C) in real time. We observe two modes of particle movement with an order of magnitude difference in velocity: fast, intermittent movement (vmax = 0.7 nm s-1) and slow, gradual movement (vaverage = 0.05 nm s-1). We visualize the two distinct particle growth mechanisms: diffusion and coalescence, and Ostwald ripening. The diffusion and coalescence mechanism dominates at small interparticle distances, whereas Ostwald ripening is driven by differences in particle size. Strikingly, we demonstrate an interplay between the two mechanisms, where first coalescence takes place, followed by fast Ostwald ripening due to the increased difference in particle size. Our direct visualization of the complex nanoparticle growth mechanisms highlights the relevance of studying nanoparticle growth in supported nanoparticle ensembles under reaction conditions and contributes to the fundamental understanding of the stability in supported metal catalysts.
Collapse
Affiliation(s)
- Nienke
L. Visser
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Savannah J. Turner
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | | | | | - Jessi E. S. van der Hoeven
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Petra E. de Jongh
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
14
|
Yang K, Li J, Zhao Z, Liu Z. Observation of induction period and oxygenated intermediates in methane oxidation over Pt catalyst. iScience 2023; 26:107061. [PMID: 37534163 PMCID: PMC10391729 DOI: 10.1016/j.isci.2023.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 08/04/2023] Open
Abstract
Selective oxidation of methane is one of the most attractive routes for methane to chemicals. However, mechanistic understanding and avoiding over-oxidation have great challenges because of its very rapid reaction rate. Herein, a capillary micro-reaction system was introduced to monitor the initial stage of methane oxidation over platinum. For the first time, an induction period is observed, during which oxygenated intermediates, such as methanol, acetone, methyl methoxy acetate, etc., are detected. Induction period can be shortened by methane pretreatment at 600°C, which generates highly active species containing unsaturated bonds. Combined these findings and observations of in situ characterizations, the evolution route of methane oxidation over Pt is prosed, i.e., the reaction starts from the formation of initial species containing Pt-C bond, followed by the generation of oxygenated intermediates, and ended with the over-oxidation of the intermediates to CO/CO2.
Collapse
Affiliation(s)
- Kuo Yang
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jinzhe Li
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Sheyfer D, Mariano RG, Kawaguchi T, Cha W, Harder RJ, Kanan MW, Hruszkewycz SO, You H, Highland MJ. Operando Nanoscale Imaging of Electrochemically Induced Strain in a Locally Polarized Pt Grain. NANO LETTERS 2023; 23:1-7. [PMID: 36541700 DOI: 10.1021/acs.nanolett.2c01015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing new methods that reveal the structure of electrode materials under polarization is key to constructing robust structure-property relationships. However, many existing methods lack the spatial resolution in structural changes and fidelity to electrochemical operating conditions that are needed to probe catalytically relevant structures. Here, we combine a nanopipette electrochemical cell with three-dimensional X-ray Bragg coherent diffractive imaging to study how strain in a single Pt grain evolves in response to applied potential. During polarization, marked changes in surface strain arise from the Coulombic attraction between the surface charge on the electrode and the electrolyte ions in the electrochemical double layers, while the strain in the bulk of the crystal remains unchanged. The concurrent surface redox reactions have a strong influence on the magnitude and nature of the strain changes under polarization. Our studies provide a powerful blueprint to understand how structural evolution influences electrochemical performance at the nanoscale.
Collapse
Affiliation(s)
- Dina Sheyfer
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ruperto G Mariano
- Department of Chemistry, Stanford University, Stanford, California94305, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02141, United States
| | - Tomoya Kawaguchi
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Institute for Materials Research, Tohoku University, Sendai, 9808577, Japan
| | - Wonsuk Cha
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ross J Harder
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Stephan O Hruszkewycz
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Hoydoo You
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew J Highland
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| |
Collapse
|
16
|
Yuan HY, Sun N, Chen J, Yang HG, Hu P, Wang H. Activity Self-Optimization Steered by Dynamically Evolved Fe 3+@Fe 2+ Double-Center on Fe 2O 3 Catalyst for NH 3-SCR. JACS AU 2022; 2:2352-2358. [PMID: 36311837 PMCID: PMC9597592 DOI: 10.1021/jacsau.2c00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Identification of the active centers dynamically stable under the reaction condition is of paramount importance but challenging because of the limited knowledge of steady-state chemistry on catalysts at the atomic level. Herein, focusing on the Fe2O3 catalyst for the selective catalytic reduction of NO with NH3 (NH3-SCR) as a model system, we reveal quantitatively the self-evolving Fe3+@Fe2+ (∼1:1) double-centers under the in-situ condition by the first-principles microkinetic simulations, which enables the accurate prediction of the optimal industry operating temperature (590 K). The cooperation of this double-center achieves the self-optimization of catalytic activity and rationalizes the intrinsic origin of Fe2O3 catalyzing NH3-SCR at middle-high temperatures instead of high temperatures. Our findings demonstrate the atomic-level self-evolution of active sites and the dynamically adjusted activity variation of the catalyst under the in-situ condition during the reaction process and provide insights into the reaction mechanism and catalyst optimization.
Collapse
Affiliation(s)
- Hai Yang Yuan
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Research Institute of
Industrial Catalysis and Centre for Computational Chemistry, School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Ningning Sun
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Research Institute of
Industrial Catalysis and Centre for Computational Chemistry, School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jianfu Chen
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Research Institute of
Industrial Catalysis and Centre for Computational Chemistry, School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hua Gui Yang
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - P. Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Research Institute of
Industrial Catalysis and Centre for Computational Chemistry, School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- School
of Chemistry and Chemical Engineering, The
Queen’s University of Belfast, Belfast BT9, U.K.
| | - Haifeng Wang
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Research Institute of
Industrial Catalysis and Centre for Computational Chemistry, School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
17
|
Zeininger J, Winkler P, Raab M, Suchorski Y, Prieto MJ, Tănase LC, de Souza Caldas L, Tiwari A, Schmidt T, Stöger-Pollach M, Steiger-Thirsfeld A, Roldan Cuenya B, Rupprechter G. Pattern Formation in Catalytic H 2 Oxidation on Rh: Zooming in by Correlative Microscopy. ACS Catal 2022; 12:11974-11983. [PMID: 36249872 PMCID: PMC9552168 DOI: 10.1021/acscatal.2c03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Indexed: 11/29/2022]
Abstract
![]()
Spatio-temporal nonuniformities in H2 oxidation
on individual
Rh(h k l) domains of a polycrystalline Rh foil were studied in the 10–6 mbar pressure range by photoemission electron microscopy
(PEEM), X-ray photoemission electron microscopy (XPEEM), and low-energy
electron microscopy (LEEM). The latter two were used for in situ correlative
microscopy to zoom in with significantly higher lateral resolution,
allowing detection of an unusual island-mediated oxygen front propagation
during kinetic transitions. The origin of the island-mediated front
propagation was rationalized by model calculations based on a hybrid
approach of microkinetic modeling and Monte Carlo simulations.
Collapse
Affiliation(s)
- Johannes Zeininger
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Philipp Winkler
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Maximilian Raab
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Yuri Suchorski
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Mauricio J. Prieto
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Liviu C. Tănase
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Lucas de Souza Caldas
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Aarti Tiwari
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Thomas Schmidt
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Michael Stöger-Pollach
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Andreas Steiger-Thirsfeld
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Günther Rupprechter
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
18
|
Wang ZJ, Liang Z, Kong X, Zhang X, Qiao R, Wang J, Zhang S, Zhang Z, Xue C, Cui G, Zhang Z, Zou D, Liu Z, Li Q, Wei W, Zhou X, Tang Z, Yu D, Wang E, Liu K, Ding F, Xu X. Visualizing the Anomalous Catalysis in Two-Dimensional Confined Space. NANO LETTERS 2022; 22:4661-4668. [PMID: 35640103 DOI: 10.1021/acs.nanolett.2c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Confined nanospaces provide a new platform to promote catalytic reactions. However, the mechanism of catalytic enhancement in the nanospace still requires insightful exploration due to the lack of direct visualization. Here, we report operando investigations on the etching and growth of graphene in a two-dimensional (2D) confined space between graphene and a Cu substrate. We observed that the graphene layer between the Cu and top graphene layer was surprisingly very active in etching (more than 10 times faster than the etching of the top graphene layer). More strikingly, at a relatively low temperature (∼530 °C), the etched carbon radicals dissociated from the bottom layer, in turn feeding the growth of the top graphene layer with a very high efficiency. Our findings reveal the in situ dynamics of the anomalous confined catalytic processes in 2D confined spaces and thus pave the way for the design of high-efficiency catalysts.
Collapse
Affiliation(s)
- Zhu-Jun Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510631, People's Republic of China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Zhihua Liang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Xiao Kong
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea
| | - Xiaowen Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Ruixi Qiao
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, People's Republic of China
| | - Jinhuan Wang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Shuai Zhang
- Department of Engineering Mechanics, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhiqun Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Chaowu Xue
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Guoliang Cui
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Zhihong Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Multidisciplinary Innovation, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Dingxin Zou
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Zhi Liu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Qunyang Li
- Department of Engineering Mechanics, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenya Wei
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Xu Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Zhilie Tang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Enge Wang
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, People's Republic of China
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, Guangdong 523808, People's Republic of China
- School of Physics, Liaoning University, Shenyang 110036, People's Republic of China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, People's Republic of China
| | - Feng Ding
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Xiaozhi Xu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510631, People's Republic of China
| |
Collapse
|
19
|
Wu G, Zhou X, Lv WL, Qian C, Liu XW. Real-Time Plasmonic Imaging of the Compositional Evolution of Single Nanoparticles in Electrochemical Reactions. NANO LETTERS 2022; 22:4383-4391. [PMID: 35549482 DOI: 10.1021/acs.nanolett.2c00831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real-time probing of the compositional evolution of single nanoparticles during an electrochemical reaction is crucial for understanding the structure-performance relationship and rationally designing nanomaterials for desirable applications; however, it is consistently challenging to achieve high-throughput real-time tracking. Here, we present an optical imaging method, termed plasmonic scattering interferometry microscopy (PSIM), which is capable of imaging the compositional evolution of single nanoparticles during an aqueous electrochemical reaction in real time. By quantifying the plasmonic scattering interferometric pattern of nanoparticles, we establish the relationship between the pattern and composition of single nanoparticles. Using PSIM, we have successfully probed the compositional transformation dynamics of multiple individual nanoparticles during electrochemical reactions. PSIM could be used as a universal platform for exploring the compositional evolution of nanomaterials at the single-nanoparticle level and offers great potentials for addressing the extensive fundamental questions in nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Gang Wu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoli Zhou
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Li Lv
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Revealing synergetic structural activation of a CuAu surface during water-gas shift reaction. Proc Natl Acad Sci U S A 2022; 119:e2120088119. [PMID: 35648821 DOI: 10.1073/pnas.2120088119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance Atomic-level in situ environmental transmission electron microscopy observation of the dynamic activation process on a low-indexed CuAu surface under water-gas shift reaction (WGSR) condition has been revealed. The atomic-scale structural activation of a CuAu surface features a gas-dependent periodic surface restructuring and elemental ordering, explaining the "synergy effect" from the structural point of view. These real-time changes under relevant reactant gases and temperature are correlated with the reaction route of WGSR corroborated by density functional theory-based calculation and ab initio molecular dynamics simulation and can provide insights for atom-precision catalyst design.
Collapse
|
21
|
Chen X, Xu Y, Zhou C, Lou K, Peng Y, Zhang HP, Wang W. Unraveling the physiochemical nature of colloidal motion waves among silver colloids. SCIENCE ADVANCES 2022; 8:eabn9130. [PMID: 35613263 PMCID: PMC9132452 DOI: 10.1126/sciadv.abn9130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Traveling waves are common in biological and synthetic systems, including the recent discovery that silver (Ag) colloids form traveling motion waves in H2O2 and under light. Here, we show that this colloidal motion wave is a heterogeneous excitable system. The Ag colloids generate traveling chemical waves via reaction-diffusion, and either self-propel through self-diffusiophoresis ("ballistic waves") or are advected by diffusio-osmotic flows from gradients of neutral molecules ("swarming waves"). Key results include the experimental observation of traveling waves of OH- with pH-sensitive fluorescent dyes and a Rogers-McCulloch model that qualitatively and quantitatively reproduces the key features of colloidal waves. These results are a step forward in elucidating the Ag-H2O2-light oscillatory system at individual and collective levels. In addition, they pave the way for using colloidal waves either as a platform for studying nonlinear phenomena, or as a tool for colloidal transport and for information transmission in microrobot ensembles.
Collapse
Affiliation(s)
- Xi Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yankai Xu
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Zhou
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Kai Lou
- Guangzhou Kayja-Optics Technology Co. Ltd., Guangzhou 511458, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - H. P. Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author. (W.W.); (H.P.Z.)
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Corresponding author. (W.W.); (H.P.Z.)
| |
Collapse
|
22
|
Roy D, Pal A, Pal T. Electrochemical aspects of coinage metal nanoparticles for catalysis and spectroscopy. RSC Adv 2022; 12:12116-12135. [PMID: 35481094 PMCID: PMC9021847 DOI: 10.1039/d2ra00403h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
Down scaling bulk materials can cause colloidal systems to evolve into microscopically dispersed insoluble particles. Herein, we describe the interesting applications of coinage metal nanoparticles (MNPs) as colloid dispersions especially gold and silver. The rich plasmon bands of gold and silver in the visible range are elaborated using the plasmon resonance and redox potential values of grown metal microelectrode (GME). The gradation of their standard reduction potential values (E 0), as evaluated from the Gibbs free energy change for bulk metal, is ascribed to the variation in their size. Also, the effect of nucleophiles in the electrolytic cell with metal nanoparticles (MNPs) is described. The nucleophile-guided reduction potential value is considered, which is applicable even for bulk noble metals. Typically, a low value (as low as E 0 = +0.40 V) causes the oxidation of metals at the O2 (air)/H2O interface. Under this condition, the oxidation of noble metal particles and dissolution of the noble metal in water are demonstrated. Thus, metal dissolution as a function of the size of metal nanoparticles becomes eventful and demonstrable with the addition of a surfactant to the solution. Interestingly, the reversal of the nobility of gold (Au) and silver (Ag) microelectrodes at the water/electrode interface is confirmed from the evolution of normal and inverted 'core-shell' structures, exploiting visible spectrophotometry and surface-enhanced Raman scattering (SERS) analysis. Subsequently, the effect of the size, shape, and facet- and support-selective catalysis of gold nanoparticles (NPs) and the effect of incident photons on current conversion without an applied potential are briefly discussed. Finally, the synergistic effect of the emissive behaviour of gold and silver clusters is productively exploited.
Collapse
Affiliation(s)
- Deblina Roy
- Department of Chemistry, National Institute of Technology Rourkela Odisha India
| | - Anjali Pal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Tarasankar Pal
- Department of Chemical Sciences, University of Johannesburg P. O. Box 524, Auckland Park 2006, Kingsway Campus South Africa
| |
Collapse
|
23
|
Abstract
Catalysis is at the core of chemistry and has been essential to make all the goods surrounding us, including fuels, coatings, plastics and other functional materials. In the near future, catalysis will also be an essential tool in making the shift from a fossil-fuel-based to a more renewable and circular society. To make this reality, we have to better understand the fundamental concept of the active site in catalysis. Here, we discuss the physical meaning - and deduce the validity and, therefore, usefulness - of some common approaches in heterogeneous catalysis, such as linking catalyst activity to a 'turnover frequency' and explaining catalytic performance in terms of 'structure sensitivity' or 'structure insensitivity'. Catalytic concepts from the fields of enzymatic and homogeneous catalysis are compared, ultimately realizing that the struggle that one encounters in defining the active site in most solid catalysts is likely the one we must overcome to reach our end goal: tailoring the precise functioning of the active sites with respect to many different parameters to satisfy our ever-growing needs. This article ends with an outlook of what may become feasible within the not-too-distant future with modern experimental and theoretical tools at hand.
Collapse
|
24
|
Suzuki-Sakamaki M, Amemiya K. Three-dimensional chemical-state imaging with reflection-mode soft x-ray absorption spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:123702. [PMID: 34972431 DOI: 10.1063/5.0069096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
In this study, a method for reflection-mode soft x-ray absorption spectroscopy was developed to realize three-dimensional chemical-state imaging. Soft x rays from a pinhole were reflected by the sample, and the magnified image was observed with a two-dimensional detector. This technique was applied to a Co film with an Au-island-covered surface to obtain the surface chemical state images with a spatial resolution of several tens of micrometers. Furthermore, the soft x-ray reflection spectra within and outside the Au layer were extracted from the images by changing the photon energy. Distinct differences were observed at the Co absorption edge. By considering anomalous x-ray scattering around the Co L-edges in the simulation, the reflection spectrum near the absorption edge in the nm depth resolution was reproduced. In the region without the Au layer, the results were well reproduced, assuming that 4 nm CoO was formed at the surface. These results demonstrate the feasibility of three-dimensional imaging of the chemical states in multilayer films.
Collapse
Affiliation(s)
- M Suzuki-Sakamaki
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - K Amemiya
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
25
|
Wang M, Feng Z. Interfacial processes in electrochemical energy systems. Chem Commun (Camb) 2021; 57:10453-10468. [PMID: 34494049 DOI: 10.1039/d1cc01703a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electrochemical energy systems such as batteries, water electrolyzers, and fuel cells are considered as promising and sustainable energy storage and conversion devices due to their high energy densities and zero or negative carbon dioxide emission. However, their widespread applications are hindered by many technical challenges, such as the low efficiency and poor long-term cyclability, which are mostly affected by the changes at the reactant/electrode/electrolyte interfaces. These interfacial processes involve ion/electron transfer, molecular/ion adsorption/desorption, and complex interface restructuring, which lead to irreversible modifications to the electrodes and the electrolyte. The understanding of these interfacial processes is thus crucial to provide strategies for solving those problems. In this review, we will discuss different interfacial processes at three representative interfaces, namely, solid-gas, solid-liquid, and solid-solid, in various electrochemical energy systems, and how they could influence the performance of electrochemical systems.
Collapse
Affiliation(s)
- Maoyu Wang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA.
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
26
|
Gera R, Bakker HJ, Franklin-Mergarejo R, Morzan UN, Falciani G, Bergamasco L, Versluis J, Sen I, Dante S, Chiavazzo E, Hassanali AA. Emergence of Electric Fields at the Water-C12E6 Surfactant Interface. J Am Chem Soc 2021; 143:15103-15112. [PMID: 34498857 DOI: 10.1021/jacs.1c05112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We study the properties of the interface of water and the surfactant hexaethylene glycol monododecyl ether (C12E6) with a combination of heterodyne-detected vibrational sum frequency generation (HD-VSFG), Kelvin-probe measurements, and molecular dynamics (MD) simulations. We observe that the addition of the hydrogen-bonding surfactant C12E6, close to the critical micelle concentration (CMC), induces a drastic enhancement in the hydrogen bond strength of the water molecules close to the interface, as well as a flip in their net orientation. The mutual orientation of the water and C12E6 molecules leads to the emergence of a broad (∼3 nm) interface with a large electric field of ∼1 V/nm, as evidenced by the Kelvin-probe measurements and MD simulations. Our findings may open the door for the design of novel electric-field-tuned catalytic and light-harvesting systems anchored at the water-surfactant-air interface.
Collapse
Affiliation(s)
- Rahul Gera
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huib J Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | - Uriel N Morzan
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Gabriele Falciani
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Luca Bergamasco
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Jan Versluis
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Indraneel Sen
- Uppsala University, Laegerhyddsvaegen 1, 751 20 Uppsala, Sweden
| | - Silvia Dante
- Materials Characterization Facility, Italian Institute of Technology, 16163 Genoa, Italy
| | - Eliodoro Chiavazzo
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Ali A Hassanali
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
27
|
Rupprechter G. Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004289. [PMID: 33694320 PMCID: PMC11475487 DOI: 10.1002/smll.202004289] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/16/2021] [Indexed: 05/16/2023]
Abstract
Operando characterization of working catalysts, requiring per definitionem the simultaneous measurement of catalytic performance, is crucial to identify the relevant catalyst structure, composition and adsorbed species. Frequently applied operando techniques are discussed, including X-ray absorption spectroscopy, near ambient pressure X-ray photoelectron spectroscopy and infrared spectroscopy. In contrast to these area-averaging spectroscopies, operando surface microscopy by photoemission electron microscopy delivers spatially-resolved data, directly visualizing catalyst heterogeneity. For thorough interpretation, the experimental results should be complemented by density functional theory. The operando approach enables to identify changes of cluster/nanoparticle structure and composition during ongoing catalytic reactions and reveal how molecules interact with surfaces and interfaces. The case studies cover the length-scales from clusters via nanoparticles to meso-scale aggregates, and demonstrate the benefits of specific operando methods. Restructuring, ligand/atom mobility, and surface composition alterations during the reaction may have pronounced effects on activity and selectivity. The nanoscale metal/oxide interface steers catalytic performance via a long ranging effect. Combining operando spectroscopy with switching gas feeds or concentration-modulation provides further mechanistic insights. The obtained fundamental understanding is a prerequisite for improving catalytic performance and for rational design.
Collapse
Affiliation(s)
- Günther Rupprechter
- Institute of Materials ChemistryTechnische Universität WienGetreidemarkt 9/BC/01Vienna1060Austria
| |
Collapse
|
28
|
Bao X, Behrens M, Ertl G, Fu Q, Knop-Gericke A, Lunkenbein T, Muhler M, Schmidt CM, Trunschke A. A Career in Catalysis: Robert Schlögl. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Malte Behrens
- Institute of Inorganic Chemistry, Solid State Chemistry and Catalysis, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Gerhard Ertl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Axel Knop-Gericke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim, Germany
| | - Thomas Lunkenbein
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Muhler
- Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Christoph M. Schmidt
- RWI - Leibniz-Institut für Wirtschaftsforschung, Hohenzollernstraße 1-3, 45128 Essen, Germany
| | - Annette Trunschke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
29
|
Coverage-dependent formic acid oxidation reaction kinetics determined by oscillating potentials. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Chee SW, Lunkenbein T, Schlögl R, Cuenya BR. In situand operandoelectron microscopy in heterogeneous catalysis-insights into multi-scale chemical dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:153001. [PMID: 33825698 DOI: 10.1088/1361-648x/abddfd] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
This review features state-of-the-artin situandoperandoelectron microscopy (EM) studies of heterogeneous catalysts in gas and liquid environments during reaction. Heterogeneous catalysts are important materials for the efficient production of chemicals/fuels on an industrial scale and for energy conversion applications. They also play a central role in various emerging technologies that are needed to ensure a sustainable future for our society. Currently, the rational design of catalysts has largely been hampered by our lack of insight into the working structures that exist during reaction and their associated properties. However, elucidating the working state of catalysts is not trivial, because catalysts are metastable functional materials that adapt dynamically to a specific reaction condition. The structural or morphological alterations induced by chemical reactions can also vary locally. A complete description of their morphologies requires that the microscopic studies undertaken span several length scales. EMs, especially transmission electron microscopes, are powerful tools for studying the structure of catalysts at the nanoscale because of their high spatial resolution, relatively high temporal resolution, and complementary capabilities for chemical analysis. Furthermore, recent advances have enabled the direct observation of catalysts under realistic environmental conditions using specialized reaction cells. Here, we will critically discuss the importance of spatially-resolvedoperandomeasurements and the available experimental setups that enable (1) correlated studies where EM observations are complemented by separate measurements of reaction kinetics or spectroscopic analysis of chemical species during reaction or (2) real-time studies where the dynamics of catalysts are followed with EM and the catalytic performance is extracted directly from the reaction cell that is within the EM column or chamber. Examples of current research in this field will be presented. Challenges in the experimental application of these techniques and our perspectives on the field's future directions will also be discussed.
Collapse
Affiliation(s)
- See Wee Chee
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Thomas Lunkenbein
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, 45413 Mülheim an der Ruhr, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
31
|
Han Y, Zhang H, Yu Y, Liu Z. In Situ Characterization of Catalysis and Electrocatalysis Using APXPS. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04251] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
32
|
How the anisotropy of surface oxide formation influences the transient activity of a surface reaction. Nat Commun 2021; 12:69. [PMID: 33398022 PMCID: PMC7782819 DOI: 10.1038/s41467-020-20377-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
Scanning photoelectron microscopy (SPEM) and photoemission electron microscopy (PEEM) allow local surface analysis and visualising ongoing reactions on a µm-scale. These two spatio-temporal imaging methods are applied to polycrystalline Rh, representing a library of well-defined high-Miller-index surface structures. The combination of these techniques enables revealing the anisotropy of surface oxidation, as well as its effect on catalytic hydrogen oxidation. In the present work we observe, using locally-resolved SPEM, structure-sensitive surface oxide formation, which is summarised in an oxidation map and quantitatively explained by the novel step density (SDP) and step edge (SEP) parameters. In situ PEEM imaging of ongoing H2 oxidation allows a direct comparison of the local reactivity of metallic and oxidised Rh surfaces for the very same different stepped surface structures, demonstrating the effect of Rh surface oxides. Employing the velocity of propagating reaction fronts as indicator of surface reactivity, we observe a high transient activity of Rh surface oxide in H2 oxidation. The corresponding velocity map reveals the structure-dependence of such activity, representing a direct imaging of a structure-activity relation for plenty of well-defined surface structures within one sample. Surface oxide formation under reaction conditions may change the catalytic activity of a catalyst. Here, the authors explore the effect of atomic structure of Rh surfaces on the surface oxide formation and its influence on catalytic activity in hydrogen oxidation, revealing a high transient activity.
Collapse
|
33
|
Hülsey MJ, Sun G, Sautet P, Yan N. Observing Single‐Atom Catalytic Sites During Reactions with Electrospray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Max J. Hülsey
- Department of Chemical and Biomolecular Engineering National University of Singapore 1 Engineering Drive 3 117580 Singapore Singapore
| | - Geng Sun
- Department of Chemistry and Biochemistry University of California Los Angeles CA USA
- Department of Chemical and Biomolecular Engineering University of California Los Angeles CA USA
| | - Philippe Sautet
- Department of Chemistry and Biochemistry University of California Los Angeles CA USA
- Department of Chemical and Biomolecular Engineering University of California Los Angeles CA USA
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering National University of Singapore 1 Engineering Drive 3 117580 Singapore Singapore
| |
Collapse
|
34
|
Hülsey MJ, Sun G, Sautet P, Yan N. Observing Single‐Atom Catalytic Sites During Reactions with Electrospray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2020; 60:4764-4773. [DOI: 10.1002/anie.202011632] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Max J. Hülsey
- Department of Chemical and Biomolecular Engineering National University of Singapore 1 Engineering Drive 3 117580 Singapore Singapore
| | - Geng Sun
- Department of Chemistry and Biochemistry University of California Los Angeles CA USA
- Department of Chemical and Biomolecular Engineering University of California Los Angeles CA USA
| | - Philippe Sautet
- Department of Chemistry and Biochemistry University of California Los Angeles CA USA
- Department of Chemical and Biomolecular Engineering University of California Los Angeles CA USA
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering National University of Singapore 1 Engineering Drive 3 117580 Singapore Singapore
| |
Collapse
|
35
|
Zhang Z, Ying Y, Xu M, Zhang C, Rao Z, Ke S, Zhou Y, Huang H, Fei L. Atomic Steps Induce the Aligned Growth of Ice Crystals on Graphite Surfaces. NANO LETTERS 2020; 20:8112-8119. [PMID: 33044079 DOI: 10.1021/acs.nanolett.0c03132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterogeneous ice nucleation on atmospheric aerosols strongly affects the earth's climate, and at the microscopic level, surface-irregularity-induced ice crystallization behaviors are common but crucial. Because of the lack of visual evidence and effective experimental methods, the mechanism of atomic-structure-dependent ice formation on aerosol surfaces is poorly understood. Here we chose highly oriented pyrolytic graphite (HOPG) to represent soot (a primary aerosol), and environmental scanning electron microscopy (ESEM) was performed for in situ observations of ice formation. We found that hexagonal ice crystals show an aligned growth pattern via a two-stage pathway with one a axis coinciding with the direction of atomic step edges on the HOPG surface. Additionally, the ice crystals grow at a noticeably higher speed along this direction. This study reveals the role of atomic surface defects in heterogeneous ice nucleation and may pave the way to control icing-related processes in practical applications.
Collapse
Affiliation(s)
- Zhouyang Zhang
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang 330031, China
| | - Yiran Ying
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ming Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chuanlin Zhang
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang 330031, China
| | - Zhenggang Rao
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang 330031, China
| | - Shanming Ke
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang 330031, China
| | - Yangbo Zhou
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang 330031, China
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Linfeng Fei
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang 330031, China
| |
Collapse
|
36
|
Albinsson D, Boje A, Nilsson S, Tiburski C, Hellman A, Ström H, Langhammer C. Copper catalysis at operando conditions-bridging the gap between single nanoparticle probing and catalyst-bed-averaging. Nat Commun 2020; 11:4832. [PMID: 32973158 PMCID: PMC7518423 DOI: 10.1038/s41467-020-18623-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
In catalysis, nanoparticles enable chemical transformations and their structural and chemical fingerprints control activity. To develop understanding of such fingerprints, methods studying catalysts at realistic conditions have proven instrumental. Normally, these methods either probe the catalyst bed with low spatial resolution, thereby averaging out single particle characteristics, or probe an extremely small fraction only, thereby effectively ignoring most of the catalyst. Here, we bridge the gap between these two extremes by introducing highly multiplexed single particle plasmonic nanoimaging of model catalyst beds comprising 1000 nanoparticles, which are integrated in a nanoreactor platform that enables online mass spectroscopy activity measurements. Using the example of CO oxidation over Cu, we reveal how highly local spatial variations in catalyst state dynamics are responsible for contradicting information about catalyst active phase found in the literature, and identify that both surface and bulk oxidation state of a Cu nanoparticle catalyst dynamically mediate its activity.
Collapse
Affiliation(s)
- David Albinsson
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Astrid Boje
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Sara Nilsson
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Christopher Tiburski
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Anders Hellman
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Competence Centre for Catalysis, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Henrik Ström
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| |
Collapse
|
37
|
Lambeets SV, Kautz EJ, Wirth MG, Orren GJ, Devaraj A, Perea DE. Nanoscale Perspectives of Metal Degradation via In Situ Atom Probe Tomography. Top Catal 2020. [DOI: 10.1007/s11244-020-01367-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractWe report a unique in situ instrument development effort dedicated to studying gas/solid interactions relevant to heterogeneous catalysis and early stages of oxidation of materials via atom probe tomography and microscopy (APM). An in situ reactor cell, similar in concept to other reports, has been developed to expose nanoscale volumes of material to reactive gas environments, in which temperature, pressure, and gas chemistry are well controlled. We demonstrate that the combination of this reactor cell with APM techniques can aid in building a better mechanistic understanding of resultant composition and surface and subsurface structure changes accompanying gas/surface reactions in metal and metal alloy systems through a series of case studies: O2/Rh, O2/Co, and O2/Zircaloy-4. In addition, the basis of a novel operando mode of analysis within an atom probe instrument is also reported. The work presented here supports the implementation of APM techniques dedicated to atomic to near-atomically resolved gas/surface interaction studies of materials broadly relevant to heterogeneous catalysis and oxidation.
Collapse
|
38
|
Slinko MM, Makeev AG. Heterogeneous Catalysis and Nonlinear Dynamics. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420040114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Evans JD, Bon V, Senkovska I, Lee HC, Kaskel S. Four-dimensional metal-organic frameworks. Nat Commun 2020; 11:2690. [PMID: 32483346 PMCID: PMC7264271 DOI: 10.1038/s41467-020-16527-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/15/2020] [Indexed: 11/08/2022] Open
Abstract
Recognising timescale as an adjustable dimension in porous solids provides a new perspective to develop novel four-dimensional framework materials. The deliberate design of three-dimensional porous framework architectures is a developed field; however, the understanding of dynamics in open frameworks leaves a number of key questions unanswered: What factors determine the spatiotemporal evolution of deformable networks? Can we deliberately engineer the response of dynamic materials along a time-axis? How can we engineer energy barriers for the selective recognition of molecules? Answering these questions will require significant methodological development to understand structural dynamics across a range of time and length scales.
Collapse
Affiliation(s)
- Jack D Evans
- Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Volodymyr Bon
- Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Irena Senkovska
- Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Hui-Chun Lee
- Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Stefan Kaskel
- Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany.
| |
Collapse
|