1
|
Harrison SL, Sutton GP, Herrel A, Deeming DC. Estimated and in vivo measurements of bite force demonstrate exceptionally large bite forces in parrots (Psittaciformes). J Anat 2024. [PMID: 39315554 DOI: 10.1111/joa.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Jaw morphology and function determine the range of dietary items that an organism can consume. Bite force is a function of the force exerted by the jaw musculature and applied via the skeleton. Bite force has been studied in a wide range of taxa using various methods, including direct measurement, or calculation from skulls or jaw musculature. Data for parrots (Psittaciformes), considered to have strong bites, are rare. This study calculated bite force for a range of parrot species of differing sizes using a novel method that relied on forces calculated using the area of jaw muscles measured in situ and their masses. The values for bite force were also recorded in vivo using force transducers, allowing for a validation of the dissection-based models. The analysis investigated allometric relationships between measures of body size and calculated bite force. Additionally, the study examined whether a measure of a muscle scar could be a useful proxy to estimate bite force in parrots. Bite force was positively allometric relative to body and skull mass, with macaws having the strongest bite recorded to date for a bird. Calculated values for bite force were not statistically different from measured values. Muscle scars from the adductor muscle attachment on the mandible can be used to accurately predict bite force in parrots. These results have implications for how parrots process hard food items and how bite forces are estimated in other taxa using morphological characteristics of the jaw musculature.
Collapse
Affiliation(s)
- Shannon L Harrison
- School of Natural Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln, UK
| | - Gregory P Sutton
- School of Natural Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln, UK
| | - Anthony Herrel
- Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Naturhistorisches Museum Bern, Bern, Switzerland
| | - D Charles Deeming
- School of Natural Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln, UK
| |
Collapse
|
2
|
Strunk T, Joshi A, Moeinkhah M, Renzelmann T, Dierker L, Grotheer D, Graupner N, Müssig J, Brüggemann D. Structure, Properties and Degradation of Self-Assembled Fibrinogen Nanofiber Scaffolds. ACS APPLIED BIO MATERIALS 2024; 7:6186-6200. [PMID: 39226515 PMCID: PMC11409215 DOI: 10.1021/acsabm.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Self-assembled fibrinogen nanofibers are promising candidates for skin tissue engineering due to their biocompatibility and ability to mimic the native blood clot architecture. Here, we studied the structure-property relationship and degradation of rehydrated fibrinogen nanofibers prepared by salt-induced self-assembly, focusing on the effect of scaffold layering, cross-linking time and freeze-drying. Optimal fiber stability was achieved with cross-linking by formaldehyde (FA) vapor, while treatment with liquid aldehydes, genipin, EDC, and transglutaminase failed to preserve the nanofibrous architecture upon rehydration. Scaffold layering did not significantly influence the mechanical properties but changed the scaffold architecture, with bulk fiber scaffolds being more compact than layered scaffolds. Freeze-drying maintained the mechanical properties and interconnected pore network with average pore diameters around 20 μm, which will enhance the storage stability of self-assembled fibrinogen scaffolds. Varying cross-linking times altered the scaffold mechanics without affecting the swelling behavior, indicating that scaffold hydration can be controlled independently of the mechanical characteristics. Cross-linking times of 240 min increased scaffold stiffness and decreased elongation, while 30 min resulted in mechanical properties similar to native skin. Cross-linking for 120 min was found to reduce scaffold degradation by various enzymes in comparison to 60 min. Overall, after 35 days of incubation, plasmin and a combination of urokinase and plasminogen exhibited the strongest degradative effect, with nanofibers being more susceptible to enzymatic degradation than planar fibrinogen due to their higher specific surface area. Based on these results, self-assembled fibrinogen fiber scaffolds show great potential for future applications in soft tissue engineering that require controlled structure-function relationships and degradation characteristics.
Collapse
Affiliation(s)
- Till Strunk
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Arundhati Joshi
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Mahta Moeinkhah
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Timon Renzelmann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Lea Dierker
- Hochschule Bremen - City University of Applied Sciences, Neustadtswall 30, 28199 Bremen, Germany
| | - Dietmar Grotheer
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Nina Graupner
- HSB - City University of Applied Sciences, Department of Biomimetics, The Biological Materials Group, Neustadtswall 30, 28199 Bremen, Germany
| | - Jörg Müssig
- HSB - City University of Applied Sciences, Department of Biomimetics, The Biological Materials Group, Neustadtswall 30, 28199 Bremen, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
3
|
King L, Zhao Q, Dufeau DL, Kawabe S, Witmer L, Zhou CF, Rayfield EJ, Benton MJ, Watanabe A. Endocranial development in non-avian dinosaurs reveals an ontogenetic brain trajectory distinct from extant archosaurs. Nat Commun 2024; 15:7415. [PMID: 39198439 PMCID: PMC11358377 DOI: 10.1038/s41467-024-51627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Modern birds possess highly encephalized brains that evolved from non-avian dinosaurs. Evolutionary shifts in developmental timing, namely juvenilization of adult phenotypes, have been proposed as a driver of head evolution along the dinosaur-bird transition, including brain morphology. Testing this hypothesis requires a sufficient developmental sampling of brain morphology in non-avian dinosaurs. In this study, we harness brain endocasts of a postnatal growth series of the ornithischian dinosaur Psittacosaurus and several other immature and mature non-avian dinosaurs to investigate how evolutionary changes to brain development are implicated in the origin of the avian brain. Using three-dimensional characterization of neuroanatomical shape across archosaurian reptiles, we demonstrate that (i) the brain of non-avian dinosaurs underwent a distinct developmental trajectory compared to alligators and crown birds; (ii) ornithischian and non-avialan theropod dinosaurs shared a similar developmental trajectory, suggesting that their derived trajectory evolved in their common ancestor; and (iii) the evolutionary shift in developmental trajectories is partly consistent with paedomorphosis underlying overall brain shape evolution along the dinosaur-bird transition; however, the heterochronic signal is not uniform across time and neuroanatomical region suggesting a highly mosaic acquisition of the avian brain form.
Collapse
Affiliation(s)
- Logan King
- Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, UK.
| | - Qi Zhao
- Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - David L Dufeau
- Department of Anatomy and Pathology, Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
| | - Soichiro Kawabe
- Institute of Dinosaur Research, Fukui Prefectural University, Eiheiji, Fukui, Japan
- Fukui Prefectural Dinosaur Museum, Katsuyama, Fukui, Japan
| | - Lawrence Witmer
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, OH, USA
| | - Chang-Fu Zhou
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Akinobu Watanabe
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.
- Life Sciences Department, Natural History Museum, London, UK.
| |
Collapse
|
4
|
Miller E, Lee HW, Abzhanov A, Evers SW. The topological organization of the turtle cranium is constrained and conserved over long evolutionary timescales. Anat Rec (Hoboken) 2024; 307:2713-2748. [PMID: 38102921 DOI: 10.1002/ar.25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
The cranium of turtles (Testudines) is characterized by the secondary reduction of temporal fenestrae and loss of cranial joints (i.e., characteristics of anapsid, akinetic skulls). Evolution and ontogeny of the turtle cranium are associated with shape changes. Cranial shape variation among Testudines can partially be explained by dietary and functional adaptations (neck retraction), but it is unclear if cranial topology shows similar ecomorphological signal, or if it is decoupled from shape evolution. We assess the topological arrangement of cranial bones (i.e., number, relative positioning, connections), using anatomical network analysis. Non-shelled stem turtles have similar cranial arrangements to archosauromorph outgroups. Shelled turtles (Testudinata) evolve a unique cranial organization that is associated with bone losses (e.g., supratemporal, lacrimal, ectopterygoid) and an increase in complexity (i.e., densely and highly interconnected skulls with low path lengths between bones), resulting from the closure of skull openings and establishment of unusual connections such as a parietal-pterygoid contact in the secondary braincase. Topological changes evolutionarily predate many shape changes. Topological variation and taxonomic morphospace discrimination among crown turtles are low, indicating that cranial topology may be constrained. Observed variation results from repeated losses of nonintegral bones (i.e., premaxilla, nasal, epipterygoid, quadratojugal), and changes in temporal emarginations and palate construction. We observe only minor ontogenetic changes. Topology is not influenced by diet and habitat, contrasting cranial shape. Our results indicate that turtles have a unique cranial topology among reptiles that is conserved after its initial establishment, and shows that cranial topology and shape have different evolutionary histories.
Collapse
Affiliation(s)
- Eve Miller
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
- Natural History Museum, London, UK
| | - Hiu Wai Lee
- Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Arkhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
- Natural History Museum, London, UK
| | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Ollonen J, Khannoon ER, Macrì S, Vergilov V, Kuurne J, Saarikivi J, Soukainen A, Aalto IM, Werneburg I, Diaz RE, Di-Poï N. Dynamic evolutionary interplay between ontogenetic skull patterning and whole-head integration. Nat Ecol Evol 2024; 8:536-551. [PMID: 38200368 DOI: 10.1038/s41559-023-02295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The arrangement and morphology of the vertebrate skull reflect functional and ecological demands, making it a highly adaptable structure. However, the fundamental developmental and macroevolutionary mechanisms leading to different vertebrate skull phenotypes remain unclear. Here we exploit the morphological diversity of squamate reptiles to assess the developmental and evolutionary patterns of skull variation and covariation in the whole head. Our geometric morphometric analysis of a complex squamate ontogenetic dataset (209 specimens, 169 embryos, 44 species), covering stages from craniofacial primordia to fully ossified bones, reveals that morphological differences between snake and lizard skulls arose gradually through changes in spatial relationships (heterotopy) followed by alterations in developmental timing or rate (heterochrony). Along with dynamic spatiotemporal changes in the integration pattern of skull bone shape and topology with surrounding brain tissues and sensory organs, we identify a relatively higher phenotypic integration of the developing snake head compared with lizards. The eye, nasal cavity and Jacobson's organ are pivotal in skull morphogenesis, highlighting the importance of sensory rearrangements in snake evolution. Furthermore, our findings demonstrate the importance of early embryonic, ontogenetic and tissue interactions in shaping craniofacial evolution and ecological diversification in squamates, with implications for the nature of cranio-cerebral relations across vertebrates.
Collapse
Affiliation(s)
- Joni Ollonen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eraqi R Khannoon
- Biology Department, College of Science, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vladislav Vergilov
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jaakko Kuurne
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jarmo Saarikivi
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Arttu Soukainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ida-Maria Aalto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls Universität, Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
| | - Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, CA, USA
- Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Hedrick BP. Dots on a screen: The past, present, and future of morphometrics in the study of nonavian dinosaurs. Anat Rec (Hoboken) 2023. [PMID: 36922704 DOI: 10.1002/ar.25183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/28/2022] [Accepted: 02/12/2023] [Indexed: 03/18/2023]
Abstract
Using morphometrics to study nonavian dinosaur fossils is a practice that predates the origin of the word "dinosaur." By the 1970s, linear morphometrics had become established as a valuable tool for analyzing intra- and interspecific variation in nonavian dinosaurs. With the advent of more recent techniques such as geometric morphometrics and more advanced statistical approaches, morphometric analyses of nonavian dinosaurs have proliferated, granting unprecedented insight into many aspects of their biology and evolution. I outline the past, present, and future of morphometrics as applied to the study of nonavian dinosaurs zeroing in on five aspects of nonavian dinosaur paleobiology where morphometrics has been widely utilized to advance our knowledge: systematics, sexual dimorphism, locomotion, macroevolution, and trackways. Morphometric methods are especially susceptible to taphonomic distortion. As such, the impact of taphonomic distortion on original fossil shape is discussed as are current and future methods for quantifying and accounting for distortion with the goal of reducing the taphonomic noise to biological signal ratio. Finally, the future of morphometrics in nonavian dinosaur paleobiology is discussed as paleobiologists move into a "virtual paleobiology" framework, whereby digital renditions of fossils are captured via methods such as photogrammetry and computed tomography. These primary data form the basis for three-dimensional (3D) geometric morphometric analyses along with a slew of other forms of analyses. These 3D specimen data form part of the extended specimen and help to democratize paleobiology, unlocking the specimen from the physical museum and making the specimen available to researchers across the world.
Collapse
Affiliation(s)
- Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Yoshida J, Kobayashi Y, Fiorillo AR. Evolutionary insights from an anatomical network analysis of the hyolaryngeal apparatus in extant archosaurs (birds and crocodilians). Anat Rec (Hoboken) 2023. [PMID: 36594713 DOI: 10.1002/ar.25153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
Adaptive radiation of archosaurs, represented by crocodilians, non-avian dinosaurs, and birds, since the Mesozoic has been studied mainly based on their major skeletal elements (skull, vertebrae, and limbs). However, little is known about the evolution of their hyolaryngeal apparatus, which is involved with feeding, respiration, and vocalization, because of poor fossil preservation and the difficulty in determining the musculoskeletal homology of the apparatus. Network analysis is a framework to quantitatively characterize the topological organization of anatomical structures for comparing structural integration and modularity regardless of ambiguous homology. Herein, we modeled the musculoskeletal system of hyolarynx in six species of extant archosaurs and its sister-taxon turtle, and conducted a network analysis using network parameters, modular partition, and bone centrality in a phylogenetic framework. The network parameters reveal that ancestral archosaurs have reduced the numbers of elements and links and acquired complex networks as a whole domain with strong modularity in the hyolarynx. Furthermore, the modular partition and centrality reveal that the hyoids are highly evolvable, while the larynx is constrained and less evolvable. The archosaur hyolarynx exhibits different evolutionary trends: crocodilians with the system integration, basihyal simplification, and ceratobranchial centralization; and birds with the simplicity, weak integration, and modularity of the hyolarynx, laryngeal integration with cricoid centrality, and tongue-module expansion with the acquisition of paraglossal. Four hyolaryngeal bones (ceratobranchial, basihyal, paraglossal, and cricoid) have played important roles in archosaur evolution, and their fossil records are keys to understanding the two major archosaur lineages toward crocodilians and birds.
Collapse
Affiliation(s)
- Junki Yoshida
- Fukushima Museum, Aizu-wakamatsu, Fukushima, Japan.,Hokkaido University Museum, Sapporo, Hokkaido, Japan
| | | | - Anthony R Fiorillo
- The New Mexico Museum of Natural History & Science, Albuquerque, New Mexico, USA
| |
Collapse
|
8
|
Li Z, Wang M, Stidham TA, Zhou Z. Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies. Nat Ecol Evol 2023; 7:20-31. [PMID: 36593291 DOI: 10.1038/s41559-022-01921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/03/2022] [Indexed: 01/03/2023]
Abstract
The Cretaceous is a critical time interval that encompasses explosive diversifications of terrestrial vertebrates, particularly the period when the earliest-branching birds, after divergence from their theropod ancestors, evolved the characteristic avian Bauplan that led eventually to their global radiation. This early phylogenetic diversity is overwhelmed by the Ornithothoraces, consisting of the Enantiornithes and Ornithuromorpha, whose members evolved key derived features of crown birds. This disparity consequently circumscribes a large morphological gap between these derived clades and the oldest bird Archaeopteryx. The non-ornithothoracine pygostylians, with an intermediate phylogenetic position, are key to deciphering those evolutionary transformations, but progress in their study has been hampered by the limited diversity of known fossils. Here we report an Early Cetaceous non-ornithothoracine pygostylian, Cratonavis zhui gen. et sp. nov., that exhibits a unique combination of a non-avialan dinosaurian akinetic skull with an avialan post-cranial skeleton, revealing the key role of evolutionary mosaicism in early bird diversification. The unusually elongated scapular and metatarsal one preserved in Cratonavis highlights a breadth of skeletal plasticity, stemming from their distinct developmental modules and selection for possibly raptorial behaviour. Mapped changes in these two elements across theropod phylogeny demonstrate clade-specific evolutionary lability.
Collapse
Affiliation(s)
- Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China. .,Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China.
| | - Thomas A Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Wang M, Stidham TA, O'Connor JK, Zhou Z. Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird. eLife 2022; 11:e81337. [PMID: 36469022 PMCID: PMC9721616 DOI: 10.7554/elife.81337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
The independent movements and flexibility of various parts of the skull, called cranial kinesis, are an evolutionary innovation that is found in living vertebrates only in some squamates and crown birds and is considered to be a major factor underpinning much of the enormous phenotypic and ecological diversity of living birds, the most diverse group of extant amniotes. Compared to the postcranium, our understanding of the evolutionary assemblage of the characteristic modern bird skull has been hampered by sparse fossil records of early cranial materials, with competing hypotheses regarding the evolutionary development of cranial kinesis among early members of the avialans. Here, a detailed three-dimensional reconstruction of the skull of the Early Cretaceous enantiornithine Yuanchuavis kompsosoura allows for its in-depth description, including elements that are poorly known among early-diverging avialans but are central to deciphering the mosaic assembly of features required for modern avian cranial kinesis. Our reconstruction of the skull shows evolutionary and functional conservation of the temporal and palatal regions by retaining the ancestral theropod dinosaurian configuration within the skull of this otherwise derived and volant bird. Geometric morphometric analysis of the palatine suggests that loss of the jugal process represents the first step in the structural modifications of this element leading to the kinetic crown bird condition. The mixture of plesiomorphic temporal and palatal structures together with a derived avialan rostrum and postcranial skeleton encapsulated in Yuanchuavis manifests the key role of evolutionary mosaicism and experimentation in early bird diversification.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of SciencesBeijingChina
| | - Thomas A Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Rawson JRG, Esteve-Altava B, Porro LB, Dutel H, Rayfield EJ. Early tetrapod cranial evolution is characterized by increased complexity, constraint, and an offset from fin-limb evolution. SCIENCE ADVANCES 2022; 8:eadc8875. [PMID: 36083907 PMCID: PMC9462696 DOI: 10.1126/sciadv.adc8875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The developmental underpinnings and functional consequences of modifications to the limbs during the origin of the tetrapod body plan are increasingly well characterized, but less is understood about the evolution of the tetrapod skull. Decrease in skull bone number has been hypothesized to promote morphological and functional diversification in vertebrate clades, but its impact during the initial rise of tetrapods is unknown. Here, we test this by quantifying topological changes to cranial anatomy in fossil and living taxa bracketing the fin-to-limb transition using anatomical network analysis. We find that bone loss across the origin of tetrapods is associated not only with increased complexity of bone-to-bone contacts but also with decreasing topological diversity throughout the late Paleozoic, which may be related to developmental and/or mechanical constraints. We also uncover a 10-Ma offset between fin-limb and cranial morphological evolution, suggesting that different evolutionary drivers affected these features during the origin of tetrapods.
Collapse
Affiliation(s)
| | - Borja Esteve-Altava
- Institut de Biologia Evolutiva, Departament de Ciències Experimentals i la Salud, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura B. Porro
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Hugo Dutel
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
- Department of Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Emily J. Rayfield
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| |
Collapse
|
11
|
Anatomical network analyses reveal evolutionary integration and modularity in the lizards skull. Sci Rep 2022; 12:14429. [PMID: 36064738 PMCID: PMC9445097 DOI: 10.1038/s41598-022-18222-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
The morphology of lizard skulls is highly diverse, and it is crucial to understand the factors that constrain and promote their evolution to understand how lizards thrive. The results of interactions between cranial bones reflecting these factors can be detected as integration and modularity, and the analysis of integration and modularity allows us to explore the underlying factors. In this study, the integration and modularity of the skulls of lizards and the outgroup tuatara are analyzed using a new method, Anatomical Network Analysis (AnNA), and the factors causing lizards morphological diversity are investigated by comparing them. The comparison of modular structures shows that lizard skulls have high integration and anisomerism, some differences but basically common modular patterns. In contrast, the tuatara shows a different modular pattern from lizards. In addition, the presence of the postorbital bar by jugal and postorbital (postorbitofrontal) also reflect various functional factors by maintaining low integration. The maintenance of basic structures due to basic functional requirements and changes in integration within the modules play a significant role in increasing the morphological diversity of the lizard skull and in the prosperity of the lizards.
Collapse
|
12
|
Strong CRC, Scherz MD, Caldwell MW. Convergence, divergence, and macroevolutionary constraint as revealed by anatomical network analysis of the squamate skull, with an emphasis on snakes. Sci Rep 2022; 12:14469. [PMID: 36008512 PMCID: PMC9411180 DOI: 10.1038/s41598-022-18649-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022] Open
Abstract
Traditionally considered the earliest-diverging group of snakes, scolecophidians are central to major evolutionary paradigms regarding squamate feeding mechanisms and the ecological origins of snakes. However, quantitative analyses of these phenomena remain scarce. Herein, we therefore assess skull modularity in squamates via anatomical network analysis, focusing on the interplay between 'microstomy' (small-gaped feeding), fossoriality, and miniaturization in scolecophidians. Our analyses reveal distinctive patterns of jaw connectivity across purported 'microstomatans', thus supporting a more complex scenario of jaw evolution than traditionally portrayed. We also find that fossoriality and miniaturization each define a similar region of topospace (i.e., connectivity-based morphospace), with their combined influence imposing further evolutionary constraint on skull architecture. These results ultimately indicate convergence among scolecophidians, refuting widespread perspectives of these snakes as fundamentally plesiomorphic and morphologically homogeneous. This network-based examination of skull modularity-the first of its kind for snakes, and one of the first to analyze squamates-thus provides key insights into macroevolutionary trends among squamates, with particular implications for snake origins and evolution.
Collapse
Affiliation(s)
- Catherine R C Strong
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Mark D Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Michael W Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
13
|
De Mendoza RS, Carril J, Degrange FJ, Demmel Ferreira MM, Nieto MN, Tambussi CP. Redefining the simplicity of the craniomandibular complex of nightjars: The case of Systellura longirostris (Aves: Caprimulgidae) by means of anatomical network analysis. J Morphol 2022; 283:945-955. [PMID: 35621367 DOI: 10.1002/jmor.21482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 11/09/2022]
Abstract
To study morphological evolution, it is necessary to combine information from multiple intersecting research fields. Here, we report on the structure of the bony and muscular elements of the craniomandibular complex of birds, highlighting its morphological architecture and complexity (or simplification) in the context of anatomical networks of the Band-winged Nightjar Systellura longirostris (Caprimulgiformes, Caprimulgidae). This species has skull osteology and jaw myology that departs from the general structural plan of the craniomandibular complex of Neornithes and is considered morphologically simple. Our goal is to test if its simplification is also reflected in its anatomical network, particularly in those parameters that measure complexity and to explore if the distribution of the networks in a phylomorphospace is conditioned by their evolutionary history or by convergence. Our results show that S. longirostris clusters with other Strisores and momotids and is segregated from the other bird species analyzed when plotted in the phylomorphospace, as a consequence of convergence in the network parameters. Systellura has a craniomandibular complex consisting of fewer muscles connecting more bones than the model species (e.g., the rock pigeon or the guira cuckoo). In this sense, Systellura is actually more complex regarding the number of integrative bony parts, while its craniomandibular complex is simpler. According to its anatomical network, Systellura also can be interpreted as less complex, particularly compared with other Strisores and taxa that reflect the general structure of the craniomandibular complex in Neornithes.
Collapse
Affiliation(s)
- Ricardo S De Mendoza
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Carril
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Federico J Degrange
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María M Demmel Ferreira
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Mauro N Nieto
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Claudia P Tambussi
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
14
|
Connectivity Patterns of the Hindlimb Musculoskeletal System in Living and Fossil Diving Birds. Evol Biol 2022. [DOI: 10.1007/s11692-022-09568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Werneburg I, Abel P. Modeling Skull Network Integrity at the Dawn of Amniote Diversification With Considerations on Functional Morphology and Fossil Jaw Muscle Reconstructions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.799637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One of the major questions in evolutionary vertebrate morphology is the origin and meaning of temporal skull openings in land vertebrates. Partly or fully surrounded by bones, one, two, or even three openings may evolve behind the orbit, within the ancestrally fully roofed anapsid (scutal) skull. At least ten different morphotypes can be distinguished in tetrapods with many modifications and transitions in more crownward representatives. A number of potential factors driving the emergence and differentiation of temporal openings have been proposed in the literature, but only today are proper analytical tools available to conduct traceable tests for the functional morphology underlying temporal skull constructions. In the present study, we examined the anatomical network in the skull of one representative of early amniotes, †Captorhinus aguti, which ancestrally exhibits an anapsid skull. The resulting skull modularity revealed a complex partitioning of the temporal region indicating, in its intersections, the candidate positions for potential infratemporal openings. The framework of †C. aguti was then taken as a template to model a series of potential temporal skull morphotypes in order to understand how skull openings might influence the modular composition of the amniote skull in general. We show that the original pattern of skull modularity (†C. aguti) experiences comprehensive changes by introducing one or two temporal openings in different combinations and in different places. The resulting modules in each skull model are interpreted in regard to the feeding behavior of amniotes that exhibit(ed) the respective skull morphotypes. An important finding is the alternative incorporation of the jugal and palate to different modules enforcing the importance of an integrated view on skull evolution: the temporal region cannot be understood without considering palatal anatomy. Finally, we discuss how to better reconstruct relative jaw muscle compositions in fossils by considering the modularity of the skull network. These considerations might be relevant for future biomechanical studies on skull evolution.
Collapse
|
16
|
Bona P, Fernandez Blanco MV, Ezcurra MD, von Baczko MB, Desojo JB, Pol D. On the homology of crocodylian post-dentary bones and their macroevolution throughout Pseudosuchia. Anat Rec (Hoboken) 2022; 305:2980-3001. [PMID: 35202518 DOI: 10.1002/ar.24873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022]
Abstract
The lower jaw of early tetrapods is composed of several intramembranous ossifications. However, a tendency toward the independent reduction of the number of bones has been observed in the mandible of mammals, lepidosaurs, turtles, crocodiles, and birds. Regarding archosaurs, the coronoid and prearticular bones are interpreted to be lost during the evolution of stem-birds and stem-crocodiles, respectively, but the homology of the post-dentary bones retained in living pseudosuchians remains unclear. Here, we combine paleontological and embryological evidence to explore in detail the homology of the crocodylian post-dentary bones. We study the mandible embryogenesis on a sample of 71 embryos of Caiman and compare this pattern with the mandibular transformations observed across pseudosuchian evolution. In the pre-hatching ontogeny of caimans, at least five intramembranous ossification centers are formed along the margins of the internal mandibular fenestra (perifenestral centers) and, subsequently, merge to form the coronoid (three intramembranous centers), angular (one intramembranous center), and articular (one intramembranous and one chondral center). In the fossil record, an independent prearticular is lost around the base of Mesoeucrocodylia (optimized as reappearing in Thalattosuchia if they are placed within Neosuchia), and the coronoid is apomorphically lost in notosuchians. The integration of embryological and paleontological data indicates that most perifenestral centers are involved in the origin of the prearticular of non-mesoeucrocodylian pseudosuchians. These centers are rearranged during the evolution to contribute to different post-dentary bones in mesoeucrocodylians bolstering the idea that the coronoid and the articular of Crocodylia are not completely homologous to those of other diapsids.
Collapse
Affiliation(s)
- Paula Bona
- División Paleontología Vertebrados, Anexo II Laboratorios del Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Fernandez Blanco
- División Paleontología Vertebrados, Anexo II Laboratorios del Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Martín Daniel Ezcurra
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| | - María Belén von Baczko
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| | - Julia Brenda Desojo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,División Paleontología Vertebrados, Museo de La Plata, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Diego Pol
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Museo Paleontológico Egidio Feruglio, Trelew, Argentina
| |
Collapse
|
17
|
Ma W, Pittman M, Butler RJ, Lautenschlager S. Macroevolutionary trends in theropod dinosaur feeding mechanics. Curr Biol 2021; 32:677-686.e3. [PMID: 34919807 DOI: 10.1016/j.cub.2021.11.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/03/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022]
Abstract
Theropod dinosaurs underwent some of the most remarkable dietary changes in vertebrate evolutionary history, shifting from ancestral carnivory1-3 to hypercarnivory4,5 and omnivory/herbivory,6-9 with some taxa eventually reverting to carnivory.10-12 The mandible is an important tool for food acquisition in vertebrates and reflects adaptations to feeding modes and diets.13,14 The morphofunctional modifications accompanying the dietary changes in theropod dinosaurs are not well understood because most of the previous studies focused solely on the cranium and/or were phylogenetically limited in scope,12,15-21 while studies that include multiple clades are usually based on linear measurements and/or discrete osteological characters.8,22 Given the potential relationship between macroevolutionary change and ontogenetic pattern,23 we explore whether functional morphological patterns observed in theropod mandibular evolution show similarities to the ontogenetic trajectory. Here, we use finite element analysis to study the mandibles of non-avialan coelurosaurian theropods and demonstrate how feeding mechanics vary between dietary groups and major clades. We reveal an overall reduction in feeding-induced stresses along all theropod lineages through time. This is facilitated by a post-dentary expansion and the development of a downturned dentary in herbivores and an upturned dentary in carnivores likely via the "curved bone effect." We also observed the same reduction in feeding-induced stress in an ontogenetic series of jaws of the tyrannosaurids Tarbosaurus and Tyrannosaurus, which is best attributed to bone functional adaptation. This suggests that this common tendency for structural strengthening of the theropod mandible through time, irrespective of diet, is linked to "functional peramorphosis" of bone functional adaptations acquired during ontogeny.
Collapse
Affiliation(s)
- Waisum Ma
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Michael Pittman
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
18
|
Cranial Anatomical Integration and Disparity Among Bones Discriminate Between Primates and Non-primate Mammals. Evol Biol 2021. [DOI: 10.1007/s11692-021-09555-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe primate skull hosts a unique combination of anatomical features among mammals, such as a short face, wide orbits, and big braincase. Together with a trend to fuse bones in late development, these features define the anatomical organization of the skull of primates—which bones articulate to each other and the pattern this creates. Here, I quantified the anatomical organization of the skull of 17 primates and 15 non-primate mammals using anatomical network analysis to assess how the skulls of primates have diverged from those of other mammals, and whether their anatomical differences coevolved with brain size. Results show that primates have a greater anatomical integration of their skulls and a greater disparity among bones than other non-primate mammals. Brain size seems to contribute in part to this difference, but its true effect could not be conclusively proven. This supports the hypothesis that primates have a distinct anatomical organization of the skull, but whether this is related to their larger brains remains an open question.
Collapse
|
19
|
Plateau O, Foth C. Common Patterns of Skull Bone Fusion and Their Potential to Discriminate Different Ontogenetic Stages in Extant Birds. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.737199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The degree of sutural closure between bones generally allows for the classification of skeleton maturity in tetrapods. In mammals, the sutural closure of skull bones was previously used as proxy to evaluate the ontogenetic stage of single individuals. However, due to temporal variation, this process can be only applied among mammalian subclades, but not for all mammals in general. In contrast, the process of sutural closures in bird skulls could be a more reliable ontogenetic proxy for this clade as adult birds commonly show a generally high degree of bone fusion. To test this, we studied the process of sutural closure in ontogenetic series of 18 extant bird species regarding the presence of an ontogenetic signal and compared the results with changes in skull size and proportions. Univariate analyses indicate that bone fusion happens faster in altricial than in precocial birds. However, the use of PCoA and multivariate regressions reveal that the skull bone fusion follows a common pattern among birds and thus can be used as proxy to identify different ontogenetic stages. In general, the process of sutural closure spreads from posterior to anterior and from ventral to dorsal. In contrast, skull measurements reflect rather interspecific allometry than ontogeny. The used of bone fusion as proxy will help to better identify and compare different stages of maturation in birds, including historical material from osteological collections.
Collapse
|
20
|
Watanabe A, Balanoff AM, Gignac PM, Gold MEL, Norell MA. Novel neuroanatomical integration and scaling define avian brain shape evolution and development. eLife 2021; 10:68809. [PMID: 34227464 PMCID: PMC8260227 DOI: 10.7554/elife.68809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
How do large and unique brains evolve? Historically, comparative neuroanatomical studies have attributed the evolutionary genesis of highly encephalized brains to deviations along, as well as from, conserved scaling relationships among brain regions. However, the relative contributions of these concerted (integrated) and mosaic (modular) processes as drivers of brain evolution remain unclear, especially in non-mammalian groups. While proportional brain sizes have been the predominant metric used to characterize brain morphology to date, we perform a high-density geometric morphometric analysis on the encephalized brains of crown birds (Neornithes or Aves) compared to their stem taxa—the non-avialan coelurosaurian dinosaurs and Archaeopteryx. When analyzed together with developmental neuroanatomical data of model archosaurs (Gallus, Alligator), crown birds exhibit a distinct allometric relationship that dictates their brain evolution and development. Furthermore, analyses by neuroanatomical regions reveal that the acquisition of this derived shape-to-size scaling relationship occurred in a mosaic pattern, where the avian-grade optic lobe and cerebellum evolved first among non-avialan dinosaurs, followed by major changes to the evolutionary and developmental dynamics of cerebrum shape after the origin of Avialae. Notably, the brain of crown birds is a more integrated structure than non-avialan archosaurs, implying that diversification of brain morphologies within Neornithes proceeded in a more coordinated manner, perhaps due to spatial constraints and abbreviated growth period. Collectively, these patterns demonstrate a plurality in evolutionary processes that generate encephalized brains in archosaurs and across vertebrates.
Collapse
Affiliation(s)
- Akinobu Watanabe
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, United States.,Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Life Sciences Vertebrates Division, Natural History Museum, London, United Kingdom
| | - Amy M Balanoff
- Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, United States
| | - Paul M Gignac
- Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, United States
| | - M Eugenia L Gold
- Division of Paleontology, American Museum of Natural History, New York, United States.,Biology Department, Suffolk University, Boston, United States
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, United States
| |
Collapse
|
21
|
Wang M, Stidham TA, Li Z, Xu X, Zhou Z. Cretaceous bird with dinosaur skull sheds light on avian cranial evolution. Nat Commun 2021; 12:3890. [PMID: 34162868 PMCID: PMC8222284 DOI: 10.1038/s41467-021-24147-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
The transformation of the bird skull from an ancestral akinetic, heavy, and toothed dinosaurian morphology to a highly derived, lightweight, edentulous, and kinetic skull is an innovation as significant as powered flight and feathers. Our understanding of evolutionary assembly of the modern form and function of avian cranium has been impeded by the rarity of early bird fossils with well-preserved skulls. Here, we describe a new enantiornithine bird from the Early Cretaceous of China that preserves a nearly complete skull including the palatal elements, exposing the components of cranial kinesis. Our three-dimensional reconstruction of the entire enantiornithine skull demonstrates that this bird has an akinetic skull indicated by the unexpected retention of the plesiomorphic dinosaurian palate and diapsid temporal configurations, capped with a derived avialan rostrum and cranial roof, highlighting the highly modular and mosaic evolution of the avialan skull.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China.
| | - Thomas A Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
The Network Ontogeny of the Parrot: Altriciality, Dynamic Skeletal Assemblages, and the Avian Body Plan. Evol Biol 2020. [DOI: 10.1007/s11692-020-09522-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Esteve-Altava B. A node-based informed modularity strategy to identify organizational modules in anatomical networks. Biol Open 2020; 9:9/10/bio056176. [PMID: 33077552 PMCID: PMC7595689 DOI: 10.1242/bio.056176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study of morphological modularity using anatomical networks is growing in recent years. A common strategy to find the best network partition uses community detection algorithms that optimize the modularity Q function. Because anatomical networks and their modules tend to be small, this strategy often produces two problems. One is that some algorithms find inexplicable different modules when one inputs slightly different networks. The other is that algorithms find asymmetric modules in otherwise symmetric networks. These problems have discouraged researchers to use anatomical network analysis and boost criticisms to this methodology. Here, I propose a node-based informed modularity strategy (NIMS) to identify modules in anatomical networks that bypass resolution and sensitivity limitations by using a bottom-up approach. Starting with the local modularity around every individual node, NIMS returns the modular organization of the network by merging non-redundant modules and assessing their intersection statistically using combinatorial theory. Instead of acting as a black box, NIMS allows researchers to make informed decisions about whether to merge non-redundant modules. NIMS returns network modules that are robust to minor variation and does not require optimization of a global modularity function. NIMS may prove useful to identify modules also in small ecological and social networks. Summary: A new method to identify modules in anatomical networks without optimization and statistically assess their degree of overlap. This method will assist researchers in identifying meaningful biological modules.
Collapse
Affiliation(s)
- Borja Esteve-Altava
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Doctor Aigüader 88, 08003 Barcelona, Spain
| |
Collapse
|
24
|
Lee HW, Esteve-Altava B, Abzhanov A. Evolutionary and ontogenetic changes of the anatomical organization and modularity in the skull of archosaurs. Sci Rep 2020; 10:16138. [PMID: 32999389 PMCID: PMC7528100 DOI: 10.1038/s41598-020-73083-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Comparative anatomy studies of the skull of archosaurs provide insights on the mechanisms of evolution for the morphologically and functionally diverse species of crocodiles and birds. One of the key attributes of skull evolution is the anatomical changes associated with the physical arrangement of cranial bones. Here, we compare the changes in anatomical organization and modularity of the skull of extinct and extant archosaurs using an Anatomical Network Analysis approach. We show that the number of bones, their topological arrangement, and modular organization can discriminate birds from non-avian dinosaurs, and crurotarsans. We could also discriminate extant taxa from extinct species when adult birds were included. By comparing within the same framework, juveniles and adults for crown birds and alligator (Alligator mississippiensis), we find that adult and juvenile alligator skulls are topologically similar, whereas juvenile bird skulls have a morphological complexity and anisomerism more similar to those of non-avian dinosaurs and crurotarsans than of their own adult forms. Clade-specific ontogenetic differences in skull organization, such as extensive postnatal fusion of cranial bones in crown birds, can explain this pattern. The fact that juvenile and adult skulls in birds do share a similar anatomical integration suggests the presence of a specific constraint to their ontogenetic growth.
Collapse
Affiliation(s)
- Hiu Wai Lee
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Borja Esteve-Altava
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK.
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| |
Collapse
|
25
|
Sookias RB, Dilkes D, Sobral G, Smith RMH, Wolvaardt FP, Arcucci AB, Bhullar BAS, Werneburg I. The craniomandibular anatomy of the early archosauriform Euparkeria capensis and the dawn of the archosaur skull. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200116. [PMID: 32874620 PMCID: PMC7428278 DOI: 10.1098/rsos.200116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/22/2020] [Indexed: 05/15/2023]
Abstract
Archosauria (birds, crocodilians and their extinct relatives) form a major part of terrestrial ecosystems today, with over 10 000 living species, and came to dominate the land for most of the Mesozoic (over 150 Myr) after radiating following the Permian-Triassic extinction. The archosaur skull has been essential to this diversification, itself diversified into myriad forms. The archosauriform Euparkeria capensis from the Middle Triassic (Anisian) of South Africa has been of great interest since its initial description in 1913, because its anatomy shed light on the origins and early evolution of crown Archosauria and potentially approached that of the archosaur common ancestor. Euparkeria has been widely used as an outgroup in phylogenetic analyses and when investigating patterns of trait evolution among archosaurs. Although described monographically in 1965, subsequent years have seen great advances in the understanding of early archosaurs and in imaging techniques. Here, the cranium and mandible of Euparkeria are fully redescribed and documented using all fossil material and computed tomographic data. Details previously unclear are fully described, including vomerine dentition, the epiptergoid, number of premaxillary teeth and palatal arrangement. A new diagnosis and cranial and braincase reconstruction is provided, and an anatomical network analysis is performed on the skull of Euparkeria and compared with other amniotes. The modular composition of the cranium suggests a flexible skull well adapted to feeding on agile food, but with a clear tendency towards more carnivorous behaviour, placing the taxon at the interface between ancestral diapsid and crown archosaur ecomorphology, corresponding to increases in brain size, visual sensitivity, upright locomotion and metabolism around this point in archosauriform evolution. The skull of Euparkeria epitomizes a major evolutionary transition, and places crown archosaur morphology in an evolutionary context.
Collapse
Affiliation(s)
- Roland B. Sookias
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - David Dilkes
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Gabriela Sobral
- Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany
| | - Roger M. H. Smith
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
- Iziko South African Museum, PO Box 61, Cape Town, South Africa
| | - Frederik P. Wolvaardt
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
| | - Andrea B. Arcucci
- IMIBIO CONICET Universidad Nacional de San Luis, Av Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Bhart-Anjan S. Bhullar
- Department of Earth and Planetary Sciences, 210 Whitney Ave., Yale University, New Haven, CT 06511, USA
- Yale Peabody Museum of Natural History, 170 Whitney Ave., New Haven, CT 06511, USA
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) at Eberhard-Karls-Universität, Sigwartstraße 10, 72076 Tübingen, Germany
- Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12, 72074 Tübingen, Germany
| |
Collapse
|