1
|
van der Sluijs P, Hoelen H, Schmidt A, Braakman I. The Folding Pathway of ABC Transporter CFTR: Effective and Robust. J Mol Biol 2024; 436:168591. [PMID: 38677493 DOI: 10.1016/j.jmb.2024.168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.
Collapse
Affiliation(s)
- Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Hanneke Hoelen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Present address: GenDx, Yalelaan 48, 3584 CM Utrecht, The Netherlands
| | - Andre Schmidt
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; 3D-Pharmxchange, Tilburg, the Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
2
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
3
|
Min D. Folding speeds of helical membrane proteins. Biochem Soc Trans 2024; 52:491-501. [PMID: 38385525 PMCID: PMC10903471 DOI: 10.1042/bst20231315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Membrane proteins play key roles in human health, contributing to cellular signaling, ATP synthesis, immunity, and metabolite transport. Protein folding is the pivotal early step for their proper functioning. Understanding how this class of proteins adopts their native folds could potentially aid in drug design and therapeutic interventions for misfolding diseases. It is an essential piece in the whole puzzle to untangle their kinetic complexities, such as how rapid membrane proteins fold, how their folding speeds are influenced by changing conditions, and what mechanisms are at play. This review explores the folding speed aspect of multipass α-helical membrane proteins, encompassing plausible folding scenarios based on the timing and stability of helix packing interactions, methods for characterizing the folding time scales, relevant folding steps and caveats for interpretation, and potential implications. The review also highlights the recent estimation of the so-called folding speed limit of helical membrane proteins and discusses its consequent impact on the current picture of folding energy landscapes.
Collapse
Affiliation(s)
- Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Center for Wave Energy Materials, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Ferreira FC, Buarque CD, Lopes-Pacheco M. Organic Synthesis and Current Understanding of the Mechanisms of CFTR Modulator Drugs Ivacaftor, Tezacaftor, and Elexacaftor. Molecules 2024; 29:821. [PMID: 38398574 PMCID: PMC10891718 DOI: 10.3390/molecules29040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22435-900, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
5
|
Hartmann A, Sreenivasa K, Schenkel M, Chamachi N, Schake P, Krainer G, Schlierf M. An automated single-molecule FRET platform for high-content, multiwell plate screening of biomolecular conformations and dynamics. Nat Commun 2023; 14:6511. [PMID: 37845199 PMCID: PMC10579363 DOI: 10.1038/s41467-023-42232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Single-molecule FRET (smFRET) has become a versatile tool for probing the structure and functional dynamics of biomolecular systems, and is extensively used to address questions ranging from biomolecular folding to drug discovery. Confocal smFRET measurements are amongst the widely used smFRET assays and are typically performed in a single-well format. Thus, sampling of many experimental parameters is laborious and time consuming. To address this challenge, we extend here the capabilities of confocal smFRET beyond single-well measurements by integrating a multiwell plate functionality to allow for continuous and automated smFRET measurements. We demonstrate the broad applicability of the multiwell plate assay towards DNA hairpin dynamics, protein folding, competitive and cooperative protein-DNA interactions, and drug-discovery, revealing insights that would be very difficult to achieve with conventional single-well format measurements. For the adaptation into existing instrumentations, we provide a detailed guide and open-source acquisition and analysis software.
Collapse
Affiliation(s)
- Andreas Hartmann
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany.
| | - Koushik Sreenivasa
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
- Department of Bionanoscience, Delft University of Technology, 2629HZ, Delft, Netherlands
| | - Mathias Schenkel
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Neharika Chamachi
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Philipp Schake
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Georg Krainer
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010, Graz, Austria
| | - Michael Schlierf
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany.
- Physics of Life, DFG Cluster of Excellence, TU Dresden, 01062, Dresden, Germany.
- Faculty of Physics, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
6
|
Wijesinghe WCB, Min D. Single-Molecule Force Spectroscopy of Membrane Protein Folding. J Mol Biol 2023; 435:167975. [PMID: 37330286 DOI: 10.1016/j.jmb.2023.167975] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/19/2023]
Abstract
Single-molecule force spectroscopy is a unique method that can probe the structural changes of single proteins at a high spatiotemporal resolution while mechanically manipulating them over a wide force range. Here, we review the current understanding of membrane protein folding learned by using the force spectroscopy approach. Membrane protein folding in lipid bilayers is one of the most complex biological processes in which diverse lipid molecules and chaperone proteins are intricately involved. The approach of single protein forced unfolding in lipid bilayers has produced important findings and insights into membrane protein folding. This review provides an overview of the forced unfolding approach, including recent achievements and technical advances. Progress in the methods can reveal more interesting cases of membrane protein folding and clarify general mechanisms and principles.
Collapse
Affiliation(s)
- W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
7
|
Krainer G, Saar KL, Arter WE, Welsh TJ, Czekalska MA, Jacquat RPB, Peter Q, Traberg WC, Pujari A, Jayaram AK, Challa P, Taylor CG, van der Linden LM, Franzmann T, Owens RM, Alberti S, Klenerman D, Knowles TPJ. Direct digital sensing of protein biomarkers in solution. Nat Commun 2023; 14:653. [PMID: 36746944 PMCID: PMC9902533 DOI: 10.1038/s41467-023-35792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/03/2023] [Indexed: 02/08/2023] Open
Abstract
The detection of proteins is of central importance to biomolecular analysis and diagnostics. Typical immunosensing assays rely on surface-capture of target molecules, but this constraint can limit specificity, sensitivity, and the ability to obtain information beyond simple concentration measurements. Here we present a surface-free, single-molecule microfluidic sensing platform for direct digital protein biomarker detection in solution, termed digital immunosensor assay (DigitISA). DigitISA is based on microchip electrophoretic separation combined with single-molecule detection and enables absolute number/concentration quantification of proteins in a single, solution-phase step. Applying DigitISA to a range of targets including amyloid aggregates, exosomes, and biomolecular condensates, we demonstrate that the assay provides information beyond stoichiometric interactions, and enables characterization of immunochemistry, binding affinity, and protein biomarker abundance. Taken together, our results suggest a experimental paradigm for the sensing of protein biomarkers, which enables analyses of targets that are challenging to address using conventional immunosensing approaches.
Collapse
Affiliation(s)
- Georg Krainer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kadi L Saar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - William E Arter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Magdalena A Czekalska
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Fluidic Analytics Limited, Unit A The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
| | - Raphaël P B Jacquat
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Quentin Peter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Walther C Traberg
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Arvind Pujari
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Akhila K Jayaram
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Pavankumar Challa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher G Taylor
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Lize-Mari van der Linden
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Titus Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Roisin M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. .,Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
8
|
Schenkel M, Ravamehr-Lake D, Czerniak T, Saenz JP, Krainer G, Schlierf M, Deber CM. Impact of cholesterol and Lumacaftor on the folding of CFTR helical hairpins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184078. [PMID: 36279907 DOI: 10.1016/j.bbamem.2022.184078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene that codes for the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR). Recent advances in CF treatment have included use of small-molecule drugs known as modulators, such as Lumacaftor (VX-809), but their detailed mechanism of action and interplay with the surrounding lipid membranes, including cholesterol, remain largely unknown. To examine these phenomena and guide future modulator development, we prepared a set of wild type (WT) and mutant helical hairpin constructs consisting of CFTR transmembrane (TM) segments 3 and 4 and the intervening extracellular loop (termed TM3/4 hairpins) that represent minimal membrane protein tertiary folding units. These hairpin variants, including CF-phenotypic loop mutants E217G and Q220R, and membrane-buried mutant V232D, were reconstituted into large unilamellar phosphatidylcholine (POPC) vesicles, and into corresponding vesicles containing 70 mol% POPC +30 mol% cholesterol, and studied by single-molecule FRET and circular dichroism experiments. We found that the presence of 30 mol% cholesterol induced an increase in helicity of all TM3/4 hairpins, suggesting an increase in bilayer cross-section and hence an increase in the depth of membrane insertion compared to pure POPC vesicles. Importantly, when we added the corrector VX-809, regardless of the presence or absence of cholesterol, all mutants displayed folding and helicity largely indistinguishable from the WT hairpin. Fluorescence spectroscopy measurements suggest that the corrector alters lipid packing and water accessibility. We propose a model whereby VX-809 shields the protein from the lipid environment in a mutant-independent manner such that the WT scaffold prevails. Such 'normalization' to WT conformation is consistent with the action of VX-809 as a protein-folding chaperone.
Collapse
Affiliation(s)
- Mathias Schenkel
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Dorna Ravamehr-Lake
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tomasz Czerniak
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - James P Saenz
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
| | - Charles M Deber
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
9
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
10
|
Abstract
SignificanceOuter membrane porins play a crucial role in processes as varied as energy production, photosynthesis, and nutrient transport. They act as the gatekeepers between a gram-negative bacterium and its environment. Understanding how these proteins fold and function is important in improving our understanding and control of these processes. Here we use single-molecule methods to help resolve the apparent differences between the fast folding expected on a molecular scale and the slow kinetics observed in ensemble measurements in the laboratory.
Collapse
|
11
|
Fiedorczuk K, Chen J. Mechanism of CFTR correction by type I folding correctors. Cell 2022; 185:158-168.e11. [PMID: 34995514 DOI: 10.1016/j.cell.2021.12.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/02/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the ΔF508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered ΔF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
12
|
Baatallah N, Elbahnsi A, Mornon JP, Chevalier B, Pranke I, Servel N, Zelli R, Décout JL, Edelman A, Sermet-Gaudelus I, Callebaut I, Hinzpeter A. Pharmacological chaperones improve intra-domain stability and inter-domain assembly via distinct binding sites to rescue misfolded CFTR. Cell Mol Life Sci 2021; 78:7813-7829. [PMID: 34714360 PMCID: PMC11071985 DOI: 10.1007/s00018-021-03994-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
Protein misfolding is involved in a large number of diseases, among which cystic fibrosis. Complex intra- and inter-domain folding defects associated with mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, among which p.Phe508del (F508del), have recently become a therapeutical target. Clinically approved correctors such as VX-809, VX-661, and VX-445, rescue mutant protein. However, their binding sites and mechanisms of action are still incompletely understood. Blind docking onto the 3D structures of both the first membrane-spanning domain (MSD1) and the first nucleotide-binding domain (NBD1), followed by molecular dynamics simulations, revealed the presence of two potential VX-809 corrector binding sites which, when mutated, abrogated rescue. Network of amino acids in the lasso helix 2 and the intracellular loops ICL1 and ICL4 allosterically coupled MSD1 and NBD1. Corrector VX-445 also occupied two potential binding sites on MSD1 and NBD1, the latter being shared with VX-809. Binding of both correctors on MSD1 enhanced the allostery between MSD1 and NBD1, hence the increased efficacy of the corrector combination. These correctors improve both intra-domain folding by stabilizing fragile protein-lipid interfaces and inter-domain assembly via distant allosteric couplings. These results provide novel mechanistic insights into the rescue of misfolded proteins by small molecules.
Collapse
Affiliation(s)
- Nesrine Baatallah
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Ahmad Elbahnsi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
- Department of Applied Physics of Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jean-Paul Mornon
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Benoit Chevalier
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Iwona Pranke
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Nathalie Servel
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Renaud Zelli
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | | | - Aleksander Edelman
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France.
| | - Alexandre Hinzpeter
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France.
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France.
| |
Collapse
|
13
|
Schenkel M, Treff A, Deber CM, Krainer G, Schlierf M. Heat treatment of thioredoxin fusions increases the purity of α-helical transmembrane protein constructs. Protein Sci 2021; 30:1974-1982. [PMID: 34191368 PMCID: PMC8376418 DOI: 10.1002/pro.4150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023]
Abstract
Membrane proteins play key roles in cellular signaling and transport, represent the majority of drug targets, and are implicated in many diseases. Their relevance renders them important subjects for structural, biophysical, and functional investigations. However, obtaining membrane proteins in high purities is often challenging with conventional purification steps alone. To address this issue, we present here an approach to increase the purity of α-helical transmembrane proteins. Our approach exploits the Thioredoxin (Trx) tag system, which is able to confer some of its favorable properties, such as high solubility and thermostability, to its fusion partners. Using Trx fusions of transmembrane helical hairpin constructs derived from the human cystic fibrosis transmembrane conductance regulator (CFTR) and a bacterial ATP synthase, we establish conditions for the successful implementation of the selective heat treatment procedure to increase sample purity. We further examine systematically its efficacy with respect to different incubation times and temperatures using quantitative gel electrophoresis. We find that minute-timescale heat treatment of Trx-tagged fusion constructs with temperatures ranging from 50 to 90°C increases the purity of the membrane protein samples from ~60 to 98% even after affinity purification. We show that this single-step approach is even applicable in cases where regular selective heat purification from crude extracts, as reported for Trx fusions to soluble proteins, fails. Overall, our approach is easy to integrate into existing purification strategies and provides a facile route for increasing the purity of membrane protein constructs after purification by standard chromatography approaches.
Collapse
Affiliation(s)
- Mathias Schenkel
- B CUBE – Center for Molecular BioengineeringTU DresdenDresdenGermany
| | - Antoine Treff
- B CUBE – Center for Molecular BioengineeringTU DresdenDresdenGermany
| | - Charles M. Deber
- Division of Molecular Medicine, Research InstituteHospital for Sick ChildrenTorontoOntarioCanada
| | - Georg Krainer
- B CUBE – Center for Molecular BioengineeringTU DresdenDresdenGermany
- Centre for Misfolding Diseases, Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Michael Schlierf
- B CUBE – Center for Molecular BioengineeringTU DresdenDresdenGermany
| |
Collapse
|
14
|
He S, Stone TA, Deber CM. Uncoupling Amphipathicity and Hydrophobicity: Role of Charge Clustering in Membrane Interactions of Cationic Antimicrobial Peptides. Biochemistry 2021; 60:2586-2592. [PMID: 34423969 DOI: 10.1021/acs.biochem.1c00367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides with a combination of high positive charge and high hydrophobicity have high antimicrobial activity, as epitomized by peptide venoms, which are designed by nature as disruptors of host membranes yet also display significant efficacy against pathogens. To investigate this phenomenon systematically, here we focus on ponericin W1, a peptide venom isolated from Pachycondyla goeldii ants (WLGSALKIGAKLLPSVVGLFKKKKQ) to examine whether Lys positioning can be broadly applied to optimize the functional range of existing natural sequences. We prepared sets of ponericin W1 analogues, where Lys residues were either distributed in an amphipathic manner throughout the sequence (PonAmp), clustered at the N-terminus (PonN), or clustered at the C-terminus (PonC), along with their counterparts of reduced hydrophobicity through 2-4 Leu-to-Ala replacements. We found that wild-type ponericin W1 and all three variants displayed toxicity against human erythrocytes, but hemolysis was eliminated by the replacement of two or more Leu residues by Ala residues. As well, peptides containing up to 3 Leu-to-Ala replacements retained antimicrobial activity against E. coli bacteria. Biophysical analyses of peptide-membrane interaction patterns by circular dichroism spectroscopy revealed a novel mode of cluster-dependent peptide positioning vis-à-vis the water-membrane interface, where PonAmp and PonC peptides displayed full or partial helical structures, while PonN peptides were unstructured, likely due, in part, to dynamic interchange between aqueous and membrane surface environments. The overall findings suggest that the lower membrane penetration of N-terminal charge-clustered constructs coupled with moderate sequence hydrophobicity may be advantageous for conferring enhanced target selectivity for bacterial versus mammalian membranes.
Collapse
Affiliation(s)
- Shelley He
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tracy A Stone
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles M Deber
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
15
|
Qiao Y, Luo Y, Long N, Xing Y, Tu J. Single-Molecular Förster Resonance Energy Transfer Measurement on Structures and Interactions of Biomolecules. MICROMACHINES 2021; 12:492. [PMID: 33925350 PMCID: PMC8145425 DOI: 10.3390/mi12050492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) inherits the strategy of measurement from the effective "spectroscopic ruler" FRET and can be utilized to observe molecular behaviors with relatively high throughput at nanometer scale. The simplicity in principle and configuration of smFRET make it easy to apply and couple with other technologies to comprehensively understand single-molecule dynamics in various application scenarios. Despite its widespread application, smFRET is continuously developing and novel studies based on the advanced platforms have been done. Here, we summarize some representative examples of smFRET research of recent years to exhibit the versatility and note typical strategies to further improve the performance of smFRET measurement on different biomolecules.
Collapse
Affiliation(s)
- Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yuhan Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Naiyun Long
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China;
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| |
Collapse
|
16
|
Krainer G, Hartmann A, Bogatyr V, Nielsen J, Schlierf M, Otzen DE. SDS-induced multi-stage unfolding of a small globular protein through different denatured states revealed by single-molecule fluorescence. Chem Sci 2020; 11:9141-9153. [PMID: 34123163 PMCID: PMC8163379 DOI: 10.1039/d0sc02100h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/07/2020] [Indexed: 12/03/2022] Open
Abstract
Ionic surfactants such as sodium dodecyl sulfate (SDS) unfold proteins in a much more diverse yet effective way than chemical denaturants such as guanidium chloride (GdmCl). But how these unfolding processes compare on a molecular level is poorly understood. Here, we address this question by scrutinising the unfolding pathway of the globular protein S6 in SDS and GdmCl with single-molecule Förster resonance energy transfer (smFRET) spectroscopy. We show that the unfolding mechanism in SDS is strikingly different and convoluted in comparison to denaturation in GdmCl. In contrast to the reversible two-state unfolding behaviour in GdmCl characterised by kinetics on the timescale of seconds, SDS demonstrated not one, but four distinct regimes of interactions with S6, dependent on the surfactant concentration. At ≤1 mM SDS, S6 and surfactant molecules form quasi-micelles on a minute timescale; at millimolar [SDS], the protein denatures through an unfolded/denatured ensemble of highly heterogeneous states on a multi-second timescale; at tens of millimolar of SDS, the protein unfolds into a micelle-packed conformation on the second timescale; and >50 mM SDS, the protein unfolds with millisecond timescale dynamics. We propose a detailed model for multi-stage unfolding of S6 in SDS, which involves at least three different types of denatured states with different level of compactness and dynamics and a continually changing landscape of interactions between protein and surfactant. Our results highlight the great potential of single-molecule fluorescence as a direct probe of nanoscale protein structure and dynamics in chemically complex surfactant environments.
Collapse
Affiliation(s)
- Georg Krainer
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
| | - Andreas Hartmann
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
| | - Vadim Bogatyr
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
- Cluster of Excellence Physics of Life, TU Dresden 01062 Dresden Germany
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
17
|
Guerra L, Favia M, Di Gioia S, Laselva O, Bisogno A, Casavola V, Colombo C, Conese M. The preclinical discovery and development of the combination of ivacaftor + tezacaftor used to treat cystic fibrosis. Expert Opin Drug Discov 2020; 15:873-891. [PMID: 32290721 DOI: 10.1080/17460441.2020.1750592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The most common mutation, F508del, induces protein misprocessing and loss of CFTR function. The discovery through in vitro studies of the CFTR correctors (i.e. lumacaftor, tezacaftor) that partially rescue the misprocessing of F508del-CFTR with the potentiator ivacaftor is promising in giving an unprecedented clinical benefit in affected patients. AREAS COVERED Online databases were searched using key phrases for CF and CFTR modulators. Tezacaftor-ivacaftor treatment has proved to be safer than lumacaftor-ivacaftor, although clinical efficacy is similar. Further clinical efficacy has ensued with the introduction of triple therapy, i.e. applying second-generation correctors, such as VX-569 and VX-445 (elexacaftor) to tezacaftor-ivacaftor. The triple combinations will herald the availability of etiologic therapies for patients for whom no CFTR modulators are currently applied (i.e. F508del/minimal function mutations) and enhance CFTR modulator therapy for patients homozygous for F508del. EXPERT OPINION CF patient-derived tissue models are being explored to determine donor-specific response to current approved and future novel CFTR modulators for F508del and other rare mutations. The discovery and validation of biomarkers of CFTR modulation will complement these studies in the long term and in real-life world.
Collapse
Affiliation(s)
- Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia , Foggia, Italy
| | - Onofrio Laselva
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children , Toronto, Ontario, Canada.,Department of Physiology, University of Toronto , Toronto, Ontario, Canada
| | - Arianna Bisogno
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Regionale di Riferimento per la Fibrosi Cistica, Università degli Studi di Milano , Milan, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Carla Colombo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Regionale di Riferimento per la Fibrosi Cistica, Università degli Studi di Milano , Milan, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia , Foggia, Italy
| |
Collapse
|
18
|
Towards next generation therapies for cystic fibrosis: Folding, function and pharmacology of CFTR. J Cyst Fibros 2020; 19 Suppl 1:S25-S32. [PMID: 31902693 PMCID: PMC7052731 DOI: 10.1016/j.jcf.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
The treatment of cystic fibrosis (CF) has been transformed by orally-bioavailable small molecule modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), which restore function to CF mutants. However, CFTR modulators are not available to all people with CF and better modulators are required to prevent disease progression. Here, we review selectively recent advances in CFTR folding, function and pharmacology. We highlight ensemble and single-molecule studies of CFTR folding, which provide new insight into CFTR assembly, its perturbation by CF mutations and rescue by CFTR modulators. We discuss species-dependent differences in the action of the F508del-CFTR mutation on CFTR expression, stability and function, which might influence pharmacological studies of CFTR modulators in CF animal models. Finally, we illuminate the identification of combinations of two CFTR potentiators (termed co-potentiators), which restore therapeutically-relevant levels of CFTR activity to rare CF mutations. Thus, mechanistic studies of CFTR folding, function and pharmacology inform the development of highly effective CFTR modulators.
Collapse
|
19
|
Krainer G, Schenkel M, Hartmann A, Ravamehr-Lake D, Deber CM, Schlierf M. CFTR transmembrane segments are impaired in their conformational adaptability by a pathogenic loop mutation and dynamically stabilized by Lumacaftor. J Biol Chem 2019; 295:1985-1991. [PMID: 31882543 DOI: 10.1074/jbc.ac119.011360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel protein that is defective in individuals with cystic fibrosis (CF). To advance the rational design of CF therapies, it is important to elucidate how mutational defects in CFTR lead to its impairment and how pharmacological compounds interact with and alter CFTR. Here, using a helical-hairpin construct derived from CFTR's transmembrane (TM) helices 3 and 4 (TM3/4) and their intervening loop, we investigated the structural effects of a patient-derived CF-phenotypic mutation, E217G, located in the loop region of CFTR's membrane-spanning domain. Employing a single-molecule FRET assay to probe the folding status of reconstituted hairpins in lipid bilayers, we found that the E217G hairpin exhibits an altered adaptive packing behavior stemming from an additional GXXXG helix-helix interaction motif created in the mutant hairpin. This observation suggested that the misfolding and functional defects caused by the E217G mutation arise from an impaired conformational adaptability of TM helical segments in CFTR. The addition of the small-molecule corrector Lumacaftor exerts a helix stabilization effect not only on the E217G mutant hairpin, but also on WT TM3/4 and other mutations in the hairpin. This finding suggests a general mode of action for Lumacaftor through which this corrector efficiently improves maturation of various CFTR mutants.
Collapse
Affiliation(s)
- Georg Krainer
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany.
| | - Mathias Schenkel
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Andreas Hartmann
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Dorna Ravamehr-Lake
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles M Deber
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Michael Schlierf
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany.
| |
Collapse
|
20
|
Krainer G, Keller S, Schlierf M. Structural dynamics of membrane-protein folding from single-molecule FRET. Curr Opin Struct Biol 2019; 58:124-137. [DOI: 10.1016/j.sbi.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
21
|
Raghuraman H, Chatterjee S, Das A. Site-Directed Fluorescence Approaches for Dynamic Structural Biology of Membrane Peptides and Proteins. Front Mol Biosci 2019; 6:96. [PMID: 31608290 PMCID: PMC6774292 DOI: 10.3389/fmolb.2019.00096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins mediate a number of cellular functions and are associated with several diseases and also play a crucial role in pathogenicity. Due to their importance in cellular structure and function, they are important drug targets for ~60% of drugs available in the market. Despite the technological advancement and recent successful outcomes in determining the high-resolution structural snapshot of membrane proteins, the mechanistic details underlining the complex functionalities of membrane proteins is least understood. This is largely due to lack of structural dynamics information pertaining to different functional states of membrane proteins in a membrane environment. Fluorescence spectroscopy is a widely used technique in the analysis of functionally-relevant structure and dynamics of membrane protein. This review is focused on various site-directed fluorescence (SDFL) approaches and their applications to explore structural information, conformational changes, hydration dynamics, and lipid-protein interactions of important classes of membrane proteins that include the pore-forming peptides/proteins, ion channels/transporters and G-protein coupled receptors.
Collapse
Affiliation(s)
- H. Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | | | | |
Collapse
|