1
|
Zhou J, Liu Y, Wu J. Association between immune cells, inflammatory cytokines, and sarcopenia: Insights from a Mendelian randomization analysis. Arch Gerontol Geriatr 2025; 128:105560. [PMID: 39213747 DOI: 10.1016/j.archger.2024.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Recent studies have suggested a possible link between sarcopenia, immune dysregulation, and chronic inflammation, although the specific immune components implicated remain unclear. This investigation employs Mendelian Randomization (MR) to explore the reciprocal relationship between immune cells, inflammatory markers, and sarcopenia. METHOD We performed two-sample and multivariate MR analyses using publicly accessible genome-wide association studies (GWAS) summary statistics. Our analyses included 731 immune cells, 41 inflammatory cytokines, and sarcopenia related traits (appendicular lean mass [ALM], low hand-grip strength [LHS], and walking pace [WP]), with additional sensitivity analyses conducted to confirm the findings. RESULTS After false discovery rate (FDR) correction, significant associations were found between ten immune traits and ALM, with the CD127 marker in the Treg panel showing consistent positive correlation across four sites. In contrast, NKT%lymphocyte negatively correlated with WP (OR = 0.99, P = 0.023). In terms of inflammatory cytokines, macrophage colony-stimulating factor (MCSF) (OR = 1.03, P = 0.024) and hepatocyte growth factor (HGF) (OR = 1.03, P = 0.002) demonstrated positive associations with ALM, while interleukin-16 (IL-16) (OR = 0.99, P = 0.006) was inversely related. The reverse Mendelian randomization analysis found no direct causal links between sarcopenia traits and immune or inflammatory markers. Sensitivity analyses underscored the findings' resilience to pleiotropy, and adjusting for inter-trait dynamics weakened these relationships in the multivariable MR analysis. CONCLUSION Our study reveals causal associations between specific immune phenotypes, inflammatory cytokines, and sarcopenia, providing insight into the development of sarcopenia and potential treatment strategies.
Collapse
Affiliation(s)
- Jinqiu Zhou
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Liu
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhui Wu
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Li Y, Zhuang Z, Si H, Liu Q, Yu J, Zhou W, Huang T, Wang C. Causal Associations of Cognitive Reserve and Hierarchical Aging-Related Outcomes: A Two-Sample Mendelian Randomization Study. Biol Res Nurs 2025; 27:5-16. [PMID: 39154286 DOI: 10.1177/10998004241274271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
PURPOSE Two-sample Mendelian randomization methods were used to explore the causal effects of cognitive reserve proxies, such as educational attainment, occupational attainment, and physical activity (PA), on biological (leukocyte telomere length), phenotypic (sarcopenia-related features), and functional (frailty index and cognitive performance) aging levels. RESULTS Educational attainment had a potential protective effect on the telomere length (β = 0.10, 95% CI: 0.08-0.11), sarcopenia-related features (β = 0.04-0.24, 95% CI: 0.02-0.27), frailty risk (β = -0.31, 95% CI: -0.33 to -0.28), cognitive performance (β = 0.77, 95% CI: 0.75-0.80). Occupational attainment was causally related with sarcopenia-related features (β = 0.07-0.10, 95% CI: 0.05-0.14), and cognitive performance (β = 0.30, 95% CI: 0.24-0.36). Device-measured PA was potentially associated with one sarcopenia-related feature (β = 0.14, 95% CI: 0.03-0.25). CONCLUSIONS Our findings support the potential causality of educational attainment on biological, phenotypic, and functional aging outcomes, of occupational attainment on phenotypic and functional aging-related outcomes, and of PA on phenotypic aging-related outcomes.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Basic Nursing, School of Nursing, Peking University, Beijing, China
| | - Zhenhuang Zhuang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Huaxin Si
- Department of Basic Nursing, School of Nursing, Peking University, Beijing, China
| | - Qinqin Liu
- Department of Basic Nursing, School of Nursing, Peking University, Beijing, China
| | - Jiaqi Yu
- Department of Basic Nursing, School of Nursing, Peking University, Beijing, China
| | - Wendie Zhou
- Department of Basic Nursing, School of Nursing, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Intelligent Public Health, Academy for Artificial Intelligence, Peking University, Beijing, China
- Ministry of Education, Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Beijing, China
| | - Cuili Wang
- Department of Basic Nursing, School of Nursing, Peking University, Beijing, China
| |
Collapse
|
3
|
Zaitoon H, Yackobovitch-Gavan M, Midlej E, Uretzky A, Laurian I, Dorfman A, Interator H, Lebenthal Y, Brener A. The role of IGF1 in determining body composition in children and adolescents with growth hormone deficiency and those with idiopathic short stature. Endocrine 2024; 86:1110-1120. [PMID: 39143422 PMCID: PMC11554836 DOI: 10.1007/s12020-024-03992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Treatment with recombinant human growth hormone (rhGH) increases insulin growth factor-1 (IGF1) levels, therefore, monitoring both IGF1 and growth constitutes an acceptable parameter of therapeutic safety and efficacy. We aimed to investigate the relationship between IGF1 level and body composition in children and adolescents undergoing rhGH therapy for growth hormone deficiency (GHD) and idiopathic short stature (ISS). METHODS This observational retrospective study included the bioimpedance analysis (BIA) reports (n = 305) of 135 pediatric patients (age 5-18 years), 64 with GHD and 71 with ISS, conducted as part of routine clinic visits. Sociodemographic and clinical data were extracted from medical records. Generalized estimating equations linear models were used to explore the contributing factors for body composition components of fat percentage (FATP), appendicular skeletal muscle mass (ASMM) z-score, and muscle-to-fat ratio (MFR) z-score while adjusting for cumulative doses of rhGH. RESULTS Subjects with GHD exhibited higher body mass index z-scores (p < 0.001), higher FATP and truncal FATP scores, lower MFR z-score, and higher diastolic blood pressure percentiles than the ISS group (p = 0.010, p = 0.027, p = 0.050, and p = 0.050, respectively). Female sex (p < 0.001) and a GHD diagnosis (p < 0.001), were major contributors to higher FATP scores; female sex (p = 0.049) and ISS diagnosis (p = 0.005) were major contributors to higher MFR z-scores; and female sex (p < 0.001), older age (p < 0.001) and higher insulin-like growth factor 1 z-scores (p = 0.021) were major contributors to higher ASMM z-scores. Socioeconomic position and cumulative rhGH dose were not significant contributors to body composition parameters. CONCLUSION Children with GHD, including those undergoing rhGH treatment, may be at risk for increased adiposity and associated metabolic implications. Sex- and age-adjusted IGF1 levels were related to muscle mass but not to adiposity. Hence, rhGH treatment aimed at increasing IGF1 levels may alleviate these effects by promoting muscle growth.
Collapse
Affiliation(s)
- Hussein Zaitoon
- The Institute of Pediatric Endocrinology, Diabetes and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Yackobovitch-Gavan
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyas Midlej
- The Institute of Pediatric Endocrinology, Diabetes and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Adi Uretzky
- The Institute of Pediatric Endocrinology, Diabetes and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Irina Laurian
- The Institute of Pediatric Endocrinology, Diabetes and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anna Dorfman
- The Institute of Pediatric Endocrinology, Diabetes and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hagar Interator
- The Institute of Pediatric Endocrinology, Diabetes and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael Lebenthal
- The Institute of Pediatric Endocrinology, Diabetes and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Brener
- The Institute of Pediatric Endocrinology, Diabetes and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Zhang Z, Yao L. Drug risks associated with sarcopenia: a real-world and GWAS study. BMC Pharmacol Toxicol 2024; 25:84. [PMID: 39511635 PMCID: PMC11542392 DOI: 10.1186/s40360-024-00813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Drug-induced sarcopenia has not received adequate attention. Meanwhile, there is growing recognition of the importance of effective pharmacovigilance in evaluating the benefits and risks of medications. AIMS The primary aim of this study is to investigate the potential association between drug use and sarcopenia through an analysis of adverse event reports from the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) and to evaluate the genetic factors contributing to drug-induced sarcopenia using summary-data-based Mendelian randomization (SMR). METHODS We obtained reports of adverse drug reactions from FAERS. Primary outcomes included sarcopenia and potential sarcopenia. We calculated the Proportional reporting ratio (PRR) to assess the risk of specific adverse events associated with various drugs, applying chi-square tests for statistical significance. Additionally, we used SMR based on Genome-wide association study (GWAS) to evaluate the potential associations between drug target genes of some significant medications and sarcopenia outcomes. The outcome data for sarcopenia included metrics as hand grip strength and appendicular lean mass (ALM). RESULTS A total of 55 drugs were identified as inducing potential sarcopenia, and 3 drugs were identified as inducing sarcopenia. The top 5 drugs causing a potential risk of sarcopenia were levofloxacin (PRR = 9.96, χ2 = 1057), pregabalin (PRR = 7.20, χ2 = 1023), atorvastatin (PRR = 4.68, χ2 = 903), duloxetine (PRR = 4.76, χ2 = 527) and venlafaxine (PRR = 5.56, χ2 = 504), and the 3 drugs that had been proved to induced sarcopenia included metformin (PRR = 7.41, χ2 = 58), aspirin (PRR = 5.93, χ2 = 35), and acetaminophen (PRR = 4.73, χ2 = 25). We identified electron-transfer flavoprotein dehydrogenase (ETFDH) and protein Kinase AMP-Activated Non-Catalytic Subunit Beta 1 (PRKAB1) as the primary drug target genes for metformin, while Prostaglandin-endoperoxide Synthase 1 (PTGS1) and Prostaglandin-endoperoxide Synthase 2 (PTGS2) were considered the primary action target genes for aspirin and acetaminophen according to DrugBank database. SMR showed that the expression abundance of ETFDH was negatively correlated with right hand grip strength (blood: OR = 1.01, p-value = 1.27e-02; muscle: OR = 1.01, p-value = 1.42e-02) and negatively correlated with appendicular lean mass (blood: OR = 1.03, p-value = 7.73e-08; muscle: OR = 1.03, p-value = 1.67e-07). CONCLUSIONS We find that metformin, aspirin, and acetaminophen are specifically noted for their potential to induce sarcopenia based on the analyses conducted. We perform signal mining for drug-associated sarcopenia events based on real-world data and provides certain guidance for the safe use of medications to prevent sarcopenia.
Collapse
Affiliation(s)
- Zhaoliang Zhang
- The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, China
| | - Liehui Yao
- The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, China.
| |
Collapse
|
5
|
Hu J, Zhang J, Liu Y, Qin J, Bai H, Qin X. Causal linkage of Graves' disease with aging: Mendelian randomization analysis of telomere length and age-related phenotypes. BMC Geriatr 2024; 24:901. [PMID: 39482583 PMCID: PMC11526548 DOI: 10.1186/s12877-024-05379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Aging is an irreversible progressive decline in physical function. Graves' disease (GD) is a common cause of hyperthyroidism and is characterized by elevated levels of the thyroid hormone (TH). High TH levels are associated with aging and a shortened lifespan. The causal relationship between GD and aging has yet to be investigated. METHODS We used genome-wide association study (GWAS) datasets and Mendelian randomization (MR) analysis to explore the causal link between GD and aging. To assess the statistical power of instrumental variables (IVs), F-statistics and R2 were used. MR analysis was conducted using inverse-variance weighting (IVW), MR-Egger, weighted median, and weighted mode. The odds ratio (OR) and 95% CI were calculated to estimate the relative risk of GD to the outcomes. The Cochran Q test, I2, MR-PRESSO test, and MR-Egger regression intercept were calculated using statistical and leave-one-out analyses to test the heterogeneity, horizontal pleiotropy, and stability of the IVs on the outcomes. RESULTS F-statistics of the five IVs were greater than 10, and the R2 values ranged from 0.033 to 0.156 (R2 > 0.01). According to the results of the IVW analysis, GD had no causal effect on facial aging (p = 0.189), age-related macular degeneration (p = 0.346), and Alzheimer's disease (p = 0.479). There was a causal effect of GD on the remaining outcomes: telomere length (TL) (OR = 0.982; 95%CI:0.969-0.994; p = 0.004), senile cataract (OR = 1.031; 95%CI:1.002-1.060; p = 0.033), age-related hearing impairment (OR = 1.009; 95%CI:1.004-1.014; p = 0.001), chronic obstructive pulmonary disease (COPD) (OR = 1.055; 95%CI:1.008-1.103; p = 0.020), and sarcopenia (OR = 1.027; 95%CI:1.009-1.046; p = 0.004). CONCLUSIONS GD accelerates the occurrence of age-related phenotypes including TL, senile cataracts, age-related hearing impairment, COPD, and sarcopenia. In contrast, there are no causal linkages between GD and facial aging, age-related macular degeneration, or Alzheimer's disease. Further experimental studies could be conducted to elucidate the mechanisms by which GD facilitates aging, which could help slow down the progress of aging.
Collapse
Affiliation(s)
- Jingwen Hu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China
| | - Jin Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China
| | - Yingshu Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China
| | - Jiahui Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China
| | - Haixia Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China.
- , No.36 Sanhao Street, Heping District Shenyang 110004, Liaoning Zip, China.
| |
Collapse
|
6
|
Yang D, Li Z, Jiang Z, Mei X, Zhang D, Wei Q. Causal relationship between sarcopenia and rotator cuff tears: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1436203. [PMID: 39534255 PMCID: PMC11555288 DOI: 10.3389/fendo.2024.1436203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Sarcopenia and rotator cuff tears are common among elderly patients. However, the role of sarcopenia in the management of rotator cuff tears has been often overlooked. This study aimed to elucidate the effects of sarcopenia-related traits on rotator cuff tears. Methods Two-sample Mendelian randomization (MR) analyses based on genome-wide association study data were used to evaluate the causal relationships among appendicular lean mass (ALM), usual walking pace, low hand grip strength, and rotator cuff tears. Multivariate Mendelian randomization (MVMR) analyses were used to evaluate the direct effects of each muscle trait on the causal relationship. Results Univariate MR analysis showed that ALM and usual walking pace were causally related to rotator cuff tears (odds ratio (OR) = 0.895; 95% confidence interval (CI), 0.758-0.966, P<0.001 and OR = 0.458, 95% CI, 0.276-0.762, P = 0.003, respectively), and there was no evidence of causality between low hand grip strength and rotator cuff tears (OR = 1.132, 95% CI, 0.913-1.404, P = 0.26). MVMR analysis confirmed the causal effects of ALM and walking pace on rotator cuff tears (OR = 0.918, 95% CI, 0.851-0.990, P = 0.03 and OR = 0.476, 95% CI, 0.304-0.746, P = 0.001, respectively). Conclusion A causal genetic relationship exists between sarcopenia and rotator cuff tears. Sarcopenia-related traits including low muscle mass and physical function, increase the risk of rotator cuff tears. These findings provide new clinical insights and evidence-based medicine to optimize management of rotator cuff tears.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of Orthopedics, Shenzhen Pingle Orthopedics Hospital(Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zheng Li
- Department of Orthopedics, Shenzhen Pingle Orthopedics Hospital(Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Ziqing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianzhong Mei
- Department of Orthopedics, Shenzhen Pingle Orthopedics Hospital(Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Daguang Zhang
- Department of Orthopedics, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Qiushi Wei
- Traumatology & Orthopaedics Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Yu X, Chen X, Su Y, Tang H, Xie L. Causal role of immune cells in muscle atrophy: mendelian randomization study. Sci Rep 2024; 14:25878. [PMID: 39468307 PMCID: PMC11519945 DOI: 10.1038/s41598-024-76828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Immune system and inflammation had a great influence on the progression of muscle atrophy. However, the causal relationship with specific immune cell traits remained uncertain. The aim of this study was to elucidate the genetic influences on these associations, providing insights into the underlying mechanisms of muscle atrophy. A bidirectional two-sample Mendelian randomization (MR) analysis was conducted to investigate the causal relationship between immune cell phenotypes and muscle atrophy. Data on immune cell phenotypes were obtained from a research cohort containing data on 731 immune cell phenotypes and data on muscle atrophy were sourced from a Finnish database. MR analysis was performed using the MR-Egger method, weighted median, inverse variance weighting, heterogeneity testing, sensitivity analysis, and multiplicity analysis, with results subjected to false discovery rate(FDR) correction. Additionally, the UK Biobank cohort was utilized as an external validation. A total of 31 immune phenotypes with causal relationships with muscle atrophy were identified, including various phenotypes of conventional dendritic cells, myeloid cells, T cells/B cells/natural killer cells, regulatory cells, and T cell maturation stages. Among them, 12 immune phenotypes were identified as exhibiting a positive causal relationship with muscle atrophy, while 19 immune phenotypes were demonstrated to have a negative causal association, highlighting the complex interactions between immune cells and muscle health. The results of the reverse MR analysis indicated that a negative correlation between muscle atrophy and CD28 on secreting Treg (OR = 0.9038, 95%CI:0.8308 ~ 0.9832, P = 0.0186). A significant positive correlation was revealed by external datasets between the CD25 on IgD + CD38- immune phenotype and the risk of muscle atrophy, which was consistent with the trend observed in the training group (OR = 1.1041, 95% CI: 1.1005-1.1076, P = 0.0263). No evidence of pleiotropy was observed, and the reliability of these findings was demonstrated by the leave-one-out analysis. The findings highlight significant correlations between certain immune cell features and muscle atrophy, providing potential targets for further investigation of immunological mechanisms and therapeutic interventions for this condition.
Collapse
Affiliation(s)
- Xing Yu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Geriatrics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, China
| | - Xiaojun Chen
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Geriatrics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, China
| | - Yunyun Su
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Geriatrics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, China
| | - Huibin Tang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Geriatrics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, China.
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Department of Geriatrics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
Zhang Y, Wang R, Chen Z, Zhou F, Su S. Educational attainment, brain cortical structure, and sarcopenia: a Mendelian randomization study. Front Public Health 2024; 12:1415343. [PMID: 39507653 PMCID: PMC11538070 DOI: 10.3389/fpubh.2024.1415343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Background Previous observational studies have suggested associations between high-level educational attainment (EA) and a lower risk of sarcopenia. However, the causality inferred from those studies was subjected to residual confounding and reverse causation. The protective effect of EA on sarcopenia may be mediated via changes in brain cortical structure. The aim of this study was to use a two-step Mendelian randomization (MR) analysis to illustrate the causal relationship between EA, brain cortical structure, and sarcopenia. Methods Instrumental variables at the genome-wide significance level were obtained from publicly available datasets, and inverse variance weighted as the primary method was used for MR analysis. We perform several sensitivity analyses, including Cochran Q test, MR-Egger intercept test, leave-one-out analyses, and MR Pleiotropy Residual Sum and Outlier to evaluate the reliability of the results. Results EA was causally associated with increased appendicular lean mass (β = 0.25, 95% confidence interval (CI): 0.19 to 0.31, p = 2.25 × 10-15), hand grip strength (left: β = 0.042, 95% CI: 0.013 to 0.071, p = 4.77 × 10-3 and right: β = 0.050, 95% CI: 0.022 to 0.079, p = 5.17 × 10-4), and usual walking pace (β = 0.20, 95% CI: 0.18 to 0.22, p = 6.16 × 10-83). In addition, EA was associated with increased brain cortical surface area (β = 4082.36, 95% CI: 2513.35 to 5681.38, p = 3.40 × 10-7) and cortical thickness (TH) (β = 0.014, 95% CI: 0.0045 to 0.023, p = 3.45 × 10-3). Regarding the causal effect of EA on usual walking pace, the mediatory effect of TH was 0.0069 and the proportion of mediation by TH was 3.43%. Conclusion The study will have revealed the protective causal effect of EA on sarcopenia, which provides a reference for the prevention of sarcopenia at the public health level. We also will have found EA could affect the brain cortical structure, and the brain cortical structure could mediate the protective effect of EA against sarcopenia risk.
Collapse
Affiliation(s)
- Yunqing Zhang
- Department of Orthopedics, The First Hospital of Changsha, Changsha, China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
9
|
Liu J, Chen M, Xia X, Wang Z, Wang Y, Xi L. Causal associations between the insulin-like growth factor family and sarcopenia: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1422472. [PMID: 39507055 PMCID: PMC11537870 DOI: 10.3389/fendo.2024.1422472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Insulin-like growth factor (IGF) is closely associated with sarcopenia, yet the causal relationship of this association remains unclear. This study aims to explore the potential causal relationship between members of the IGF family and sarcopenia from a genetic perspective through bidirectional Mendelian randomization (MR) analysis using two-sample datasets. Methods Five genetically predicted factors of the IGF family (IGF-1, IGF-1R, IGF-2R, IGFBP-3, IGFBP-7) as one sample, while four relevant features of sarcopenia (low hand grip strength, appendicular lean mass, whole body fat-free mass, and walking pace) as another sample, in conducting a two-sample MR analysis. Results The forward MR results of the relationship between IGF and sarcopenia showed that elevated levels of IGF-1 reduced the risk of low hand grip strength (OR = 0.936, 95% CI=0.892-0.983, P = 0.008) and increased appendicular lean mass of the extremities and whole body fat-free mass (OR = 1.125, 95% CI=1.070-1.182,P = 0.000; OR =1.076, 95% CI=1.047-1.106, P=0.000), reduced the risk of sarcopenia. Elevated IGF-1R also favored an increase in whole body fat-free mass (OR=1.023, 95% CI=1.008-1.038, P =0.002), and the appendicular lean mass trait was more pronounced with elevated IGFBP-3 and IGFBP-7 (OR=1.034, 95% CI=1.024-1.044, P =0.000; OR=1.020, 95% CI=1.010-1.030, P=0.000). Inverse MR results of the effect of sarcopenia on IGF showed that decreased hand grip strength may elevate IGF-1 levels (OR=1.243, 95% CI=1.026-1.505,P =0.027), whereas improvements in appendicular lean mass, whole body fat-free mass traits, and increased walking pace decreased IGF-1 levels (OR=0.902, 95% CI: 0.877-0.927, P = 0.000; OR=0.903, 95% CI=0.859-0.949,P = 0.000; OR=0.209, 95% CI=0.051-0.862,P = 0.045). Also decreased hand grip strength may elevate IGF-1R levels (OR=1.454, 95% CI=1.108-1.909, P =0.007), and appendicular lean mass stimulated high expression of IGFBP-1 (OR=1.314, 95% CI=1.003-1.722, P =0.047). Heterogeneity and pleiotropy were not detected in all results, and the results were stable and reliable. Conclusion There is a bi-directional causal association between IGF family members and the risk of sarcopenia, which provides a more adequate basis for early biological monitoring of sarcopenia and may provide new targets for early intervention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Jili Liu
- Department of Geriatrics, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng Chen
- Department of Geriatrics and Special Needs Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xin Xia
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaolin Wang
- Department of Traditional Chinese Medicine, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqin Wang
- Department of Hematology, Shanxi Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Ling Xi
- Department of Geriatrics, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Meng FQ, Zhang Y, Bai XX, Kong FL, Li FE. Ischemic stroke and sarcopenia have an asymmetric bidirectional relationship based on a two-sample Mendelian randomization study. Front Neurol 2024; 15:1427692. [PMID: 39450050 PMCID: PMC11499911 DOI: 10.3389/fneur.2024.1427692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Background We investigated the potential relationship between age-related conditions, particularly sarcopenia and ischemic stroke (IS), through a two-sample Mendelian randomization (MR) study. Methods We conducted a two-sample bidirectional MR study to investigate the relationship between sarcopenia and stroke. Genetic instruments for sarcopenia were derived from the UK Biobank, while data on IS and its subtypes were obtained from the MEGASTROKE consortium. Inverse variance weighting (IVW) served as the primary analytical method. Additionally, heterogeneity and pleiotropy were assessed to ensure the robustness of the findings. Results The analysis indicates a negative correlation between appendicular lean mass (ALM) and small vessel stroke (SVS; OR = 0.790, 95% CI: 0.703-0.888, p < 0.001), a positive correlation with cardioembolic stroke (CES; OR = 1.165, 95% CI: 1.058-1.284, p = 0.002), and no causal relationship with any ischemic stroke (AIS) or large artery stroke (LAS). Additionally, SVS is negatively associated with right-hand grip strength (OR = 0.639, 95% CI: 0.437-0.934, p = 0.021), while AIS, LAS, and CES do not exhibit a causal relationship with grip strength. Furthermore, no causal relationship was identified between left-hand grip strength, usual walking pace, and IS or its subtypes. MR analysis reveals only a negative association between CES and usual walking pace (OR = 0.989, 95% CI: 0.980-0.998, p = 0.013), with no associations found between other IS subtypes and sarcopenia-related traits. Conclusion This study demonstrates that a reduction in ALM and right-hand grip strength is associated with SVS, whereas decreased ALM may serve as a protective factor against CES. Conversely, our analysis suggests that CES can impact walking speed. Overall, these findings provide valuable insights into the prevention and treatment of these conditions.
Collapse
Affiliation(s)
- Fan-Qiao Meng
- Department of Postgraduate, School of Clinical Medicine, Beihua University, Jilin, China
| | - Yu Zhang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Xiao-Xin Bai
- Department of Postgraduate, School of Clinical Medicine, Beihua University, Jilin, China
| | - Fan-Li Kong
- Department of Pathophysiology, School of Basic Medicine, Beihua University, Jilin, China
| | - Feng-E Li
- Department of Neurology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Neurology, The Affiliated Hospital of Beihua University, Jilin, China
| |
Collapse
|
11
|
Zhu Y, Zeng Q, Shi Y, Qin Y, Liu S, Yang Y, Qiu Y, Pan M, An Z, Li S. Association between sarcopenia and osteoporosis: the cross-sectional study from NHANES 1999-2020 and a bi-directions Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1399936. [PMID: 39439568 PMCID: PMC11493612 DOI: 10.3389/fendo.2024.1399936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Background Osteoporosis (OP) and sarcopenia are prevalent musculoskeletal conditions among the elderly. Nevertheless, the causal relationship between sarcopenia and OP remains a subject of controversy and uncertainty. In this study, we employed cross-sectional analysis and Mendelian randomization (MR) to investigate the intricate relationship between sarcopenia and OP. Methods The cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning 1999-2020, which involved in 116,876 participants. It assessed the correlation between sarcopenia, osteoporosis (OP), and bone mineral density (BMD) using Chi-square tests, T-tests, and a multiple logistic regression model. Additionally, we conducted Mendelian randomization (MR) analysis to investigate the causal effects of sarcopenia-related characteristics (ALM) on OP. We employed IVW, sensitivity analysis, heterogeneity testing, and other methods for MR. The ALM data was sourced from the UK Biobank (n=450,243), while the aggregated data on OP was obtained from GWAS statistics (n=53,236). Results In this cross-sectional analysis, we observed that in the multivariate logistic regression model, without adjusting for any variables, OP emerged as a risk factor for sarcopenia [OR 95% CI = 1.90 (1.13-3.18), P = 0.02]. Following adjustments for gender, age, BMI, and biochemical variables, OP retained its status as a risk factor for sarcopenia [OR 95% CI = 3.54 (1.91-6.54), P < 0.001]. Moreover, after accounting for all variables, OP emerged as an independent risk factor for sarcopenia [OR 95% CI = 4.57 (1.47-14.22), P = 0.01].In the MR analysis, we uncovered that femoral neck BMD (FN BMD), lumbar spine BMD (LS BMD), and forearm bone mineral density (FA BMD) exerted a direct causal influence on ALM [FA BMD: OR 95% CI = 1.028 (1.008, 1.049), p = 0.006; FN BMD: OR (95% CI) = 1.131 (1.092, 1.170), p = 3.18E-12; LS BMD: OR (95% CI) = 1.080 (1.062, 1.098), p = 2.86E-19]. Conclusion Our study has revealed a positive correlation between OP and the prevalence of sarcopenia. It suggests a potentially robust causal relationship between OP and sarcopenia. Notably, OP appears to be associated with a higher likelihood of losing ALM, and a significant loss of ALM may contribute to a decline in LS BMD.
Collapse
Affiliation(s)
- Yuan Zhu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyue Zeng
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Shi
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Qin
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Simin Liu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuhao Yang
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Qiu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengjia Pan
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuangqing Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- General Practice Medical Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Wang L, Zhang S. Investigating the Causal Effects of Exercise-Induced Genes on Sarcopenia. Int J Mol Sci 2024; 25:10773. [PMID: 39409102 PMCID: PMC11476887 DOI: 10.3390/ijms251910773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Exercise is increasingly recognized as an effective strategy to counteract skeletal muscle aging and conditions such as sarcopenia. However, the specific exercise-induced genes responsible for these protective effects remain unclear. To address this, we conducted an eight-week aerobic exercise regimen on late-middle-aged mice and developed an integrated approach that combines mouse exercise-induced genes with human GWAS datasets to identify causal genes for sarcopenia. This approach led to significant improvements in the skeletal muscle phenotype of the mice and the identification of exercise-induced genes and miRNAs. By constructing a miRNA regulatory network enriched with transcription factors and GWAS signals related to muscle function and traits, we focused on 896 exercise-induced genes. Using human skeletal muscle cis-eQTLs as instrumental variables, 250 of these exercise-induced genes underwent two-sample Mendelian randomization analysis, identifying 40, 68, and 62 causal genes associated with sarcopenia and its clinical indicators-appendicular lean mass (ALM) and hand grip strength (HGS), respectively. Sensitivity analyses and cross-phenotype validation confirmed the robustness of our findings. Consistently across the three outcomes, RXRA, MDM1, RBL2, KCNJ2, and ADHFE1 were identified as risk factors, while NMB, TECPR2, MGAT3, ECHDC2, and GINM1 were identified as protective factors, all with potential as biomarkers for sarcopenia progression. Biological activity and disease association analyses suggested that exercise exerts its anti-sarcopenia effects primarily through the regulation of fatty acid oxidation. Based on available drug-gene interaction data, 21 of the causal genes are druggable, offering potential therapeutic targets. Our findings highlight key genes and molecular pathways potentially responsible for the anti-sarcopenia benefits of exercise, offering insights into future therapeutic strategies that could mimic the safe and mild protective effects of exercise on age-related skeletal muscle degeneration.
Collapse
Affiliation(s)
- Li Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
13
|
He D, Cheng S, Wei W, Zhao Y, Cai Q, Chu X, Shi S, Zhang N, Qin X, Liu H, Jia Y, Cheng B, Wen Y, Zhang F. Body shape from birth to adulthood is associated with skeletal development: A Mendelian randomization study. Bone 2024; 187:117191. [PMID: 38969278 DOI: 10.1016/j.bone.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Observational studies have shown that childhood obesity is associated with adult bone health but yield inconsistent results. We aimed to explore the potential causal association between body shape and skeletal development. METHODS We used two-sample Mendelian randomization (MR) to estimate causal relationships between body shape from birth to adulthood and skeletal phenotypes, with exposures including placental weight, birth weight, childhood obesity, BMI, lean mass, fat mass, waist circumference, and hip circumference. Independent genetic instruments associated with the exposures at the genome-wide significance level (P < 5 × 10-8) were selected from corresponding large-scale genome-wide association studies. The inverse-variance weighted analysis was chosen as the primary method, and complementary MR analyses included the weighted median, MR-Egger, weighted mode, and simple mode. RESULTS The MR analysis shows strong evidence that childhood (β = -1.29 × 10-3, P = 8.61 × 10-5) and adulthood BMI (β = -1.28 × 10-3, P = 1.45 × 10-10) were associated with humerus length. Tibiofemoral angle was negatively associated with childhood BMI (β = -3.60 × 10-1, P = 3.00 × 10-5) and adolescent BMI (β = -3.62 × 10-1, P = 2.68 × 10-3). In addition, genetically predicted levels of appendicular lean mass (β = 1.16 × 10-3, P = 1.49 × 10-13), whole body fat mass (β = 1.66 × 10-3, P = 1.35 × 10-9), waist circumference (β = 1.72 × 10-3, P = 6.93 × 10-8) and hip circumference (β =1.28 × 10-3, P = 4.34 × 10-6) were all associated with tibia length. However, we found no causal association between placental weight, birth weight and bone length/width. CONCLUSIONS This large-scale MR analysis explores changes in growth patterns in the length/width of major bone sites, highlighting the important role of childhood body shape in bone development and providing insights into factors that may drive bone maturation.
Collapse
Affiliation(s)
- Dan He
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Wenming Wei
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhao
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Zhang
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Qin
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Feng Zhang
- NHC Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
14
|
Li Z, Liu X, Wen J, Wang Z, Xie Y, Zhu L, Wu X, Fang C, Tian Y, Li Q. Genetically proxied appendicular lean mass and stroke risk: A two-step mendelian randomization study. J Stroke Cerebrovasc Dis 2024; 33:107915. [PMID: 39098364 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Prior observational studies have suggested a strong correlation between sarcopenia and stroke, but the causal link between them remains uncertain. This study aims to investigate the associations between genetically predicted sarcopenia-related traits and stroke using a two-step Mendelian randomization (MR) approach. METHODS Genome-wide association study (GWAS) summary data for sarcopenia-related traits were acquired from the UK Biobank. Genetic associations for ischemic stroke (IS) and its subtypes were selected from the MEGASTROKE consortium comprising European ancestry participants. GWAS summary data for cerebral hemorrhage were obtained from the FinnGen consortium, including intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). MR estimates were calculated using the inverse-variance weighted (IVW) method. The robustness of results was assessed for heterogeneity and pleiotropy of individual single nucleotide polymorphisms (SNPs). RESULTS Higher appendicular lean mass (ALM) exhibited a potential causal association with a reduced incidence of large artery atherosclerosis (LAA) (odds ratio [OR] = 0.81, 95% confidence interval [CI]:0.71-0.93; P = 0.003) and small vessel disease (SVD) (OR = 0.83, 95% CI:0.74-0.94; P = 0.002). The associations of ALM with IS and ICH were compromised after adjusting for body fat and physical activity with multivariable MR. Two-step MR mediation analysis explored 33 candidate mediators, among which hypertension and SBP accounted for more than 10% of the mediation proportion in the relationship between ALM and stroke and its subtypes. CONCLUSION Our research findings indicate that lower ALM is associated with a increased risk of stroke . It is necessary to explore the specific protective mechanisms of higher ALM for preventing stroke occurrence.
Collapse
Affiliation(s)
- Zhiming Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China.
| | - Xueyun Liu
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China.
| | - Jianshang Wen
- Department of Neurology, Shucheng People's Hospital, Lu'an 231300, Anhui, China.
| | - Zijie Wang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China.
| | - Yanfang Xie
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China.
| | - Lei Zhu
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China.
| | - Xiaosan Wu
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China.
| | - Chuanqin Fang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China.
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China.
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Sun M, Gao M, Luo M, Wang T, Ruan X, Tang J, Chen Q, Liu H, Li L, Qin J. Impact of multiple obesity metrics on hypertensive disorders of pregnancy: a meta-analysis and Mendelian randomisation study. Heart 2024; 110:1216-1222. [PMID: 39174317 DOI: 10.1136/heartjnl-2024-324038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The relationships between various obesity measures and hypertensive disorders of pregnancy (HDP) remain inadequately explored, and their causal links are not well understood. This study aims to clarify these associations and investigate the mediating role of triglycerides. METHODS We conducted a comprehensive meta-analysis of observational studies alongside Mendelian randomisation (MR) analysis to assess the impact of 10 obesity measures on HDP risk. Additionally, we evaluated the mediating effect of triglycerides. RESULTS Our meta-analysis revealed significant associations between maternal prepregnancy overweight/obesity and increased risks of gestational hypertension (GH) (overweight: OR=1.98, 95% CI 1.83 to 2.15; obesity: OR=3.77, 95% CI 3.45 to 4.13) and pre-eclampsia (overweight: OR=1.78, 95% CI 1.67 to 1.90; obesity: OR=3.46, 95% CI 3.16 to 3.79). Higher maternal waist circumference (WC) was also linked to increased pre-eclampsia risk (OR=1.45, 95% CI 1.14 to 1.83). MR analyses indicated that each 1-SD increase in genetically predicted obesity measures (whole body fat mass, body fat percentage, trunk fat mass, trunk fat percentage, body mass index, WC, hip circumference) was associated with higher risks of GH and pre-eclampsia. Triglycerides mediated 4.3%-14.1% of the total genetic effect of these obesity measures on GH and pre-eclampsia risks. CONCLUSIONS This study demonstrates that various obesity measures are causally linked to increased HDP risk and highlights the mediating role of triglycerides. These findings could inform clinical practices and public health strategies aimed at reducing HDP through targeted obesity and triglyceride management.
Collapse
Affiliation(s)
- Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ming Gao
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manjun Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Xiaorui Ruan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiapeng Tang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Hanjun Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Liuxuan Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| |
Collapse
|
16
|
Chen M, Liu J, Xia X, Wang Y, Zheng H. Causal relationship between non-alcoholic fatty liver disease and sarcopenia: a bidirectional Mendelian randomization study. Front Med (Lausanne) 2024; 11:1422499. [PMID: 39359931 PMCID: PMC11445014 DOI: 10.3389/fmed.2024.1422499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction A correlation between non-alcoholic fatty liver disease and sarcopenia is demonstrated, but the causality remains unclear. Our study aims to clarify the point of genetics between non-alcoholic fatty liver disease (NAFLD) and sarcopenia at the level of gene prediction through two-sample Mendelian randomization (MR) analysis. Methods The study employed the two-sample MR approach to investigate the bi-directional causality between NAFLD and sarcopenia. Published summary statistics were used to obtain instrumental variables (IVs) at the genome-wide significance level. Results IVW analysis showed that the risk of NAFLD was reduced when walking pace was increased (OR = 0.435, 95%CI 0.240-0.789, p = 0.006); Increasing appendicular lean mass (ALM) decreased the risk of NAFLD (OR = 0.906, 95%CI 0.838-0.980, p = 0.014); Those older than 60 were more likely to suffer from NAFLD if they had low grip strength (OR = 1.411, 95%CI 1.087-1.830, p = 0.0012). In the reverse MR study, weight median analysis showed that NAFLD caused a decrease in ALM (OR = 0.953, 95%CI 0.957-0.994, p = 0.001); whereas NAFLD showed no correlation with usual walking pace or grip strength (all with p > 0.05). MR-Egger regression analysis showed that there was no horizontal pleiotropy in the SNPs (all with p > 0.05). Conclusion The characteristics related to sarcopenia (usual walking pace, appendicular lean mass and low hand grip strength) may play a causal role in the development of nonalcoholic fatty liver disease, although the underlying mechanisms need to be further investigated. The presence of specific single nucleotide polymorphisms (SNPs) such as rs3747207, rs429358, and rs73001065 has been identified in the PNPLA3, APOE, and MAU2 proteins. These genetic markers represent potential targets for future interventions aimed at addressing, managing, or mitigating the risk of NAFLD.
Collapse
Affiliation(s)
- Meng Chen
- Department of Geriatrics and Special Needs Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jili Liu
- Department of Geriatrics, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Xin Xia
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yarong Wang
- Department of Geriatrics and Special Needs Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hongying Zheng
- Department of Geriatrics and Special Needs Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
17
|
Liu J, Wang S, Shen Y, Shi H, Han L. Lipid metabolites and sarcopenia-related traits: a Mendelian randomization study. Diabetol Metab Syndr 2024; 16:231. [PMID: 39285470 PMCID: PMC11406728 DOI: 10.1186/s13098-024-01465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE To explore the influence of lipid metabolism on the risk of sarcopenia. METHODS Two-sample Mendelian randomization (MR) analysis was used to determine causality. A total of 179 lipid metabolism data points were used for exposure, and the data were obtained from a plasma lipid metabolite study of 7174 participants. The total muscle mass and total muscle strength, as well as the muscle strength and muscle mass of different sex groups, were selected as the relevant traits of sarcopenia. Data for outcomes were obtained from the UK Biobank, and sample sizes ranged from 135 468 to 450 243. Inverse-variance weighted (IVW), as the main method for evaluating the causal relationship between lipid metabolites and sarcopenia, uses the false discovery rate (FDR) for multiple comparisons and conducts heterogeneity, pleiotropy, and reverse causality tests. RESULTS Twenty-seven lipid metabolites, mainly phosphatidylcholine, phosphatidylethanolamine, ceramide, triacylglycerol, sphingomyelin, and sterol ester, were found to be associated with the risk of sarcopenia. Ceramide (d40:1), ceramide (d40:2), and sterol ester are risk factors for decreased muscle mass and strength. There is a positive causal relationship between various phosphatidylcholine lipids and muscle mass and strength. Sphingomyelin (d42:2) is a protective factor for total muscle strength and female muscle strength. There are inconsistent effects between different lipid metabolites, triacylglycerol, and muscle strength and muscle mass. CONCLUSIONS There was a causal relationship between 27 lipid metabolites and sarcopenia traits, and targeting specific lipid metabolites may benefit sarcopenia diagnosis, disease assessment, and treatment.
Collapse
Affiliation(s)
- Jianping Liu
- Department of Neurology, Yancheng Third People's Hospital (The Sixth Affiliated Hospital of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, The affiliated hospital of Jiangsu Vocational College of Medicine), Yancheng, Jiangsu, China
| | - Sufang Wang
- Department of Neurology, Yancheng Third People's Hospital (The Sixth Affiliated Hospital of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, The affiliated hospital of Jiangsu Vocational College of Medicine), Yancheng, Jiangsu, China
| | - Yuan Shen
- Department of Neurology, Yancheng Third People's Hospital (The Sixth Affiliated Hospital of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, The affiliated hospital of Jiangsu Vocational College of Medicine), Yancheng, Jiangsu, China
| | - Haicun Shi
- Department of Neurology, Yancheng Third People's Hospital (The Sixth Affiliated Hospital of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, The affiliated hospital of Jiangsu Vocational College of Medicine), Yancheng, Jiangsu, China
| | - Lijian Han
- Department of Neurology, Yancheng Third People's Hospital (The Sixth Affiliated Hospital of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, The affiliated hospital of Jiangsu Vocational College of Medicine), Yancheng, Jiangsu, China.
| |
Collapse
|
18
|
Imahori Y, Qin C, Tang B, Hägg S. Comprehensive analysis of molecular, physiological, and functional biomarkers of aging with neurological diseases using Mendelian randomization. GeroScience 2024:10.1007/s11357-024-01334-6. [PMID: 39269583 DOI: 10.1007/s11357-024-01334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
An increasing burden of neurological diseases (NDs) has been a public health challenge in an aging society. Age, especially biological age, is the most important risk factor for NDs. Identification of biomarkers of aging to capture NDs might lead to a better understanding of the underlying mechanisms of pathological brain aging and the implementation of effective intervention. We conducted a comprehensive two-sample Mendelian Randomization (MR) study to investigate the association between various biomarkers of aging and three leading causes of NDs: Alzheimer's disease (AD), vascular dementia (VaD), and ischemic stroke. Publicly available GWAS summary statistics on people from European ancestry were obtained for six molecular biomarkers, two physiological biomarkers, and eight functional biomarkers, and three NDs. Genetic variants serving as instrumental variables (IVs) were identified for each biomarker. The MR analysis included inverse variance weighted (IVW), weighted median, MR-Egger, and MR-PRESSO. We found that short telomere length and decrease in appendicular lean mass were associated with an increased risk for AD (OR IVW = 1.12 per 1SD decrease, 95% confidence interval 1.02-1.22, and OR IVW = 1.11, 1.06-1.16, respectively), whereas high frailty index showed a protective effect for AD. Accelerated BioAge appeared to be associated with increased risk for ischemic stroke (OR IVW = 1.3 per year in BioAge acceleration, 95% CI 1.19-1.41). Our findings implied a causal association of short telomere length and a decrease in appendicular lean mass with an increased risk for AD, while BioAge appeared to be a good biomarker for ischemic stroke. Further studies are needed to validate these associations and explore underlying mechanisms.
Collapse
Affiliation(s)
- Yume Imahori
- The Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Chenxi Qin
- The Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bowen Tang
- The Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sara Hägg
- The Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Fang Y, Yuan X, Zhang Q, Liu J, Yao Q, Ye X. Causality between sarcopenia and diabetic neuropathy. Front Endocrinol (Lausanne) 2024; 15:1428835. [PMID: 39345878 PMCID: PMC11427279 DOI: 10.3389/fendo.2024.1428835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Background Past studies have demonstrated that diabetic neuropathy is related to sarcopenia, but the further causal relation is still unclear. We sought to investigate the causal relationship by combining data from cross-sectional and Mendelian randomization (MR) studies. Methods The genome-wide association studies data were collected from the UK Biobank and the European Working Group on Sarcopenia to conduct a bi-directional two-sample MR study to explore the causality between diabetic neuropathy and relevant clinical traits of sarcopenia, including appendicular lean mass (ALM), walking speed and low hand grip strength. The inverse-variance weighted and various sensitivity analyses were used to obtain MR estimates. We also enrolled a total of 196 Type 2 diabetes patients from April 2021 to April 2024 and divided them into the Distal peripheral neuropathy (DPN) group (n=51) and non-DPN group (n=145) via vibration perception threshold (VPT) and neuropathy deficit score. Logistic regression and ROC curve analysis were used to investigate the relationship between DPN and relevant sarcopenia clinical features. Results According to a forward MR analysis, decreased walking speed (OR: 0.04, 95% confidence interval (CI): 0.01-0.16; P<0.001) and increased ALM (1.25 [1.05-1.50], P=0.012) had a causal effect on developing diabetic neuropathy. According to reverse MR results, developing diabetic neuropathy had a causal effect on decreased walking speed (0.99 [0.99-1.00], P=0.007) and low grip strength (1.05 [1.02-1.08], P<0.001). The cross-sectional study showed that 5-time stand time (P=0.002) and 6-meter walking speed (P=0.009) had an inverse association with DPN. Additionally, we discovered that ASMI (P=0.030) and 5-time stand time (P=0.013) were separate risk factors for DPN.ConclusionThe MR study suggested that diabetic neuropathy may have a causality with relevant clinical traits of sarcopenia, and our cross-sectional study further proved that sarcopenia indexes are predictors of diabetic neuropathy.
Collapse
Affiliation(s)
- Yi Fang
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoqing Yuan
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Qing Zhang
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Juan Liu
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Qing Yao
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xinhua Ye
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
20
|
Ding Q, Tu Y. Sarcopenia Is Associated with Neoplasm of Bone and Articular Cartilage: Findings from Mendelian Randomized Study. Rejuvenation Res 2024. [PMID: 39225155 DOI: 10.1089/rej.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Exploring the causal relationship between sarcopenia and neoplasm of bone and articular cartilage (NBAC) by bidirectional Mendelian randomization (MR). Genome-wide association study (GWAS) data on sarcopenia-associated traits including appendicular lean mass, low handgrip strength (including criteria from the European Working Group on Sarcopenia in Older People and the Foundation for the National Institutes of Health), and usual walking speeds were obtained from the UK Biobank. GWAS data for NBAC (benign and malignant) were provided by the Finnish Genetic Database. Three different methods of MR analysis, including inverse-variance weighted, Mendelian randomized Egger regression, and weighted median methods, were utilized. MR analysis showed that high appendicular lean mass was positively associated with the risk of developing benign NBAC (odds ratio and 95% confidence interval = 1.236 (1.026,1.489), p = 0.025). At the same time, there is no statistically significant association was found between traits related to sarcopenia and malignant neoplasm of bone and articular cartilage. There was also no reverse causal correlation between NBAC and traits related to sarcopenia. In European populations, better appendicular lean body mass is positively associated with the risk of benign neoplasm of bone and articular cartilage, representing the possibility that sarcopenia may be a protective factor against neoplasm of bone and articular cartilage.
Collapse
Affiliation(s)
- Qin Ding
- Department of Gastroenterology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Tu
- Department of Gastroenterology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Liu C, Chen G, Xia Y, Wang P, Zhao Z, Zhang J, Xiao T, Li H. Sarcopenia as a predictor of nutritional status and comorbidities: a cross-sectional and mendelian randomization study. BMC Geriatr 2024; 24:752. [PMID: 39261770 PMCID: PMC11389292 DOI: 10.1186/s12877-024-05341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND With the advancement of world population aging, age-related sarcopenia (SP) imposes enormous clinical burden on hospital. Clinical research of SP in non-geriatric wards has not been appreciated, necessitating further investigation. However, observational studies are susceptible to confounders. Mendelian randomization (MR) can effectively mitigate bias to assess causality. OBJECTIVE To investigate the correlation between SP and comorbidities in orthopedic wards, and subsequently infer the causality, providing a theoretical basis for developing strategies in SP prevention and treatment. METHODS Logistic regression models were employed to assess the correlation between SP and comorbidities. The MR analysis was mainly conducted with inverse variance weighted, utilizing data extracted from the UK and FinnGen biobank (Round 9). RESULTS In the cross-sectional analysis, SP exhibited significant associations with malnutrition (P = 0.013) and some comorbidities, including osteoporosis (P = 0.014), body mass index (BMI) (P = 0.021), Charlson Comorbidity Index (CCI) (P = 0.006). The MR result also provided supporting evidence for the causality between SP and hypertension, osteoporosis and BMI. These results also withstood multiple sensitivity analyses assessing the validity of MR assumptions. CONCLUSION The result indicated a significant association between SP and BMI, CCI, malnutrition, and osteoporosis. We highlighted that SP and comorbidities deserved more attention in non-geriatric wards, urging further comprehensive investigation.
Collapse
Affiliation(s)
- Chao Liu
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan , 410011, People's Republic of China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, 410011, People's Republic of China
| | - Guanyi Chen
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan , 410011, People's Republic of China
| | - Yu Xia
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan , 410011, People's Republic of China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, 410011, People's Republic of China
| | - Pingxiao Wang
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan , 410011, People's Republic of China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, 410011, People's Republic of China
| | - Ziyue Zhao
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan , 410011, People's Republic of China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, 410011, People's Republic of China
| | - JiaLin Zhang
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan , 410011, People's Republic of China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, 410011, People's Republic of China
| | - Tao Xiao
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan , 410011, People's Republic of China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, 410011, People's Republic of China
| | - Hui Li
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan , 410011, People's Republic of China.
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, 410011, People's Republic of China.
| |
Collapse
|
22
|
Jiang H, Li L, Zhang X, He J, Chen C, Sun R, Chen Y, Xia L, Wen L, Chen Y, Liu J, Zhang L, Lv W. Novel insights into the association between genetically proxied inhibition of proprotein convertase subtilisin/kexin type 9 and risk of sarcopenia. J Cachexia Sarcopenia Muscle 2024. [PMID: 39254080 DOI: 10.1002/jcsm.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The effects of lipid-lowering drugs [including statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors] on hyperlipidaemia have been established. Some may have treatment effects beyond their reported properties, offering potential opportunities for drug repurposing. Epidemiological studies have reported conflicting findings on the relationship between lipid-lowering medication use and sarcopenia risk. METHODS We performed a two-sample Mendelian randomization (MR) study to investigate the causal association between the use of genetically proxied lipid-lowering drugs (including statins, ezetimibe, and PCSK9 inhibitors, which use low-density lipoprotein as a biomarker), and sarcopenia risk. The inverse-variance weighting method was used with pleiotropy-robust methods (MR-Egger regression and weighted median) and colocalization as sensitivity analyses. RESULTS According to the positive control analysis, genetically proxied inhibition in lipid-lowering drug targets was associated with a lower risk of coronary heart disease [PCSK9 (OR, 0.67; 95% CI, 0.61 to 0.72; P = 7.7E-21); 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR; OR, 0.68; 95% CI, 0.57 to 0.82; P = 4.6E-05), and Niemann-Pick C1-like 1 (NPC1L1; OR, 0.53; 95% CI, 0.40 to 0.69; P = 3.3E-06)], consistent with drug mechanistic actions and previous trial evidence. Genetically proxied inhibition of PCSK9 (beta, -0.040; 95% CI, -0.068 to -0.012; P = 0.005) and circulating PCSK9 levels (beta, -0.019; 95% CI, -0.033 to -0.005; P = 0.006) were associated with reduced appendicular lean mass (ALM) with concordant estimates in terms of direction and magnitude. Validation analyses using a second instrument for PCSK9 yielded consistent results in terms of direction and magnitude [(PCSK9 to ALM; beta, -0.052; 95% CI, -0.074 to -0.032; P = 7.1E-7); (PCSK9 protein to ALM; beta, -0.060; 95% CI, -0.106 to -0.014; P = 0.010)]. Genetically proxied inhibition of PCSK9 gene expression in the liver may be associated with reduced ALM (beta, -0.013; 95% CI, -0.035 to 0.009; P = 0.25), consistent with the results of PCSK9 drug-target and PCSK9 protein MR analyses, but the magnitude was less precise. No robust association was found between HMGCR inhibition (beta, 0.048; 95% CI, -0.015 to 0.110; P = 0.14) or NPC1L1 (beta, 0.035; 95% CI, -0.074 to 0.144; P = 0.53) inhibition and ALM, and validation and sensitivity MR analyses showed consistent estimates. CONCLUSIONS This MR study suggested that PCSK9 is involved in sarcopenia pathogenesis and that its inhibition is associated with reduced ALM. These findings potentially pave the way for future studies that may allow personalized selection of lipid-lowering drugs for those at risk of sarcopenia.
Collapse
Affiliation(s)
- Hongyan Jiang
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Zhejiang, China
| | - Lulu Li
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xue Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jia He
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Zhejiang, China
| | - Chuanhuai Chen
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Zhejiang, China
| | - Ruimin Sun
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Zhejiang, China
| | - Ying Chen
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Zhejiang, China
| | - Lijuan Xia
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Zhejiang, China
| | - Lei Wen
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Zhejiang, China
| | - Yunxiang Chen
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Zhejiang, China
| | - Junxiu Liu
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Zhejiang, China
| | - Lijiang Zhang
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Zhejiang, China
| | - Wanqiang Lv
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Zhejiang, China
| |
Collapse
|
23
|
Liu H, Fan Y, Liang J, Hu A, Chen W, Wang H, Fan Y, Li M, Duan J, Wang Q. A causal relationship between sarcopenia and cognitive impairment: A Mendelian randomization study. PLoS One 2024; 19:e0309124. [PMID: 39240885 PMCID: PMC11379137 DOI: 10.1371/journal.pone.0309124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/05/2024] [Indexed: 09/08/2024] Open
Abstract
OBJECTIVE Sarcopenia and cognitive impairment often coexist in the elderly. In this study, we investigated the causal relationship between sarcopenia-related muscle characteristics and cognitive performance. METHODS We used linkage disequilibrium score regression (LDSC) and Mendelian Randomization (MR) analyses to estimate genetic correlations and causal relationships between genetically predicted sarcopenia-related muscle traits and cognitive function, as well as cognitive function-based discovery samples and replicated samples. Estimated effect sizes were derived from a fixed-effects meta-analysis. RESULTS Our univariate genome-wide association study (GWAS) meta-analysis indicated a causal relationship between appendicular lean mass (ALM) (β = 0.049; 95% confidence interval (CI): 0.032-0.066, P < 0.001) and walking pace (β = 0.349; 95% CI: 0.210-0.487, P < 0.001) with cognitive function, where a causal relationship existed between ALM in both male and female (βALM-Male(M) = 0.060; 95% CI: 0.031-0.089, PALM-M < 0.001; βALM-Female(F) = 0.045; 95% CI: 0.020-0.069, PALM-F < 0.001) with cognitive function. Low grip strength was not causally associated with cognitive function (β = -0.045; 95% CI: -0.092 - -0.002, P = 0.062). A reverse causality GWAS meta-analysis showed a causal relationship between cognitive function and ALM (β = 0.033; 95% CI: 0.018-0.048, P < 0.001) and walking pace (β = 0.039; 95% CI: 0.033-0.051, P < 0.001), where ALM in both male and female showed a causality (βALM-M = 0.041; 95% CI: 0.019-0.063, PALM-M < 0.001; βALM-F = 0.034; 95% CI: 0.010-0.058, PALM-F = 0.005). Cognitive function was not causally related to low grip strength (β = -0.024; 95% CI: -0.073-0.025, P = 0.344). Multivariable MR1 (MVMR1) analyses showed a significant causal relationship for ALM (β = 0.077; 95% CI: 0.044-0.109, P = 0.000) and walking pace (β = 0.579; 95% CI: 0.383-0.775, P = 0.000) and cognitive function. Multivariable MR2 (MVMR2) multivariate analysis showed that ALM causality remained (β = 0.069; 95% CI: 0.033-0.106, P = 0.000), and walking pace (β = 0.589; 95% CI: 0.372-0.806, P = 0.000). CONCLUSIONS Bidirectional two-sample MR demonstrated that sarcopenia-related muscle characteristics and cognitive performance were positive causal genetic risk factors for each other, while a multivariable MR study demonstrated that low ALM and a slow walking pace were causally involved in reduced cognitive performance. This study suggests a causal relationship between sarcopenia and cognitive impairment in older adults and provide new ideas for prevention and treatment.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Orthopaedics, Huangshi Central Hospital, Huangshi, China
- Department of Orthopaedics, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Yi Fan
- Department of Infection, Huangshi Central Hospital, Huangshi, China
- Department of Infection, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Jie Liang
- Department of Orthopaedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Orthopaedics, Yichang Central People's Hospital, Yichang, China
| | - Aixin Hu
- Department of Orthopaedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Orthopaedics, Yichang Central People's Hospital, Yichang, China
| | - Wutong Chen
- Department of Orthopaedics, China Three Gorges University, College of Basic Medical Sciences, Yichang, China
| | - Hua Wang
- Department of Orthopaedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Orthopaedics, Yichang Central People's Hospital, Yichang, China
| | - Yifeng Fan
- Department of Orthopaedics, China Three Gorges University, College of Basic Medical Sciences, Yichang, China
| | - Mingwu Li
- Department of Orthopaedics, Huangshi Central Hospital, Huangshi, China
- Department of Orthopaedics, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Jun Duan
- Department of Orthopaedics, Huangshi Central Hospital, Huangshi, China
- Department of Orthopaedics, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Qinzhi Wang
- Department of Orthopaedics, Huangshi Central Hospital, Huangshi, China
- Department of Orthopaedics, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| |
Collapse
|
24
|
Wei J, Hou S, Hei P, Wang G. Thyroid dysfunction and sarcopenia: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1378757. [PMID: 39301320 PMCID: PMC11410624 DOI: 10.3389/fendo.2024.1378757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Objective Observational studies have shown positive associations between thyroid dysfunction and risk of sarcopenia. However, the causality of this association remains unknown. This study aimed to evaluate the potential causal relationship between thyroid dysfunction and sarcopenia using Mendelian randomization (MR). Methods This study collected pooled data from genome-wide association studies focusing on thyroid dysfunction and three sarcopenia-related features: low hand grip strength, appendicular lean mass (ALM), and walking pace, all in individuals of European ancestry. The primary analytical method used was inverse-variance weighted, with weighted median and MR-Egger serving as complementary methods to assess causal effects. Heterogeneity and pleiotropy tests were also performed, and the stability of the results was evaluated using the Leave-one-out. Results The MR analysis indicated that hyperthyroidism could lead to a significant decrease in ALM in the extremities (OR = 1.03; 95% CI = 1.02 to 1.05; P < 0.001). The analysis also found that hypothyroidism could cause a notable reduction in grip strength (OR = 2.03; 95% CI = 1.37 to 3.01; P < 0.001) and walking pace (OR = 0.83; 95% CI = 0.77 to 0.90; P < 0.001). There was a significant association between subclinical hyperthyroidism and a reduced walking pace (OR = 1.00; 95% CI = 0.99 to 1.00; P = 0.041). Conclusion This study provides evidence that hyperthyroidism, hypothyroidism, and subclinical hyperthyroidism can all increase the risk of sarcopenia.
Collapse
Affiliation(s)
- Jiaxin Wei
- Department of Sport Rehabilitation, School of Graduate, Xi'an Physical Education University, Xi'an, Shaanxi, China
| | - Shuanglong Hou
- Department of Sport Rehabilitation, School of Graduate, Xi'an Physical Education University, Xi'an, Shaanxi, China
| | - Peng Hei
- Department of Sport Rehabilitation, School of Graduate, Xi'an Physical Education University, Xi'an, Shaanxi, China
| | - Gang Wang
- School of Sports and Health Science, Xi'an Physical Education University, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Zhang X, Yang G, Jiang S, Ji B, Xie W, Li H, Sun J, Li Y. Causal Relationship Between Gut Microbiota, Metabolites, and Sarcopenia: A Mendelian Randomization Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae173. [PMID: 38995073 PMCID: PMC11329623 DOI: 10.1093/gerona/glae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Gut microbiota imbalance and sarcopenia are frequently observed in older adults. Gut microbiota and their metabolites are considered risk factors contributing to the heightened risk of sarcopenia, but whether these associations are causal remains unclear. METHODS We conducted linkage disequilibrium score regression and 2-sample Mendelian randomization (MR) methods with single-nucleotide polymorphisms sourced from large-scale genome-wide association studies as instrumental variables to examine the causal associations linking gut microbiota with their metabolites to the sarcopenia. Following the MR analysis, subsequent sensitivity analyses were conducted to reinforce the robustness and credibility of the obtained results. RESULTS MR analysis yielded compelling evidence demonstrating the correlation between genetically predicted gut microbiota and metabolites and the risk of sarcopenia. The abundance of Porphyromonadaceae, Rikenellaceae, Terrisporobacter, and Victivallis was found to be associated with walking pace. Our study also found suggestive associations of 12 intestinal bacteria with appendicular lean mass, and of Streptococcaceae, Intestinibacter, Paraprevotella, Ruminococcaceae UCG009, and Sutterella with grip strength. Specifically, we identified 21 gut microbiota-derived metabolites that may be associated with the risk of sarcopenia. CONCLUSIONS Utilizing a 2-sample MR approach, our study elucidates the causal interplay among gut microbiota, gut microbiota-derived metabolites, and the occurrence of sarcopenia. These findings suggest that gut microbiota and metabolites may represent a potential underlying risk factor for sarcopenia, and offer the promise of novel therapeutic focal points.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shide Jiang
- Department of Orthopedics, The Central Hospital of Yongzhou, Yongzhou, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianfeng Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Wang T, Geng J, Zeng X, Han R, Huh YE, Peng J. Exploring causal effects of sarcopenia on risk and progression of Parkinson disease by Mendelian randomization. NPJ Parkinsons Dis 2024; 10:164. [PMID: 39198455 PMCID: PMC11358304 DOI: 10.1038/s41531-024-00782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Previous observational studies suggested that sarcopenia is associated with Parkinson disease (PD), but it is unclear whether this association is causal. The objective of this study was to examine causal associations between sarcopenia-related traits and the risk or progression of PD using a Mendelian randomization (MR) approach. Two-sample bidirectional MR analyses were conducted to evaluate causal relationships. Genome-wide association study (GWAS) summary statistics for sarcopenia-related traits, including right handgrip strength (n = 461,089), left handgrip strength (n = 461,026), and appendicular lean mass (n = 450,243), were retrieved from the IEU OpenGWAS database. GWAS data for the risk of PD were derived from the FinnGen database (4235 cases; 373,042 controls). Summary-level data for progression of PD, including progression to Hoehn and Yahr stage 3, progression to dementia, and development of levodopa-induced dyskinesia, were obtained from a recent GWAS publication on progression of PD in 4093 patients from 12 longitudinal cohorts. Significant causal associations identified in MR analysis were verified through a polygenic score (PGS)-based approach and pathway enrichment analysis using genotype data from the Parkinson's Progression Markers Initiative. MR results supported a significant causal influence of right handgrip strength (odds ratio [OR] = 0.152, 95% confidence interval [CI] = 0.055-0.423, adjusted P = 0.0036) and appendicular lean mass (OR = 0.597, 95% CI = 0.440-0.810, adjusted P = 0.0111) on development of levodopa-induced dyskinesia. In Cox proportional hazard analysis, higher PGSs for right handgrip strength (hazard ratio [HR] = 0.225, 95% CI = 0.095-0.530, adjusted P = 0.0019) and left handgrip strength (HR = 0.303, 95% CI = 0.121-0.59, adjusted P = 0.0323) were significantly associated with a lower risk of developing levodopa-induced dyskinesia, after adjusting for covariates. Pathway enrichment analysis revealed that genome-wide significant single-nucleotide polymorphisms for right handgrip strength were substantially enriched in biological pathways involved in the control of synaptic plasticity. This study provides genetic evidence of the protective role of handgrip strength or appendicular lean mass on the development of levodopa-induced dyskinesia in PD. Sarcopenia-related traits can be promising prognostic markers for levodopa-induced dyskinesia and potential therapeutic targets for preventing levodopa-induced dyskinesia in patients with PD.
Collapse
Affiliation(s)
- Tao Wang
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Jiaquan Geng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Xi Zeng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Ruijiang Han
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, South Korea.
- Parkinson's Disease and Movement Disorder Center, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, South Korea.
| | - Jiajie Peng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
27
|
Liu M, Wang J, Han Y, Fu X, Pan Y, Yang C, Sun G. Comprehensive landscapes of the causal network between immunity and sarcopenia. Front Immunol 2024; 15:1443885. [PMID: 39229276 PMCID: PMC11368746 DOI: 10.3389/fimmu.2024.1443885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Inflammaging, an immune status characterized by a sustained increase in pro-inflammatory markers and a decline in anti-inflammatory mechanisms, is a critical risk factor in the development of sarcopenia. Landscapes of the causal relationships between immunity and sarcopenia are needed to understand the mechanism of sarcopenia and provide novel treatments comprehensively. Methods We used Mendelian Randomization (MR) as the basic method in this study. By setting immune proteins, immune cells, and sarcopenia as exposures and outcomes alternatively, and then combining them in different directions, we potentially estimated their causal relationships and directions and subsequently mapped the comprehensive causal landscape based on this information efficiently. To further understand the network, we developed a method based on rank-sums to integrate multiple algorithms and identify the key immune cells and proteins. Results More than 1,000 causal relationships were identified between immune cell phenotypes, proteins, and sarcopenia traits (p < 0.05), and the causal maps of these linkages were established. In the threshold of FDR < 0.05, hundreds of causal linkages were still significant. The final comprehensive map included 13 immune cell phenotypes and 8 immune proteins. The star factors in the final map included EM CD8br %CD8br, EM DN (CD4- CD8-) %DN, SIRT2, and so on. Conclusion By reading the landscapes in this study, we may not only find the factors and the pathways that have been reported and proven but also identify multiple novel immunity cell phenotypes and proteins with enriched upstream and downstream pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Lin S, Chen X, Cheng Y, Huang H, Yang F, Bao Z, Fan Y. C-Reactive Protein Level as a Novel Serum Biomarker in Sarcopenia. Mediators Inflamm 2024; 2024:3362336. [PMID: 39502753 PMCID: PMC11535261 DOI: 10.1155/2024/3362336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/19/2024] [Accepted: 07/25/2024] [Indexed: 11/08/2024] Open
Abstract
Background The role of C-reactive protein (CRP), an inflammatory marker, in the development of sarcopenia remains uncertain. Methods This cross-sectional research involved the enrollment of 207 patients, classified into two groups: 74 patients with sarcopenia and 133 patients without sarcopenia. Clinical data of the participants, including hand grip strength, walking speed, appendicular lean mass (ALM), and calf circumference, were collected and recorded. We evaluated the extent to which CRP levels are associated with the risk of sarcopenia using both univariate and multivariate logistic regression models. Besides, the correlation between CRP levels, hand grip strength, ALM, and walking speed was examined using the Spearman rank correlation test. Moreover, we have employed the Mendelian randomization (MR) analysis technique to explore the causal relationship between CRP levels and the occurrence of sarcopenia. Results The sarcopenia group showed a higher proportion of older women, with significant differences in anemia prevalence, calf circumference, gait speed, ALM, hand grip strength, and elevated CRP levels compared to the control group. Logistic regression analyses identified CRP as an independent risk factor for sarcopenia (OR: 1.151, 95% CI:1.070-1.238, and P < 0.001). Correlation analysis results revealed a noteworthy inverse association with hand grip strength (R = -0.454 and P < 0.001), ALM (R = -0.426 and P < 0.001), and walking speed (R = -0.431 and P < 0.001). MR analysis provided further evidence of a significant detrimental link between genetically predicted CRP levels and essential sarcopenia characteristics, with consistent results across various statistical models. Conclusions Our study uncovered strong evidence supporting a noteworthy inverse association and causality between CRP concentrations and sarcopenia, indicating that CRP has the potential to serve as a biomarker for sarcopenia.
Collapse
Affiliation(s)
- Shangjin Lin
- Department of OrthopedicsHuadong Hospital Affiliated to Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China
| | - Xiuxiu Chen
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China
- Department of GerontologyHuadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Ying Cheng
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China
- Department of GastroenterologyHuadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Hou Huang
- Department of OrthopedicsHuadong Hospital Affiliated to Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China
| | - Fengjian Yang
- Department of OrthopedicsHuadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China
- Department of GerontologyHuadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yongqian Fan
- Department of OrthopedicsHuadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
29
|
Sun A, Liu S, Yin F, Li Z, Liu Z. Circulating inflammatory cytokines and sarcopenia-related traits: a mendelian randomization analysis. Front Med (Lausanne) 2024; 11:1351376. [PMID: 39193020 PMCID: PMC11347448 DOI: 10.3389/fmed.2024.1351376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Objective To explore the causal relationships between 91 circulating inflammatory cytokines and sarcopenia-related traits (low hand grip strength, appendicular lean mass, and usual walking pace) by Mendelian randomized analysis. Methods Independent genetic variations of inflammatory cytokines and sarcopenia-related traits were selected as instrumental variables from publicly available genome-wide association studies (GWAS). The MR analysis was primarily conducted using the inverse variance-weighted (IVW) method. Sensitivity analyses included Steiger filtering and MR PRESSO, with additional assessments for heterogeneity and pleiotropy. Results The IVW method indicated a causal relationship between Vascular Endothelial Growth Factor A (VEGF-A) and low hand grip strength (OR = 1.05654, 95% CI: 1.02453 to 1.08956, P = 0.00046). Additionally, Tumor Necrosis Factor-beta (TNF-β) was found to have a causal relationship with appendicular lean mass (ALM) (β = 0.04255, 95% CI: 0.02838 to 0.05672, P = 3.96E-09). There was no evidence suggesting a significant causal relationship between inflammatory cytokines and usual walking pace. Conclusion Our research substantiated the causal association between inflammatory cytokines, such as VEGF-A and TNF-β, and sarcopenia. This finding may provide new avenues for future clinical treatments.
Collapse
Affiliation(s)
- Aochuan Sun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Saiya Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fen Yin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuangzhuang Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengtang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Yang X, Li Y, Mei T, Duan J, Yan X, McNaughton LR, He Z. Genome-wide association study of exercise-induced skeletal muscle hypertrophy and the construction of predictive model. Physiol Genomics 2024; 56:578-589. [PMID: 38881426 DOI: 10.1152/physiolgenomics.00019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
The aim of the current study was to investigate interindividual differences in muscle thickness of the rectus femoris (MTRF) following 12 wk of resistance training (RT) or high-intensity interval training (HIIT) to explore the genetic architecture underlying skeletal muscle hypertrophy and to construct predictive models. We conducted musculoskeletal ultrasound assessments of the MTRF response in 440 physically inactive adults after the 12-wk exercise period. A genome-wide association study was used to identify variants associated with the MTRF response, separately for RT and HIIT. Using the polygenic predictor score (PPS), we estimated the genetic contribution to exercise-induced hypertrophy. Predictive models for the MTRF response were constructed using random forest (RF), support vector mac (SVM), and generalized linear model (GLM) in 10 cross-validated approaches. MTRF increased significantly after both RT (8.8%, P < 0.05) and HIIT (5.3%, P < 0.05), but with considerable interindividual differences (RT: -13.5 to 38.4%, HIIT: -14.2 to 30.7%). Eleven lead single-nucleotide polymorphisms in RT and eight lead single-nucleotide polymorphisms in HIIT were identified at a significance level of P < 1 × 10-5. The PPS was associated with the MTRF response, explaining 47.2% of the variation in response to RT and 38.3% of the variation in response to HIIT. Notably, the GLM and SVM predictive models exhibited superior performance compared with RF models (P < 0.05), and the GLM demonstrated optimal performance with an area under curve of 0.809 (95% confidence interval: 0.669-0.949). Factors such as PPS, baseline MTRF, and exercise protocol exerted influence on the MTRF response to exercise, with PPS being the primary contributor. The GLM and SVM predictive model, incorporating both genetic and phenotypic factors, emerged as promising tools for predicting exercise-induced skeletal muscle hypertrophy.NEW & NOTEWORTHY The interindividual variability induced muscle hypertrophy by resistance training (RT) or high-intensity interval training (HIIT) and the associated genetic architecture remain uncertain. We identified genetic variants that underlie RT- or HIIT-induced muscle hypertrophy and established them as pivotal factors influencing the response regardless of the training type. The genetic-phenotype predictive model developed has the potential to identify nonresponders or individuals with low responsiveness before engaging in exercise training.
Collapse
Affiliation(s)
- Xiaolin Yang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training and Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training and Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Tao Mei
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training and Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Jiayan Duan
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xu Yan
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science, St Albans, Victoria, Australia
| | - Lars Robert McNaughton
- Sport Performance, Exercise and Nutrition Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom
| | - Zihong He
- Biology Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
31
|
Wang Z, Dou Y, Chen L, Feng W, Zou Y, Xiao J, Wang J, Zou Z. Mendelian randomization identifies causal effects of major depressive disorder on accelerated aging. J Affect Disord 2024; 358:422-431. [PMID: 38750800 DOI: 10.1016/j.jad.2024.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Evidence links major depressive disorder (MDD) with aging, but it's unclear if MDD accelerates aging and what factors mediate this transition. METHODS Two-sample Mendelian randomization (MR) analyses were applied to estimate the causal association between MDD and frailty index (FI), telomere length (TL), and appendicular lean mass (ALM) from available genome-wide association studies in populations of European ancestry. Furthermore, we conducted mediation MR analyses to assess the mediating effects of 31 lifestyle factors or diseases on the causal relationship between MDD and aging. RESULTS MDD was significantly causally associated with increased FI (βIVW = 0.23, 95 % CI = 0.18 to 0.28, p = 1.20 × 10-17), shorter TL (βIVW = -0.04, 95 % CI = -0.07 to -0.01, p = 0.01), and decreased ALM (βIVW = -0.07, 95 % CI = -0.11 to -0.03, p = 3.54 × 10-4). The mediation analysis through two-step MR revealed smoking initiation (9.09 %), hypertension (6.67 %) and heart failure (5.36 %) mediated the causal effect of MDD on FI. Additionally, alcohol use disorders and alcohol dependence on the causal relationship between MDD and TL were found to be 17.52 % and 17.13 % respectively. LIMITATIONS Confounding, statistical power, and Euro-centric focus limit generalization. CONCLUSION Overall, individuals with MDD may be at a higher risk of experiencing premature aging, and this risk is partially influenced by the pathways involving smoking, alcohol use, and cardiovascular health. It underscores the importance of early intervention and comprehensive health management in individuals with MDD to promote healthy aging and overall well-being.
Collapse
Affiliation(s)
- Zuxing Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Yikai Dou
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Wenqian Feng
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Yazhu Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Jun Xiao
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Jinyu Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| |
Collapse
|
32
|
Chen J, Xinxin Z, Wang Z, Sun L, Tian Y. Causal association of circulating cytokines with sarcopenia-related traits: A Mendelian randomization study. Cytokine 2024; 180:156643. [PMID: 38820838 DOI: 10.1016/j.cyto.2024.156643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Observational studies have reported that circulating cytokines are associated with sarcopenia. However, the causal relationship between circulating cytokines and sarcopenia has not been elucidated. OBJECTIVES This study aimed to investigate the causal relationship between circulating cytokines and sarcopenia with genetic data using Mendelian randomization (MR). METHODS Two-sample bidirectional MR analysis was performed to investigate the causal relationship in individuals of European ancestry. The publicly available genome-wide association study statistics were used to select the key eligible single nucleotide polymorphisms significantly associated with circulating cytokines. Multiple MR analysis approaches, including inverse variance weighted (IVW), MR-Egger, weighted median method (WMM), and MR-Pleiotropy residual Sum and Outlier (MR-PRESSO) methods, were used for the analysis. Sarcopenia-related traits were appendicular lean mass (ALM) and grip strength. RESULTS This study demonstrated the causal effect of genetically predicted circulating interleukin interleukin-16 (IL16) levels on both ALM [odds ratio (OR) = 0.990, 95% confidence interval (CI): 0.980-1.000, P = 0.049] and grip strength (OR = 0.971, 95% CI: 0.948-0.995, P = 0.020]. Additionally, C-X-C motif chemokine ligand 10 (CXCL10), interleukin-1beta (IL1B), and hepatocyte growth factor (HGF) were correlated with ALM, while vascular endothelial growth factor (VEGF), interleukin-12 (IL12), and interleukin-15 (IL15) were correlated with grip strength. The results of MR-Egger, weighted median, weighted mode, and simple mode methods were consistent with the IVW estimates. Sensitivity analysis revealed that horizontal pleiotropy did not bias the causal estimates. CONCLUSION These findings indicate that inflammatory cytokines exert a significant causal effect on sarcopenia and provide promising leads for the development of novel therapeutic targets for the disease. By evaluating the role of circulating cytokines in the pathologic condition via a genetic epidemiological approach, our study made contributions to a further investigation of underlying mechanisms of sarcopenia.
Collapse
Affiliation(s)
- Jiawei Chen
- College of Sports Science, Shenyang Normal University, Shenyang City, Liaoning Province 110034, China; Faculty of Physical Education, National Research Tomsk State University, Tomsk 634050, Russia
| | - Zhao Xinxin
- College of Sports Science, Shenyang Normal University, Shenyang City, Liaoning Province 110034, China
| | - Zixian Wang
- College of Sports Science, Shenyang Normal University, Shenyang City, Liaoning Province 110034, China
| | - Liu Sun
- College of Sports Science, Shenyang Normal University, Shenyang City, Liaoning Province 110034, China
| | - Ying Tian
- College of Sports Science, Shenyang Normal University, Shenyang City, Liaoning Province 110034, China.
| |
Collapse
|
33
|
Li Y, Han L, Liang J, Song R, Tai M, Sun X. Causality between Sarcopenia and Depression: A Bidirectional Mendelian Randomization Study. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:394-404. [PMID: 39129686 PMCID: PMC11319753 DOI: 10.62641/aep.v52i4.1679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
BACKGROUND Numerous observational studies have suggested a correlation between sarcopenia and depression, but the nature of this relationship requires further investigation. METHODS This study employed bidirectional Mendelian randomization to explore this connection. Data from genome-wide association studies were used, encompassing measures of sarcopenia and mental factors, including depression and emotional states. The initial analysis concentrated on the impact of depression on sarcopenia, and then it examined the reverse relationship. The same methodology was applied to emotional data for validation. RESULTS The results indicated a reciprocal causation between sarcopenia and depression, even when emotional state data were considered. Various emotions can impact sarcopenia, and in turn, sarcopenia can affect emotions, except subjective well-being. These findings highlight a cyclic deterioration between sarcopenia and depression, with a link to negative emotions and a partially ameliorative effect of subjective well-being on sarcopenia. CONCLUSIONS In summary, this study sheds light on the interplay between psychiatric factors and sarcopenia, offering insights into intervention and prevention strategies.
Collapse
Affiliation(s)
- Yongzhi Li
- Orthopedics and Traumatology Department II, Shangluo Traditional Chinese Medicine Hospital, 726000 Shangluo, Shaanxi, China
| | - Lijun Han
- Orthopedics and Traumatology Department II, Shangluo Traditional Chinese Medicine Hospital, 726000 Shangluo, Shaanxi, China
| | - Jingliang Liang
- Spinal Ward of Orthopedic Hospital, The Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| | - Rui Song
- Nursing Department, The Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| | - Miao Tai
- Spinal Ward of Orthopedic Hospital, The Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| | - Xiaojie Sun
- Spinal Ward of Orthopedic Hospital, The Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| |
Collapse
|
34
|
Yin K, Chen T, Gu X, Su W, Jiang Z, Lu S, Cao B, Chi L, Gao X, Chen Y. Systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for sarcopenia. J Cachexia Sarcopenia Muscle 2024; 15:1324-1334. [PMID: 38644354 PMCID: PMC11294052 DOI: 10.1002/jcsm.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND There are no effective pharmacological treatments for sarcopenia. We aim to identify potential therapeutic targets for sarcopenia by integrating various publicly available datasets. METHODS We integrated druggable genome data, cis-eQTL/cis-pQTL from human blood and skeletal muscle tissue, and GWAS summary data of sarcopenia-related traits to analyse the potential causal relationships between drug target genes and sarcopenia using the Mendelian Randomization (MR) method. Sensitivity analyses and Bayesian colocalization were employed to validate the causal relationships. We also assessed the side effects or additional indications of the identified drug targets using a phenome-wide MR (Phe-MR) approach and investigated actionable drugs for target genes using available databases. RESULTS MR analysis identified 17 druggable genes with potential causation to sarcopenia in human blood or skeletal muscle tissue. Six of them (HP, HLA-DRA, MAP 3K3, MFGE8, COL15A1, and AURKA) were further confirmed by Bayesian colocalization (PPH4 > 90%). The up-regulation of HP [higher ALM (beta: 0.012, 95% CI: 0.007-0.018, P = 1.2*10-5) and higher grip strength (OR: 0.96, 95% CI: 0.94-0.98, P = 4.2*10-5)], MAP 3K3 [higher ALM (beta: 0.24, 95% CI: 0.21-0.26, P = 1.8*10-94), higher grip strength (OR: 0.82, 95% CI: 0.75-0.90, P = 2.1*10-5), and faster walking pace (beta: 0.03, 95% CI: 0.02-0.05, P = 8.5*10-6)], and MFGE8 [higher ALM (muscle eQTL, beta: 0.09, 95% CI: 0.06-0.11, P = 6.1*10-13; blood pQTL, beta: 0.05, 95% CI: 0.03-0.07, P = 3.8*10-09)], as well as the down-regulation of HLA-DRA [lower ALM (beta: -0.09, 95% CI: -0.11 to -0.08, P = 5.4*10-36) and lower grip strength (OR: 1.13, 95% CI: 1.07-1.20, P = 1.8*10-5)] and COL15A1 [higher ALM (muscle eQTL, beta: -0.07, 95% CI: -0.10 to -0.04, P = 3.4*10-07; blood pQTL, beta: -0.05, 95% CI: -0.06 to -0.03, P = 1.6*10-07)], decreased the risk of sarcopenia. AURKA in blood (beta: -0.16, 95% CI: -0.22 to -0.09, P = 2.1*10-06) and skeletal muscle (beta: 0.03, 95% CI: 0.02 to 0.05, P = 5.3*10-05) tissues showed an inverse relationship with sarcopenia risk. The Phe-MR indicated that the six potential therapeutic targets for sarcopenia had no significant adverse effects. Drug repurposing analysis supported zinc supplementation and collagenase clostridium histolyticum might be potential therapeutics for sarcopenia by activating HP and inhibiting COL15A1, respectively. CONCLUSIONS Our research indicated MAP 3K3, MFGE8, COL15A1, HP, and HLA-DRA may serve as promising targets for sarcopenia, while the effectiveness of zinc supplementation and collagenase clostridium histolyticum for sarcopenia requires further validation.
Collapse
Affiliation(s)
- Kang‐Fu Yin
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Institute of Brain Science and Brain‐Inspired Technology, West China HospitalSichuan UniversityChengduChina
| | - Ting Chen
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Institute of Brain Science and Brain‐Inspired Technology, West China HospitalSichuan UniversityChengduChina
| | - Xiao‐Jing Gu
- Mental Health Center, West China HospitalSichuan UniversityChengduChina
| | - Wei‐Ming Su
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Institute of Brain Science and Brain‐Inspired Technology, West China HospitalSichuan UniversityChengduChina
| | - Zheng Jiang
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Institute of Brain Science and Brain‐Inspired Technology, West China HospitalSichuan UniversityChengduChina
| | - Si‐Jia Lu
- Department of RespiratoryThe Fourth People's Hospital of Chengdu, Mental Health Center of ChengduChengduChina
| | - Bei Cao
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Institute of Brain Science and Brain‐Inspired Technology, West China HospitalSichuan UniversityChengduChina
| | - Li‐Yi Chi
- Department of NeurologyFirst Affiliated Hospital of Air Force Military Medical UniversityXi'anChina
| | - Xia Gao
- Department of GeriatricsDazhou Central HospitalDazhouChina
| | - Yong‐Ping Chen
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Institute of Brain Science and Brain‐Inspired Technology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
35
|
Kazan HH, Kasakolu A, Koncagul S, Ergun MA, John G, Sultanov RI, Zhelankin AV, Semenova EA, Yusupov RA, Kulemin NA, Larin AK, Generozov EV, Bulgay C, Ahmetov II. Association analysis of indel variants and gene expression identifies MDM4 as a novel locus for skeletal muscle hypertrophy and power athlete status. Exp Physiol 2024. [PMID: 39041487 DOI: 10.1113/ep091992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Insertions and deletions (indels) are the second most common type of variation in the human genome. However, limited data on their associations with exercise-related phenotypes have been documented. The aim of the present study was to examine the association between 18,370 indel variants and power athlete status, followed by additional studies in 357,246 individuals. In the discovery phase, the D allele of the MDM4 gene rs35493922 I/D polymorphism was over-represented in power athletes compared with control subjects (P = 7.8 × 10-9) and endurance athletes (P = 0.0012). These findings were replicated in independent cohorts, showing a higher D allele frequency in power athletes compared with control subjects (P = 0.016) and endurance athletes (P = 0.031). Furthermore, the D allele was positively associated (P = 0.0013) with greater fat-free mass in the UK Biobank. MDM4 encodes a protein that inhibits the activity of p53, which induces muscle fibre atrophy. Accordingly, we found that MDM4 expression was significantly higher in the vastus lateralis of power athletes compared with endurance athletes (P = 0.0009) and was positively correlated with the percentage of fast-twitch muscle fibres (P = 0.0062) and the relative area occupied by fast-twitch muscle fibres (P = 0.0086). The association between MDM4 gene expression and an increased proportion of fast-twitch muscle fibres was confirmed in two additional cohorts. Finally, we found that the MDM4 DD genotype was associated with increased MDM4 gene expression in vastus lateralis and greater cross-sectional area of fast-twitch muscle fibres. In conclusion, MDM4 is suggested to be a potential regulator of muscle fibre specification and size, with its indel variant being associated with power athlete status. HIGHLIGHTS: What is the central question of this study? Which indel variants are functional and associated with sport- and exercise-related traits? What is the main finding and its importance? Out of 18,370 tested indels, the MDM4 gene rs35493922 I/D polymorphism was found to be the functional variant (affecting gene expression) and the most significant, with the deletion allele showing associations with power athlete status, fat-free mass and cross-sectional area of fast-twitch muscle fibres. Furthermore, the expression of MDM4 was positively correlated with the percentage of fast-twitch muscle fibres and the relative area occupied by fast-twitch muscle fibres.
Collapse
Affiliation(s)
- Hasan H Kazan
- Department of Medical Biology, Gulhane Faculty of Medicine, University of Health Sciences, Ankara, Türkiye
| | - Anıl Kasakolu
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, Türkiye
| | - Seyrani Koncagul
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, Türkiye
| | - Mehmet A Ergun
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Türkiye
| | - George John
- Transform Specialist Medical Centre, Dubai, UAE
| | - Rinat I Sultanov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Andrey V Zhelankin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Rinat A Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University Named after A.N. Tupolev-KAI, Kazan, Russia
| | - Nikolay A Kulemin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Celal Bulgay
- Sports Science Faculty, Bingol University, Bingol, Türkiye
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St Petersburg, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
36
|
Guilherme JPLF, Semenova EA, Kikuchi N, Homma H, Kozuma A, Saito M, Zempo H, Matsumoto S, Kobatake N, Nakazato K, Okamoto T, John G, Yusupov RA, Larin AK, Kulemin NA, Gazizov IM, Generozov EV, Ahmetov II. Identification of Genomic Predictors of Muscle Fiber Size. Cells 2024; 13:1212. [PMID: 39056794 PMCID: PMC11274365 DOI: 10.3390/cells13141212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The greater muscle fiber cross-sectional area (CSA) is associated with greater skeletal muscle mass and strength, whereas muscle fiber atrophy is considered a major feature of sarcopenia. Muscle fiber size is a polygenic trait influenced by both environmental and genetic factors. However, the genetic variants underlying inter-individual differences in muscle fiber size remain largely unknown. The aim of our study was to determine whether 1535 genetic variants previously identified in a genome-wide association study of appendicular lean mass are associated with the CSA of fast-twitch muscle fibers (which better predict muscle strength) in the m. vastus lateralis of 148 physically active individuals (19 power-trained and 28 endurance-trained females, age 28.0 ± 1.1; 28 power-trained and 73 endurance-trained males, age 31.1 ± 0.8). Fifty-seven single-nucleotide polymorphisms (SNPs) were identified as having an association with muscle fiber size (p < 0.05). Of these 57 SNPs, 31 variants were also associated with handgrip strength in the UK Biobank cohort (n = 359,729). Furthermore, using East Asian and East European athletic (n = 731) and non-athletic (n = 515) cohorts, we identified 16 SNPs associated with athlete statuses (sprinter, wrestler, strength, and speed-strength athlete) and weightlifting performance. All SNPs had the same direction of association, i.e., the lean mass-increasing allele was positively associated with the CSA of muscle fibers, handgrip strength, weightlifting performance, and power athlete status. In conclusion, we identified 57 genetic variants associated with both appendicular lean mass and fast-twitch muscle fiber size of m. vastus lateralis that may, in part, contribute to a greater predisposition to power sports.
Collapse
Affiliation(s)
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Hiroki Homma
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Ayumu Kozuma
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Mika Saito
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
| | - Hirofumi Zempo
- Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo 124-8530, Japan
| | - Shingo Matsumoto
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Naoyuki Kobatake
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Takanobu Okamoto
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - George John
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates
| | - Rinat A. Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
| | - Nikolay A. Kulemin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
| | - Ilnaz M. Gazizov
- Department of Human Anatomy, Kazan State Medical University, 420012 Kazan, Russia;
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
37
|
Sun Z, Liu G, Xu J, Zhang X, Wei H, Wu G, Jiang J. The relationship between inflammatory bowel disease and sarcopenia-related traits: a bidirectional two-sample mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1402551. [PMID: 39072277 PMCID: PMC11272465 DOI: 10.3389/fendo.2024.1402551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Observational studies have revealed a link between inflammatory bowel disease (IBD) and sarcopenia. However, it remains unclear whether this correlation between IBD and sarcopenia is causal. Methods The genetic instrumental variables (IVs) associated with IBD and sarcopenia-related traits were derived from publicly available genome-wide association studies. We employed a two-sample bidirectional Mendelian randomization (MR) method. we obtained genetic IVs for five phenotypes from 34,652 cases in IBD, 27,432 cases in ulcerative colitis (UC), 212356 cases in crohn's disease (CD), 9336415 cases in low hand grip strength (LHGS), and 450243 cases in appendicular lean mass (ALM), respectively. The inverse variance weighting and other MR methods were used to explore the bidirectional causal relationship. Furthermore, we performed heterogeneity test, pleiotropy test, leave-one-out sensitivity test, and multivariate MR to evaluate the robustness of the results. Results The forward MR results showed that the UC (OR=0.994, 95% CI: 0.9876-0.9998, P = 0.044) and CD (OR=0.993, 95% CI: 0.988-0.998, P = 0.006) was negatively correlated with ALM. In the reverse MR analysis, we also found that LHGS was negatively correlated with the IBD (OR=0.76, 95% CI: 0.61-0.94, P = 0.012) and CD (OR=0.53, 95% CI: 0.40-0.70, P <0.001). Besides, genetically predicted higher ALM reduced IBD (OR=0.87, 95% CI: 0.79-0.95, P = 0.002), UC (OR=0.84, 95% CI: 0.76-0.93, P = 0.001), and CD (OR=0.87, 95% CI: 0.77-0.99, P = 0.029). However, the results of other MR Analyses were not statistically different. Conclusions We found genetically predicted UC and CD are causally associated with reduced ALM, and higher hand grip strength reduced IBD and CD risk, and higher ALM reduced IBDs risk. This MR study provides moderate evidence for a bidirectional causal relationship between IBD and sarcopenia.
Collapse
Affiliation(s)
- Zhihuang Sun
- Department of Orthopedics, Shangrao People’s Hospital, Shangrao, China
| | - Guangwei Liu
- Department of Orthopedics, Shangrao People’s Hospital, Shangrao, China
| | - Jiajia Xu
- Department of Orthopedics, Shangrao People’s Hospital, Shangrao, China
| | - Xianyu Zhang
- Department of Orthopedics, Shangrao People’s Hospital, Shangrao, China
| | - Huahua Wei
- Department of Hematology, Shangrao People’s Hospital, Shangrao, China
| | - Guobao Wu
- Department of Orthopedics, Shangrao People’s Hospital, Shangrao, China
| | - Jian Jiang
- Department of Orthopedics, Shangrao People’s Hospital, Shangrao, China
| |
Collapse
|
38
|
Li J, Zang C, Lv H, Xiao Z, Li P, Xiao B, Zhou L. Association of lipid-lowering drugs with risk of sarcopenia: a drug target mendelian randomization study and meta-analysis. Hum Genomics 2024; 18:76. [PMID: 38961447 PMCID: PMC11223278 DOI: 10.1186/s40246-024-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Lipid-lowering drugs are widely used among the elderly, with some studies suggesting links to muscle-related symptoms. However, the causality remains uncertain. METHODS Using the Mendelian randomization (MR) approach, we assessed the causal effects of genetically proxied reduced low-density lipoprotein cholesterol (LDL-C) through inhibitions of hydroxy-methyl-glutaryl-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), and Niemann-Pick C1-like 1 (NPC1L1) on sarcopenia-related traits, including low hand grip strength, appendicular lean mass, and usual walking pace. A meta-analysis was conducted to combine the causal estimates from different consortiums. RESULTS Using LDL-C pooled data predominantly from UK Biobank, genetically proxied inhibition of HMGCR was associated with higher appendicular lean mass (beta = 0.087, P = 7.56 × 10- 5) and slower walking pace (OR = 0.918, P = 6.06 × 10- 9). In contrast, inhibition of PCSK9 may reduce appendicular lean mass (beta = -0.050, P = 1.40 × 10- 3), while inhibition of NPC1L1 showed no causal impact on sarcopenia-related traits. These results were validated using LDL-C data from Global Lipids Genetics Consortium, indicating that HMGCR inhibition may increase appendicular lean mass (beta = 0.066, P = 2.17 × 10- 3) and decelerate walking pace (OR = 0.932, P = 1.43 × 10- 6), whereas PCSK9 inhibition could decrease appendicular lean mass (beta = -0.048, P = 1.69 × 10- 6). Meta-analysis further supported the robustness of these causal associations. CONCLUSIONS Genetically proxied HMGCR inhibition may increase muscle mass but compromise muscle function, PCSK9 inhibition could result in reduced muscle mass, while NPC1L1 inhibition is not associated with sarcopenia-related traits and this class of drugs may serve as viable alternatives to sarcopenia individuals or those at an elevated risk.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenyang Zang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Xiao
- Department of Pathology, First Hospital of Changsha, Changsha, Hunan, China
| | - Peihong Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
39
|
She Y, He Y, Wu J, Liu N. Association between the sarcopenia-related traits and Parkinson's disease: A bidirectional two-sample Mendelian randomization study. Arch Gerontol Geriatr 2024; 122:105374. [PMID: 38452652 DOI: 10.1016/j.archger.2024.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/28/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE To explore the causal association between sarcopenia-related traits and Parkinson's disease by Mendelian randomization (MR) approach. METHODS A genome-wide association study (GWAS) of sarcopenia-related traits was done at the UK Biobank (UKB). The traits were appendicular lean mass, low hand grip strength (including the European Working Group on Sarcopenia in Older People (EWGSOP) and the Foundation for the National Institutes of Health (FNIH) criteria and usual walking pace. The International Parkinson's Disease Genomics Consortium (IPDGC) gave us GWAS data for Parkinson's disease (PD). We used three different types of MR analyses: including Inverse-variance weighted (IVW), Mendelian randomized Egger regression (MR-Egger), and weighted median methods (both weighted and simple modes). RESULTS The MR analysis showed that low hand grip strength was negatively associated with the risk of developing Parkinson's disease, including EWGSOP criterion (odds ratio (OR) = 0.734; 95% confidence interval (CI) = 0.575-0.937, P = 0.013) and FNIH criterion (OR = 0.619; 95% CI = 0.419-0.914, P = 0.016), and usual walking pace was also a risk factor for Parkinson's disease (OR = 3.307, 95% CI = 1.277-8.565, P = 0.014). CONCLUSIONS In European population, low hand grip strength is negatively associated with the risk of developing Parkinson's disease, and usual walking pace is also a risk factor for Parkinson's disease. Further exploration of the potential genetic mechanisms underlying hand grip strength and Parkinson's disease and the potential relationship between walking pace, balance, and falls in Parkinson's patients may help to reduce the burden of sarcopenia and Parkinson's disease.
Collapse
Affiliation(s)
- Yingqi She
- Kiang Wu Nursing College of Macau, Avenida do Hospital das Ilhas no.447, Coloane, RAEM, 999078, Macau, China
| | - Yaming He
- Kiang Wu Nursing College of Macau, Avenida do Hospital das Ilhas no.447, Coloane, RAEM, 999078, Macau, China
| | - Jianwei Wu
- Kiang Wu Nursing College of Macau, Avenida do Hospital das Ilhas no.447, Coloane, RAEM, 999078, Macau, China.
| | - Ning Liu
- Kiang Wu Nursing College of Macau, Avenida do Hospital das Ilhas no.447, Coloane, RAEM, 999078, Macau, China.
| |
Collapse
|
40
|
He Z, Zhu L, He J, Chen X, Li X, Yu J. Causal effect of sarcopenia-related traits on the occurrence and prognosis of breast cancer - A bidirectional and multivariable Mendelian randomization study. NUTR HOSP 2024; 41:657-665. [PMID: 38666335 DOI: 10.20960/nh.05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Introduction Background and aims: although sarcopenia is associated with several types of cancer, there is limited research regarding its effect on breast cancer. We aimed to explore the causality between sarcopenia-related traits and the incidence and prognosis of breast cancer. Methods: two-sample bidirectional and multivariate Mendelian randomization (MR) analyses were utilized in this study. Genome-wide association studies were used to genetically identify sarcopenia-related traits, such as appendicular lean mass, grip strength of both hands, and walking pace. Data on the incidence and prognosis of breast cancer were collected from two extensive cohort studies. Multivariate MR analysis was used to adjust for body mass index, waist circumference, and whole-body fat mass. The primary method used for analysis was inverse-variance weighted analysis. Results: a significant association was found between appendicular lean mass and ER- breast cancer (OR = 0.873, 95 % CI: 0.817-0.933, p = 6.570 × 10-5). Increased grip strength of the left hand was associated with a reduced risk of ER- breast cancer (OR = 0.744, 95 % CI: 0.579-0.958, p = 0.022). Stronger grip strength of the right hand was associated with prolonged survival time of ER+ breast cancer patients (OR = 0.463, 95 % CI: 0.242-0.882, p = 0.019). In the multivariable MR analysis, appendicular lean mass, grip strength of both hands, and walking pace were still genetically associated with the development of total breast cancer and ER-/+ breast cancer. Conclusions: several sarcopenia-related traits were genetically associated with the occurrence and prognosis of breast cancer. It is crucial for elderly women to increase their strength and muscle mass to help prevent breast cancer.
Collapse
Affiliation(s)
- Zhijian He
- Department of Thyroid and Breast Surgery. Wenzhou Central Hospital
| | - Lujia Zhu
- Department of Emergency. The First Affiliated Hospital of Wenzhou Medical University
| | - Jie He
- Department of Thyroid and Breast Surgery. Wenzhou Central Hospital
| | - Xinwei Chen
- Department of Thyroid and Breast Surgery. Wenzhou Central Hospital
| | - Xiaoyang Li
- Department of Thyroid and Breast Surgery. Wenzhou Central Hospital
| | - Jian Yu
- Department of Thyroid and Breast Surgery. Wenzhou Central Hospital
| |
Collapse
|
41
|
Ye R, Pan J, Hu X, Xie J, Li P. Association between sleep traits and sarcopenia-related traits: A two-sample bidirectional Mendelian randomization study. Geriatr Gerontol Int 2024; 24:537-545. [PMID: 38639007 DOI: 10.1111/ggi.14877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/17/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
AIM Despite limited evidence regarding the impact of sleep quality on sarcopenia, it is widely recognized as being associated with various diseases. This study aimed to explore the causal relationship between sleep traits and sarcopenia-related traits. METHODS This study utilized a two-sample bidirectional Mendelian randomization analysis. Genetic genome-wide summary data of sleep quality indicators, including chronotype, morning wake-up time, sleep duration, daytime napping, insomnia and daytime dozing, were used. Data on sarcopenia-related traits, such as appendicular lean mass, grip strength of both hands, walking pace and waist circumference, were collected from a large cohort study. The primary method used was the inverse-variance weighted analysis. RESULTS A causal association was found between chronotype and appendicular lean mass (odds ratio [OR] 1.019, 95% confidence interval [CI] 1.016-1.211, P = 0.021). Napping during the day was connected with walking pace (OR 0.879, 95% CI 0.834-0.928, P = 2.289 × 10-6) and waist circumference (OR 1.234, 95% CI 1.081-1.408, P = 0.002). Insomnia was related to lower grip strength of the right hand (OR 0.844, 95% CI 0.747-0.954, P = 0.007), left hand (OR 0.836, 95% CI 0.742-0.943, P = 0.003), as well as walking pace (OR 0.871, 95% CI 0.798-0.951, P = 0.002). Furthermore, the reverse Mendelian randomization analysis showed associations between certain sarcopenia-related traits and poor sleep quality. CONCLUSIONS Some sleep traits were associated with the occurrence of sarcopenia. These findings emphasized the significance of prioritizing sleep quality as a preventive measure against sarcopenia. Geriatr Gerontol Int 2024; 24: 537-545.
Collapse
Affiliation(s)
- Ruifan Ye
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajia Pan
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinying Hu
- Department of Pediatric Internal Medicine, Maternal and Child Health Hospital, Yongkang, China
| | - Jinxiao Xie
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pengfei Li
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Baumert P, Mäntyselkä S, Schönfelder M, Heiber M, Jacobs MJ, Swaminathan A, Minderis P, Dirmontas M, Kleigrewe K, Meng C, Gigl M, Ahmetov II, Venckunas T, Degens H, Ratkevicius A, Hulmi JJ, Wackerhage H. Skeletal muscle hypertrophy rewires glucose metabolism: An experimental investigation and systematic review. J Cachexia Sarcopenia Muscle 2024; 15:989-1002. [PMID: 38742477 PMCID: PMC11154753 DOI: 10.1002/jcsm.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2024] [Accepted: 03/15/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Proliferating cancer cells shift their metabolism towards glycolysis, even in the presence of oxygen, to especially generate glycolytic intermediates as substrates for anabolic reactions. We hypothesize that a similar metabolic remodelling occurs during skeletal muscle hypertrophy. METHODS We used mass spectrometry in hypertrophying C2C12 myotubes in vitro and plantaris mouse muscle in vivo and assessed metabolomic changes and the incorporation of the [U-13C6]glucose tracer. We performed enzyme inhibition of the key serine synthesis pathway enzyme phosphoglycerate dehydrogenase (Phgdh) for further mechanistic analysis and conducted a systematic review to align any changes in metabolomics during muscle growth with published findings. Finally, the UK Biobank was used to link the findings to population level. RESULTS The metabolomics analysis in myotubes revealed insulin-like growth factor-1 (IGF-1)-induced altered metabolite concentrations in anabolic pathways such as pentose phosphate (ribose-5-phosphate/ribulose-5-phosphate: +40%; P = 0.01) and serine synthesis pathway (serine: -36.8%; P = 0.009). Like the hypertrophy stimulation with IGF-1 in myotubes in vitro, the concentration of the dipeptide l-carnosine was decreased by 26.6% (P = 0.001) during skeletal muscle growth in vivo. However, phosphorylated sugar (glucose-6-phosphate, fructose-6-phosphate or glucose-1-phosphate) decreased by 32.2% (P = 0.004) in the overloaded muscle in vivo while increasing in the IGF-1-stimulated myotubes in vitro. The systematic review revealed that 10 metabolites linked to muscle hypertrophy were directly associated with glycolysis and its interconnected anabolic pathways. We demonstrated that labelled carbon from [U-13C6]glucose is increasingly incorporated by ~13% (P = 0.001) into the non-essential amino acids in hypertrophying myotubes, which is accompanied by an increased depletion of media serine (P = 0.006). The inhibition of Phgdh suppressed muscle protein synthesis in growing myotubes by 58.1% (P < 0.001), highlighting the importance of the serine synthesis pathway for maintaining muscle size. Utilizing data from the UK Biobank (n = 450 243), we then discerned genetic variations linked to the serine synthesis pathway (PHGDH and PSPH) and to its downstream enzyme (SHMT1), revealing their association with appendicular lean mass in humans (P < 5.0e-8). CONCLUSIONS Understanding the mechanisms that regulate skeletal muscle mass will help in developing effective treatments for muscle weakness. Our results provide evidence for the metabolic rewiring of glycolytic intermediates into anabolic pathways during muscle growth, such as in serine synthesis.
Collapse
Affiliation(s)
- Philipp Baumert
- School of Medicine and HealthTechnical University of MunichMunichGermany
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention (OSMI)UMIT TIROL ‐ Private University for Health Sciences and Health TechnologyInnsbruckAustria
| | - Sakari Mäntyselkä
- Faculty of Sport and Health Sciences, NeuroMuscular Research CenterUniversity of JyväskyläJyväskyläFinland
| | - Martin Schönfelder
- School of Medicine and HealthTechnical University of MunichMunichGermany
| | - Marie Heiber
- School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Sport ScienceUniversity of the Bundeswehr MunichNeubibergGermany
| | - Mika Jos Jacobs
- School of Medicine and HealthTechnical University of MunichMunichGermany
| | - Anandini Swaminathan
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| | - Petras Minderis
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| | - Mantas Dirmontas
- Department of Health Promotion and RehabilitationLithuanian Sports UniversityKaunasLithuania
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass SpectrometryTechnical University of MunichMunichGermany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass SpectrometryTechnical University of MunichMunichGermany
| | - Michael Gigl
- Bavarian Center for Biomolecular Mass SpectrometryTechnical University of MunichMunichGermany
| | - Ildus I. Ahmetov
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Tomas Venckunas
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| | - Hans Degens
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
| | - Aivaras Ratkevicius
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
- Sports and Exercise Medicine CentreQueen Mary University of LondonLondonUK
| | - Juha J. Hulmi
- Faculty of Sport and Health Sciences, NeuroMuscular Research CenterUniversity of JyväskyläJyväskyläFinland
| | - Henning Wackerhage
- School of Medicine and HealthTechnical University of MunichMunichGermany
| |
Collapse
|
43
|
Qi W, Mei Z, Mao X, Zhu L, Shao Y, Ge G, Zhang W, Pan H, Wang D. Causal associations between sarcopenia-related traits and intervertebral disc degeneration: a two-sample mendelian randomization analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2430-2438. [PMID: 38733399 DOI: 10.1007/s00586-024-08291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Sarcopenia (SP) and intervertebral disc degeneration (IVDD) have a higher incidence in the elderly population. Previous studies have indicated a potential association between SP and IVDD. The objective of this study is to elucidate the potential causal relationship between sarcopenia-related traits and IVDD through Two-sample Mendelian randomization (MR) analysis. METHODS We utilized a genome-wide association study conducted on the European population to collect aggregated data on sarcopenia and IVDD. Inverse variance weighting was primarily employed, supplemented by MR Egger, weighted median, simple model, and weighted model methods. Additionally, sensitivity analysis was performed to assess the robustness of the findings. RESULTS Appendicular lean mass is positively associated with "Other intervertebral disc disorders" (OIDD) and "Prolapsed or slipped disc" (POSD) (OIDD: p = 0.002, OR = 1.120; POSD: p < 0.001, OR = 1.003), while grip strength (GS) is positively associated with POSD (left: p = 0.004, OR = 1.008; right: p < 0.001, OR = 1.010). It is worth mentioning that walking pace has significant causal relationship with "Low back pain" (LBP), "Lower back pain or/and sciatica" (LBPOAS), "Sciatica with lumbago" (SWL) and OIDD (LBP: p < 0.001, OR = 0.204; LBPOAS: p < 0.001, OR = 0.278; SWL: p = 0.003, OR = 0.249; OIDD: p < 0.001, OR = 0.256). CONCLUSION The present study revealed the causal relationship between SP-related traits and IVDD and recommended to prevent and treat sarcopenia as a means of preventing IVDD in clinic practice.
Collapse
Affiliation(s)
- Weihui Qi
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Hangzhou, 310021, China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Zhenglin Mei
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Xinning Mao
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Li Zhu
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Yinyan Shao
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Guofen Ge
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Hangzhou, 310021, China.
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
| | - Dong Wang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Hangzhou, 310021, China.
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
| |
Collapse
|
44
|
Song Y, Zheng Z, Hu J, Lian J. A causal relationship between appendicular lean mass and atrial fibrillation: A two sample Mendelian randomization study. Nutr Metab Cardiovasc Dis 2024; 34:1361-1370. [PMID: 38403485 DOI: 10.1016/j.numecd.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND AIM The relationship between appendicular lean mass (ALM) and most cardiovascular events has been established, but the direct association between ALM and atrial fibrillation (AF) remains uncertain. METHODS AND RESULTS Herein, we identified 494 single-nucleotide polymorphisms (SNPs) strongly associated with ALM as instrumental variables (P < 5E-8) based on a genome-wide association study (GWAS) with 450,243 European participants. Then, we employed five Mendelian randomization (MR) analysis methods to investigate the causal relationship between ALM and AF. All results indicated a causal relationship between ALM and AF, among Inverse variance weighted (P = 8.44E-15, odds ratio [OR]: 1.16, 95 % confidence interval [CI]: 1.114-1.198). Furthermore, we performed a sensitivity analysis, which revealed no evidence of pleiotropy (egger_intercept = 0.000089, P = 0.965) or heterogeneity (MR Egger, Q Value = 0.980; Inverse variance weighted, Q Value = 0.927). The leave-one-out method demonstrates that individual SNPs have no driven impact on the whole causal relationship. Multivariable MR analysis indicates that, after excluding the influence of hypertension and coronary heart disease, a causal relationship between ALM and AF still exists (P = 7.74E-40, OR 95 %CI: 1.389 (1.323-1.458)). Importantly, the Radial MR framework analysis and Robust Adjusted Profile Score (RAPS) further exhibit the robustness of this causal relationship. CONCLUSION A strong association between ALM and AF was confirmed, and high ALM is a risk factor for AF.
Collapse
Affiliation(s)
- Yongfei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, Zhejiang, 315000, China; Department of Cardiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China.
| | - Zequn Zheng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, Zhejiang, 315000, China; Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515063, China
| | - Jiale Hu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, Zhejiang, 315000, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, Zhejiang, 315000, China; Department of Cardiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China.
| |
Collapse
|
45
|
Liu M, Fu X, Yu D, Li M, Pan Y, Yang C, Sun G. Mapping the causal associations of cytokines with sarcopenia and aging traits: Evidence from bidirectional Mendelian randomization. J Cachexia Sarcopenia Muscle 2024; 15:1121-1133. [PMID: 38556722 PMCID: PMC11154762 DOI: 10.1002/jcsm.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Cytokines and growth factors may serve as a bridge in studying the causal relationships between inflammaging and sarcopenia due to their roles in inflammaging. In this study, we aim to explore the causal association of cytokines with sarcopenia and aging traits and further identify the significant inflammation factors. METHODS Bidirectional Mendelian randomization (MR) analysis was used to identify the causality. Forty-one kinds of circulation cytokines and growth factors were set as exposures, and the data were from a summary genome-wide association study (GWAS) containing three cohorts with 8293 healthy participants of European ancestry from 1983 to 2011. Hand grip strength, adjusted appendicular lean mass (AALM), usual walking pace, moderate-to-vigorous physical activity (MVPA) levels, able to walk or cycle unaided for 10 min (AWCU10) and telomere length were selected as outcomes. Data for outcomes were obtained from meta-GWAS and the UK Biobank, and sample sizes ranged from 69 537 to 472 174. Low hand grip strength was defined by the European Working Group on Sarcopenia in Older People (EWGSOP) and Foundation for the National Institutes of Health (FNIH) cut-off points, respectively. Other outcome traits were defined and measured according to the UK Biobank and raw cohorts' criteria. We set two significance thresholds for single nucleotide polymorphisms (SNPs) associated with exposures to obtain adequate SNPs (5 × 10-6 and 5 × 10-8). Inverse-variance weighted, MR-Egger and weighted median were employed to estimate the causality. RESULTS Twenty-seven factors were identified to relate to sarcopenia and aging traits causally, and most were associated with only one outcome trait. IL16 (interleukin-16), CTACK (cutaneous T-cell attracting chemokine), MIP1b (macrophage inflammatory protein 1b) and PDGFbb (platelet-derived growth factor BB) were proven to relate causally to at least one sarcopenia and aging trait in both analyses with two significance thresholds. IL16 was causally associated with hand grip strength (0.977 [0.956-0.998] for EWGSOP and 0.933 [0.874-0.996] for FNIH), AALM (0.991 [0.984, 0.998]), MVPA (0.997 [0.995-1.000]) and AWCU10 (1.008 [1.003-1.013]). CTACK was proven to relate causally to hand grip strength (1.013 [1.007-1.019] for EWGSOP and 1.090 [1.041-1.142] for FNIH), AWCU10 (0.990 [0.986-0.994]) and telomere length (0.998 [0.983-0.994]). The results indicated that MIP1b has a causal effect on hand grip strength (1.032 [1.001-1.063] for EWGSOP), AWCU10 (0.994 [0.988-1.000] and 0.993 [0.988-0.998]) and telomere length (1.006 [1.000-1.012]). PDGFbb may causally relate to AALM (1.016 [1.001-1.030]) and telomere length (1.011 [1.007-1.015]). Reserve MR analyses also proved their unidirectional causal effects. CONCLUSIONS Twenty-seven factors were causally related to sarcopenia and aging traits, and the causal effects of IL16, CTACK, MIP1b and PDGFbb were proven in both analyses with two significance thresholds.
Collapse
Affiliation(s)
- Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiao Fu
- Department of Traumatic Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Daqian Yu
- Department of Traumatic Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Meng Li
- Department of Traumatic Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yutao Pan
- Department of Traumatic Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
46
|
Jin Z, Wang R, Jin L, Wan L, Li Y. Causal relationship between sarcopenia with osteoarthritis and the mediating role of obesity: a univariate, multivariate, two-step Mendelian randomization study. BMC Geriatr 2024; 24:469. [PMID: 38811889 PMCID: PMC11138082 DOI: 10.1186/s12877-024-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Recent genetic evidence supports a causal role for sarcopenia in osteoarthritis, which may be mediated by the occurrence of obesity or changes in circulating inflammatory protein levels. Here, we leveraged publicly available genome-wide association study data to investigate the intrinsic causal relationship between sarcopenia, obesity, circulating inflammatory protein levels, and osteoarthritis. METHODS In this study, we used Mendelian randomization analyses to explore the causal relationship between sarcopenia phenotypes (Appendicular lean mass [ALM], Low hand-grip strength [LHG], and usual walking pace [UWP]) and osteoarthritis (Knee osteoarthritis [KOA], and Hip osteoarthritis [HOA]). Univariable Mendelian randomization (UVMR) analyses were performed using the inverse variance weighted (IVW) method, MR-Egger, weighted median method, simple mode, and weighted mode, with the IVW method being the primary analytical technique. Subsequently, the independent causal effects of sarcopenia phenotype on osteoarthritis were investigated using multivariate Mendelian randomization (MVMR) analysis. To further explore the mechanisms involved, obesity and circulating inflammatory proteins were introduced as the mediator variables, and a two-step Mendelian randomization analysis was used to explore the mediating effects of obesity and circulating inflammatory proteins between ALM and KOA as well as the mediating proportions. RESULTS UVMR analysis showed a causal relationship between ALM, LHG, UWP and KOA [(OR = 1.151, 95% CI: 1.087-1.218, P = 1.19 × 10-6, PFDR = 7.14 × 10-6) (OR = 1.215, 95% CI: 1.004-1.470; P = 0.046, PFDR = 0.055) (OR = 0.503, 95% CI: 0.292-0.867; P = 0.013, PFDR = 0.027)], and a causal relationship between ALM, UWP and HOA [(OR = 1.181, 95% CI: 1.103-1.265, P = 2.05 × 10-6, PFDR = 6.15 × 10-6) (OR = 0.438, 95% CI: 0.226-0.849, P = 0.014, PFDR = 0.022)]. In the MVMR analyses adjusting for confounders (body mass index, insomnia, sedentary behavior, and bone density), causal relationships were observed between ALM, LHG, UWP and KOA [(ALM: OR = 1.323, 95%CI: 1.224- 1.431, P = 2.07 × 10-12), (LHG: OR = 1.161, 95%CI: 1.044- 1.292, P = 0.006), (UWP: OR = 0.511, 95%CI: 0.290- 0.899, P = 0.020)], and between ALM and HOA (ALM: OR = 1.245, 95%CI: 1.149- 1.348, P = 7.65 × 10-8). In a two-step MR analysis, obesity was identified to play a potential mediating role in ALM and KOA (proportion mediated: 5.9%). CONCLUSIONS The results of this study suggest that decreased appendicular lean mass, grip strength, and walking speed increase the risk of KOA and decreased appendicular lean mass increases the risk of HOA in patients with sarcopenia in a European population. Obesity plays a mediator role in the occurrence of KOA due to appendicular lean body mass reduction.
Collapse
Affiliation(s)
- Zicheng Jin
- College of Physical Education, Henan Normal University, Xinxiang, 453007, China
| | - Rui Wang
- College of Physical Education, Henan Normal University, Xinxiang, 453007, China
| | - Linzi Jin
- College of Music and Dance, Henan Normal University, Xinxiang, 453007, China
| | - Lishuang Wan
- College of Physical Education, Henan Normal University, Xinxiang, 453007, China
| | - Yuzhou Li
- College of Physical Education, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
47
|
Cao J, Huang Y, Zhu M, Wang Z, Jin Z, Xiong Z. Causal association of sarcopenia with hepatocellular carcinoma risk in European population: a Mendelian randomization study. Front Nutr 2024; 11:1292834. [PMID: 38860158 PMCID: PMC11163102 DOI: 10.3389/fnut.2024.1292834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
Background The causal association of sarcopenia with the incidence risk of hepatocellular carcinoma (HCC) in the European population, and the potential mediating role of C-reactive protein (CRP), remains unclear. This study employed a bidirectional two-sample, two-step Mendelian randomization (MR) analysis to investigate the causality and identify the mediator. Methods Summary statistics for HCC, CRP, and sarcopenia-related traits, including appendicular lean mass (ALM), hand grip strength (HGS), and walking pace (WP), were acquired from publicly available databases. We conducted bidirectional MR and Steiger tests of directionality to check the presence of reverse causality. Additionally, a two-step MR analysis was used to assess the mediating effect of CRP in the causality between sarcopenia and HCC. Tests for heterogeneity and horizontal pleiotropy were performed. Results As ALM increases, the risk of HCC occurrence decreases [odds ratio (OR), 95% confidence interval (CI): 0.703, 0.524-0.943; P = 0.019]. And, genetically predicted low-HGS (OR, 95%CI: 2.287, 1.013-5.164; P = 0.047) was associated with an increased incidence risk of HCC, with no reverse causality. However, we found no evidence supporting a causality between WP and HCC. CRP was identified as the mediator of the causal effect of ALM and low-HGS on HCC, with corresponding mediating effects of 9.1% and 7.4%. Conclusions This MR study effectively demonstrates that lower ALM and low-HGS are linked to an elevated risk of HCC within the European population, and the causality was not bidirectional. Furthermore, CRP serves as a mediator in the associations. These findings may help mitigate HCC risk among individuals with sarcopenia.
Collapse
Affiliation(s)
- Jiali Cao
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Huang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Mengpei Zhu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ziwen Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ze Jin
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Ito S, Takuwa H, Kakehi S, Someya Y, Kaga H, Kumahashi N, Kuwata S, Wakatsuki T, Kadowaki M, Yamamoto S, Abe T, Takeda M, Ishikawa Y, Liu X, Otomo N, Suetsugu H, Koike Y, Hikino K, Tomizuka K, Momozawa Y, Ozaki K, Isomura M, Nabika T, Kaneko H, Ishijima M, Kawamori R, Watada H, Tamura Y, Uchio Y, Ikegawa S, Terao C. A genome-wide association study identifies a locus associated with knee extension strength in older Japanese individuals. Commun Biol 2024; 7:513. [PMID: 38769351 PMCID: PMC11106293 DOI: 10.1038/s42003-024-06108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/26/2024] [Indexed: 05/22/2024] Open
Abstract
Sarcopenia is a common skeletal muscle disease in older people. Lower limb muscle strength is a good predictive value for sarcopenia; however, little is known about its genetic components. Here, we conducted a genome-wide association study (GWAS) for knee extension strength in a total of 3452 Japanese aged 60 years or older from two independent cohorts. We identified a significant locus, rs10749438 which is an intronic variant in TACC2 (transforming acidic coiled-coil-containing 2) (P = 4.2 × 10-8). TACC2, encoding a cytoskeleton-related protein, is highly expressed in skeletal muscle, and is reported as a target of myotonic dystrophy 1-associated splicing alterations. These suggest that changes in TACC2 expression are associated with variations in muscle strength in older people. The association was consistently observed in young and middle-aged subjects. Our findings would shed light on genetic components of lower limb muscle strength and indicate TACC2 as a potential therapeutic target for sarcopenia.
Collapse
Affiliation(s)
- Shuji Ito
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Hiroshi Takuwa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Graduate School of Health and Sports Science, Juntendo University, Inzai, 270-1695, Japan
| | - Hideyoshi Kaga
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nobuyuki Kumahashi
- Department of Orthopedic Surgery, Matsue Red Cross Hospital, Matsue, 690-8506, Japan
| | - Suguru Kuwata
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Takuya Wakatsuki
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Masaru Kadowaki
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Soichiro Yamamoto
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Takafumi Abe
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
| | - Miwako Takeda
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
| | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Nao Otomo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Hiroyuki Suetsugu
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshinao Koike
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Minoru Isomura
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
- Faculty of Human Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Toru Nabika
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, 693-8501, Japan
| | - Haruka Kaneko
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Muneaki Ishijima
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yuji Uchio
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, 420-8527, Japan.
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
49
|
Zhu Y, Zhu F, Guo X, Huang S, Yang Y, Zhang Q. Appendicular lean mass and the risk of stroke and Alzheimer's disease: a mendelian randomization study. BMC Geriatr 2024; 24:438. [PMID: 38762444 PMCID: PMC11102192 DOI: 10.1186/s12877-024-05039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Appendicular lean mass (ALM) is a good predictive biomarker for sarcopenia. And previous studies have reported the association between ALM and stroke or Alzheimer's disease (AD), however, the causal relationship is still unclear, The purpose of this study was to evaluate whether genetically predicted ALM is causally associated with the risk of stroke and AD by performing Mendelian randomization (MR) analyses. METHODS A two-sample MR study was designed. Genetic variants associated with the ALM were obtained from a large genome-wide association study (GWAS) and utilized as instrumental variables (IVs). Summary-level data for stroke and AD were generated from the corresponding GWASs. We used random-effect inverse-variance weighted (IVW) as the main method for estimating causal effects, complemented by several sensitivity analyses, including the weighted median, MR-Egger, and MR-pleiotropy residual sum and outlier (MR-PRESSO) methods. Multivariable analysis was further conducted to adjust for confounding factors, including body mass index (BMI), type 2 diabetes mellitus (T2DM), low density lipoprotein-C (LDL-C), and atrial fibrillation (AF). RESULTS The present MR study indicated significant inverse associations of genetically predicted ALM with any ischemic stroke ([AIS], odds ratio [OR], 0.93; 95% confidence interval [CI], 0.89-0.97; P = 0.002) and AD (OR, 090; 95% CI 0.85-0.96; P = 0.001). Regarding the subtypes of AIS, genetically predicted ALM was related to the risk of large artery stroke ([LAS], OR, 0.86; 95% CI 0.77-0.95; P = 0.005) and small vessel stroke ([SVS], OR, 0.80; 95% CI 0.73-0.89; P < 0.001). Regarding multivariable MR analysis, ALM retained the stable effect on AIS when adjusting for BMI, LDL-C, and AF, while a suggestive association was observed after adjusting for T2DM. And the estimated effect of ALM on LAS was significant after adjustment for BMI and AF, while a suggestive association was found after adjusting for T2DM and LDL-C. Besides, the estimated effects of ALM were still significant on SVS and AD after adjustment for BMI, T2DM, LDL-C, and AF. CONCLUSIONS The two-sample MR analysis indicated that genetically predicted ALM was negatively related to AIS and AD. And the subgroup analysis of AIS revealed a negative causal effect of genetically predicted ALM on LAS or SVS. Future studies are required to further investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Yueli Zhu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Zhu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoming Guo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shunmei Huang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
50
|
Chen B, Li S, Lin S, Dong H. Causal relationship of interleukin-6 and its receptor on sarcopenia traits using mendelian randomization. Nutr J 2024; 23:51. [PMID: 38750566 PMCID: PMC11094953 DOI: 10.1186/s12937-024-00958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Previous research has extensively examined the role of interleukin 6 (IL-6) in sarcopenia. However, the presence of a causal relationship between IL-6, its receptor (IL-6R), and sarcopenia remains unclear. METHOD In this study, we utilized summary-level data from genome-wide association studies (GWAS) focused on appendicular lean mass (ALM), hand grip strength, and walking pace. Single nucleotide polymorphisms (SNPs) were employed as genetic instruments for IL-6 and IL-6R to estimate the causal effect of sarcopenia traits. We adopted the Mendelian randomization (MR) approach to investigate these associations using the inverse variance weighted (IVW) method as the primary analytical approach. Additionally, we performed sensitivity analyses to validate the reliability of the MR results. RESULT This study revealed a significant negative association between main IL-6R and eQTL IL-6R on the left grip strength were - 0.013 (SE = 0.004, p < 0.001) and -0.029 (SE = 0.007, p < 0.001), respectively. While for the right grip strength, the estimates were - 0.011 (SE = 0.001, p < 0.001) and - 0.021 (SE = 0.008, p = 0.005). However, no evidence of an association for IL-6R with ALM and walking pace. In addition, IL-6 did not affect sarcopenia traits. CONCLUSION Our study findings suggest a negative association between IL-6R and hand grip strength. Additionally, targeting IL-6R may hold potential value as a therapeutic approach for the treatment of hand grip-related issues.
Collapse
Affiliation(s)
- Baixing Chen
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Shaoshuo Li
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Shi Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Hang Dong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
- Department of traumatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| |
Collapse
|